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Abstract

A Born{Infeld theory describing aD2{brane coupled to a 3{form RR potential

is reconsidered in order to investigate the stability of its nonsingular solutions

with �nite energy. The condition of stability of the solutions is established and

the stable solutions and their shape are determined.

PACS Numbers:11.10.Lm, 11.27.+d, 05.70.Fh

1 Introduction

Recently in ref.[1] the question was considered whether a string can tunnel to a

D2{brane in the presence of a uniform background RR �eld, and it was shown

that the string can indeed nucleate the spheroidal bulge of a D2{brane and can

tunnel to a toroidal D2{brane. The tunneling was described by bounces in Eu-

clidean time and the rate of decay of the string into the toroidal D2{brane was

deduced. The transition process was investigted in more detail in ref.[2], and

the order of the quantum{classical transitions was determined depending on the

magnitude of the applied RR �eld. All the solutions considered in these cases are

unstable as stated in ref.[1] and therefore they must decay to the stable con�gu-

rations [3, 4]. The source of this instability will be exposed here.

One can argue that stable solutions must also exist because in the given

background of the RR �eld the con�guration which has minimal energy and hence

is a true minimum of the energy functional will be stable. Our intention here is

to �nd this solution and to show that this solution is stable. This then allows

us to clarify to which stable con�guration the string can tunnel by application
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of the external force. Moreover, this tunneling is dominant since the transition

rate exponent is proportional to the opposite value of the con�guration energy, so

that the tunneling to the branes with higher energy is exponentially suppressed.

The stability of Born{Infeld particles has been studied in detail in refs.[5, 6]

in the case of the D3{brane (without an applied RR �eld). In particular it

was shown there that the combined brane{antibrane con�guration is unstable,

whereas the Born{Infeld string is stable. The latter was also shown earlier in

ref.[7], this being a consequence of the preservation of supersymmetry.

In ref.[1] it was shown that in the case of the D2{brane in the background

of a uniform RR �eld the Born{Infeld string is unstable and can tunnel to an

unstable D2{brane. In the present work we show that in the background of the

uniform RR �eld one still has stable D2{branes with minimal energy. Tunneling

to these stable D2{branes dominates other tunnelings. We also show that strings

can survive in special cases, and can have negative tension. If there are strings,

then those with negative tension are stable and those with positive tension are

unstable.

In Section 2 we consider other brane con�gurations and show that these are

physically acceptable, i.e. are nonsingular and have �nite energy. We also show

that for small values of the RR �eld there are two types of solutions, one type

with higher energy (used in [1]) and a second type with lower energy; for the

RR �eld strength h larger than some critical value only the lower energy solution

survives. In Section 3 we consider special solutions. The equation for D2{brane

con�gurations into which strings can tunnel admits 3 types of solutions: Periodic

solutions in terms of elliptic functions, two constant solutions of cylindrical shape,

and solutions which are either �nite or vanish exponentially at in�nity. We are

looking for branes with �nite energy, otherwise the tunneling rate would be zero.

In particular we are considering the nucleation of the unwrapped string so that

for z�R1 space only the third type of solutions is physically acceptable. Periodic

solutions can be used in the case of a compacti�ed space, when the wrapped string

tunnels into the toroidal D2{brane [2]. In Section 4 we investigate the stability

of such branes using the semiclassical method, i.e. we consider the 
uctuation

operator describing small deviations of the action in the vicinity of that solution,

and demonstrate that this has no negative eigenvalues. Vice versa it may possess

a negative eigenvalue for the upper energy solution and imply that this solution

is unstable. In Section 5 we conclude with some remarks.

2 Formulation of the problem and determina-

tion of solutions with minimal energy

With the convention of �0 = 1 the action of a D2{brane coupled with the 3{form

gauge potential A in Born{Infeld approximation is given by [1, 8]

I = �
1

4�2g

Z
d3�

�s
�det

�
gind�� + 2�F��

�
+

1

3!
���
A���@�X

�@�X
�@
X

�

�
(1)

where �; �; � = 0; � � �; 9 are spacetime indices, and �; �; 
 = 0; 1; 2 worldvolume

indices and g is the string coupling. The dilaton �eld is taken to be constant and
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the background �eld strength H = dA is taken to be uniform and aligned with

the brane, i.e. H0123 = h=const. As in ref.[1] we choose the world volume to be

cylindrical and hence de�ne

X0 = t; X1 = z; X2 = R(t; z) cos �; X3 = R(t; z) sin�; E = 2�Ftz; (2)

and all other X i = const. After integration over � the action takes the form

I =

Z
dt

Z
dzL; L = �

1

2�g

�
R

q
1� _R2 � E2 +R02 �

h

2
R2

�
(3)

where dots and primes denote derivatives with respect to t and z respectively.

The canonical momentum D = 2�g�I=�E must be constant (cf. refs.[1, 2]) and

is given by gn, where n is the number of fundamental strings (cf. [1, 2]), each of

tension 1=2�. For static solutions the energy E is given by

E =
1

2�g

Z
dz

�q
(1 +R02)(D2 +R2)�

h

2
R2

�
(4)

Variation of E with respect to R yields

�E

�R
�

d

dz

�E

�R0
= 0 (5)

which can be reduced to a �rst order di�erential equation because it does not

contain the variable z explicitly, resulting in

s
R2 +D2

1 +R02
�
h

2
R2 = C (6)

where C is a constant. We rewrite this equation

R0 =
�

(+)
h

hR2 + 2C

q
(R2

+ �R2)(R2 �R2
�); R0 6= 0 (7)

with

R�

2 =
2

h2

�
(1� Ch)�

p
1 � 2Ch+ h2D2

�
(8)

Now we compare the expression (6) for the integration constant C with expression

(4) for the energy density. We observe that the second (i.e. \potential") terms

are the same and the �rst (\kinetic") terms di�er by a multiplicative factor, i.e.

(1+R02), and consequently the restriction to positivity of C leads to the positivity

of the energy E, while we are interested in the con�guration with the lowest lying

energy. Hence we abandon that restriction and consider negative values of C. At

�rst sight this may seem dangerous since this suggests a pole in eq.(7) but in

spite of this the solution is nonsingular and the energy �nite. In this case eq.(7)

permits solutions for all values of h and for R2
+
and R2

�
real and positive. From

eq.(8) we deduce two conditions

C2 � D2; 1� Ch � 0;
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which for positive values of C imply

hD � hC � 1

meaning that h must be less than the critical value hC = 1=D. On the contrary,

for negative values of C, keeping in mind that h is positive, we have only the one

condition that

jCj � D

so that h can take any value, but jCj is restricted to non{small values. At the

end of this Section we present a solution for large values of h, i.e. when hD >> 1.

We now demonstrate that solutions for negative values of C are, in principle,

also acceptable, i.e. are associated with a �nite energy. It is convenient in this

case to set

C = �
h

2
a2 (9)

Then for jCj � D we have

0 � R2

�
� a2 � R2

+

and

R0 = �

q
(R2

+ �R2)(R2 �R2
�)

R2 � a2

We consider the approach R! a. In this domain

R0 ' �
�

2

1

R� a
; � '

2
p
a2 +D2

ha

and

(R� a)2 = �jz � zoj; jR0j =
1

2

s
�

jz � z0j

so that the crucial part of the energy (4) around z = z0 becomes

1

2�g

Z z0+�

z0��
dz
q
(1 +R02)(D2 +R2) (10)

'
p
a2 +D2

2�g

Z z0+�

z0��
jR0jdz =

q
�(a2 +D2)

4�g

Z z0+�

z0��

dz

jz � z0j1=2
<1

We conclude therefore that static solutions for negative values of C also have

�nite energy.

3 Solutions with negative tension

We now consider some special solutions and their energy. We consider �rst the

special case C = �D. In this case D = ha2=2; R� = 0; R2
+ = 4(1 + hD)=h2.

Integrating the equation

R0 = �
R

R2 � a2

q
R2
+ �R2
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one obtains

� (z � z0) = �
q
R2
+ �R2 +

a2

R+

ln
R+ +

q
R2
+ �R2

R
(11)

In Fig. 1 we show this solution. One can clearly see that the e�ect of nega-

tive values of C is opposite to that of positive C: Whereas positive C yield an

elongated spheroidal bulge (cf. refs.[1, 2]), negative C push this bulging in the

opposite direction to eventually form a wheel{like structure. We can also calcu-

late the energy of this con�guration using eq.(6) with C there replaced by �D.

With D = +ng one obtains

E =
h

8�2g

�
4�

3
R3

+

�
�

n

2�

Z
dz: (12)

We observe that the energy of the bulge (the �rst term) is the same as in the case

considered in ref.[1], but in comparison the tension has changed its sign. Thus

strings in the background may have negative tension.

Next we consider the case C = �ha2=2 with ha >> 1; hD >> 1. In this case

R2

�
' a2 � 2R0; R0 �

p
a2 +D2=h; R0 << a2;D2

We set (with � 0 � d�=dz)

R2 � a2 + �:

Then eq.(7) becomes

� 0

2
p
a2 + �

= �

q
4R2

0 � � 2

�
: (13)

Integration (for � << a2) yields the equation (R2 = x2 + y2)

z2 +

�
R2 � a2

2a

�2
=

a2 +D2

h2a2
(14)

(with integration constant z0 = 0). This equation describes a deformed circular

structure with radius a (neglecting 2
p
a2 +D2=h) which is obvious if we look at

its intersection with the plane z = 0. The structure has a thickness
p
a2 +D2=ha.

Thus in the limit ha >> 1 with parameter a �xed, the circular structure becomes

a shell of �nite radius and small thickness as shown in Fig. 2.

4 The stability of the solutions

We now return to the question of whether the solutions considered above are

stable, i.e. are global minima of the energy, or not. For this reason we consider

the second variation �2E of the energy in the vicinity of the classical solution.

Straightforward calculation yields

�2E =
1

4�g

Z
�RM̂�Rdz (15)
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where

M̂ = �
d

dz
Q
d

dz
+ 2P

d

dz
+ V (16)

with

Q =

p
R2 +D2

(1 +R02)3=2
; P =

RR0q
(1 +R02)(R2 +D2)

; V = D2

q
1 +R02

(R2 +D2)3=2
� h (17)

A negative eigenvalue of the 
uctuation operator M̂ implies instability of the

respective solution, since the variation of the solution in the direction of the cor-

responding eigenfunction decreases the energy. Therefore it su�ces to investigate

for which solutions M̂ has only positive eigenvalues and for which not.

One can derive another expression for M̂ which is equivalent to the one above,

i.e.

M̂ = �
1

R0

d

dz
R02Q

d

dz

1

R0
+ 2P

d

dz
�

1

R0
(QR00)0 (18)

but allows to present �2E as a sum of positively de�ned terms plus a term pro-

portional to C. On the basis of this one can easily distinguish the stable solutions

from the unstable ones.

Here we are looking for branes with �nite energy. With z�R1 this implies

the square integrability of the eigenfunctions of M̂ . The charge D remains �xed

by quantisation (as stated earlier). The positivity of all eigenvalues of M̂ means

that the mean value of M̂ over any function with �nite norm is positive and vice

versa. We assume that �R(z) is a square integrable function, i.e.Z
�R(z)2dz < +1; (19)

and consider the mean value of M̂ on that class of functions. This is the same as

�2E. The function R(z) is bounded, R� � R � R+, and �R(z) must vanish at

in�nity. Consequently we can integrate the term 2�RP d
dz
�R = P d

dz
�R2 by parts

and the total derivative must vanish. Also in the �rst term we can return to the

antihermitian operator d=dz to act on the term to the left yielding a minus sign.

As a result we have

�2E =
1

4�g

Z �
R02Q

�
d

dz

�R

R0

�2
+ U�R2

�
dz (20)

where

U = V �
dP

dz
�

1

R0

�
QR00

�
(21)

It is worth noting that one can make analogous manipulations with the di�er-

ential equation for eigenvalues of the operator M̂ . After appropriate substitutions

and eliminating the �rst order derivative, one obtains the same expression (21)

for the e�ective potential. We prefer the above way which allows us to connect

the second variation of the energy directly with the integration constant C. With

some algebra one can deduce the explicit expression for U :

U = h
R2

R2 +D2
+ hD2

R2

(R2 +D2)2
� 2C

R2

(R2 +D2)2
(22)
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The last term demonstrates in a transparent way the stability of solutions with

negative values of C. In contrast, in the case when C > 0 and hD2 � C, the

negative term becomes consequently a source for the instability which is due to

negative eigenvalue.

5 Conclusions

In the above we derived the nonsingular, �nite{energy solutions of the Born{

Infeld theory of a D2{brane in the presence of a three{form RR{potential. By

considering small 
uctuations about the con�guration we also demonstrated its

stability. The theory, originally proposed in ref.[1], turned out to enable all these

considerations to be performed in a relatively simple way; it could therefore serve

as a prototype model for more complicated cases.
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                           Fig.1
                       
                       
    The solution for a negative value of C              
                       
              C=−D ;   D=0.4 ;   h=4         
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                                     Fig.2
  
         The limit of the string becoming an annular shell
  
                         a=2;   D=3;   h=10
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