
Computing quantum eigenvalues made easy

H J Korsch and M Gl�uck

FB Physik, Universit�at Kaiserslautern, D-67653 Kaiserslautern, Germany

Abstract. An extremely simple and convenient method is presented for computing

eigenvalues in quantum mechanics by representing position and momentum operators

in a simple matrix form. The simplicity and success of the method is illustrated by

numerical results concerning eigenvalues of bound systems and resonances for hermitian

and non-hermitian Hamiltonians as well as driven quantum systems.
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1. Introduction

The calculation of eigenvalues is one of the basic problems of elementary quantum

mechanics. Consequently numerous techniques have been suggested and used for this

purpose and we will not even try to given an overview here. Basis set expansions are

certainly very popular. Here the states of the system under consideration are expanded

into an adequately chosen basis set j�i, � = 0; 1; : : : { as well as the operators { and

the problem is transformed into a matrix problem. Though simple and straightforward

in principle, any application requires �rst the determination of numerical values of the

matrixelements. Let us consider here as a typical example the determination of the

eigenvalues of the one-dimensional Hamiltonian

H =
p
2

2M
+ V (x) ; (1)

where the potential V (x) supports bound states. Here one has to compute the

matrixelements of the potential,

V�� = h�jV j�i =
Z
'
�

�
(x)V (x)'�(x) dx (2)

and of the kinetic energy p2=2M , preferably in closed form. This is only possible for

special basis functions and special potentials V (x). A frequent choice is an expansion

into harmonic oscillator states. In this case, the matrixelements (2) can be evaluated in

closed form, e.g., for V (x) = x
k, however the resulting formula [1] is not really simple

and, moreover, not very easy to derive, which limits its use in elementary applications

required in teaching quantum mechanics. Nevertheless, in this way polynomial or

Taylor-series potentials can be attacked (see also [2] for a recent discussion of techniques

for treating power series potentials).
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2. Computational recipe

In the present article we will draw the attention of the readers to an almost equivalent

technique, which circumvents the problems mentioned above. The method is very

intuitive, easy to understand and to program. Certainly, the method is not new and,

hopefully, also used by many others. However, to our surprise we discovered that the

method is not known to several colleagues working in this �eld. Because we could not

�nd a documentation in the literature, this article tries to �ll this gap by presenting a

short description of the technique and its numerical implementation.

In almost all introductions to quantum mechanics a matrix representation of the

position and momentum operators x and p in terms of the normalized eigenstates j�i
of a harmonic oscillator H0 = p

2
=2M + !

2
0x

2
=2 is derived. Explicitly, the matrices

x�� = h�jxj�i and p�� = h�jpj�i read

x =
x0p
2

0
BBBBBBBB@

0
p
1 0 0 : : :p

1 0
p
2 0 : : :

0
p
2 0

p
3 : : :

0 0
p
3 0 : : :

...
...

...
...

. . .

1
CCCCCCCCA
; p =

ip0p
2

0
BBBBBBBB@

0 �p1 0 0 : : :p
1 0 �p2 0 : : :

0
p
2 0 �p3 : : :

0 0
p
3 0 : : :

...
...

...
...

. . .

1
CCCCCCCCA
; (3)

where x0 = (�h=M!0)
1=2 = �h1=2 s and p0 = (M!0�h)

1=2 = �h1=2=s with a scaling parameter

s = (M!0)
�1=2. In the following, we use units with M = 1, �h = 1 and choose the

frequency of the harmonic reference Hamiltonian H0 as !0 = 1, i.e. a scaling parameter

s = 1 in most cases. Other choices are possible depending on the system to be studied.

The calculation of the matrix respresentation of other operators such as the

Hamiltonian is straightforward: all we have to do is to replace the operators x and p

in the Hamiltonian by the matrices (3). In a numerical application the matrices (3) are

truncated at n = N , and the truncated N �N{matrices are used in the calculation. As

always, such a truncation can cause numerical errors in the results and the convergence

of the quantities of interest must be checked.

2.1. Example 1: Bound states

In the following examples we consider the Hamiltonian (1). Short programs written

in matlab, a widespread computation package which allows a very simple coding of

matrix operations, clarify the numerical implementation. The program code

1 N = 50; s = 1;

2 n = 1:N -1;

3 m = sqrt(n);

4 x = s/sqrt(2) * (diag(m,-1) + diag(m,1));

5 p = i/s/sqrt(2) * (diag(m,-1) - diag(m,1));

6 H = p^2/2 + x^2/2;

7 EigSort = sort(eig(H));

8 EigSort(1:8)
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computes the the �rst N = 50 eigenvalues of the harmonic oscillator potential

V (x) = x
2
=2. In lines 4 and 5 the matrices (3) are initialized. The Hamiltonian matrix

is calculated in line 6. Its eigenvalues are computed in line 7 and directly ordered in

increasing magnitude. Note, that the upper eigenvalues may be in error because of the

truncation of the basis. The lowest eight eigenvalues are displayed in line 8. In the

trivial harmonic case coded in the program, the matrix H is already diagonal and the

results are exact, as expected (note, however, that this is not the case for s 6= 1).

In order to calculate the eigenvalues for a di�erent potential, one simply changes

line 6 of the program. With

6 H = p^2/2 + x^4/2;

one obtains the eigenvalues for the quartic oscillator V (x) = x
4
=2. As an example,

some numerical results for the lowest seven eigenvalues are listed in Table 1 for several

values of the truncation number N . Figure 1 illustrates the convergence graphically.

We observe a fast convergence towards the exact eigenvalues En for N > En + 5. (The

numerical e�ort, i.e. the computation time increases roughly as N5=2.)

To some extent, the convergence can be improved by optimizing the scaling

parameter s, i.e. the width of the harmonic reference Hamiltonian H0. Table 2 shows

the resulting eigenvalues for N = 15 for di�erent value of s. The scaling parameter

s = 0:6 yields the best numerical performance.

The program can easily be extended to additionally compute the eigenvectors cn.

Replacing line 7 in the short program example by

7 [C,Eig] = eig(H);

yields the eigenvectors as the columns of the matrix C (the matrices ful�l H*C=C*Eig ,

where Eig is a diagonal matrix). It is then possible to extract the wavefunctions in

coordinate space by means of

 n(x) =
NX
�=0

c
(n)
�
'�(x) ; 'n(x) = (

p
� x0 2

�
�! )�1=2 e�x

2
=2x2

0 H�(x=x0) (4)

where c(n)
�

are the components of the computed eigenvector cn and '�(x) = hxj�i is the
harmonic oscillator wavefunction. (Note that here and in the following equation x and

p are used as variables and not operators.) In the same way

	n(p) =
NX
�=0

c
(n)
�

��(p) ; �n(p) = i�(
p
� p0 2

�
�! )�1=2 e�p

2
=2p2

0 H�(p=p0) (5)

with ��(p) = hpj�i yields the less well-known wavefunctions in momentum space (more

on momentum space distributions can be found in [3, 4]).

Besides, the knowledge of the eigenvectors provides a direct method to calculate

expectation values of the eigenstates jni of H, e.g. the potential energy for the x4=2{

potential,

Epot = hnjV jni = c
t

n

1
2
x
4
cn : (6)
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In fact, expectation values are the diagonal elements of a matrix representation in the

basis of the eigenstates jni. The transformation between both basis sets is governed by

the eigenvector matrix C, therefore the program lines

7 [C,Eig] = eig(H);

8 Epot = C' * (x^4/2) * C;

(the C' is the adjoint of the matrix C) yield the desired matrix hmjV jni.
In the same way as demonstrated for the quartic oscillator one can treat all

polynomial potentials. For example, the Hamiltonian H = p^2/2 + x^4/4 - x^2/2

yields the eigenvalues of the double minimum potential V (x) = x
4
=4� x

2
=2. For other

cases, the function V (x) of the operator xmust be evaluated by, e.g., a Taylor expansion.

For the exponential potential this calculation is provided by the matlab function expm,

so that as another test case one can consider the Morse oscillator

V (x) = D (1� e��x)2 : (7)

If one replaces the program line de�ning the Hamiltonian by the modi�ed lines

6a One = eye(N); D = 1; beta = 0.3;

6b H = p^2/2 + D * (One - expm(-beta*x))^2;

(note, that the constant 1 in the potential must be replaced by a N � N unit matrix

One=eye(N)), the program yields numerical eigenvalues in agreement with the exact

result

En = �h!0(n + 1=2)� �h2!2
0

4D
(n+ 1=2)2 ; !

2
0 = 2D�2

=M ; (8)

where !0 is the frequency at the bottom of the potential well.

Somewhat more demanding are non-analytic potentials, as for instance the linear

potential well V (x) = jxj=2. Here the matlab routine funm(x,'f(x)') can be used

for a (not so fast) evaluation of the matrix function f(x): With

6 H = p^2/2 + funm(x,'abs')/2;

one can calculate the eigenvalues (see also [5]) for this potential.

2.2. Example 2: Resonances

The same program code can also be used for a calculation of resonances. For instance,

the model potential

H =
p
2

2
+ (

x
2

2
� J) e��x

2

+ J (9)

is considered in many studies as a typical example. This potential is approximately

harmonic for small x, it increases up to a maximal value and approaches the value J at

in�nity. The command lines

6a One = eye(N); J = 0.8; lambda = 0.1;

6b H = p^2/2 + (x^2/2 - J*One) * expm(-lambda * x^2) + J*One;
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allow a treatment of this potential. The spectrum for energies E > J is, of course,

continuous. However, the potential supports resonances, which manifest themselves,

e.g. by a box-quantization. Putting the system into the box jxj < L and increasing

the box size L yields real eigenvalues, which undergo a series of avoided crossing at

the resonance energies. We can simulate this behavior here by increasing the matrix

dimension N , i.e. we increase the potential range covered by our harmonic oscillator

basis. As an example, Figure 2 shows such a stabilization diagram for the case J = 0:8,

� = 0:1. The potential supports a bound state at E0 � 0:502 and the most stable

resonances appear at E1 � 1:421 and E2 � 2:127 (see [6]; more exact values are

listed Table 3). These resonance energies are only slightly a�ected by a parameter

variation and can be read o� from the stabilization diagram 2, as well as the width of

the resonances by some more well established methods [7, 8].

2.3. Example 3: Non-hermitian Hamiltonians

It is, of course, not required for the present simple numerical program that the

Hamiltonian is hermitian. Eigenvalue problems for non-hermitian Hamiltonians arise

quite often (see, e.g. the recent articles [9,10]). As an example we consider here the case

H = p
2 + x

2(ix)� ; � real : (10)

This Hamiltonian is PT {symmetric, i.e. invariant under the combined parity, P :

(x; p) ! (�x;�p), and time-reversal, T : (x; p; i) ! (x;�p;�i), operation (for more

details see [9, 10]). Numerical results obtained by the present method using

6a eps = -0.5;

6b H = p^2 + x^2 * (i*x)^eps;

for � = 1 and � = �0:5 are listed in Table 3. For � = 1 the eigenvalues are real and the

eigenvectors are PT {symmetric, whereas and for � = �0:5 only the lowest eigenvalues

are real with PT {symmetric eigenstates, whereas the higher ones split into pairs of

complex conjugate eigenvalues and the PT {symmetry of the eigenstates is broken. In

the numerical calculations a scaling parameter s = 0:6 has been used.

Another example of a non-hermitian Hamiltonian arises if one uses complex-scaling

methods [11] for calculating resonance states as square integrable eigenstates of a

complex-scaled Hamiltonian. In its most simple version, this is just a complex rotation

of the coordinate

x �! x ei� ; p �! p e�i� ; (11)

provided that the rotation angle is chosen reasonably. Using our matlab program, one

can simply use a complex scaling parameter s. Replacing the corresponding lines of the

program by

1 N = 60; theta = 0.75; s = exp(i*theta);

6a One = eye(N); J = 0.8; lambda = 0.1;

6b H = p^2/2 + (x^2/2 - J*One) * expm(-lambda*x^2) + J*One;
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it computes the resonance energies in the potential (9). Table 3 shows the complex

resonance energy E = E � i�=2 computed with these parameter settings.

2.4. Example 4: Driven quantum systems

As a last example we will discuss Hamiltonians which depend explicitly on time,

modeling for example systems in external time-dependent �elds (see the review article

by Grifoni and H�anggi [12] or the textbooks by Dittrich at al. [13], Chapter 5, or by

Bay�eld [14]). In particular, we consider time-periodic systems with period T . Here it

is convenient to analyze the dynamics in terms of the so-called Floquet states [12{14],

which are the eigenstates of the time evolution operator U(t; 0) over one period, the

so-called Floquet operator. These Floquet states can be used essentially in the same

manner as the eigenstates of a time-independent Hamiltonian. Because of unitarity, the

eigenvalues are of unit magnitude and can be conveniently written as exp(�iE�T=�h),

where the so-called quasienergies E� are de�ned modulo integer multiples of �h!, i.e. we

have a family of quasienergies

E� = En;` = En;0 + `�h! ; n = 0; 1; 2; : : : ; ` = 0;�1;�2; : : : : (12)

Numerically, the time-evolution operator U = U(T; 0) can be calculated by splitting

the time period T into J equidistant intervals and approximating the time-dependent

HamiltonianH(t) in the j-th interval by the valueH(tj) with tj = jT=J , j = 1; 2; : : : ; J .

Then the Floquet operator is given by the product

U(T; 0) = e�iH(tJ )Æ=�h � � � e�iH(t2) Æ=�h e�iH(t1) Æ=�h ; (13)

where Æ = T=J is the time-step and J is chosen suÆciently large. After this time

propagation, the eigenvalues � = e�iET=�h of the resulting matrix U are computed.

Finally, i�h log(�)=T yields the desired quasienergies.

As a �rst demonstration, we consider the celebrated forced harmonic oscillator,

which is one of the rare cases that allow a closed form solution. In particular we choose

a time-periodic harmonic driving, i.e.

H(t) =
p
2

2
+
!
2
0

2
x
2 + fx cos!t = H0 + fx cos!t : (14)

with period T = 2�=!. For this Hamiltonian, the exact quasienergies are, up to multiples

of �h!, given by (see, e.g. [13])

En = �h!0(n + 1=2) +
f
2

4(!2 � !
2
0)
: (15)

In fact, one observes just the harmonic oscillator ladder of H0 shifted by a state-

independent dynamical Stark shift.

The following matlab program lines �rst calculate the Floquet operator and its

eigenvalues and eigenstates, which are then ordered according to the expectation values

of H0. Such an ordering is necessary in order to number and identify the states, because

the Floquet eigenvalues have no intrinsic order in contrast to the eigenvalues of a time-

independent Hamiltonian. Units are chosen as !0 = 1, �h = 1 (the missing lines are

identical to the original program lines).
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6 H_0 = p^2/2 + x^2/2;

7 f = 8 ; omega = 2*pi ; J = 40 ;

8 T = 2*pi/omega; tstep = T/J; U = eye(N);

9 for t = tstep:tstep:T

10 U = expm(-i*( H_0 + f*x*cos(omega*t) )*tstep) * U;

11 end

12 [C,Ueig] = eig(U);

13 QuasiEnergy = i*log(diag(Ueig))/T;

14 ExpectH_0 = C' * H_0 * C;

15 [ExpSort,Index] = sort(diag(ExpectH_0));

16 QuasiEnergy(Index(1:10))

(The vector Index computed in line 15 contains the positions of the sorted expectation

values on the diagonal of the matrix ExpectH_0.).

In Table 4 we list the resulting quasienergies reduced to the interval ��h! < En <

+�h!, the �rst Brillouin zone, for parameters ! = 2�, f = 8; N = 30 is the matrix size

and s = 1 the scaling factor. Results for J = 10; 20; 40 are listed, which approach the

exact values (15).

In the same way, more interesting systems can be studied without elaborate

programming or computational e�ort. To show this, we will consider a study of an

excitation of an anharmonic oscillator, modelling a vibrational excitation of an HF{

molecule in a strong Laser �eld. The system considered by Holthaus and Just [15] for

this purpose is a forced Morse oscillator (see (7) ):

H(t) =
p
2

2M
+D (1� e��x)2 + dxf cos!t (16)

with parameters �h = 1; M = 1744:8; D = 0:2251; � = 1:174; d = 0:3099 .

First, we test our numerical method for this case by computing numerically

the eigenvalues of the �eld-free Hamiltonian as described above, using the scaling

parameter s = (M!0)
�1=2, where !0 is given in (8). With, e.g., N = 25 one obtaines

E0 = 0:009330; E1 = 0:027398; E2 = 0:044677; E3 = 0:061165; E4 = 0:076863; E5 =

0:091772 in agreement with the exact formula (8). As in [15] we will tune the Laser

frequency to the 0! 5 transition and choose

! = (E5 � E0)=5�h = 0:016488 ; (17)

i. e. a �ve-photon resonance. For a given �eld amplitude f the quasienergy spectrum can

be calculated in the same manner as described above for the forced harmonic oscillator,

where the �eld-free Hamiltonian is changed to

H_0 = p^2/2/M + D * (One - expm(-beta*x))^2;

An understanding of the dynamical behavior, however, can be obtained from a

knowledge ot the quasienergies as a function of the �eld amplitude f . This dependence

is calculated and plotted by the following matlab program:
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1 N = 30 ; One = eye(N);

2 M = 1744.8; D = 0.2251; beta = 1.174; d = 0.3099; omega = 0.016488;

3 omega_0 = sqrt(2*D*beta^2/M); s = (M*omega_0)^-0.5;

4 n = 1:N-1;

5 m = sqrt(n);

6 x = s/sqrt(2) * (diag(m,-1) + diag(m,1));

7 p = i/s/sqrt(2) * (diag(m,-1) - diag(m,1));

8 H_0 = p^2/2/M + D*( One - expm(-beta*x))^2;

9 for nf = 0:100

10 f = nf*0.001

11 J = 60; T = 2*pi/omega; tstep = T/J;

12 U = eye(N);

13 for t = tstep:tstep:T

14 U = expm(-i*(H_0 + f*d*x*cos(omega*t))*tstep) * U;

15 end

16 [C,Ueig] = eig(U);

17 QuasiEnergy = i*log(diag(Ueig))/T;

18 ExpectH_0 = C' * H_0 * C;

19 [ExpSort,Index] = sort(diag(ExpectH_0));

20 QE(:,nf+1)= QuasiEnergy(Index(1:7));

21 end

22 QE = QE + omega*(QE < 0.2*omega);

23 plot(0:0.001:0.1,sort(QE/omega)); axis([0 0.1 0.4 1.1])

Figure 3 shows the resulting plot of the computed quasienergies in units of �h! for

n = 0; : : : ; 5 . In the limit f ! 0 the quasienergies (modulo �h!) approach the

Morse oscillator energies. Because of the resonant driving, E5;�5=�h! and E0;0=�h! are

degenerate. The �gure reproduces the results presented in [15]. It is, of course, not our

intension here to discuss the conclusions which can be drawn from such a plot. Let us

just remark that the probability for a 0 ! 5 transition in an experiment with a Laser

puls with envelope f = f(t) is approximately given by

P0!5 = sin2
� 1

2�h

Z
dt (E

f(t)
5 � E

f(t)
0 )

�
; (18)

where Ef(t)
n

denotes the instantaneous quasienergies (see [15] for more details).

3. Concluding remarks

The few examples presented in this article have demonstrated that a simple and well-

known representation of the position and momentum opertors allow very simple and

easily producable computer codes for a study of elementary and more advanced topics

in quantum mechanics. Much more can be done, of course, and we hope to stimulate

further application of this technique both for teaching physics and for lower level research

projects.
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Table 1. Eigenvalues of the quartic oscillator V (x) = x4=2 for various choices of the

basis size N .

n En

N = 10 N = 15 N = 20 N = 30 N = 40 exact

0 0.529804 0.530150 0.530180 0.530181 0.530181 0.530181

1 1.884380 1.899519 1.899802 1.899836 1.899837 1.899837

2 3.703755 3.722122 3.727699 3.727848 3.727849 3.727849

3 5.497667 5.829293 5.821052 5.822354 5.822373 5.822373

4 7.092175 8.196389 8.137202 8.130918 8.130912 8.130913

5 8.274857 9.824282 10.605741 10.619471 10.619179 10.619186

6 22.115362 10.387204 13.088132 13.264731 13.264260 13.264236

Table 2. Eigenvalues of the quartic oscillator V (x) = x4=2 for various choices of the

scaling parameter s.

n En

s = 0:4 s = 0:6 s = 0:8 s = 1:0 s = 1:2 exact

0 0.527901 0.530181 0.530181 0.530150 0.530191 0.530181

1 1.904213 1.899836 1.899831 1.899519 1.903072 1.899837

2 3.579742 3.727846 3.727643 3.722122 3.735836 3.727849

3 5.914909 5.822367 5.822170 5.829293 5.672530 5.822373

4 6.422003 8.130530 8.126915 8.196389 6.770660 8.130913

5 10.536731 10.619243 10.629422 9.824282 11.899233 10.619186

6 11.310578 13.255599 12.723456 10.387204 12.652289 13.264236
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Table 3. Eigenvalues of non-hermitian Hamiltonians. The eigenvalues for the PT -

symmetric Hamiltonian (10) are real for � = 1 (systems A1) and both real and complex

for � = �0:5 (systems A2); the complex resonance energies for the potential (9) (system

B) are calculated by complex scaling (see text).

n En (system A1) En (system A2) En (system B)

0 1.1563 -0.0000 i 1.0869 -0.0000 i 0.5020 -0.0000 i

1 4.1092 -0.0000 i 3.1958 -0.0000 i 1.4210 -5.8�10�5 i

2 7.5623 -0.0000 i 4.4221 -0.0000 i 2.1272 -0.0154 i

3 11.3144 -0.0000 i 6.6559 -0.9513 i 2.5846 -0.1738 i

4 15.2916 -0.0000 i 6.6559 +0.9513 i 2.9244 -0.5648 i

5 19.4516 -0.0000 i 9.0912 +1.9946 i 3.2555 -1.1115 i

6 23.7667 -0.0000 i 9.0912 -1.9946 i 3.5572 -1.7555 i

Table 4. Quasienergies reduced to the �rst Brillouin zone for the forced harmonic

oscillator (14) for ! = �h = 1, ! = 2� and f = 8 for various numbers J of time-steps.

Also given are the exact values (15).

n En

J = 10 J = 20 J = 40 exact

0 0.902410 0.912414 0.914964 0.915818

1 1.902410 1.912414 1.914964 1.915818

2 2.902410 2.912414 2.914964 2.915818

3 -2.380776 -2.370771 -2.368222 -2.367368

4 -1.380776 -1.370771 -1.368222 -1.367368

5 -0.380775 -0.370771 -0.368222 -0.367368

6 0.619224 0.629229 0.631778 0.632632

7 1.619224 1.629229 1.631778 1.632632

8 2.619224 2.629229 2.631778 2.632632

9 -2.663961 -2.653956 -2.651407 -2.650553
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Figure 1. Convergence behavior of the computed eigenvalues for the quartic oscillator

V (x) = x4=2 as a function of the matrix size N .

20 40 60 80 100
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E
n

Figure 2. A stabilization diagram, real eigenvalues as a function of the matrix size N

reveals the lowest bound state and resonances for potential (9) for potential parameters

J = 0:8, � = 0:1 (s = 1); only even N are shown.
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Figure 3. Computed quasienergies En;` = En;0 + `�h! for the driven Morse oscillator

as a function of the driving amplitude f . The label (n; `) indicates that a quasienergy

approaches En + `�h for f ! 0. The driving frequency ! is in resonance with the

n = 0 ! n = 5 transition of the �eld-free oscillator. Shown is �n;` = En;`=�h! for

n = 0; : : : 5 . The �gure reproduces the results in [15].


