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Abstract

The transition from the instanton{dominated quantum regime to the

sphaleron{dominated classical regime is studied in the d = 2 abelian{Higgs

model when the spatial coordinate is compacti�ed to S1. Contrary to the

noncompacti�ed case, this model allows both sharp �rst{order and smooth

second{order transitions depending on the size of the circle. This �nding may

make the model a useful toy model for the analysis of baryon number violating

processes.
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After the sphaleron solution in the Weinberg{Salam model had been found [1,2], the

temperature dependence of baryon number violating processes (BNVP) was studied exten-

sively. To understand the overall features of BNVP over the entire range of temperature, the

computation of periodic instantons [3] and their corresponding classical actions is required.

However, the calculation of these in the Weinberg{Salam model is a highly non{trivial prob-

lem, even if numerical techniques are employed. Hence in many cases simple toy models

were used to explore the temperature dependence of BNVP.

An immediate candidate as a simple toy model is the d = 2 Mottola{Wipf(MW) model

[4], which shares many common features with d = 4 electroweak theory. The scale invariance

of the nonlinear O(3) model is broken in the MW model by adding an explicit mass term.

This has a close analogy to the fact that the conformal invariance of the electroweak theory

is broken in the Higgs sector. Also, neither model supports a vacuum instanton which

gives a dominant contribution to the winding number transition at low temperature. The

transition between thermally assisted quantum tunneling dominated by periodic instantons

and the classical crossover dominated by the sphaleron in the MW model has been analyzed

in Refs. [5,6] and it has been shown that the instanton{sphaleron transition is of the sharp

�rst{order type in the full range of parameter space.

Recently, however, a numerical study [7,8] of the d = 4 SU(2){Higgs model { which is a

bosonic sector of the electroweak theory { has shown that a smooth second{order transition

occurs when 6:665 < M
H
=M

W
< 12:03 although the �rst{order transition occurs when

M
H
=M

W
< 6:665. This implies that the MW model does not exhibit a proper transition of

BNVP when heavy Higgss are involved.

Another candidate as a toy model is the d = 2 abelian-Higgs model which supports vortex

solutions [9], in particular the vacuum instanton and the sphaleron [10] simultaneously.

The simultaneous existence of instanton and sphaleron causes the model to yield phase

diagrams for the instanton{sphaleron transition which are completely di�erent from those

of electroweak theory, as shown in Ref. [11]. Furthermore, numerical [12] and analytical [13]

approaches have shown that the instanton{sphaleron transition in this model is always of the
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second-order type, regardless of the ratio M
H
=M

W
. Hence, contrary to the MW model, the

abelian{Higgs model does not describe the instanton{sphaleron transition of the electroweak

theory properly when the Higgs mass is small.

In the following we study the instanton{sphaleron transition in the d = 2 abelian-Higgs

model when the spatial coordinate is compacti�ed to S1. Since, to our knowledge, the e�ect

of the compacti�cation of the spatial coordinate of this model has not yet been investigated,

this is of interest on its own. Furthermore, we will show that this model exhibits both �rst{

order and second{order transitions depending on the size of the circumference of the spatial

coordinate domain. This means that the abelian{Higgs model de�ned on a circle can be a

better toy model than the MW model or the uncompacti�ed abelian-Higgs model for the

analysis of BNVP.

We begin with the Euclidean action

S
(0)
E

=

Z
d�dx

"
1

4
F
��
F
��
+ (D

�
�)�D

�
�+ �[j � j2 �v

2

2
]2
#

(1)

and its �eld equations

@
�
F
��

= ig [��(D
�
�)� (D

�
�)��] ; (2)

D
�
D

�
� = 2��(j � j2 �v

2

2
);

where D
�
= @

�
� igA

�
. We de�ne as mass{dimensional parameters

M
H
�
p
2�v; (3)

M
W
� gv;

which correspond to Higgs mass and gauge particle mass in electroweak theory respectively.

It is easy to show that the static sphaleron solution in the A0 = 0 gauge is given by

A1 = A = const; (4)

�
sph

=
kb(k)p
�
eigAxsn[b(k)x];

where sn[z] is a Jacobian elliptic function, k is the modulus of the elliptic function, and
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b(k) =

s
�

2
v

�
2

1 + k2

�1

2

: (5)

Since sn[z] has period 4K(k), where K(k) is the complete elliptic integral of the �rst kind,

the circumference L of S1 is de�ned by

L
n
=

4nK(k)

b(k)
; n = 1; 2; 3 � � � : (6)

Since the transition rate is negligible for large n [14], we con�ne ourselves to the L = L1

case in this paper.

In order to examine the type of instanton{sphaleron transition we have to introduce

the 
uctuation �elds around the sphaleron and expand the �eld equations (2) up to the

third order in these �elds. If, however, one expands Eq.(2) naively, one will realize that the


uctuation operators are not diagonalized and, hence, the computation of the spectra of

these operators becomes a very non{trivial problem. To avoid this di�culty, we choose the

R
�
gauge [15] by adding to the original action (1) the gauge �xing term

S
gf
=

1

2�

Z
d�dx

�
@
�
A
�
+
ig

2
�(�2 � ��2)

�2
: (7)

Then the �eld equations for the total Euclidean action S
E
= S

(0)

E
+ S

gf
become

@
�
F
��
+
1

�
[@
�
@
�
A
�
+ ig�(�@

�
�� ��@

�
��)] = ig [��(D

�
�)� (D

�
�)��] ; (8)

D
�
D

�
�+ ig��

"
@
�
A
�
+
ig�

2
(�2 � ��2)

#
= 2��(j � j2 �v

2

2
):

One can show directly that the sphaleron in this gauge is the same as that of Eq.(4) if A = 0:

A1 = 0; (9)

�
sph

=
kb(k)p
�
sn[b(k)x]:

We now introduce the 
uctuation �elds around the sphaleron as follows:

A0(�; x) = a0(�; x); (10)

A1(�; x) = a1(�; x);

�(�; x) = �
sph

(x) +
1p
2

�
�1(�; x) + i�2(�; x)

�
;
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where a0, a1, �1, and �2 are real �elds. Inserting (10) into Eq.(1) and Eq.(7) one can express

S
E
for � = 1 as

S
E
=
E
sph

T
+ S2 + S3 + S4 (11)

where 1=T is the period of the sphaleron [16] and

E
sph

=
p
2�v3

� 24� 2

1 + k2

�� 1

2

+
1 + 2k2

3

�
2

1 + k2

� 3

2 � 2

�
2

1 + k2

� 1

2

3
5K(k) (12)

+

2
42� 2

1 + k2

� 1

2 � 1 + k2

3

�
2

1 + k2

�3

2

3
5E(k)�;

S2 =

Z
d�dx

"
1

2
a0[�@�@� + 2g2�2

sph
]a0 +

1

2
a1[�@�@� + 2g2�2

sph
]a1

+
1

2
�1

"
�@

�
@
�
+ 2�(3�2

sph
� v2

2
)

#
�1 +

1

2
�2
h
�@

�
@
�
+ 2(� + g2)�2

sph
� �v2

i
�2

+2
p
2g�0

sph

a1�2

#
;

S3 =
Z
d�dx

"
2g(a0 _�1�2 + a1�

0

1�2) +
p
2g2�

sph
(a20 + a21)�1

+
p
2��

sph
�31 +

p
2(�+ g2)�

sph
�1�

2
2

#
;

S4 =

Z
d�dx

"
g2

2
(a20 + a21)(�

2
1 + �22) +

�

4
(�21 + �22)

2 +
g2

2
�21�

2
2

#
;

where E(k) is the complete elliptic integral of the second kind. Here the dot and the prime

denote di�erentiation with respect to � and x respectively. Due to the �nal term in S2 the


uctuation operators for a1 and �2 are not diagonalized although the R
�=1 gauge has been

chosen. To guarantee the diagonalization we introduce the 
uctuation �elds �� de�ned as

�+ = v1a1 + v2�2; (13)

�� = �v2a1 + v1�2;

where

v1 =

vuut1 � (�2
sph

� v
2

2
)f

�
1

2

1

2
; (14)

v2 =

vuut1 + (�2
sph

� v
2

2
)f

�
1

2

1

2
;
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and

f1 = (�2
sph

� v2

2
)2 cosh2 �� v4

4

 
1 � k2

1 + k2

!
sinh2 �: (15)

Here � = sinh�1 2� and � is the dimensionless parameter

� � 2M
W

M
H

=

s
2g2

�
: (16)

Using the �eld rede�nition (13) and the �rst{order di�erential equation for �
sph

,

�0
sph

+
p
�

2
4v4
4

 
2k

1 + k2

!2

� v2�2
sph

+ �4
sph

3
5
1

2

= 0; (17)

it is straightforward to show that S2 becomes

S2 =
1

2

Z
d�dx[a0D0a0 + �1D1�1 + �+D+�+ + ��D���]; (18)

where

D0 = �@
�
@
�
+ 2g2�2

sph

; (19)

D1 = �@
�
@
�
+ 2�(3�2

sph

� v2

2
);

D� = �@
�
@
�
+ 2g2�2

sph

+ �(�2
sph

� v2

2
)� �

q
f1:

After inserting the �eld rede�nition (13) into S3 and also into S4, one can derive the �eld

equations for the 
uctuation �elds by varying the total action S
E
, i.e.

l̂

0
BBBBBBBBBB@

a0

�+

��

�1

1
CCCCCCCCCCA
= ĥ

0
BBBBBBBBBB@

a0

�+

��

�1

1
CCCCCCCCCCA
+

0
BBBBBBBBBB@

Ga0

2

G
�+

2

G
�
�

2

G
�1

2

1
CCCCCCCCCCA
+

0
BBBBBBBBBB@

Ga0

3

G
�+

3

G
�
�

3

G
�1

3

1
CCCCCCCCCCA
; (20)

where

l̂ =

0
BBBBBBBBBB@

@
2

@z
2
0

0 0 0

0 @
2

@z
2
0

0 0

0 0 @
2

@z
2
0

0

0 0 0 @
2

@z
2
0

1
CCCCCCCCCCA
; ĥ =

0
BBBBBBBBBB@

ĥ
a0

0 0 0

0 ĥ
�+

0 0

0 0 ĥ
�
�

0

0 0 0 ĥ
�1

1
CCCCCCCCCCA
;

6



Ga0

2 =
2g

b(k)
(v2�+ + v1��) _�1 +

2
p
2g2

b2(k)
�
sph
a0�1; (21)

Ga0

3 =
g2

b2(k)
a0
h
�21 + (v2�+ + v1��)

2
i
;

G
�+

2 =
2g

b(k)
[v2a0 _�1 + (v21 � v22)���

0

1 + 2v1v2�+�
0

1];

+
2
p
2�

b2(k)
�
sph

[v22�+�1 + v1v2���1] +
2
p
2g2

b2(k)
�
sph
�+�1;

G
�+

3 =
g2

b2(k)

"
�+�

2
1 + v22a

2
0�+ + v1v2a

2
0�� + 2v21v

2
2�

3
+ + 3v1v2(v

2
1 � v22)�

2
+��

+(v41 � 4v21v
2
2 + v42)�+�

2
�
� v1v2(v

2
1 � v22)�

3
�

#

+
�

b2(k)

h
v22�+�

2
1 + v1v2���

2
1 + v42�

3
+ + 3v1v

3
2�

2
+�� + 3v21v

2
2�+�

2
�
+ v31v2�

3
�

i
;

G
�
�

2 =
2g

b(k)
[v1a0 _�1 + (v21 � v22)�+�

0

1 � 2v1v2���
0

1]

+
2
p
2�

b2(k)
�
sph

[v21���1 + v1v2�+�1] +
2
p
2g2

b2(k)
�
sph
���1;

G
�
�

3 =
g2

b2(k)

"
���

2
1 + v21a

2
0�� + v1v2a

2
0�+ + 2v21v

2
2�

3
�
+ v1v2(v

2
1 � v22)�

3
+

+(v41 � 4v21v
2
2 + v42)�

2
+�� � 3v1v2(v

2
1 � v22)�+�

2
�

#

+
�

b2(k)

h
v21���

2
1 + v1v2�+�

2
1 + v41�

3
�
+ v1v

3
2�

3
+ + 3v21v

2
2�

2
+�� + 3v31v2�+�

2
�

i
;

G
�1

2 = � 2g

b(k)

"
v2( _a0�+ + a0 _�+) + v1( _a0�� + a0 _��) + 2(v1v

0

1 � v2v
0

2)�+��

+(v21 � v22)(�
0

+�� + �+�
0

�
) + v01v2(�

2
+ � �2

�
) + v1v

0

2(�
2
+ � �2

�
) + 2v1v2(�+�

0

+ � ���
0

�

#

+

p
2�

b2(k)
�
sph

(3�21 + v22�
2
+ + v21�

2
�
+ 2v1v2�+��) +

p
2g2

b2(k)
�
sph

(a20 + �2+ + �2
�
);

G�1

3 =
g2

b2(k)
(a20 + �2+ + �2

�
)�1 +

�

b2(k)
[�31 + (v2�+ + v1��)

2�1]:

Here z0 � b(k)� , z1 � b(k)x, and the dot and the prime denote di�erentiation with respect

to z0 and z1 respectively. Also, the 
uctuation operators ĥ
a0
, ĥ

�+
, ĥ

�
�

, and ĥ
�1
are

ĥ
a0
= � @2

@z21
+

2g2

b2(k)
�2
sph
; (22)

ĥ
�+

= � @2

@z21
+

1

b2(k)

"
2g2�2

sph
+ �(�2

sph
� v2

2
) + �

q
f1

#
;
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ĥ
�
�

= � @2

@z21
+

1

b2(k)

"
2g2�2

sph
+ �(�2

sph
� v2

2
)� �

q
f1

#
;

ĥ
�1
= � @2

@z21
+

2�

b2(k)

"
3�2

sph
� v2

2

#
:

The lowest few eigenvalues of ĥ
a0
and ĥ

�1
can be obtained exactly by using Lam�e's equation

[17]. It is easy to show that the spectrum of ĥ
a0

consists of only positive modes whose

explicit forms are not needed here for further study. Also, of the lowest eigenstates of ĥ
�1
,

we need only the 2K{antiperiodic eigenfunctions to recover the proper uncompacti�ed limit

as shown in Ref. [18]. The lowest two 2K{antiperiodic eigenstates of ĥ
�1

are summarized

in Table I. It may be impossible to obtain the higher states analytically at present. Using

R
K

�K
 
(�1)�
i

 
(�1)
j

dz1 = �
ij
, one can show that the normalization constant N1 in Table I is given

by

N1 =

vuut 3k2

2[(1� k2)K � (1� 2k2)E]
: (23)

We now consider the eigenstates of ĥ
�+

and ĥ
�
�

. In Appendix A we explain how the

eigenstates of ĥ
�+

and ĥ
�
�

are computed numerically. Following the method of Appendix

A, one can show that the eigenstates of ĥ
�+

also consist of only positive modes which we do

not need. What we need, is only the negative mode of ĥ
�
�

. If one performs the numerical

calculation, one �nds that ĥ
�
�

has two negative modes, one of which is 2K{periodic and the

other 2K{antiperiodic. Fig. 1 shows the k{dependence of the negative eigenvalues for � = 1.

Since the 2K{antiperiodic boundary condition is required for the proper continuum limit,

we have to use the solid line in Fig. 1 as a negative eigenvalue. One should note that the

negative eigenvalues approach zero in the small k region. We show in the following that this

e�ect guarantees that the instanton{sphaleron transition in the small k{region is di�erent

from that in the large k{region. Fig. 2 shows normalized 2K{antiperiodic eigenfunctions

for the negative mode of ĥ
�
�

at (� = 1, k = 0:6) and (� = 1, k = 0:99).

We let  
(�
�

)
�1 and �

(�
�

)
�1 be respectively the 2K{antiperiodic eigenfunction and correspond-

ing eigenvalue for the negative mode. To obtain the criterion for the sharp �rst{order

instanton{sphaleron transition we have to compute the nonlinear correction to the frequency
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of the periodic instanton around the sphaleron. This can be carried out by solving Eq.(20)

perturbatively. The perturbation procedure is brie
y summarized in Appendix B. The cri-

terion for the �rst-order transition is expressed as an inequality [6]


 �

sph

> 0; (24)

where 
 is the frequency involving the nonlinear correction and 

sph

�
q
��(��)

�1 .

In Appendix B it is shown that the inequality (24) can be expressed as

<  
(�
�

)
�1 j D1(z1) > < 0 (25)

where

D1(z1) = D
(1)
1 (z1) +D

(2)
1 (z1) +D

(3)
1 (z1): (26)

Here

D
(1)
1 (z1) =

2
q
2(1 + k2)

v
 
(�
�

)
�1 (z1)

"
k

 
v21 +

s1(s1 + 1)

2

!
sn[z1]g�1;1(z1) (27)

�
q
s1(s1 + 1)v1v2g

0

�1;1
(z1)

#
;

D
(2)
1 (z1) =

q
2(1 + k2)

v
 
(�
�

)
�1 (z1)

"
k

 
v21 +

s1(s1 + 1)

2

!
sn[z1]g�1;2(z1)

�
q
s1(s1 + 1)v1v2g

0

�1;2
(z1)

#
;

D
(3)
1 (z1) =

3(1 + k2)

4v2
[v41 + s1(s1 + 1)v21v

2
2] 

(�
�

)3
�1 (z1);

where s1 �
q
�2 + 1

4
� 1

2
and

g
�1;1(z1) = ĥ�1

�1
j q(z1) >; (28)

g
�1;2(z1) = (ĥ

�1
+ 4
2

sph
)�1 j q(z1) >;

j q(z1) > = �1

v

s
1 + k2

2

"
�
�
(v1v2)

0 
(�
�

)2
�1 + 2v1v2 

(�
�

)
�1  

(�
�

)0
�1

�
+ k(v21 +

�2

2
)sn[z1] 

(�
�

)2
�1

#
:

It is now necessary to evaluate g
�1;1 and g�1;2 explicitly. Although one can calculate g

�1;1

exactly by following the procedure given in the Appendix of Ref. [18], this is not necessary
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here. We already know the type of instanton{sphaleron transition at k = 1 [12,13] so that

our interest concerns only the domain of small k. We can therefore adopt the following

simple approximate procedure which has been shown to be valid in the small k region [18].

Using the completeness relation one can express g
�1;1 as

g
�1;1 =

1X
n=0

<  (�1)
n

j q >
�
(�1)
n

j  (�1)
n

> : (29)

Since j q > is an odd function, the zero mode of ĥ
�1

does not contribute to the r.h.s. of

Eq.(29). Hence the �rst approximation of g
�1;1 is

g
�1;1 �

<  
(�1)
1 j q >
�
(�1)
1

j  (�1)
1 > (30)

which can be evaluated numerically. In fact, this approximation is valid when j  (�1)
1 > is an

isolated discrete mode and the density of higher states is very dilute. Ref. [18] shows these

conditions are ful�lled in the small k{region if ĥ
�1
is a Lam�e operator as is the case here. In

the same way g
�1;2 is approximately

g
�1 ;2 �

<  
(�1)
1 j q >

3k2 + 4
2
sph

j  (�1)
1 > : (31)

Fig. 3 shows the k-dependence of J
i
�<  

(�
�

)
�1 j D(i)

1 > and J1 + J2 + J3 at � = 1. Fig.

3 shows that the sharp �rst-order instanton-sphaleron transition occurs at k < k
c
� 0:2 at

� = 1. Although the result is not included in this paper, we have checked also the � = 3

case and have found a similar behavior: a sharp transition occurs in the small k region.

In conclusion we can say, we have found the sharp �rst{order instanton{sphaleron tran-

sition in the abelian{Higgs model in the small k region. Hence, depending on k, this model

allows both smooth second{order transitions in the large k region and sharp �rst{order

transitions in the small k region. These �ndings are similar to those of d = 4 SU(2){Higgs

theory in which the type of transition depends on the ratio of M
H
and M

W
.
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Appendix A

Here we explain how the spectrum of ĥ
�
�

is obtained. The spectrum of ĥ
�+

can be

obtained similarly. The eigenvalue equation of ĥ
�
�

is

"
� @2

@z21
+ f(k; �; z1)

#
 (�

�

)
n

= � (�
�

)
n

(32)

where

f(k; �; z1) = (1 + �2)k2sn2[z1]�
s
(1 + 4�2)

�
k2sn2[z1]� 1 + k2

2

�2
� �2(1 � k2)2; (33)

� = �(��) +
1 + k2

2
:

We �rst choose the 4K{periodic boundary condition. In this case we can use the Fourier

expansions

f(k; �; z1) =
1X

n=�1

a
n
ei

n�

l
z1; (34)

 (�
�

)
n

=
1X

n=�1

b
n
ei

n�

l
z1 ;

where l = 2K and the coe�cient a
n
is given by

a
n
=

1

2l

Z
l

�l

f(k; �; z1)e
�i

n�

l
z1 : (35)

Inserting (34) into (32) and using the property of linear independence of the exponential

function one obtains

X
m

"�
n�

l

�2
�
mn

+ a
n�m

#
b
m
= �b

n
: (36)

Solving this matrix equation numerically, one can evaluate the eigenvalue �(��)
n

and eigen-

function  (�
�

)
n

. After that we choose only 2K{antiperiodic eigenfunctions and determine the

corresponding eigenvalues for the proper k = 1 limit.

Appendix B

In this appendix we show brie
y how the inequality (25) is derived for the criterion of

the sharp �rst{order transition by solving Eq.(20) perturbatively. First we choose an ansatz

12



0
BBBBBBBBBB@

a0

�+

��

�1

1
CCCCCCCCCCA
= �

0
BBBBBBBBBB@

a0;0(z1)

�+;0(z1)

��;0(z1)

�1;0(z1)

1
CCCCCCCCCCA
cos


sph
z0 (37)

where � is a small oscillation amplitude around the sphaleron. After inserting (37) into

Eq.(20) and neglecting higher order terms, one obtains



sph

=
q
��(��)

�1 ; (38)

a0;0 = 0; �+;0 = 0;

��;0 =  
(�
�

)
�1 ; �1;0 = 0:

For the next order perturbation we set

0
BBBBBBBBBB@

a0

�+

��

�1

1
CCCCCCCCCCA
=

0
BBBBBBBBBB@

�2a0;1(z0; z1)

�2�+;1(z0; z1)

���;0(z1) cos 
z0 +�2��;1(z0; z1)

�2�1;1(z0; z1)

1
CCCCCCCCCCA
: (39)

Inserting Eq.(39) into Eq.(20) and considering only terms up to those of quadratic order,

one can show there is no frequency shift to this order. It is also straightforward to show

that a0;1 = 0, �+;1 = 0, ��;1 = 0, and

�1;1 = g
�1;1(z1) + g

�1;2(z1) cos 2
sph
z0 (40)

where g
�1;1 and g�1;2 are given by Eq.(28).

For the next order perturbation we set

0
BBBBBBBBBB@

a0

�+

��

�1

1
CCCCCCCCCCA
=

0
BBBBBBBBBB@

�3a0;2(z0; z1)

�3�+;2(z0; z1)

���;0(z1) cos 
z0 +�3��;2(z0; z1)

�2�1;1(z0; z1) + �3�1;2(z0; z1)

1
CCCCCCCCCCA
: (41)
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Inserting this into Eq.(20) and considering contributions up to those of cubic order, one can

show that there is a frequency change in this order given by


2
sph

� 
2 = �2 < ��;0 j D1 > (42)

which proves Eq.(25).
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TABLES

Eigenvalue of ĥ
�1

Eigenfunction of ĥ
�1

�
(�1)
0 = 0  

(�1)
0 (z1) = N0cn[z1]dn[z1]

�
(�1)
1 = 3k2  

(�1)
1 (z1) = N1sn[z1]dn[z1]
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FIGURES

FIG. 1. k-dependence of the negative eigenvalues �(��) of ĥ
�
�

at � = 1. The dotted line

and the solid line represent the negative eigenvalues for the 2K{periodic and 2K{antiperiodic

eigenfunctions respectively. For the correct k = 1 limit we have to choose the solid line as the

negative eigenvalue.

FIG. 2. The normalized 2K{antiperiodic eigenfunctions for the negative mode of ĥ
�
�

at (a)

� = 1, k = 0:6, and (b) � = 1, k = 0:99.

FIG. 3. k-dependence of J1, J2, J3, and J1 + J2 + J3 at � = 1. This shows that the sharp

�rst{order instanton{sphaleron transition occurs at k < k
c
� 0:2.

16



0.2 0.4 0.6 0.8 1.0
-1.7
-1.6
-1.5
-1.4
-1.3
-1.2
-1.1
-1.0
-0.9

-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0

Fig. 1

 

 

         k

17



-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

Fig.(2a)

θ = 1, k = 0.6

 

 

ψ
-1

(ρ−)

            z
1

-2 0 2

0.0

0.2

0.4

0.6

0.8

Fig.(2b)

θ = 1, k = 0.99

 

 

ψ
-1

(ρ
-
)

       z
1

18



0.0 0.2 0.4 0.6 0.8 1.0
-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

J1+J2+J3

Fig. 3

J3

J2

J1

 

 

      k

19


