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The role of infrared divergence for decoherence
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Abstract

Continuous and discrete superselection rules induced by the interaction with the environ-

ment are investigated for a class of exactly soluble Hamiltonian models. The environment is

given by a Boson �eld. Stable superselection sectors emerge if and only if the low frequences

dominate and the ground state of the Boson �eld disappears due to infrared divergence. The

models allow uniform estimates of all transition matrix elements between di�erent superse-

lection sectors.

1 Introduction

Superselection rules are the basis for the emergence of classical physics within quantum theory.

But despite of the great progress in understanding superselection rules, see e.g. [20], quantum

mechanics and quantum �eld theory do not provide enough superselection rules to infer the

classical probability of \facts" from quantum probability. This problem is most often discussed

in the context of measurement of quantum mechanical objects. In an important paper about

the process of measurement Hepp [10] has presented a class of models for which the dynamics

induces superselection sectors. Hepp starts with a very large algebra of observables { essentially

all observables with the exception of the \observables at in�nity" which constitute an a priory

set of superselection rules { and the superselection sectors emerge in the weak operator conver-

gence. But it has soon been realized that the algebra of observables, which is relevant for the

understanding of the process of measurement [8] [2] and, more generally for the understanding

of the classical appearance of the world [21] [12] [9] can be severely restricted. Then strong or

even uniform operator convergence is possible.

In this paper results of Chap.7 of the book [9] and of the article [13] are extended. After

a short introduction to superselection rules and the dynamics of subsystems we prove in Sect.3

that uniform operator estimates are possible also for continuous superselection rules induced by

the environment. In Sect.4 we investigate a class of Hamiltonian models with an environment

given by a Boson �eld. The restriction to the Boson sector corresponds to a van Hove model

[11]. As the main result of the paper we prove for this class of models:

{ The superselection sectors are induced by the infrared contributions of the Boson �eld.

{ The superselection sectors are stable for t ! 1 if and only if the Boson �eld is infrared

divergent.

This type of infrared divergence has been studied by Schroer [19] more than thirty years

ago. The Boson �eld is still de�ned on the Fock space but the ground state of the Boson �eld

disappears in the continuum.

2 Induced superselection rules

We start with a few mathematical notations. Let H be a separable Hilbert space, then the

following spaces of linear operators are used.

B(H): The linear space of all bounded operators A with the operator norm kAk.
1
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T (H): The linear space of all nuclear operators A with the trace norm kAk1 = tr
p
A+A.

D(H): The set of all positive nuclear operators W with a normalized trace, trW = 1.

We consider standard quantum mechanics and quantum �eld theory where any state of a

quantum system is represented by a statistical operator W 2 D(H) - the rank one projection

operators thereby correspond to the pure states - and any bounded observable is represented

by an operator A 2 B(H). Without additional knowledge about the structure of the system we

have to assume that the set of all states corresponds to D(H), and the operator algebra of all

(bounded) observables coincides with B(H). In quantum �eld theory the superposition principle

is partially restricted to superselection sectors, see e.g. [20]. The projection operators onto the

superselection sectors commute with all observables of the theory: they are classical observables.

But there remains an essential problem for the understanding of the classical appearance of the

world: Only very few superselection rules can be found in quantum mechanics and quantum

�eld theory. A possible solution is the emergence of superselection rules due to decoherence

caused by the dynamics.

Let A = A(0) ! A(t) = Tt(A) 2 B(H) denote the dynamics in the Heisenberg picture. If

there exists a family of projection operators fPm; m 2Mg with the properties PmPn = 0 for

m 6= n and
P

n Pn = I , such that transition matrix elements (f j A(t)g) between di�erent sectors
f 2 Hm = PmH; g 2 Hn = PnH; m 6= n, vanish for all observables A 2 B(H) for t ! 1, the

subspaces Hm = PmH; m 2M; are denoted as superselection sectors induced by the dynamics

Tt.
This de�nition can be applied to the Hamiltonian dynamics A = A(0) ! A(t) = Tt(A) :=

U+(t)AU(t) where U(t) = exp(�iHt) is the unitary group generated by the Hamiltonian H .

As a simple example we consider a Hamiltonian H on the Hilbert space H = H0 �H1 with one

bound state at energy E0 in the 1-dim. subspace H0 and with an absolutely continuous spectrum

in the subspace H1. Then for f0 2 H0 and f1 2 H1 with kf0;1k = 1 we calculate (f0 j A(t)f1) =
eiE0t (A+(0)f0 j U(t)f1)! 0, since U(t)f1 converges weakly to zero. The subspaces H0 and H1

are therefore induced superselection sectors of the Hamiltonian dynamics. If P0;1 denote the

projection operators onto the subspaces H0;1 then the o�-diagonal part P0A(t)P1 converges in

the weak operator norm to zero. But neither strong nor, a fortiori, uniform convergence holds for

P0A(t)P1 unless P0A(t)P1 � 0. More re�ned examples have been given by Hepp [10]. Thereby

an essential consequence of the Hamiltonian time evolution or any other automorphic time

evolution is the restriction to a weak operator convergence. Moreover, as has been emphasized

by Bell [3], the time scale can be arbitrarily long, such that the practical use of such models is

questionable.

A strong or even uniform suppression of the o�-diagonal matrix elements of all observables

can be obtained by the restriction to a subsystem [8] [2] [21]. In the following we consider

an open system, i.e. a system S which interacts with an environment E , such that the total

system S � E satis�es the usual Hamiltonian dynamics. The Hilbert space HS�E of the total

system S � E is the tensor space HS 
 HE of the Hilbert spaces for S and for E . If the

state of the total system is W 2 D(HS+E), then the state of the subsystem is given by the

reduced statistical operator � = trEW 2 D(HS). The dynamics of the states of the total

system W 2 D(HS�E) ! W (t) = U(t)W (0)U+(t) 2 D(HS�E) with the unitary group U(t) =

exp(�iHt), generated by the total Hamiltonian H , yields the dynamics of the statistical operator

�(t) = trE U(t)W (0)U+(t) 2 D(HS) of the subsystem S. In the following we assume that the

initial state factorizes W = �
 ! with � 2 D(HS) and a �xed reference state ! 2 D(HE) of the

environment. Then the dynamics in the Heisenberg picture of the system S is easily calculated

as

A 2 B(HS)! A(t) = Tt(A) := trE U
+(t)(A
 IE)U(t)! 2 B(HS): (1)
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Before we investigate induced superselection sectors we generalize the de�nition given above to

the case of continuous superselection sectors. The �nite or countable set of projection opera-

tors fPm; m 2Mg is substituted by a strongly continuous family of projection operators P (�)

indexed by measurable subsets � � R, see e.g. [16] or [2]. These projection operators have to

satisfy �
P (�1 [�2) = P (�1) + P (�2) and P (�1)P (�2) = 0 if �1 \�2 = ;
P (;) = 0; P (R) = 1:

(2)

If we chose for fP (�); � � Rg a general (right continuous) spectral family, the case of discrete
superselection rules is included in (2).

The dynamics of the total system induces superselection rules in the system S if there exists

a right continuous family of projection operators (2) fPS(�) j � � Rg de�ned on the Hilbert

space HS , such that the o�-diagonal contributions of all statistical operators of the system S
vanish for t ! 1, i.e. P (�1)�(t)P (�2) ! 0 if t ! 1 and �1 \�2 = ;, or in the Heisenberg

picture, PS(�1)A(t)PS(�2)! 0 if t!1 and �1 \�2 = ; for all observables A 2 B(HS).

3 Soluble models

In the following we present models for which the Hamiltonian of the total system provides a

family of projection operators fPS(�); � � Rg on HS such that the o�-diagonal elements of

any bounded observable of the system S can be estimated with the operator norm. We derive

a uniform decrease

kPS(�1)A(t)PS(�2)k ! 0 if t!1 (3)

for arbitrary bounded observables A 2 B(HS) and arbitrary disjoint closed intervals �1\�2 = ;.
The models have the following structure. The total Hamiltonian is de�ned on the tensor

space HS�E = HS 
 HE as

HS�E = HS 
 IE + IS 
HE + F 
G

=

�
HS �

1

2
F 2

�

 IE +

1

2
(F 
 IE + IS 
 G)2 + IS 


�
HE �

1

2
G2

�
(4)

where HS is the positive Hamiltonian of S, HE is the positive Hamiltonian of E , and F 
 G is

the interaction potential between S and E with operators F on HS and G on HE . To guarantee

that HS�E is self-adjoint and semibounded we assume

1) The operators F and F 2 (G and G2) are essentially self-adjoint on the domain ofHS (HE).

The operators HS � 1
2F

2 and HE � 1
2G

2 are semibounded.

Since F 2 
 IE � 2F 
 G+ IS 
 G2 are positive operators, the operator F 
G is

(HS 
 IE + IS 
HE)-bounded with relative bound one, and W�ust's theorem, see e.g. Theorem

X.14 in [18], implies that HS�E is essentially self-adjoint on the domain of HS 
 IE + IS 
HE.

Moreover HS�E is obviously semibounded.

To derive induced superselection rules we need the rather severe restriction

2) The operators HS and F commute strongly, i.e. their spectral projections commute.

So far no model with Hamiltonian dynamics has been presented which violates this assump-

tion and allows the uniform estimate (3) of induced superselection sectors. If the Hamiltonian
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includes a scattering potential it is possible to abandon this assumption. But then the o�-

diagonal terms P (�1)A(t)P (�2) decrease only in the strong operator topology, see [14].

The operator F has a spectral decomposition F =
R
R
�PS(d�) with a right continuous

family of projection operators PS(�) indexed by measurable subsets � � R. We shall see

below that exactly the projection operators of this spectral decomposition determine the induced

superselection sectors.

As a consequence of assumption 2) we have [HS ; PS(�)] = 0 for all intervals � � R. The

Hamiltonian (4) has therefore the formHS�E = HS
IE+
R
R
PS(d�)
(HE + �G). The operator

jGj =
p
G2 has the upper bound jGj � aG2 + (4a)�1I with an arbitrarily small constant a > 0.

Since G2 isHE-bounded with relative bound 2, the operatorG isHE-bounded with an arbitrarily

small bound. The Kato-Rellich theorem, see e.g. [18], implies that the operators HE + �G are

self-adjoint on the domain of HE for all � 2 R. The unitary evolution U(t) := exp(�iHS�Et) of

the total system can therefore be written as U(t) =
�
e�iHS t 
 IE

� R
dPS(�)
 e�i(HE+�G)t. The

dynamics of the observables (1) follows as

A(t) = eiHSt

�Z Z
� (�; �; t)PS(d�)APS(d�)

�
e�iHS t (5)

with the trace

�(�; �; t) = trE

�
ei(HE+�G)te�i(HE+�G)t!

�
: (6)

The emergence of dynamically induced superselection rules depends on an estimate of this trace.

For the models investigated below, we obtain for a large class of reference states ! (actually a

dense set within D(HE)) the bounds���� @n@�n�(�; �; t)
���� � c

�
1 + (�� �)2 (t)

��

; n = 0; 1; (7)

with a function  (t) � 0 which diverges for t!1 like a power t�; 0 < � < 1, and an exponent


 > 0 which can be a large number. If �1 and �2 are intervals with a distance � > 0 then the

operator norm of PS(�1)A(t)PS(�2) is estimated in the Appendix A as

kPS(�1)A(t)PS(�2)k � const kAk
�
1 + �2 (t)

��

: (8)

For operators F with a discrete spectrum F =
P
�nP

S
n uniform norm estimates have already

been derived in Sect. 7.6 of [9]. In this case the bound with n = 1 in (7) is obsolete.

A simple class of explicitly soluble models which yield the estimates (7) can be obtained

under the additional assumption

3) The Hamiltonian HE and the potential G commute strongly. The operator G has an

absolutely continuous spectrum.

Such models have been investigated (for operators F with a discrete spectrum) by Araki [2]

and by Zurek [21], see also Sect. 7.6 of [9] and [14]. Under the assumption 3) the trace (6)

simpli�es to �(�; �; t) = trE
�
ei(���)Gt!

�
. Let G =

R
R
�PE(d�) be the spectral representation

of the operator G. Then the measure d�(�) := trE (PE(d�)!) is absolutely continuous with

respect to the Lebesgue measure for any ! 2 D(HE), and the function �(t) := trE
�
eiGt!

�
=R

R
ei�t d�(�) vanishes for t ! 1. But to obtain a decrease which is e�ective in su�ciently

short time, we need an additional smoothness condition on !. This condition does not impose

restrictions on the statistical operator � 2 D(HS) of the system S. We assume that G! 2 T (HE)

and, moreover, that the integral operator, which represents ! in the spectral representation of
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G, is a su�ciently di�erentiable function vanishing at the boundary points of the spectrum.

Then the measure d�(�) = trE (PE(d�)!) has a smooth density, and we can derive a strong

decrease of its Fourier transform �(t) and its derivative,
�� dn
dtn
�(t)

�� � C
(1+ t
2)�
 ; n = 0; 1, with

arbitrarily large values of 
. That implies bounds (7) with  (t) = t2.

4 The interaction with a Boson �eld

In this section we present a model without the restriction 3). Preliminary results have already

been reported in [14]. We choose a system S which satis�es the constraints 1) and 2). The

environment given by a Boson �eld is investigated in details below. As essential result we

derive the uniform estimates (7). Consequently the o�-diagonal elements of the operator F are

suppressed as given in (8). As speci�c example we may consider a particle on the real line with

velocity coupling. The Hilbert space of the particle is HS = L2(R). The Hamiltonian and the

interaction potential of the particle are

HS =
1

2
P 2 and F = P (9)

where P = �i d
dx

is the momentum operator of the particle. The identity HS � 1
2
F 2 = 0

guarantees the positivity of the �rst term in (4). Decoherence then yields superselection rules

for the momentum of the particle.

As Hilbert space HE we choose the Fock space of symmetric tensors F(H1) based on the one

particle Hilbert space H1. The inner product of F(H1) is denoted by (: j :). The Hamiltonian
is generated by a one-particle Hamilton operator M onH1 with the following properties

(i) M is a positive operator with an absolutely continuous spectrum,

(ii) M has anunbounded inverseM�1.

The spectrum ofM is (a subset of)R+, which { as a consequence of the second assumption {

includes zero. The Hamiltonian of the free �eld is then the derivation HE = d�(M) generated by

M , see Appendix B. Let a+(f) denote the creation operator of the one-particle state f 2 H1 and

a(f) = (a+(f))
+
the corresponding annihilation operator, normalized to [a(f); a+(g)] = (f j g).

The interaction potential G is then chosen as the self-adjoint �eld operator G = �(h) :=

a+(h) + a(h), where h 2 H1 satis�es the additional constraint

2



M� 1

2h




 � 1: (10)

This constraint guarantees that HE � 1
2
�2(h) is bounded from below, and the Hamiltonian (4)

is a well de�ned semibounded operator on F(HS�E), see Appendix B.

To derive induced superselection sectors for the observable P we have to estimate the time

dependence of the traces (6) ���(t) := trEU��(t)!; � 6= �; where ! is the reference state of the

Boson �eld, and the unitary operators U��(t) are given by

U��(t) := exp(iH�t) exp(�iH�t); with H� = HE + ��(h); �; � 2 R: (11)

The Hamiltonians H� are Hamiltonians of the van Hove model [11]. In the Appendix B we

prove the following results for reference states ! which are �nite superpositions or mixtures of

coherent states.

1. If the vector h also satis�es M�1h 2 H1 one can use the standard methods of the van

Hove model to evaluate the traces ���(t) = trEU��(t)!. These traces do not vanish for

t!1. But one can achieve a strong decrease which persists for some �nite time interval.

This period can be arbitrarily large; but inevitably, recurrences exist.
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2. If M�1h =2 H1 the low energy contribution of the interaction potential dominates, and

���(t) vanishes for t ! 1 if � 6= �. If the vector h satis�es some additional regularity

condition at small energies, there exists a uniform limit limt!1 ���(t) = 0 for all �; � with

j�� �j � � > 0, and zero can be approached within a short time.

The assumption M�1h =2 H1 is therefore necessary and su�cient for the emergence of superse-

lection rules, which persist for t ! 1. In this case the Boson �eld is infrared divergent. It is

still de�ned on the Fock space, but its ground state disappears in the continuum, see [19].
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A Norm estimates of observables

In the following PS (�) with intervals � � R denotes the spectral family of the potential F . Let

�1 and �2 be closed intervals of the real axes, and let (�; �) 2 �1 ��2 � R2 ! �(�; �) 2 C
be a di�erentiable function with the uniform bounds j�(�; �)j � c1 and

��� @@��(�; �)��� � c2. Then

� 2 �2 ! T2(�) =
R
�1
�(�; �)PS(d�) 2 B(HS) is a di�erentiable family of operators with the

norm estimates kT2(�)k � c1 and kT 02(�)k � c2. If A 2 B(HS) is a bounded operator, the

function � 2 �2 ! T (�) = T2(�)A 2 B(HS) is again di�erentiable with the uniform estimates

kT (�)k � c1 kAk and


T 0(�)

 � c2 kAk (12)

For all intervals �2 the Stieltjes integrals
R
�2
T (�)PS(d�) are well de�ned. Let �2 = [a; b] be an

interval of �nite length. Then partial integration yields the operator identity
R
�2
T (�)PS(d�) =

T (b)E(b)� T (a)E(a)�
R
�2
T 0(�)E(�)d� with the projection operators E(�) := PS ((�1; �])),

and the inequalities (12) imply the bound




Z
�2

T (�)PS(d�)





 � (2c1 + j�2j c2) kAk : (13)

The norm of PS(�1)A(t)PS(�2), where A(t) is the Heisenberg operator (5), can now be

estimated using (13). If �1 and �2 are disjoint intervals with a distance �, the constants c1 and

c2 have to be substituted by the upper bounds in (7), i.e. c1 = c2 = c
�
1 + �2 (t)

��

.

B The van Hove model

Let F � G denote the symmetric tensor product of the Fock space F(H1) with vacuum 1vac.

For all f 2 H1 the exponential vectors exp f = 1vac + f + 1
2
f � f + ::: converge within F(H1),

the inner product being (exp f j exp g) = exp (f j g). The linear span of all exponential vectors

fexp f j f 2 H1g is dense in F(H1). The creation operators a+(f) are uniquely determined

by a+(f) exp g = f � exp g = @

@�
exp(f + �g) j�=0; f; g 2 H1 and the annihilation operators

are given by a(g) expf = (g j f) exp f . These operators satisfy the standard commutation

relations [a(f); a+(g)] = (f j g). If M is a operator on H1 then �(M) is uniquely de�ned

as operator on F(H1) by �(M) exp f := exp(Mf), and the derivation d�(M) is de�ned by

d�(M) exp f := (Mf) � exp f .
As explicit example we may take H1 = L2(Rn) with inner product

(f j g) =
R
Rn
f(k)g(k)dnk. The one-particle Hamilton operator can be chosen as
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(Mf) (k) := "(k)f(k) with the positive energy function "(k) = c jkj ; c > 0; k 2 R
n: Let

a
#
k
; k 2 R

n, denote the distributional creation/annihilation operators, such that a+(f) =R
a+
k
f(k)dnk and a(f) =

R
ak f(k)d

nk, then the Hamiltonian HE = d�(M) coincides with

HE =
R
"(k)a+

k
akd

nk.

For arbitrary elements g 2 H1 the unitary Weyl operators are de�ned on the set of ex-

ponential vectors by T (g) expf = e�(gjf)�
1

2
kgk

2

exp(f + g). This de�nition is equivalent to

T (g) = exp (a+(g)� a(g)). The Weyl operators are characterized by the properties

T (g1)T (g2) = T (g1 + g2) exp (�iIm (g1 j g2))
(1vac j T (g)1vac) = exp

�
�1
2
kgk2

�
:

(14)

The time evolution on the Fock space is given by U(t) = exp(�iHEt) = � (V (t)) with V (t) :=

exp(�iMt). For exponential vectors we obtain U(t) exp f = exp (V (t)f). From these equations

the dynamics of the Weyl operators follows as

U+(t)T (g)U(t) = T
�
V +(t) g

�
: (15)

For �xed h 2 H1 the unitary operators T+(h)U(t)T (h); t 2 R, form a one parameter group

which acts on exponential vectors as

T+(h)U(t)T (h) expf = exp
�
(h j V (t)(f + h)� f)� khk2

�
exp (V (t)(f + h)� h). For

h 2 H1 with Mh 2 H1 the generator of this group is easily identi�ed with T+(h)HET (h) =

HE + �(Mh) + (h jMh), where �(:) is the �eld operator. This identity was �rst derived by

Cook [5] by quite di�erent methods. If h satis�es M�1h 2 H1 we obtain

T+(M�1h)HET (M
�1h)�




M�
1

2h




2 = HE + �(h) (16)

which is the Hamiltonian of the van Hove model [11], see also, [4] p.166�, and [7].

For all h 2 HE with M�
1

2h 2 HE the �eld operator �(h) satis�es the estimate

k�(h) k � 2



M� 1

2h




 


pHE 




+ khk k k ; (17)

where  2 F(H1) is an arbitrary vector in the domain of HE , see e.g. eq. (2.3) of [1]. As

consequences we obtain

Lemma 1 The operators HE + ��(h); � 2 R, are self-adjoint on the domain of HE if h 2 H1

and M�
1

2h 2 H1. The operator HE � 1
2
�2(h) has the lower bound HE � 1

2
�2(h) � �khk2, if

h 2 H1 and



M�

1

2 h




 � 2�1.

Proof. From (17) and the numerical inequality
p
x � ax+(4a)�1, valid for x � 0 and a > 0,

we obtain a bound k�(h) k � c1 kHE k+c2 k k with positive numbers c1; c2 > 0 where c1 can

be chosen arbitrarily small. Then the Kato-Rellich Theorem yields the �rst statement.

From (17) we obtain

k�(h) k2 � 4



M�

1

2h




2 ( j HE ) + 4



M�

1

2h




 khk

pHE 


 k k+ khk2 k k2

� 8



M�

1

2 h




2 ( j HE ) + 2 khk2 k k2 : Hence the operator inequalities

0 � 1
2
�2(h) � 4




M�
1

2h




2HE + khk2 IE hold, and we have derived the second statement.

Therefore the total Hamiltonian (4) is semibounded, and the unitary operators

U�(t) = exp (�i(HE + ��(h))t) are well de�ned if (10) is satis�ed.
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In a �rst step we evaluate the expectation value of (11) U��(t) = U�(�t)U�(t) for a coher-

ent state (= normalized exponential vector) exp
�
f � 1

2 kfk
2
�
under the additional constraint

M�1h 2 H1. This assumption allows to use the identity (16) which reduces all calculations to

the Weyl relations and the vacuum expectation (14). The extension to the general case, which

violates M�1h 2 H1, can then be performed by a continuity argument.

If M�1h 2 H1 the identity (16) implies

U�(t) = T (��M�1h)U0(t)T (�M
�1h) exp

�
i�2
�
h jM�1h

�
t
�
. Then U��(t) = U�(�t)U�(t) can

be evaluated with the help of (14) and (15) with the result

U��(t) = T
�
(�� �) (V +(t)� I)M�1h

�
exp (�i'1(t)) ;

'1(t) = (�2 � �2)
��
h jM�1h

�
t +
�
M�1h jM�1 sin(Mt)h

�	
:

(18)

Let !(f) denote the projection operator onto the normalized coherent state

exp
�
f � 1

2
kfk2

�
; f 2 H1, then trEU��(t)!(f) is evaluated as

(1vac j T+(f)U��(t)T (f)1vac) =
�
1vac j T

�
(�� �) (V +(t)� I)M�1h

�
1vac

�
exp (�i'(t))

with the phase

'(t) = 2(�� �) Im
�
f j (I � V +(t))M�1h

�
+ (�2 � �2)

��
M�1h j ht +M�1 sin(Mt)h

��
. Using

the second identity of (14) we �nally obtain

trEU��(t)!(f) = exp

 
�(�� �)2

2



�V +(t)� I
�
M�1h



2! exp (�i') : (19)

Under the assumptionM�1h 2 H1 the norm


(V +(t)� I)M�1h



 is uniformly bounded in t and

the trace (19) does not vanish for t ! 1. But nevertheless one can achieve a strong decrease

which persists for some �nite time interval. This period can be chosen arbitrarily large if the

low energy contributions are strong; but inevitably, recurrences exist [14].

For vectors h 2 H1 with M�
1

2h 2 H1 but M�1h 2 H1 we �rst prove that trEU��(t)!(f)

is again given by the identity (19). Then we derive the essential statement that the norm

(V +(t)� I)M�1h


 diverges for t ! 1, and consequently superselection sectors are induced

for all � 6= �.

The operators HE +��(h) are self-adjoint on the domain of HE if h 2 H1 and M
� 1

2 h 2 H1.

Therefore it is possible to extend the result (19) to Hamilton operators which satisfy these

constraints but violate M�1h 2 H1. To make this statement more explicit we introduce the

norm

jkhkj := khk+



M� 1

2h




 : (20)

Let hn 2 H1; n = 1; 2; :::; be a sequence of real vectors which converges in this topology to a

vector h, then we know from (17) and the proof of Lemma 1 that there exist two null sequences

of positive numbers c1n and c2n such that

k(�(hn)� �(h)) k � c1n k(HE + �(h)) k+ c2n k k :

Hence the operators HE + �(hn) converge strongly to HE + �(h). Then Theorem 4.4 of [15]

or Theorem 3.17 of [6] imply the strong convergence of U(hn; t) = exp (�i (HE + �(hn)) t)

to U(h; t) = exp (�i (HE + �(h)) t), uniformly in all intervals 0 � t � s < 1. The oper-

ators U��;n(t) := exp (i (HE + ��(hn)) t) exp (�i (HE + ��(hn)) t) converge therefore in the

weak operator topology to U��(t). For n = 1; 2; :: we can calculate the corresponding traces

trEU��;n(t)!(f) with the result (19) where h has to be substituted by hn. Since (19) is contin-

uous in the variable h in the topology (20) the limit for n!1 is again given by (19).
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To derive the divergence of


(V +(t)� I)M�1h



 for t ! 1 we introduce the spectral reso-

lution PM (d�) of the one-particle Hamilton operator M . The energy distribution of the vector

h 2 H1 is given by the measure d�h(�) = (h j PM (d�)h). The norm of (V +(t)� I)M�1h is the

square root of

 (t) :=


�V +(t)� I

�
M�1h



2 = 4

Z
R+

��2 sin2
�t

2
d�h(�): (21)

This integral is well de�ned for all h 2 H1, and  (t) is di�erentiable for t 2 R.

Lemma 2 If M�1h =2 H1, i.e.Z 1

"

��2 d�h(�)%1 if "! +0; (22)

then the integral (21) diverges for t!1.

Proof. Since the operator M has an absolutely continuous spectrum, the measure d�h(�)

is absolutely continuous with respect to the Lebesgue measure d� on R+. Consequently, the

measure ��2 d�h(�) is absolutely continuous with respect to the Lebesgue measure on any inter-

val (";1) with " > 0. The identity sin2 �t

2
= 1

2
(1� cos�t) and the Lebesgue Lemma therefore

imply limt!1

R
1

"
��2 sin2 �t

2
d�h(�) =

1
2

R
1

"
��2 d�h(�). Given a number N > 0 the assumption

(22) yields the existence of an " > 0 such that

lim
t!1

Z 1

"

��2 sin2
�t

2
d�h(�) =

1

2

Z 1

"

��2 d�h(�) > N: (23)

From the inequality
R
R+
��2 sin2 �t

2
d�h(�) �

R
1

"
��2 sin2 �t

2
d�h(�) we then obtainR

1

0
��2 sin2 �t

2 d�h(�) > N for su�ciently large t. Since the number N can be arbitrarily large

the integral (21) diverges for t!1.

If d�h(�) satis�es additional regularity conditions, we can obtain uniform estimates of the

divergence. E. g. d�h(�) �= c � �2�d� with 0 < � < 1
2
and c > 0 in a neighbourhood of � = +0

implies a powerlike divergence  (t) � t1�2�.

So far the reference state ! has been a coherent state. But the results remain obviously

true if the reference state is a �nite linear combination of coherent states or a �nite mixture of

coherent states.

As a �nal remark we indicate a modi�cation of the model, which does not use the absolute

continuity of the spectrum ofM . But we still need a dominating low energy contribution in the

interaction. More precisely, we assume that �h(�) �
R �
0
d�h(�) behaves at low energies like

��2�h(�)%1 if �! +0: (24)

Then we can derive the divergence of (21) by the inequalities

 (t) � 4
R �

t

0
��2 sin2 �t

2
d�h(�) � 4

�2
t2
R �

t

0
d�h(�) =

4
�2
t2 �h(

�

t
) using sin x � 2

�
x if 0 � x � �

2
.

For measures d�h(�) � �2�d� the assumption (24) is more restrictive than (22) { it excludes

d�h(�) � �d� which satis�es the conditions of Lemma 2. But (24) is also meaningful for point

measures d�h(�), and M may be an operator with a pure point spectrum. The Boson �eld

can therefore be substituted by an in�nite family of harmonic oscillators, which have zero as

accumulation point of their frequencies. Such an example has been discussed { also for KMS

states { by Primas [17].
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