The Knowledge Contained in Similarity Measures

Michael M. Richter, Kaiserslautern

The Questions:

- Of which nature is the knowledge a similarity measure can contain?
- How to bring the knowledge into the measure?
- How to retrieve and use the knowledge for actual problems?

The Relational Approach

Basic Relations:

1) $R(x, y, u, v)$:
" x and y are at least as similar as u and v are"

> 2) $\mathrm{S}(\mathrm{z}, \mathrm{x}, \mathrm{y}): \Leftrightarrow \mathrm{R}(\mathrm{z}, \mathrm{x}, \mathrm{z}, \mathrm{y})$
> " z and x are at least as similar as z and y are"

$$
\begin{aligned}
& \text { 3) } \mathrm{NN}(\mathrm{z}, \mathrm{x}): \Leftrightarrow \forall \mathrm{y} \mathrm{~S}(\mathrm{z}, \mathrm{x}, \mathrm{y}) \\
& \text { "x is a nearest neighbour of } \mathrm{z} \text { " }
\end{aligned}
$$

On the Semantics of Similarity-Measures

Task: Classification $(a \in U, b \in C B)$

A plausible request:

 $\operatorname{sim}(a, b)=\operatorname{Prob}(\operatorname{class}(a)=\operatorname{class}(b) \mid$ given observations)Conditional Probability!

Advantage:

The Nearest-Neighbour-Principle is reduced to the Maximum-Likelihood-Principle

Problem:

What to do if we have very few observations and no other (a priori) information?

Two Possible Approaches:

(1)
The Evidence-Approach (Dempster - Shafer):
Determine an evidence measure μ on the case base $\mathrm{CB} \subseteq \mathrm{U}$,
(i.e. a probability on the power set of CB$)(\mathrm{a} \in \mathrm{U})$

$$
\mu_{a}: \wp(C B) \rightarrow[0,1]
$$

Evidence measures reflect ignorance!

(2)

The Interval-Approach (Pöhlmann - Weichselberger):
Determine an interval for the (unknown) probability distribution:

$$
\begin{aligned}
& \text { I: } \mathrm{U} \times \mathrm{CB} \rightarrow[0,1] \times[0,1] \\
& \mathrm{I}(\mathrm{a}, \mathrm{~b})=(\mathrm{x}, \mathrm{y}) \Rightarrow \mathrm{x} \leq \mathrm{y} \\
& \mathrm{x} \leq \operatorname{Prob}(\text { class }(\mathrm{a})=\operatorname{class}(\mathrm{b}) \mid \text { given observations }) \leq \mathrm{y}
\end{aligned}
$$

The intervals also reflect ignorance!

The Distribution of Knowledge in a CBR-System

Knowledge Sources

Vocabulary Attributes Predicates...

Similarity
Measure
Sim
Case Base CB
\Downarrow
To be
Interpreted at
Run Time
\Downarrow

Compile Time:
Every Time before Actual Problem Solving

Distribution of Knowledge

In principle, all knowledge could be

- in the case base:
pure interpreter approach
- all possible cases in $\mathrm{CB}=\mathrm{U}$
- in the measure: pure compiler approach

A Simple View
 on the Task of a CBR-System

Two simple tasks:
(1) Compute a function $f(x)$
(2) Decide for $a, b \in \operatorname{dom}(f): f(a)=f(b)$?

Observations:

- The ability to solve task (1) is sufficient for solving task (2)
- Task (2) may be a lot easier than task(1) e.g. $f(x)=x^{2}$
- Task (2) suffices for task (1) if a table

$$
\left(a_{1}, f\left(a_{1}\right)\right),\left(a_{2}, f\left(a_{2}\right)\right), \ldots
$$

for many a_{i} is available

Issues

- The Semantical Issue:

What is the precise semantics of the parts of a CBR-system which can carry knowledge?

- The Software-(Knowledge-)Engineering Issue:
How is the transformation process Knowledge Sources \rightarrow CBR-System best organized? In how far can existing techniques from knowledge engineering $b \in$ used?
- The Maintenance Issue:

How can one react to dynamic changes of the knowledge?

Centrefor

Further Generalizations:

- Mix task 1 and task 2:

Split dom(f) and find out which task to apply

- Mix task of type 2 with other tasks

Example:

Task Ind: Apply Inductive Reasoning

The INRECA-Approach:

Mixing Task of Type 2 and Task Ind

Problem Solving Knowledge

In

- classical (procedural) programs
- knowledge based systems
the knowledge is used to solve a certain problem, e.g. to solve task 1.
(A) In a CBR-system the knowledge is used to solve tasks of type 2.
(B) If a system has some CBR-part, then the knowledge is in addition used to select the part of the knowledge used in the CBR-part

Consequence:

Methods for Knowledge Engineering should respect (A) and (B).

Generalization:

Task of Type 2: For any $a, b \in \operatorname{dom}(f)$

decide the question
"Is the solution $\mathrm{f}(\mathrm{b})$ "good enough" to replace $f(a)$?"
"Good enough" has many interpretations, e.g.:

- $f(b)$ is for further operations (almost) as good as $f(a)$
- $f(a)$ can be easily determined from $f(b)$ (adaption)
and others

The task of a CBR-system at compile time is essentially of type 2

Suppose $\mathrm{I}=\{1, \ldots, \mathrm{n}\}$; assume $\mathrm{J} \subseteq \mathrm{I}$:

$$
\begin{aligned}
& X_{J}=\left\{x \in C B \mid x_{i}=a_{i}, i \in J\right\}, X_{i}=X_{\{i\}} \\
& m_{J}=\oplus\left(m_{i} \mid i \in J\right), m_{i}=m_{\{i\}}
\end{aligned}
$$

The sets X_{J} are closed under intersections.
If $\mathrm{X}_{\mathrm{J} 1}=\mathrm{X}_{\mathrm{J} 2}$ for $\mathrm{J} 1 \neq \mathrm{J} 2$ we call it a multiplicity. Without multiplicities and conflicts, Dempster's rule simplifies and gives for $\mathrm{J}^{\prime} \subseteq \mathrm{J} \subseteq \mathrm{I}$

$$
\left.\begin{array}{rl}
& m_{J}\left(X_{J^{\prime}}\right)=\prod_{i \in J^{\prime}} g_{i} * \prod_{i \in J \backslash J^{\prime}}\left(1-g_{i}\right) \\
= & \sum_{J^{\prime \prime}} \subseteq J \backslash J^{\prime} \\
i \in J^{\prime}
\end{array} \prod_{i}\right)^{*}(-1)^{\left|J^{\prime \prime}\right|} * \prod_{k \in J^{\prime \prime}} g_{k}{ }_{k}
$$

Also:

$$
\mathrm{m}_{\mathrm{J}}(\mathrm{CB})=\prod_{\mathrm{i} \in \mathrm{~J} \backslash \mathrm{~J}^{\prime}}\left(1-\mathrm{g}_{\mathrm{i}}\right)=1-\sum_{\mathrm{J}^{\prime \prime}} \subseteq \mathrm{J} \backslash \mathrm{~J}^{\prime}(-1)^{\left|\mathrm{J}^{\prime \prime}\right|} * \prod_{\mathrm{k} \in \mathrm{~J}^{\prime \prime}} \mathrm{g}_{\mathrm{k}}
$$

Some $\mathrm{x} \in \mathrm{CB}$ may be elements of several focal sets X. Crucial assumption:
Each such membership contributes to the similarity of x and a according to the evidence measure of each X .

Definition:
(i) $\quad v_{\mathrm{J}}(\mathrm{X})=\sum_{\mathrm{Y} \supseteq \mathrm{X}} \mathrm{m}_{\mathrm{J}}(\mathrm{Y}), \mathrm{Y}$ a focal set for m_{J}
(ii) $\quad \nu_{\mathrm{J}}(\mathrm{x})=\nu_{\mathrm{J}}(\mathrm{X}), \mathrm{X}$ the minimal focal set cor uniquely defined).
(iii) $\mu_{\mathrm{J}}^{\mathrm{D}}(\mathrm{a}, \mathrm{x})=\nu_{\mathrm{J}}(\mathrm{x})$, where a is the actual case.

$$
\begin{aligned}
& \text { Noise } \\
& \mathrm{X}_{\mathrm{i}}{ }^{\mathrm{e}, \mathrm{~d}}=\left\{\mathrm{x} \in \mathrm{CB}\left|\mathrm{e} \leq\left|\mathrm{X}_{\mathrm{i}}-\mathrm{a}_{\mathrm{i}}\right| \leq \mathrm{d}\right\},\right. \\
& \mathrm{m}_{\mathrm{i}}{ }^{\mathrm{e}, \mathrm{~d}}\left(\mathrm{X}_{\mathrm{i}}{ }^{\mathrm{e}, \mathrm{~d}}\right)=\mathrm{g}^{\mathrm{e,d},}, \\
& \mathrm{~m}_{\mathrm{i}}{ }^{\mathrm{e}, \mathrm{~d}}(\mathrm{CB})=1-\sum\left(\mathrm{g}_{\mathrm{i}}{ }^{\mathrm{e}, \mathrm{~d}} \mid(\mathrm{e}, \mathrm{~d})\right) \\
& \text { for } 0 \leq \mathrm{e}<\mathrm{d} \leq 1 \text {; } \\
& \mathrm{g}_{\mathrm{i}}{ }^{\mathrm{e}, \mathrm{~d}} \text { are again real numbers. } \\
& \text { The rest is as above. }
\end{aligned}
$$

Similarity and Utility

Plans, Configurations (sometimes Diagnoses) are not only

- Correct or incorrect but also
- more or less useful

Hence we have two parameters
α : measures degree of correctness
β : measures utility
Also, we have to consider (Vocabulary, Similarity, Case Base)
plus
(Solution Transformation)

Limitations of the

Hamming Measure

$$
\begin{gathered}
g=\left(g_{1}, \ldots, g_{n}\right) \text { weight vector, } g_{i} \geq 0 \\
H_{g}(a, b)=\sum g_{i} \text { weighted H-distance } \\
a_{i} \neq b_{i}
\end{gathered}
$$

- The Hamming measure reflects importance
- The Hamming measure does not reflect dependencies
Why $\mathrm{g}_{\mathrm{i}} \geq 0$?
Otherwise there can be negative distances,
e.g. $d(a, b)<0 \leq d(a, a)$

Hence: No unrestricted use of negative weights

Consequences: Differences between attribute values cannot be expressed.

One object - many cases

Often one connects
many problems with one object
i.e.
many cases with one object
Hence we need
all attributes for the problems considered

Each attribute needs

a justification
(for which problem is it useful?)

This allows the definition of a case class
(all possible attributes)
Each case description is obtained from the case class by the

Objects versus Cases

- An object is defined by the primary attributes
- Each object gives rise to many problems an object may be
- classified in various ways
- planned
- constructed

Each problem defines a case Case description:

$$
\mathrm{C}=\left(\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}}, \mathrm{~B}_{1}, \ldots, \mathrm{~B}_{\mathrm{m}}\right)
$$

A_{i} : Selected primary attributes B_{k} : Defined secondary attributes

The selection and definition of attributes is an important knowledge engineering task

Solution Transformation

If solution transformations are present knowledge is distributed over items:

Extreme: All knowledge in T
(T is the problem solver)

Assumption: T always checks for correctness

Learning
Systems \&
Applications

Semantics revisited

Similarity measure sim and
 solution transformation T have to be considered as a unit.

Now: a actual case, $x \in C B$

Utility:

$\mu_{x, T}=f\left(\beta_{1}, \beta_{2}\right)$
where
β_{1} measures cost of applying T to the solution of x
β_{2} measures degree of optimality of the solution

How to find secondary attributes

This is a knowledge acquisition task.
Assumption: The expert can (intuitively) decide S ($\mathrm{z}, \mathrm{x}, \mathrm{y}$)

Scenario: - Present z , y to the expert

- Select i such that $\mathrm{z}_{\mathrm{i}} \neq \mathrm{y}_{\mathrm{i}}$
- Obtain x from y by changing y_{i} to z_{i}
- Ask the expert: $\mathrm{S}(\mathrm{z}, \mathrm{x}, \mathrm{y})$?

If yes: Indication for attribute i independent from the rest of attributes

If no: \quad Ask the expert: Why?
If the answer: "You have to change some y_{J} too," then two dependent attributes
A_{i} and A_{j} are found.
Figure out the dependency $f(i, j)$ and create a new attribute

The XOR Example

$$
\begin{aligned}
& \mathrm{U}=\{(0,0),(0,1),(1,0),(1,1)\} \\
& \mathrm{K}_{1}=\{(0,0),(1,1)\}, \mathrm{K}_{2}=\mathrm{U} \backslash \mathrm{~K}_{1}
\end{aligned}
$$

Observation: If $\mathrm{CB} \subseteq \mathrm{U},|\mathrm{CB}|=2$
then for no weighted Hamming measure Hg (C B, Hg) can classify $\left(\mathrm{K}_{1}, \mathrm{~K}_{2}\right)$ correctly using NNP.

Two possibilities:
(1) Use other measures which can carry more knowledge
(2) Use a new secondary attibute x_{3},

$$
\mathrm{x}_{3}=\mathrm{x}_{1} \oplus \mathrm{x}_{2}
$$

Example:

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}_{1}, \ldots \mathrm{y}_{\mathrm{n}}\right)= \begin{cases}1 & \text { if } \mathrm{x}_{\mathrm{i}}=\mathrm{y}_{\mathrm{i}} \text { all i } \\
0 & \text { else }\end{cases} \\
& \mathrm{X}=\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}, Y=\left\{\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}\right\} \\
& \mathrm{H}_{\mathrm{f}}(\mathrm{X})=\mathrm{H}_{\mathrm{f}}(Y)=0, \mathrm{H}_{\mathrm{f}}(\mathrm{X}, \mathrm{Y}) \approx \frac{\mathrm{n}}{2^{\mathrm{n}}} \\
& \underline{H}_{\mathrm{f}}(\mathrm{X})=\underline{H}_{\mathrm{f}}(Y)=\mathrm{n} \\
& \underline{H}_{\mathrm{f}}(X, Y)=1 \\
& \mathrm{I}_{1}(X, Y) \approx-\frac{\mathrm{n}}{2^{\mathrm{n}}} \approx 0 \\
& \mathrm{I}_{2}(X, Y)=2 \mathrm{n}-1
\end{aligned}
$$

The Influence Measure

Def: The influence measure is the generalised Hamming measure given by the weights $\mathrm{g}_{\mathrm{J}}=\inf _{\mathrm{f}}(\mathrm{J})$

Observations:

- $g_{\mathrm{I}}=$ number of classes
- there may be $\mathrm{J} \subseteq \mathrm{I}$ with $\mathrm{g}_{\mathrm{J}}>\mathrm{g}_{\mathrm{I}}$ ($\inf _{f}$ is not monotonic)
- f is difficult to compute

Task: Determine those J which

- are small
- have large influence

Influence versus Entropy

$\underline{H}_{\mathrm{f}}(\mathrm{J})=\log \left(\inf _{\mathrm{f}}(\mathrm{J})\right)$
behaves like an entropy potential

$$
\mathrm{I}_{2}\left(\mathrm{~J}, \mathrm{~J}^{\prime}\right)=\underline{\mathrm{H}}_{\mathrm{f}}(\mathrm{~J})+\underline{\mathrm{H}}_{\mathrm{f}}\left(\mathrm{~J}^{\prime}\right)-\underline{\mathrm{H}}_{\mathrm{f}}\left(\mathrm{~J} \cup \mathrm{~J}^{\prime}\right)
$$

$\mathrm{H}_{\mathrm{f}}(\mathrm{J})$ measures importance of J to y
$\underline{H}_{f}(\mathrm{~J})$ measures importance of J to y and $\mathrm{I} \backslash \mathrm{J}$

Learning
Systems \&
Applications

Entropy Potential

$$
\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \longrightarrow \mathrm{y}
$$

Consider $\mathrm{x}_{1}, . ., \mathrm{x}_{\mathrm{n}}, \mathrm{y}$ as random variables
For $\mathrm{J} \subseteq\left\{\mathrm{x}_{1}, . ., \mathrm{x}_{\mathrm{n}}, \mathrm{y}\right\}: \mathrm{H}(\mathrm{J})$ entropy

Cross - Entropy:

$$
\mathrm{H}_{\mathrm{f}}(\mathrm{~J})=\mathrm{H}(\mathrm{~J})+\mathrm{H}(\mathrm{y})-\mathrm{H}(\mathrm{~J} \cup\{\mathrm{y}\})
$$

Dependencies:

$$
\mathrm{I}_{1}\left(\mathrm{~J}, \mathrm{~J}^{\prime}\right)=\mathrm{H}_{\mathrm{f}}(\mathrm{~J})+\mathrm{H}_{\mathrm{f}}\left(\mathrm{~J}^{\prime}\right)-\mathrm{H}_{\mathrm{f}}\left(\mathrm{~J} \cup \mathrm{~J}^{\prime}\right)
$$

Semantics of Similarity

The meaning of the relations should be

For any z the choice of x such that NN(z, x)
is the "best possible"

This is NNP : Nearest - Neighbor - Principle How can it be justified?

If the relations are obtained from a measure sim, what is the meaning of the numerical values of sim ?

Evidences

Suppose we know the value a_{i} of the actual case a.
This is a piece of information!
It gives some evidence that the NN of a is in

$$
X_{i}=\left\{x \in C B \mid a_{i}=x_{i}\right\}
$$

If no other information is present, elements of X_{i} are not distinguished.

The evidence

- may objective (model based) or subjective
- comes from expert knowledge
- may be very small

Evidences

weight of the evidence:

$$
\mathrm{m}_{\mathrm{i}}\left(\mathrm{X}_{\mathrm{i}}\right)=\mathrm{g}_{\mathrm{i}}
$$

Ignorance:

$$
\begin{aligned}
& m_{i}(C B)=1-g_{i} \\
& m_{i}(Y)=0 \text { for all other } Y \subseteq C B \\
& m_{i} \text { is a Dempster - measure on } \wp(C B)
\end{aligned}
$$

Two measures m_{i} and m_{j} can be accumulated to $\mathrm{m}_{\mathrm{i}} \oplus \mathrm{m}_{\mathrm{j}}$.
Dempster's rule computes this for independent observations.

Summary

Semantics:

- Correctness: Leads to the notion of approximate truth. One approach is according to evidence theory
- Optimality: Leads to preferences and utility
- A formal semantics should incorporate both.

Systems \&
Applications

Summary

Knowledge Engineering:

- The knowledge sources should be investigated:
- Are there clearly described cases?
- Are the primary attributes collected?
- What kind of background knowledge is present and useful?
- How is the knowledge best distributed over (attributes, measure, case base, solution transformation)?
This is a pragmatic decision!
- Knowledge acquisition and information retrieval techniques should adapted to distribute knowledge
- Learning techniques should be applied

Summary

Maintenance:

- Compiled knowledge:
- Updating is difficult as in knowledge based systems
- If learning has been applied it could be continued
- Interpreted knowledge:
- Updating is easier; it results in the updating of the case base

Moral: Compile

- as little knowledge as possible
- as much knowledge as absolutely necessary.

CBR

CBR has many

- applications
- aspects
- Classification, Diagnosis
- Configuration
- Planning
- Decision Support

Learning
Systems \&
Applications

Compilation versus Interpretation

Compilation process comp ("Coding") Interpretation process Int

More Knowledge in Sim

\Rightarrow

better classification, smaller CB, but application of Sim possibly more expensive

Simple Cost Function:

$$
\begin{array}{ll}
\text { Costs } & =\mathrm{C}+\mathrm{n} \mathrm{P} \\
\mathrm{C} & =\text { Compilation Costs } \\
\mathrm{P} & =\text { Cost for one Solution } \\
\mathrm{n} & =\text { Number of Applications }
\end{array}
$$

Attributes

Two Sorts of attributes:

(1) Primary attributes: Values come from the available information sources.
(2) Secondary attributes: Are defined in terms of primary attributes.

- Primary attributes contain domain Knowledge
- Secondary attributes contain task knowledge

Example: Customers of a bank

Primary attributes:

$\mathrm{A}_{1}:$ Income
$\mathrm{A}_{2}:$ Spending
$\mathrm{A}_{3}:$ Interest rate on savings account

Secondary attributes:

$\mathrm{A}_{4}: \mathrm{A}_{1}-\mathrm{A}_{2}$
A_{5} : (maximal interest rate available today) - A_{3}

Classification tasks:

1) Good customers : $\mathrm{A}_{4} \geq 0$
2) Customers that may change their bank :
$\mathrm{A}_{5}>0$

Dependencies

Attributes $\mathrm{A}_{\mathrm{i}}, \mathrm{i} \in \mathrm{F}$;
Classification $\mathrm{f}: \mathrm{U} \rightarrow\{1, . ., \mathrm{n}\}$
k -ary dependencies between attributes subsets $\mathrm{J} \subseteq \mathrm{I},|\mathrm{J}|=\mathrm{k}$

Def: Generalized Hamming Distance : weights g_{J} for each $\mathrm{J} \subseteq \mathrm{I}$ $\mathrm{GH}(\mathrm{a}, \mathrm{b})=\sum\left(\mathrm{g}_{\mathrm{J}}|\mathrm{J} \subseteq \mathrm{I}, \mathrm{a}| \mathrm{J} \neq \mathrm{b} \mid \mathrm{J}\right)$

Specializations for 2-ary, 3-ary,... dependencies.

Question: How to choose the g_{J} ?
This means: Which $\mathrm{J} \subseteq \mathrm{I}$ are important?
This is a - priori - knowledge, to be compiled
Again: - objective approach (model-based)

- subjective approach

The Influence Potential

Notation: U_{J} : Restriction to Attributes A_{i}, $i \in J$

Def:

(ii) The influence of J is $\inf _{f}(J):=\left|U_{J} / \equiv_{f}\right|$

The influence of $\mathrm{J} \subseteq \mathrm{I}$ is the number of different restrictions to $I \backslash J$ of the classifying function f.

Observations:

- the influence potential reflects dependencies
- the influence potential is in general not known
- estimates are often subjective and reflect expert knowledge
- the Hamming distance corresponds to singletons $\{\mathrm{i}\} \subseteq \mathrm{I}$.
- one can approximate GH by knowing or estimating $\inf _{f}(\mathrm{~J})$ for $|\mathrm{J}|=2,3, \ldots$
- to estimate $\inf _{f}(\mathrm{~J})$ is often easier than to know the exact dependencies

A suggestion for Semantics (sim,T)

Actual case: a

Observed attributes: indexed by \mathbf{J}
Minimal focal set: $\mathrm{X} \subseteq \mathrm{CB}$
Accumulated evidence: $\mathrm{v}_{\mathrm{J}}(\mathrm{X})$
Simplifying assumption: All cases in CB have optimal solutions

Reasonable definition for $\mathrm{x} \in \mathrm{X}$:
$\mu_{\mathrm{J}}(\mathrm{a}, \mathrm{x}):=\mathrm{v}_{\mathrm{J}}(\mathrm{x}) \cdot \mu_{\mathrm{x}, \mathrm{T}}(\mathrm{a})$

This grasps

- degree of correctness
- utility

