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Abstract. The paper studies the dynamics of transitions between the levels of a Wannier-Stark ladder in-

duced by a resonant periodic driving. The analysis of the problem is done in terms of resonance quasienergy

states, which take into account the metastable character of the Wannier-Stark states. It is shown that the

periodic driving creates from a localized Wannier-Stark state an extended Bloch-like state with a spatial

length varying in time as � t1=2. Such a state can �nd applications in the �eld of atomic optics because it

generates a coherent pulsed atomic beam.

PACS. 7 3.20Dx, 03.65.-w; 42.50.Vk ; Keywords: Wannier-Stark ladder; induced transitions

1 Introduction

The term Wannier-Stark ladder (WSL) is currently used
in the literature to denote a set of equally spaced levels

E�;l = E� + aF l ; l = 0;�1; : : : ; � = 0; 1; : : : ; (1)

of a Bloch particle in a homogeneous �eld:

bHW = bH0 + Fx ; (2)

bH0 = p̂2=2m+ V (x) ; V (x+ a) = V (x) ;

(a model of a crystal electron subject to a static electric
�eld). In this paper we study the dynamics of the tran-
sitions between the Wannier levels induced by a resonant
periodic driving

bH = bHW � F!x cos(!t) ; �h! = aF : (3)
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Fig. 1. WSL for a cosine potential. The dashed lines indicate

the transitions induced by the resonant periodic driving.

As illustrated in Fig. 1, the resonant driving couples the
levels belonging to the same WSL, but the transitions
to the exited WSL are strongly detuned and can be ne-
glected. Then, assuming that initially only one level is
occupied, it shifts the probability up and down the lad-
der, acting as a `cable car'. The analysis of this process is
the central aim of the present work. We have found that
the distribution function for the occupation probability
evolves in a highly nontrivial way and has di�erent short-
and long-time regimes. This is shown to be due to the
fact that the Wannier-Stark states (WS-states) are actu-
ally metastable states and, therefore, the WSL levels have
a �nite width.

The structure of the paper is as follows. Section 2 an-
alyzes a simpli�ed problem, where the WS-states are as-
sumed to be stationary energy states. The e�ect of the
�nite life-time of the WS-states (i.e. a �nite level width)
is discussed in Sec. 3. Section 4 compares the analytical
results of Sec. 2 and Sec. 3 with a direct numerical sim-
ulation of the quantum dynamics of system (3). Finally,
in Sec. 5, we discuss a possible application of the results
obtained in relation to the experiments with cold atoms
in an optical lattice [1].

In what follows we restrict ourselves to the case of the
ground WSL [then we shall omit the index � in Eq. (1)]
and, to be concrete, we choose the periodic potential in
the form V (x) = V0 cos(2�x=a). Moreover, to simplify the
formula, we choose units with m = 1, V0 = 1, and a =
2�. Then the independent parameters of the system (3)
are the amplitude of the static force, F , the amplitude
of the driving force, F! , and the scaled Planck constant
�h entering the momentum operator [3]. The value of the
driving frequency ! is �xed by the condition �h! = 2�F .
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2 Tight-binding model

The simplest approach to the problem uses the tight-
binding model. In the frame of this model the system (2)
is approximated by the Hamiltonian

HW = H0 + F
X
l

jli2�lhlj ; (4)

H0 = E
X
l

jlihlj+
�

2

X
l

�
jlihl + 1j+ jl + 1ihlj

�
;

where jli denotes the localized Wannier state associated
with the l-th site of the lattice. The eigenstates of the
Hamiltonian H0 are the Bloch waves j�ki =

P
l
ei2�lkjli

corresponding to the energy E(k) = E +� cos(2�k). Re-
ferring to the system (2) with V (x) = cosx this dispersion
relation is a good approximation of the ground Bloch band
for �h � 2. Correspondingly, the minimal uncertainty wave
packet (coherent state)

�l(x) = (��h)�1=4 exp
�
�(x� xl)

2=2�h
�

(5)

located at x = �(2l + 1) is a good approximation for the
localized state jli. The eigenstates of the Hamiltonian HW

are known to be

j	li =
X
m

Jm�l

�
�

2�F

�
jmi ; (6)

(here Jm(z) is the ordinary Bessel function) and corre-
spond to the energies El = E + 2�F l. For the sake of
simplicity we restrict ourselves to the case

2�F � � : (7)

Then the WS-states (6) approximately coincide with the
localized state jli.

We proceed with the case of a resonant periodic driving

H = H0 + [F � F! cos(!t)]
X
l

jli2�lhlj (8)

with �h! = 2�F . Provided the condition (7) is satis�ed,
the quasienergy states (i.e. the eigenfunctions of the evo-
lution operator over the period of the driving force) can be
approximated by Bloch waves with time-dependent quasi-
momentum k(t) = k � Ft=�h+ (F!=�h!) sin(!t). The cor-
responding quasienergies form a band

E(k) = E + J1

�
F!

F

�
� cos(2�k) ; (9)

which recovers the original Bloch dispersion relation, how-
ever, with a renormalized width [2].

It is convenient to measure the time in units of the
driving (Bloch) period TB = �h=F = 2�=! (we shall denote
this discrete time by � in what follows). Then the general
solution of the Schr�odinger equation can be presented in
the form

j (�)i =

Z 1=2

�1=2

dk a(k) e�i2�E(k)�=�h!j	ki �
X
l

cl(�)jli ;

(10)
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Fig. 2. Occupation probability of the WSL levels as a func-

tion of time in the tight-binding approximation. The plot is

generated on the basis of Eq. (11) for z = �0:15.

where j	ki �
P

l
ei2�lk are the quasienergyWannier-Bloch

states (WB-states) and the function a(k) is speci�ed by
the initial condition. In particular, when only one WSL
level is populated at t = 0 (let it be l = 0), the probabil-
ity amplitudes cl(�) are given (up to the irrelevant phase
factor) by the ordinary Bessel functions

cl(�) = (�i)lJl(z�) ; z =
2��

�h!
J1

�
F!

F

�
: (11)

As an example, Fig. 2 shows the occupation probability
calculated on the basis of Eq. (11) for z = �0:15. It is seen
that the number of populated levels grows linearly with
time. However, as shown in the next section, Eq. (11) has
only limited validity and gives a wrong result for large � .

3 Decay of the WS-states

The main drawback of the tight-binding approach used in
Sec. 2 is that it entirely neglects the decay of the WS-
states, which is due to the tunneling and can be charac-
terized by the width � of the levels: El = El � i�=2.

In what follows it will be useful to analyze the system
dynamics in phase-space, e.g. by using the Husimi repre-
sentation of the wave function. For a given wave function
 (x) the Husimi function is de�ned as h(p; q) = jhp; qj ij2,

where hxjp; qi = (��h)�1=4 exp[�(x� q)2=2�h+ ipx] is a co-
herent state. Alternatively, the Husimi function can be
obtained by smoothing the Wigner function. Similar to
the Wigner function, the Husimi function joins the coor-
dinate and momentum representations. However, unlike
the Wigner function, it is nonnegative, which allows the
direct comparison of quantum dynamics with classical dy-
namics in phase space.

Figure 3 shows the ground metastable WS-state (or
Wannier-Stark resonance) for �h = 2, F = 0:08, and l = 0
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Fig. 3. Ground WS-state for �h = 2, F = 0:08, and l = 0 in

the Husimi phase-space representation. Taking the upper limit

of the grey-scale axis for the upper plot (a) to be unity, it is

reduced 800 times in the lower plot (b) to make the probability


ow visible.

in the Husimi representation. (We note that for �h = 2 the
width of the ground Bloch band is � = 0:17 and, thus,
condition (7) is satis�ed.) A comet-like structure is seen
where the head of the comet approximately corresponds
to the Husimi image of the localized state (5). The tail of
the comet is the quantum probability tunneling out of the
potential well. The shape of this tail is parabolic because
of the acceleration of the particle according to the classi-
cal equations p(t) = �Ft and x(t) = �Ft2=2. The width
of the displayed resonance state is � = 0:0140F , which
corresponds to the decay time �h=� = 71TB, TB = �h=F .
For the de�nition and properties of the WS-states, for
example, the dependence of the lifetime on F , we refer
to the recent papers [3,4]. Here we only note that the
WS-states are resonance eigenfunctions of the Hamilto-
nian (2) and, therefore, one should distinguish between

the left, 	
(L)

l
(x), and the right, 	

(R)

l
(x), eigenfunctions.

(Then the orthogonality relation hljl0i = Æl;l0 reads asR
dx	

(L)

l
(x)	

(R)

l0
(x) = Æl;l0 .)

Because the energies of the WSL levels are complex,
the quasienergy spectrum is also expected to be complex.
For the resonant case �h! = 2�F considered here the com-
plex quasienergy spectrum E(k) = E(k)� i� (k)=2 of the
system (3) is analyzed in Ref. [4]. In �rst order of F! the
dispersion relation for the quasienergy E has the form

E(k) = E +
F!

F
Re� cos(2�k) ; (12)

� (k) = � +
F!

F
Im� cos(2�k) : (13)

In Eq. (12) Re� coincides with the Bloch band width and
we introduce the notion of Im� � � in Eq. (13) to take
into account the �nite band width for the imaginary part
of the quasienergy spectrum. We would like to stress that

−0.5 0 0.5
0

0.5

k

E
(k

)/
πF

−0.5 0 0.5
0

1

2

3

4

5

6

7

k

Γ(
k)

/Γ

Fig. 4. Real (left panel) and imaginary (right panel) parts

of the ground quasienergy band of the system (3) for �h = 2,

F = 0:08, and F! = 0:0032 (dashed line), F! = 0:0189 (dotted

line), F! = 0:0379 (solid line). The width of the unperturbed

Wannier-Stark resonance is � = 0:0140F .

the displayed equations are valid only under the condi-
tion F! � F . For larger amplitudes of the driving force
there is a deviation from the cosine dependence for E(k)
(see Fig. 4). In particular, as the imaginary part is con-
cerned, there is some critical value of F c

!
� F when the

decay rate of the quasienergy WB-states corresponding
to the center of the Brillouin zone decreases almost to
zero [5]. For F! close to F c

! (but F! < F c
!) the equation

� (k) = � [1 + (F!=F
c
!
) cos(2�k)]2 is a better approxima-

tion to � (k) than Eq. (13). The pronounced dependence
of the imaginary part of the quasienergy spectrum on the
quasimomentum leads to markedly di�erent decay times
of the corresponding quasienergy states, i.e. a selective de-
cay of the quasienergy WB-states.

In Sec. 2 we derived the equation de�ning the popula-
tion of the WSL levels in the tight-binding approximation
[see Eq. (11)]. This equation was obtained by neglecting
the decay of the quasienergy WB-states. Obviously, in or-
der to include this e�ect, Eq. (11) should be modi�ed as

cl(�) = exp

�
�
��

�h!
�

�
(�i)lJl(z�) ; (14)

z = (Re�� iIm�)
2�F!

�h!F
:

where the exponential prefactor in Eq. (14) accounts for
the overall decay of the probability. The complex correc-
tion to the argument of the Bessel function is responsible
for the selective decay of the quasienergy states. Figure 5
shows the population of the WSL levels calculated for a
complex value z = �0:15 + i0:011. By comparing Fig. 5
with Fig. 2 one concludes that the short-time regime of
the transition dynamics is described by the dispersion pro-
cess in accordance with Eq. (11). However, after a charac-
teristic time �c � 1=Im(z) the process of selective decay
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Fig. 5. Occupation probability of the WSL levels as a function

of time. The plot is generated on the basis of Eq. (14) for

z = �0:15 + i0:011. To compensate the e�ect of overall decay

the coeÆcients cl(�) are renormalized at each time.

Fig. 6. Time evolution of the coherent state (5) in the Husimi

representation. Parameters are �h = 2, F = 0:08, and F! =

0:0189.

dominates the dispersion and the probability distribution
becomes close to the Gaussian distribution

jcl(�)j � exp

�
�
2�2jImzjl2

� jzj2

�
: (15)

We note that according to Eq. (15) the number of popu-

lated levels grows now as � t1=2.

4 Wave packet dynamics

To check the theoretical predictions of Sec. 3 we simulated
the wave packet dynamics of the system (3) for �h = 2,
F = 0:08 and F! = 0:3=!2 � 0:019. As an initial condition
we choose a minimal uncertainty wave packet (5) located
in the well with l = 0.

Figure 6 shows the evolution of the initial wave packet
in the Husimi representation. It is seen that at any time
the wave function is a superposition of the states localized
in the wells of the cosine potential. Thus we can introduce
the notion of the probability amplitude for the l-th poten-
tial well

cl(�) =

Z
dx��l (x) (x; �) ; (16)

where �l(x) is given by Eq. (5) [6]. The corresponding oc-
cupation probabilities jcl(�)j

2 are shown in Fig. 7. This
�gure should be compared with Fig. 5 in which the value
of z was chosen such as to obtain a possibly best approxi-
mation to the exact dispersion relation E(k) (dotted line in
Fig. 4) by a cosine function. A reasonable correspondence
is noticed.

In the rest of this section we discuss the coherence
properties of the wave packet  (x; t). An important char-
acteristic of  (x; t) is the coherence length ÆL which we
introduce as a characteristic length for the decay of the
correlation function

R� (L) = P�1(�)
X
l

c�l (�)cl+L(�) ; (17)

where the cl(�) are given in Eq. (16) and P (�) =
P

l
jcl(�)j

2

is the total probability.
First we discuss the behavior of the correlation func-

tion (17) within the frame of the modi�ed tight-binding
model. Substituting Eq. (14) into Eq. (17) and using the
summation rule for the Bessel functions (Graf's general-
ization of the Neumann formula) we obtain

R� (L) = (�i)LJL(i2jImzj�) : (18)

It follows from Eq. (18) that the coherence length grows as

ÆL � (jImzj�)1=2. We would like to stress that this result
is solely due to the nonunitary evolution. In the case of
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Fig. 7. Occupation probabilities of the WSL levels for the case

shown in Fig. 6. Similar to Fig. 5, the occupation probabilities

are renormalized at each time.
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Fig. 8. Correlation function (17) for � = 2; 4; : : : ; 1024 calcu-

lated numerically on the basis of the wave packet dynamics of

system (3). The inset shows the decay of the total probability

P (�).

the celebrated tight-binding model (unitary evolution, see
Sec. 2) the coherence length is zero for arbitrary times.

To check the estimate (18) we calculated numerically
the function R� (L) on the basis of wave packet dynam-
ics (see Fig. 8). The ten curves in the �gure correspond
to times � = 2; 4; : : :, up to � = 1024. A good overall
agreement with the Eq. (18) is noticed.

Next we consider a quantity S = Tr �̂2=(Tr �̂)2, which
is commonly used to distinguish a pure state (S = 1)
from a statistical mixture (S < 1). In particular, we shall
be interested in an initial condition where �̂(t = 0) is
diagonal in the basis of the WS-states. In this case the
following relation can be easily obtained

S(�) =
Tr �̂2(�)

(Tr �̂(�))
2
=
X
l;m

�l;l�m;mR� (l �m) : (19)

It is seen from Eq. (18) and Eq. (19) that in course of the
time evolution the quantity S(�) monotonically increases
and approaches unity when the coherence length ÆL ex-
ceeds the `localization length' �L of the initial state (we
implicitly assume that �l;l � 0 for jlj � �L). Thus the
resonant periodic driving can be used to create a pure
quantum state from the statistical mixture. In the next
section we consider a possible application of this result in
the �eld of atomic optics.

5 Bloch oscillations in an optical lattice

In this section we discuss the dynamics of the system (3)
in connection with the experiment [1] where the Bloch
oscillations for neutral atoms in the optical lattice were
observed. In this experiment cold rubidium atoms were
placed in a vertically aligned standing laser wave. (The
atoms were �rst captured and cooled by using a MOT

Fig. 9. (a) Observation of the Bloch oscillations in the case

of a coherent initial condition (21). The Husimi phase-space

representation of  (x; t) for t = 128TB is shown. (b) The same

as in case (a) but for an initial condition in the form of a wave

packet prepared from the localized state �0(x) by periodic res-

onant driving of the system for 128 periods (see Fig. 6.)

and then the standing laser wave was switched on adi-
abatically.) The laser frequency is detuned far from the
resonant transition of the rubidium atom. Then the atoms
are subject only to the potential force of the optical po-
tential V (z) = V0 cos

2(kLz) (kL is the laser wave vector
and the amplitude V0 is proportional to the laser inten-
sity) and the gravitational force. The depth of the optical
potential V0 was adjusted to insure a noticeable tunnel-
ing. Thus the atoms can leak out of the potential wells
producing an atomic beam.

The key point of the experiment [1] is that the atoms
were prepared in the state where the atomic wave function
extends over several lattice periods. Namely, at t = 0 the
single-particle wave function  (x; 0) is believed to be

 (x; 0) =
X
l

cl�l(x) ;

cl =
1

(2�)1=4(�L)1=2
exp

�
�

l2

4(�L)2

�
; (20)

where �L is the spatial size of the atomic array. Accord-
ing to Eq. (17), the coherence length ÆL of this packet
coincides with �L. Because the atoms are neutral the
interaction between them can be neglected [8] and the
one-particle density matrix factorizes as �(x; x0) = N�1P

N

n=1  
�(n)(x)  (n)(x0) where the sum over n denotes the

sum over the atoms. In what follows we assume the  (n)(x)
to be identical and given by Eq. (20). Then �(x; x0) takes
the form

�(x; x0) =
X
l;l0

c�l cl0�
�

l (x)�l0 (x) : (21)

Because Tr�2(x; x0) = 1, we shall refer to Eq. (21) as the
case of completely coherent initial condition.
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We simulated the dynamics of the initial state (21)
numerically. It was found that, after a short transient, the
initial wave packet evolves according to the equation [7]

 (x; t) =
X
l

~cl exp(�iElt=�h)	
(R)

l
(x) ; (22)

where 	
(R)

l
(x) is resonance WS-state, El its complex en-

ergy and ~cl =
R
dx	

(L)

l
(x) (x; 0) � cl. The upper panel

(a) in Fig. 9 shows the function (22) for t = 128TB. It
is seen that the atomic array emits every Bloch period
a drop of atoms which then becomes accelerated by the
gravitational force.

This drop-like behavior (well observed in the labora-
tory experiment) should be opposed to the continuous
beam in the case of incoherent initial condition. In the
latter case each atom occupies a single well and the one-
particle density matrix has the form

�(x; x0) =
X
l

jclj
2��

l
(x)�l(x

0) ; (23)

where jclj
2 is the occupation probability of the l-th well.

[Similar to Eq. (21) we asume that jclj
2 � exp[�l2=2(�L)2],

where �L is the spatial size of the atomic array. Let
us also note that the density matrix (23) can be for-
mally obtained from density matrix (21) by assuming ran-
dom phases of the expansion coeÆcients cl in Eq. (20.]
As seen from Eq. (23), the dynamics of the system in
the case of incoherent initial condition is de�ned by the
dynamics of the wave packet  (x; 0) = �l(x) which is
 (x; t) � exp(�iElt=�h)	l(x) [see Fig. 3(b)]. Since the cor-
relation length of this packet is zero, the Bloch oscillation
does not show up and the probability 
ow is continuous.

In conclusion, in order to observe Bloch oscillations
one should create a wave packet with nonzero coherence
length. In the experiment [1] this was done by using a
Bose-Einstein condensate. At higher temperature, how-
ever, the required wave packet can be created by using
the resonant driving. As an example, the lower panel (b)
in Fig. 9 shows the atomic pulses emitted by a wave packet
which was obtained from the localized state �0(x) by driv-
ing the system for 128 periods. (To have a complete pic-
ture, the displayed Husimi function should be summed up
with its replica shifted by l and weighted by jclj

2. However,
this averaging procedure does not change the pulsed char-
acter of the emitted beam.) The duration of the pulses is
obviously determined by the spatial extent of the created
wave packet and can be easily varied.

6 Conclusion

We studied the dynamics of transitions between the
Wannier-Stark levels induced by a resonant periodic driv-
ing. Since each level of the Wannier-Stark ladder is as-
sociated with a state essentially localized within the l-th
potential well, this problem can also be formulated as a
transport phenomenon. It was shown that the resonant

periodic driving causes a spreading of an initially local-
ized wave packet over the lattice. The short-time regime
of spreading is linear in time and can be treated as a
dispersion. However, this regime is changed into a t1=2-
spreading for large time. It is argued in the paper that
this t1=2-spreading is a consequence of the selective decay
of the quasienergy Wannier-Bloch states. The other con-
sequence of this selective decay is a pronounced increase
of the coherence length of the wave packet.

As an application of this e�ect we considered the Bloch
oscillations of neutral atoms in an optical lattice. The
Bloch oscillation is a coherent phenomenon and can be
observed only in the case of coherent initial conditions
(21). Because the preparation of this state is a rather dif-
�cult experimental problem, we considered the case of an
incoherent initial condition (23). It was shown in the pa-
per that the coherence properties of the initial state (23)
can be `improved' by means of resonant driving, so that
the Bloch oscillations become visible.
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