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Abstract

Standard methods of nonlinear dynamics are used to investigate the stability

of particles, branes and D-branes of abelian Born{Infeld theory. In particular

the equation of small 
uctuations about the D{brane is derived and converted

into a modi�ed Mathieu equation and { complementing earlier low{energy inves-

tigations in the case of the dilaton{axion system { studied in the high{energy

domain. Explicit expressions are derived for the S{matrix and absorption and

re
ection amplitudes of the scalar 
uctuation in the presence of the D-brane. The

results con�rm physical expectations and numerical studies of others. With the

derivation and use of the (hitherto practically unknown) high energy expansion

of the Floquet exponent our considerations also close a gap in earlier treatments

of the Mathieu equation.

1 Introduction

Recently Born{Infeld gauge theory has attracted considerable interest as the

bosonic light{brane approximation or limit of superstring theory[1], and has

turned out to be a simple and transparent model in this context [2]. Branes,

de�ned as extended objects in spacetime, can be fundamental or solitonic. The

connection of these branes with a U(1) gauge �eld was motivated by the pres-

ence of this �eld in the massless part of the spectrum of open strings, and by

realising that branes with open strings attached to them which satisfy Dirichlet
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boundary conditions, or more generally one brane attached to another, can be-

come classically stable, solitonic objects. It is for this reason that the dynamics

of D-branes [3] in Born{Infeld theory is being studied in detail and generalised

[4],[5],[6],[7],[8]. Since, in general, a brane may or may not be a solitonic con�gu-

ration or BPS state, the exploration of this question deserves particular attention.

It is often stated that a brane is BPS in view of the vanishing of a fraction of

the supersymmetry variation of the associated gaugino �eld. However, since BPS

states (as classically and topologically stable states) and Bogomol'nyi bounds

have been studied in great detail in a host of other theories, and the approach in

these is practically standard, one would like to understand aspects of Born{Infeld

particles in a similar way, also because it is not absolutely clear that D{branes

are solitons of string theory in precisely the same way as more familiar topolog-

ical solitons in �eld theory. Therefore our �rst intention in the following is to

study Born{Infeld particles with standard methods of nonlinear dynamics in the

simplest case of a 
at spacetime. We begin with the free Born{Infeld particles,

i.e. BIon and catenoid [4]. Using a scale transformation argument [9] we show

that these static con�gurations { which di�er from ordinary solitons of nonlinear

theories in requiring a special consideration of source terms or boundary condi-

tions (cf. also [10],[11]) { require the number of space dimensions p to be larger

than 2. We assume spherical symmetry and study the local stability of these

con�gurations by considering the second variational derivatives of their respec-

tive actions. Our conditions for stability are a) that the eigenfunctions of the

corresponding operator be square integrable, and b) that the charge e be �xed,

with angular 
uctuations ignored. We then consider the case of the scalar �eld

corresponding to a single transverse coordinate coupled to the gauge �eld (here

only the electric component), i.e. the catenoid or brane with associated open

fundamental string. We distinguish between two types of arguments in deriving

the linearised 
uctuation equation, and infer the stability of this stringy D-brane.

In ref.[12] an explicit and detailed consideration of the Bogomol'nyi bound in a

special model of Born{Infeld theory has been given where the central charge of

the supersymmetry algebra plays the role of the topological or winding number

of ordinary solitons.

Our second intention in the following is the explicit study of the small 
uc-

tuation equation about the D3{brane in the high energy domain. This equation

with singular potential has the remarkable property of being convertible into a

modi�ed Mathieu equation which depends only on one coupling parameter which

is a product of energy and electric charge. The S{matrix for scattering of the


uctuation o� the brane can be obtained in explicit form. The D3{brane is

therefore one of the very rare examples allowing a detailed study of its properties

with explicit expressions for all relevant physical quantities in both low and high

energy domains. We therefore expect that also S{duality can be uncovered and

studied in this case (although we do not attempt this here). Various other Dp{

brane models have been discovered recently whose small 
uctuation equations

can be reduced to modi�ed Mathieu equations [13, 14, 15] which have then been

investigated mainly by computational methods. For the AdS/CFT correspon-

dence the logarithmic corrections to the low energy absorption probability are

of particular interest, since these permit a direct relation to the discontinuity of
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the cut in the correlation function of the dual two{dimensional quantum �eld

theory. The �rst such logarithmic correction to the absorption probability was

originally obtained in refs.[16, 17, 18] without resorting to the use of Mathieu

functions. Subsequently the authors of ref. [13] considered the modi�ed Mathieu

equation and used computational methods to generate explicit series expansions

up to several orders for the low energy absorption probability. In [19] a di�erent

choice of expansions was considered to obtain leading expressions more easily. It

is natural to supplement such investigations by exploring also the high energy

case, the �rst such consideration being that of ref.[15]. The analytical high en-

ergy results obtained in the following and the complementary low energy results

of ref. [19] (we also demonstrate how the S{matrices are related) are therefore

directly applicable to these. Singular potentials have been studied from time to

time, and have mostly been discarded as pathological. It seems, however, that

their real signi�cance lies in the context of curved spaces with black{hole type of

absorption [20].

Sections 2 and 3 deal with the BIon and the catenoid, sections 4 and 5 with

the Bogomol'nyi limit of the D3{brane and the derivation of the linearised 
uc-

tuation equation about it. In section 6 we consider this equation in detail in the

high energy domain and calculate the rate of absorption of partial waves of the


uctuation �eld by the brane. That this absorption occurs is attributed to the

singularity of the potential. The absorptivity part of the paper may be looked at

as the high energy complement to the low energy case of ref.[19] with the same

expression of the S{matrix. All these calculations require a matching of wave

functions. In the low energy S{wave case simple considerations of Bessel and

Hankel functions su�ce as was shown in refs. [21]. The low energy limit is, in

fact, independent of the choice of matching point, as was shown recently [22].

Our considerations here, however, are general.

2 The BIon

We consider �rst purely static cases and write the Lagrangian of the static BIon

in p+ 1 spacetime dimensions (cf.[4])

L =
Z
dpxL; L = 1�

q
1 � (@i�)2 � �pe��(r); �p =

p�
p

2

(p
2
)!

(1)

(i = 1; � � �; p) with the charge e held �xed by the constraint

e+
1

�p

Z
d�i

@i�q
1 � (@j�)2

= 0 (2)

Eq. (1) is the Lagrangian one obtains from the world brane action of the pure

Born{Infeld U(1) electromagnetic action reduced to the purely electric case with

�eld Ei = @0Ai � @iA0 and no transverse coordinate. The �eld A� is assumed to
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depend on the world brane coordinates x�; � = 0; � � �; p. The static BIon equation
of motion is

@i

0
@ @i�q

1� (@i�)2

1
A = ��pe�(r) (3)

In the special case p = 3 the classical SO(3) symmetric solution, called a BIon,

is given by

�c(r) =

Z 1

r

dxq
1 + x4

e2

= �c(0)�
Z

r

0

dxq
1 + x4

e2

r!0'
"
�c(0)� r +

r5

10e2

#
(4)

and �c(0) =
1
4
B(1

4
; 1
4
):e

1
2 = 1:854074677:e

1
2 , B being the Bernoulli function. It

is easily veri�ed that this solution satis�es the constraint (2) for any value of r.

De�ning E = �r�c (so that �c = A0 with @A0(xi; t)=@t = 0 in the static case),

and de�ning D = @L
@E

= Ep
1�E2

we have (with F0i = Ei)

T00 = F0i

@L
@F0i

�L = E �D� L =
1p

1 �E2
� 1 + 4�e��(r) (5)

The energy Hc of the BIon (obtained by integration over R3) is then found to be

�nite, i.e.

Hc =

Z
dxT00 = 4�(3:09112):e

3
2 (6)

and in p dimensions the total energy of the BIon scales correspondingly as e
p

p�1 .

The �niteness of the energy depends on the minus sign in (1) and so with (3) on

the relation q
1 � (�0

c
)
2
= �r

2

e
�0
c
=

r2

e
q
1 + r4

e2

(7)

for 0 � r �1. It may be noted that by de�ning D such that the left hand side

of eq.(3) is @iDi, the singularity of the right hand side is associated with D rather

than with E which is the decisive di�erence between Maxwell and Born{Infeld

electrodynamics. A similar observation applies to the catenoid equation below.

The energy of the BIon is seen to be independent of its position which hints at

the existence of some kind of collective coordinate. However, exploring this point

further is expected to be di�cult since a moving charge generates a magnetic

�eld, and hence the electric �eld alone would not su�ce.

We can use a scaling argument [9] to show that here �nite energy con�gu-

rations require p to be larger than or equal to 3. Under a scale transformation

x! x0 = �x; �(x)! ��(x) = �(�x); @i�(x)! [@i�(x)]� = �@i�(�x). The charge

e de�ned by the constraint (2) also changes under the scale transformation, i.e.

e! e� = � 1

�p�2�p

Z
d�i@i�q

1� �2(@j�)2
(8)

In particular for p = 3 and radial symmetry

e
(p=3)

�
=
r2

�

1q
1� �2 + r4

e2

(9)
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and for arbitrary values of � the r{dependence drops out only if the limit r !1
is taken in the evaluation of the integral. Then

e
(p=3)

�

e

r!1�! 1

�
(10)

But also e�=1 = e for any r. If �c is stable and 6= 0, the energy must be

stationary for � = 1, i.e. (@Hc=@�)�=1 = 0. From this one �nds that p � 3.

Also (@2Hc=@�
2)�=1 > 0 for p � 3. Eqs.(6) and (10) show that changing the

scale changes both the charge and the energy, i.e. if the charge were variable,

one could lower the energy and hence the con�guration could be unstable. But

�xing the charge (e.g. by a quantisation condition) no instability is implied by

the scaling condition.

We investigate the stability of the BIon further in the special and exemplary

case of p = 3 by considering the second functional variation of the static La-

grangian evaluated at �c(r). This can be written and simpli�ed in the following

form (ignoring total divergences on the way)

�2L =
1

2

Z
d3x��Â��; (11)

where

Â = �@i 1

[1� (@j�c)2]1=2
@i � @i

@i�c@j�c

[1� (@k�c)2]3=2
@j

= � 1

r2
d

dr

r2

(1� �0
c

2)3=2
d

dr
(12)

The operator Â can also be written

Â = � 1

(1� �0
c

2)3=2

(
1

r2
d

dr
r2
d

dr
� 6

r
�0
c

2 d

dr

)
(13)

The classical stability of �c is therefore decided by the spectrum f!ng of the small


uctuation equation

� 1

r2
d

dr

r2

(1� �0
c

2)3=2
d

dr
 n = !n n (14)

We explore �rst the existence of a zero mode  0, i.e. the case ! = 0. In this case

r2

(1� �0
c

2)3=2
d

dr
 0 = C (15)

and so with  0(1) = 0

 0 = �C
e3

Z 1

r

x4

(1 + x4

e2
)3=2

dx = �C @

@e

Z 1

r

dx

(1 + x4

e2
)1=2

= �C@�c
@e

(16)

5



The derivative of the classical con�guration �c with respect to the charge e indi-

cates that a perturbation along @�c=@e around �cleaves the static action invariant,

i.e. �c(e; r) and �c(e+ �e; r) have the same action since

@�c(e+ �e; r)

@(�e)

����
�e=0

=
@�c(e; r)

@e
:

We now show that the operator Â does not possess negative eigenvalues, and

that therefore the BIon is a classically stable con�guration. We let  n be an

eigenfunction of the operator Â. Then

Z
d3x nÂ n = �4�

Z 1

0
dr n

d

dr

r2

(1� �0
c

2)3=2
d n

dr

= �4�
Z 1

0
dr

8<
: d

dr
 n

r2

(1� �0
c

2)3=2
d n

dr
� r2

(1 � �0
c

2)3=2

 
d n

dr

!2
9=
;

= F + 4�

Z 1

0
dr

r2

(1 � �0
c

2)3=2

 
d n

dr

!2

(17)

where F := F (r)j10 and

F (r) = �4� n

r2

(1� �0
c

2)3=2
d n

dr
= �4�e3 n

r4

 
1 +

r4

e2

!3=2
d n

dr
: (18)

The second term on the right hand side of eq.(17) is strictly positive. Hence non-

positive eigenvalues imply a nonvanishing negative value of F . >From the condi-

tion
R1
0  2

n
r2dr <1, (i.e.  n

r!1' 1=(r1+�); � > 0) it follows that r2 nd n=dr !
0 with r !1, so that

F (r)
r!1' �4�r2 n

d n

dr
! 0

and F (1) = 0. Hence

F = �F (0) ' 4�e3
 n

r4
d n

dr

����
r!0

(19)

As r! 0 eq.(14) becomes

� 1

r2
d

dr

1

r4
d

dr
 n =

!n

e3
 n (20)

In the case of the zero mode

 0 ' C1 + C2r
5; r! 0 (21)

In this case F = 20�e3C1C2. For C1C2 < 0 this is in full compliance with (16)

and (4) from which we obtain

 0 ' �C
 
B(1

4
; 1
4
)

8e1=2
� r5

5e3

!
:

6



For !n 6= 0 the small{r behaviour of  n is

 n ' Cn

�
1� 1

24

!n

e3
r8 +O(r16)

�
(22)

so that

F = �4

3
�Cn

2 1

r4
r7
����
r=0

= 0

Thus the conclusion is that for all eigenfunctions  n

<  njÂj n > � 0 (23)

This inequality excludes the possibility of the existence of negative eigenvalues.

Hence the BIon is in this sense classically stable.

3 The catenoid

The Lagrangian of the static catenoid in p+ 1 spacetime dimensions and with a

source term is given by (cf.[4])

L =
Z
dpxL; L = 1 �

q
1 + (@iy)2 � �pr

p�1
0 y�(r) (24)

where the signs have been chosen such that the energy is positive. Here the scalar

�eld y(xi; t) originates from gauge �eld components Aa for a = p + 1; � � �; (d �
1); d =dimension, which represent transverse displacements of the brane; here we

consider the case of only one such transverse coordinate, i.e. y, all d � p � 1 of

which are essentially Kaluza{Klein remnants of the d = 10 dimensional N = 1

electrodynamics after dimensional reduction to p + 1 dimensions. The Euler{

Lagrange equation of the static catenoid yc (static meaning @y(xi; t)=@t = 0) is

given by

@i

0
@ @iycq

1 + (y0
c
)
2

1
A = �pr

p�1
0 �(r) (25)

so that after integration
rycq

1 + (y0
c
)
2
= r

p�1
0

r

rp
(26)

or for r � r0

y0
c
=

�
(+)

r0
p�1

p
r2p�2 � r02p�2

;
q
1 + y0

c

2 =
�
(+)

rp�1q
r2p�2 � r2p�20

(27)

In the case of the catenoid without source term the right hand side of eq.(26)

can be taken to originate from a boundary condition such as r �
�
r

rp

�
= 0. The

domain r � r0 is the nonsingular throat region (i.e. yc(r0)) is �nite). One may

observe that the singularity on the right hand side of eq.(25) is associated with

7



the entire expression on the left whereas, like @i�c in the BIon case, so now here

ryc is �nite, i.e. the p-brane or single throat solution is given by

yc(r) =
�
(+)

Z 1

r

dr
r
p�1
0q

r2p�2 � r
2p�2
0

(28)

Thus y is double valued. The two possible signs can be taken to de�ne a brane

and its antibrane. We show at the end of this section that the solution with

the minus sign is the minimum of the action and the solution with the plus

sign the maximum of the action. This function is �nite at r = r0 and can be

expressed in terms of elliptic integrals. For r0 = 1 it is even simpler and has

the value yc(1) =
�
(+) 1p

2
K( 1p

2
) where K is the complete elliptic integral of the

�rst kind. Plotted as a function of r, yc(r) is a monotonically decreasing function

starting from r0; pictured on a 2{dimensional space it looks like an inverted funnel

(i.e. the surface swept out by a catenary with boundaries at the openings), thus

suggesting the name catenoid. As pointed out in ref.[2], the two possible signs

of the square root allow a smooth joining of one such funnel{shaped branch to

an inverted one connected by a throat of �nite thickness, the resulting structure

then representing a brane{antibrane pair. This brane{antibrane pair is joined by

the throat of �nite thickness r0 and �nite length. In fact, we can rewrite eq.(28)

in terms of ~yc(x) = yc(r0x); x = r

r0
, and for the special case of p = 3 as

~yc(x) =
�
(+)

Z 1

x

dxp
x4 � 1

=
�
(+)

Z 1

1

dxp
x4 � 1

+

(�)
Z

x

1

dxp
x4 � 1

=
�
(+)

1p
2

"
K
 p

2

2

!
� cn�1

 
1

x
;

p
2

2

!#
(29)

where x > 1 and we used formulae of ref.[23]. Inverting this expression we obtain

the periodic function

x(y) =

"
cn

 
K
 p

2

2

!
+

(�)
p
2y;

p
2

2

!#�1
(30)

Plotting this expression with x as ordinate, one obtains the picture of a cross

section through a chain of periodically recurring funnel{shaped structures to the

one side of the throat, i.e. the series [ [ [ [ � � �� representing a series of brane{

antibrane pairs along the abscissa.

Proceeding as in the above case of the static BIon and calculating the second

variational derivative we obtain

�2L =
1

2

Z
dpx�yB̂�y (31)

where for r � r0

B̂ = @i
i

[1 + (@iyc)2]
1=2
@i � @i

@iyc@jyc

[1 + (@iyc)2]
3=2
@j

=
1

r2
d

dr

r2�
1 + y0

c

2
�3=2 ddr =

�
(+)

1

r2
d

dr

(r4 � r40)
3=2

r4
d

dr
(32)
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The operator B̂ can also be written

B̂ =
1

(1 + y0
c

2)3=2

(
1

r2
d

dr
r2
d

dr
+

6

r
y0
c

2 d

dr

)
(33)

Since the gauge �eld components Aa; a = p+1; � � �; d�1 (of which we retain only

one), are dynamical, the Lagrangian in the nonstatic case is

L = 1�
q
1� (@�y)(@�y)� �pr

p�1
0 �(r) (34)

and we can obtain the same condition of stability by considering the dynamical


uctuation �, i.e.

y(t;x) = yc(r) + �(t;x); � = �(r)ei
p
!t

and linearising the time{dependent Euler{Lagrange equation. The square in-

tegrable perturbations �(r) are the socalled \L2 deformations" of ref.[4]. The

classical stability of yc is therefore decided by the spectrum f!g of the small


uctuation equation

1

r2
d

dr

r2

(1 + y0
c

2)3=2
d

dr
 =

1

r2
d

dr

(
�
(+)

(r4 � r40)
3=2

r4

)
d

dr
 = ! (35)

We explore �rst the existence of a zero mode  0, i.e. the case ! = 0. In this case

r2

(1 + y0
c

2)3=2
d

dr
 0 = C (36)

and so in the case p = 3 and r � r0

 0 = C

Z 1

r

dx
x4

(x4 � r40)
3=2

=
C

2r0

@yc

@r0
(37)

so that

 0 = C
@yc

@r02

Here again the derivative of the classical con�guration yc with respect to the

parameter r0
2 is indicative of stationarity of the action in a shift of r20.

We now demonstrate that the operator B̂ with the minus sign has no negative

eigenvalues, and that therefore the free catenoid is a classically stable con�gura-

tion like the BIon for �xed throat radius r0. Then

Z
d3x B̂ = 4�

Z 1

r0

dr 
d

dr

r2

(1 + y0
c

2)3=2
d 

dr

= 4�
r2

(1 + y0
c

2)3=2
 
d 

dr

����
1

r0

� 4�
Z 1

r0

dr
r2

(1 + y0
c

2)3=2

 
d 

dr

!2

=
�
(+) 4�

(r4 � r40)3=2
r4

 
d 

dr

����1
r0

+

(�) 4�
Z 1

r0

dr
(r4 � r0

2)3=2

r4

 
d 

dr

!2

(38)
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where we used eq.(27). The second term is always positive if the upper sign is

chosen. The �rst term vanishes at in�nity with
R
drr2 2 <1, since

�4� (r
4 � r40)

3=2

r4
 
d 

dr

r!1' �4�r2 d 
dr
! 0:

On the other hand, in the case r ! r0, we have

�4� (r
4 � r40)

3=2

r4
 
d 

dr
' �32�pr0(r � r0)

3=2 
d 

dr

As r! r0 eq.(35) becomes

� 8

r
3=2
0

d

dr
(r � r0)

3=2d 

dr
= ! (39)

In the case of the zero mode  0 with ! = 0 the considerations are analogous to

those of the BIon case and the sum of the two terms in eq.(38) vanishes. In the

case of ! 6= 0 we therefore have

 ' C

�
1� !

4
r0

3=2
p
r � r0

�

and

lim
r!r0

(r � r0)
3=2 

d 

dr
= �!

8
C2: lim

r!r0

r0
3=2(r � r0) = 0

This proves that for all eigenfunctions  

<  jB̂j > � 0:

Thus B̂ has no negative eigenvalues, and the free throat is classically stable with

�xed r0 for the sign chosen as in eq.(38). Obviously the operator B̂ with the

plus sign has no positive eigenvalues, which means that we have the maximum

of the action. Of course, if we change r0 (and so consider a di�erent theory),

the expectation value of B̂ also changes. One should note that the free throat

we discuss here is that with vanishing gauge �eld. The double valuedness of the

solution of eq.(25) implies that if one solution is classically stable, the other one

is not. Thus a multi{throat solution constructed from these by matching both

solutions, if it exists, like the brane{antibrane solution of ref.[2], is expected to

be unstable in view of negative as well as positive eigenvalues, and is therefore

neither a maximum nor a minimum of the action. In fact, as argued in ref.[4]

(after eq.(132)) equilibrium between these should not be possible. The reason for

this is that a symmetrical con�guration, symmetrical about the plane x3 = 0 for

instance, implies @3y = 0 there. Evaluating the stress tensor element T33 (even

for vanishing gauge �eld), one obtains a negative quantity which is interpreted

as implying an attractive force between the brane and its antibrane in this sym-

metrically constructed con�guration. This is, in fact, the general instability of

this con�guration discussed in ref.[2].
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4 Coupled �elds: The D{brane in the Bogo-

mol'nyi limit

In the case of coupled �elds � and y (the former with source, the latter without),

the Lagrangian of the static case is (cf.[4])

L =

Z
dpxL; L = 1�Q��pe��(r);

Q =

�
1� (@i�)

2 + (@iy)
2 + (@i�:@iy)

2 � (@i�)
2(@jy)

2

� 1
2

(40)

>From the �rst variation of L we obtain the coupled equations of the �elds � and

y, i.e. from

�L = �
Z
��@i

1

Q
[@i�� (r� � ry)@iy + (ry)2@i�]dpx

+
Z
�y@i

1

Q
[@iy + (r� � ry)@i�� (r�)2@iy]dpx

� �pe

Z
���(r)dpx (41)

(ignoring total divergences).

The source term of the electric �eld again suggests spherical symmetry. In

deriving the two coupled Euler{Lagrange equations one new constant c (apart

from e) arises in the integration of the catenoid equation, i.e.

@r

 
rp�1

@L
@(@ry)

!
= 0; rp�1

@L
@(@ry)

= c

We have no source term of the y �eld because, as before, the appropriate e�ect

is provided by the boundary condition de�ning the width of the throat. The two

equations with spherical symmetry are found to be

�0

[1� (�0)2 + (y0)2]
1
2

= � e

rp�1
;

�y0
[1� (�0)2 + (y0)2]

1
2

=
c

rp�1
(42)

so that
�0

y0
=
e

c
� 1

a
(43)

Then

(�0)2 =
1

r2(p�1)

e2
+ 1 � a2

; (y0)2 =
a2

r2(p�1)

e2
+ 1 � a2 (44)

Thus the family of solutions can be parametrised in terms of the single parameter

a as already pointed out in ref. [5]. This parameter is seen to interpolate between

the two types of static solutions. The solution y of (35) for various values of a2

is now the p-brane, i.e.

y(r) =
+

(�) ae
Z 1

r

dr
1q

r2(p�1) � r
2(p�1)
0

(45)
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where r
2(p�1)
0 = e2(a2�1) and for the solution to make sense we must have a2 � 1.

If ae in eq.(36) is replaced by �ae, the expression represents the corresponding

antibrane. Taking e2 ! 0; a2e2 ! const. the electric �eld is eliminated and we

regain the free catenoid solution. In approaching the limit a2 ! 1 the width of the

throat becomes in�nitesimal with nonvanishing electric �eld and the con�guration

can then be considered to be a fundamental string, as argued in ref.[2]. We

distinguish between three cases:

jaj < 1 :

� =
Z 1

r

dxq
1� a2 + x4=e2

; y = a

Z 1

r

dxq
1� a2 + x4=e2

;

jaj > 1 :

� = e

Z 1

r

dxp
x4 � r04

; y = ae

Z 1

r

dxp
x4 � r04

a = �1 : � =
e

r
; y = �e

r
(46)

We see that for a2 = 1 eq. (34) becomes the �rst order Bogomol'nyi equation or

linearised �eld equation for y (as in ref.[2])

F0r � @y

@r
= 0 (47)

where F0r = Ec is the static electric �eld. This is the same equation as that

obtained from the vanishing of the supersymmetry variation of the gaugino �eld

� for half the number of 16 supersymmetries (for d = 10 and p = 3) �+; �� of �

for which �� = 0, i.e.

�+� = 0; ��� 6= 0

where { as discussed in the literature [24] { � is the constant spinor of the su-

persymmetry variation and �� are its chiral components. Thus a2 = 1 implies

BPS con�gurations, wheras those with a2 6= 1 are non{BPS. Taking a2 = 0

in eq.(36) we regain the BIon con�guration as a local minimum of the energy

whereas for vanishing electric �eld one expects a local maximum, i.e. a sphaleron

con�guration (as pointed out in [2]).

Next we investigate the second variation of the static L with spherical sym-

metry. We set

�2L =
1

2

Z �
��M̂��+ �yN̂�y + ��L̂�y + �yL̂y��

�
dpx (48)

Again ignoring total divergences one �nds

M̂ = � 1

r2
d

dr
r2
1 + y02

Q3

d

dr
;

N̂ =
1

r2
d

dr
r2
1� �02

Q3

d

dr
;

L̂ =
1

r2
d

dr
r2
�0y0

Q3

d

dr

(49)
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with L̂ = L̂y. We can now rewrite �2L as

�2L =
1

2

Z
d3x(��; �y)Ĥ

 
��

�y

!
(50)

where

Ĥ =

 
M L

Ly N

!
=

1

r2
d

dr
r2h

d

dr
(51)

and

h =
1

Q3

 
�1 � y02 y0�0

y0�0 1� �02

!
; Ĥy = Ĥ; (52)

with

h�1 = Q

 
�1 + �02 y0�0

y0�0 1 + y02

!
; det h =

1

Q4
; (53)

The small 
uctuation equation therefore becomes

Ĥ =
1

r2
d

dr
r2h

d

dr
 = ! (54)

Again we �rst explore the existence of a zero mode  0 with

r2h
d

dr
 0 =

 
�

�

!
(55)

where � and � are constants. Setting

 0 =

 
�0
y0

!

and evaluating  0 for the solutions of eq.(46) we obtain with

' = �
Z 1

r

�0
3
(x)dx

the relation

 0 =
�

e

( 
�

��
!
� '

e
(� + a�)

 
1

a

!)
(56)

In the BPS limit with y0 = �0 = Ec; Q = 1, the operator Ĥ of eq.(42) becomes

Ĥ =
1

r2
d

dr
r2
 

�1� E2
c

E2
c

E2
c

1 �E2
c

!
d

dr
(57)

Setting

 s =

 
��

�y

!
= �(x)

 
1

1

!

for an arbitrary function �(x) we have

Ĥ s =
1

r2
d

dr
r2�0

 
�1 �E2

c
E2

c

E2
c

1� E2
c

! 
1

1

!
=

1

r2
d

dr
r2�0

 
�1
1

!
(58)
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Thus for arbitrary �(x), we have  sĤ s = 0 implying �2L = 0 or L constant in

a speci�c direction about the BPS con�guration. This behaviour may be inter-

preted as indicative of a local symmetry, in this case of supersymmetry, and so of

the cancellation of fermionic and bosonic contributions in the one loop approx-

imation. Here, of course, we have no fermionic contributions and consequently

those of the two bosonic �elds have opposite signs.

5 Fluctuations about the D{brane

In the following we distinguish clearly between two di�erent types of 
uctuations.

We consider the above BPS solution for the string attached to the 3{brane as

background and consider �rst a scalar �eld propagating in a direction along the

string and perpendicular to the brane and its anti{brane. The linearised equation

of small 
uctuations about this background is obtained from the second varia-

tional derivative of the action which is the standard procedure and we therefore

consider this �rst (cf. also [25]). Our treatment here is somewhat di�erent (see

below) from that in refs.[25]. The resulting 
uctuation equation has also been

given in ref.[2]. It is necessary to return to the fully time-dependent version, i.e.

S =
1

(2�)pgs

Z
dp+1x

�
1�

q
�det(��� + F��)��pe��(r)

�
(59)

where in 3+1 dimensions F�� = F��(x0; x1; x2; x3). In the electrostatic case with

only one scalar �eld y we have A� = (A0; A1; A2; A3; y; 0; 0; 0; 0; 0); F0i = Ei and

F�4 = @�y for i = 1; 2; 3 and � = 0; 1; 2; 3. Then

det(��� + F��) =

������������

�1 E1 E2 E3 @0y

�E1 1 0 0 @1y

�E2 0 1 0 @2y

�E3 0 0 1 @3y

�@0y �@1y �@2y �@3y 1

������������
(60)

and so

det(��� + F��) = �(1�E2)(1 +ry2)� (E � ry)2 + (@0y)
2 (61)

We consider �rst the Lagrangian density (remembering that the relevant �elds

are A0; Ai and y)

L = 1�Q; Q =
h
(1 �E2)(1 +ry2) + (E � ry)2 � _y2

i1
2 (62)

The equations of the static BIon and the static catenoid discussed above follow

again from the �rst variations

@L
@Ei

=
1

Q

h
Ei(1 +ry2)� @iy(E � ry)

i
;

@L
@@iy

= � 1

Q

h
@iy(1�E2) + Ei(E � ry)

i
;

@L
@@0y

= � 1

Q
(63)
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In the BPS background given by

@iy = Ei; E2 = (ry)2 = E � ry = e2

r4
� E2

c
� y2

c
; Q = 1 (64)

one �nds

@2L
@Ei@Ej

= (1 + E2
c
)�ij;

@2L
@@iy@@jy

= �(1�E2
c
)�ij;

@2L
@Ei@@jy

= �E2
c
�ij;

@2L
@ _y2

= 1

(65)

This enables us to write (ignoring again total divergences in shifting derivatives)

�2L = (�A0; �Ai; �y) �

�
0
B@

�@i(1 + E2
c
)@i @i(1 + E2

c
)@0 �@iE2

c
@i

@0(1 + E2
c
)@i �@0(1 + E2

c
)@0 @0E

2
c
@i

�@iE2
c
@i +@iE

2
c
@0 @i(1 �E2

c
)@i � @0@0

1
CA
0
B@
�A0

�Ai

�y

1
CA (66)

In the linear approximation the Euler{Lagrange equations of the 
uctuations

�y � �; �Ei = @0�Ai � @i�A0 are therefore given by the following set of three

equations

� d2

dt2
� + @i(1� E2

c
)@i� + @iE

2
c
(@0�Ai � @i�A0) = 0; (67)

d

dt
(1 + E2

c
)(@0�Ai � @i�A0)� d

dt
E2

c
@i� = 0; (68)

@i(1 + E2
c
)(@0�Ai � @i�A0)� @iE

2
c
@i� = 0 (69)

The last of these three equations can be seen to be a constraint by appying @=@t

and using the second equation. Substituting from the last

@iE
2
c
(@0�Ai � @i�A0) = @iE

2
c
@i� � @i(@0�Ai � @i�A0)

into the �rst equation we obtain

� d2

dt2
� +4� � @i(@0�Ai � @i�A0) = 0 (70)

The second of the three equations can be written in the form

(1 + E2
c
)(@0�Ai � @i�A0)� E2

c
@i� = (1 + E2

c
)Ci(r) (71)

where C(r) is an arbitrary function. Dividing eq.(60) by (1+E2
c
) and taking the

derivative @i, we obtain

@i(@0�Ai � @i�A0) = @i
E2

c

1 + E2
c

@i� + @iCi

=
E2

1 + E2
c

4� + 2EcE
0
c

(1 + E2
c
)2
xi

r
@i� + @iCi (72)

Replacing on the right hand side E2
c
@i� by the expression in eq.(60)this becomes

@i(@0�Ai � @i�A0) =
E2

c

1 + E2
c

4� + 2E0
c

Ec(1 + E2
c
)

xi

r
[(@0�Ai � @i�A0)� Ci] + @iCi

(73)
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Choosing as gauge �xing condition the relation

2E0
c

Ec(1 + E2
c
)

xi

r
[(@0�Ai � @i�A0)� Ci] + @iCi = 0

one obtains the following 
uctuation equation for �

� (1 + E2
c
)
d2�

dt2
+4� = 0 (74)

All the relations from (60) to (74) describe perturbations along the string and

perpendicular to the brane. Eq. (74) cannot be considered independently of the

others as is apparent from the linkage of the �elds in the above equations. Thus

if one wants to determine the radiation of the string between the brane and the

antibrane, one must connect the asymptotic behaviour of the �eld � with that of

the vector �eld �A�.

However, an equation like (74)is also obtained if one evaluates the determinant

in the Born{Infeld Lagrangian at the BPS background and with an additional

time{dependent scalar �, representing the 
uctuation �eld along a new spatial

direction (cf. also ref.[2]). In this case this new scalar �eld in the D{brane

background has no relevance to the string radiation, and we have

det(��� + F��)jBPS;�
=

��������������

�1 E1 E2 E3 0 @0�

�E1 1 0 0 E1 @1�

�E2 0 1 0 E2 @2�

�E3 0 0 1 E3 @3y

0 �E1 �E2 �E3 1 0

�@0� �@1� �@2� �@3� 0 1

��������������
(75)

and so

det(��� + F��)jBPS;�
= �(1 + Ec

2)(@0�)
2 � (@i�)

2 � 1 (76)

Thus the Lagrangian density becomes

L = 1�
q
1 + (r�)2 � (1 +Ec

2)(@0�)2 (77)

By expanding the square root and retaining only the lowest order terms, we again

obtain a 
uctuation equation like (65), but this time for � with no relevance to

radiation of the string. This is equivalent to studying the scattering of the scalar

� o� a corresponding supergravity background.

6 Absorption of scalar in background of D3 brane

We now consider the equation of small 
uctuations, i.e. eq.(74), in more detail.

The 
uctuation �(t;x) represents a scalar �eld that impinges on the brane which

re
ects part of it and absorbs part of it depending on the energy ! of the �eld. The

absorption results from and takes place into the singularity of the real potential

which corresponds to the black hole with zero event horizon in the analogous
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case of the dilaton{axion system of e.g. ref.[19]. This absorption is a classical

phenomenon. We therefore consider the equation

4r� + !2

"
1 +

e2

r4

#
� = 0 (78)

One can argue that the absorption is a consequence of the nonhermiticity of the

potential.

The radial part of this equation is with � = r�1	Ylm and angular momentum

l
d2	

dr2
+

"
� l(l + 1)

r2
+ !2

 
1 +

e2

r4

!#
	 = 0 (79)

This equation is a radial Schr�odinger equation for an attractive singular potential

/ r�4 but depends only on the single coupling parameter � = e!2 for constant

positive Schr�odinger energy, i.e. for S-waves the equation is with x = !r simply

 
d2

dx2
+ 1 +

�2

x4

!
	 = 0 (80)

In the following we consider the general case, i.e. l 6= 0. The simpli�ed case of

the singular potential replaced by an e�ective delta{function potential has been

considered in refs.[2] and [25]. The solutions and properties of such equations have

been studied in detail in the literature, in both the small{ and large{� domains

and with inclusion of the centrifugal term�l(l+1)=r2 in eq.(79) for the calculation
of Regge trajectories l ! �n(!

2) [26], [27],[28],[29]. A recent investigation which

attempts to treat arbitrary power singular potentials is ref.[30]. Eq.(79) describes

waves above the singular potential well. With the substitutions

	(r) = r
1
2 (r); r =

p
eez; h2 = e!2; a = l+

1

2
; (81)

the equation becomes the modi�ed Mathieu equation

d2 

dz2
+
h
2h2 cosh 2z � a2

i
 = 0 (82)

which has been studied in detail in the literature [31] (though some properties,

such as large{h asymptotic expansions of Fourier coe�cients, have even now not

yet been published). Here we study the S{matrix in the domain of �nite values

of angular momentum l and h2 6= 0, i.e. in the domain of h2 large. Relevant

solutions and matching conditions for this case have been developed in [32]and

[33]. We follow the latter of these references here since this makes full use of

the symmetries of the solutions. Moreover we can determine also the Floquet

exponent � which ref.[32] leaves undetermined and only remarks that the notion

that this is a known function of (our) a2 and h2 is \partly a convenient �ction".

For convenience we set in eq. (82) as in ref.[33, 34]

a2 = �2h2 + 2hq +
4(q; h)

8
(83)
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where q is a parameter to be determined as the solution of this equation and 4=8
is the remainder of the large{h asymptotic expansion (83), the various terms of

which are determined concurrently with corresponding iteration contributions of

the solutions  of the equation and are known explicitly to many orders [34].

Then setting in eq. (82)

 (q; h; z) = A(q; h; z)exp[�2hi sinh z] (84)

we obtain an equation for A which can be written

cosh z
dA

dz
+

1

2
(sinh z � iq)A = � 1

4hi

"4
8
A� d2A

dz2

#
(85)

We let Aq(z) be the solution of this equation when the right hand side is replaced

by zero (i.e. in the limit h!1). Then one �nds easily

Aq(z) =
1p

cosh z

 
1 + i sinh z

1 � i sinh z

!�q=4
z!1�

p
2e�z=2e�i�q=4 (86)

Correspondingly the various solutions  are

 (q; h; z) = Aq(z)exp[�2hi sinh z] z!1' exp(�ihez)p
cosh z

e�i�q=4;

 (q; h; z) = Aq(z)exp[�2hi sinh z] z!�1' exp(�ihejzj)p
cosh z

e�i�q=4 (87)

We make the important observation that given one solution  (q; h; z) we can

obtain the linearly independent one either as  (�q;�h; z) or as  (q; h;�z), the
expression (83) remaining unchanged. With the solutions as they stand, of course

 (q; h; z) =  (�q;�h;�z). Below we require solutions He(i)(z); i = 1; 2; 3; 4,

with some speci�c asymptotic behaviour. We de�ne these in terms of the function

Ke(q; h; z) :=
exp[i�q=4]p�2ih Aq(z)exp[2hi sinh z] � k(q; h) (q; h; z) (88)

Since this function di�ers from a solution  by a factor k(q; h), it is still a solution

but not with the symmetry property  (q; h; z) =  (�q;�h;�z). Instead, after
performing this cycle of replacements the function picks up a factor, i.e.

Ke(q; h; z) =
k(q; h)

k(�q;�h)Ke(�q;�h;�z);
k(q; h)

k(�q;�h) = ei
�

2
(q+1) (89)

in leading order. One can easily show that the quantity �0 of ref. [32] is related

to q by �0 = iq�=2+O(1=h). In Fig. 1 we show the behaviour of q as a function

of h. In order to be able to obtain the S{matrix, we have to match a solution

valid at z = �1 to a combination of solutions valid at z =1. This is achieved

with the help of Floquet solutions Me��(z; h
2). As such, these satisfy the same

circuit relation as a solution M
(1)
�� (z; h

2) of eq.(82) expanded in a series of Bessel

functions, i.e. we have the proportionality

Me�(z; h
2) = ��M

(1)
�
(z; h2); ��(h

2) =Me�(0; h
2)=M (1)

�
(0; h2) (90)
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The functions Me��(z; h
2) are expansions of the modi�ed (hence `M' instead

of `m') Mathieu equation in terms of exponentials (hence `e') which are uni-

formly convergent in any �nite domain of z. For large values of the argument

2h cosh z of the Bessel functions of the modi�ed Mathieu functionM (1)
�
(z; h2) can

be reexpressed in terms of Hankel functions. With the dominant terms of these

we can obtain the large 2h cosh z asymptotic behaviour of the Floquet function

Me��(z; h
2), i.e. for jzj ! 1

Me��(z; h
2) ' exp[�i�
=2]cos(2h cosh z � ��=2 � �=4)p

2h cosh z
(91)

where (with Me�(�z; h2) =Me��(z; h
2))

exp[i�
] =
��(h

2)

���(h2)
=M

(1)
�� (0; h

2)=M (1)
�
(0; h2) (92)

We now de�ne the following set of solutions of eq.(82) by setting

He(2)(z; q; h) = Ke(q; h; z);He(1)(z; q; h) = He(2)(z;�q;�h);
He(3)(z; q; h) = He(1)(�z; q; h);He(4)(z; q; h) = He(2)(�z; q; h) (93)

The solutions so de�ned have the following asymptotic behaviour (where �(z) =

(2h cosh z)�1=2):

He(1)(z; q; h) = �(z) � exp[�ihez � i
�

4
]; <z >> 0;

r!1� exp[�i!r � i�=4]p
!r

;

He(2)(z; q; h) = �(z) � exp[ihez + i
�

4
]; <z >> 0;

r!1� exp[i!r + i�=4]p
!r

;

He(3)(z; q; h) = �(z) � exp[�ihejzj � i
�

4
]; <z << 0;

He(4)(z; q; h) = �(z) � exp[ihejzj+ i
�

4
]; <z << 0;

r!0� r1=2exp[ie!=r+ i�
4
]

(e!)1=2
; (94)

For the following reasons we choose the latter, i.e. the solution He(4)(z; q; h), as

our solution at r = 0. The time{dependent wave function with this asymptotic

behaviour is proportional to

e�i!t+ie!=r+i�=4

Fixing the wave front by setting ' = �!t+ e!=r+�=4 = const: and considering

the propagation of this wave front, we have

r =
e!

'+ !t� �=4
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so that when t!1 : r ! 0. This means that the origin of coordinates acts as

a sink.

With eq. (91) we therefore equate in the domain <z >> 0:

Me�(z; h
2) =

i

2
exp[i�
=2]

�
exp[i�

�

2
]He(1)(z; q; h)� exp[�i� �

2
]He(2)(z; q; h)

�
;

Me��(z; h
2) =

i

2
exp[�i�
=2]

�
exp[�i� �

2
]He(1)(z; q; h)

� exp[i�
�

2
]He(2)(z; q; h)

�
; (95)

where the second relation was obtained by changing the sign on � in the �rst.

Changing the sign of z we obtain in the domain <z << 0:

Me�(�z; h2) = Me��(z; h
2)

=
i

2
exp[i�
=2]

�
exp[i�

�

2
]He(3)(z; q; h)� exp[�i� �

2
]He(4)(z; q; h)

�
;

Me�(z; h
2) =

i

2
exp[�i�
=2]

�
exp[�i� �

2
]He(3)(z; q; h)

� exp[i�
�

2
]He(4)(z; q; h)

�
; (96)

These relations are now valid over the entire range of z. Substituting eqs.(96)into

eqs.(95) and eliminating He(3) we obtain

� sin��:He(4)(z; q; h) = sin �(
 + �):He(1)(z; q; h)� sin�
:He(2)(z; q; h) (97)

In a similar way one obtains the relations

� sin��:He(2)(z; q; h) = sin�(
 + �):He(3)(z; q; h)� sin �
:He(4)(z; q; h)

sin��:He(1)(z; q; h) = � sin�
:He(3)(z; q; h) + sin �(
 � �):He(4)(z; q; h)

(98)

>From eqs.(89) and (93) we see that He(2)(z; q; h) is proportional toHe(3)(z; q; h).

>From (89) and (98) we see that the proportionality factor is given by

exp[i
�

2
(q + 1)] = �sin�(
 + �)

sin��
(99)

>From eq.(97) we can now deduce the S{matrix Sl � e2i�l, where �l is the phase

shift. The latter is de�ned by the following large r behaviour of the solution

chosen at r = 0, which in our case is the solution He(4). Thus here the S{matrix

is de�ned by (using (97))

� sin��
r1=2eie!=r+i�=4

(e!)1=2

r!1
= �(�1)l sin�(
 + �)e�i�=4p

!r

�
sin�
(�1)l
sin �(
 + �)

ei�=2ei!r � (�1)le�i!r
�

� e�i�e�il�=2

2i
p
r

�
Sle

i!r � (�1)le�i!r
�

(100)
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>From this we deduce that

Sl =
sin�


sin �(
 + �)
ei�(l+1=2) = �sin�


sin��
ei�(l�

1
2
q) (101)

We can see the relation of this high{energy (i.e. large jhj) expression of the S{

matrix to the low{energy expression of ref.[31] by recalling that R of the latter

is here exp(i�
). With this identi�cation we can write Sl

Sl =
R� 1

R

(Rei�� � e�i��

R
)
ei�(l+1=2); R � ei�
 ;

which agrees with the S{matrix of ref.[19], i.e. we thus obtained the same exact

expression of the S{matrix here with our large{h considerations. In fact, compar-

ison with the considerations given there allows one to write down the re
ection

and transmission amplitudes Ar and At as Ar = 2i sin�
 and At = sin�� re-

spectively. We thus have one and the same expression for the S{matrix for the

two asymptotic regions, i.e. in the low energy and high energy domains. One

should therefore be able to proceed directly to the large{h case from the exact

S{matrix derived in the small{h domain. This is an interesting calculation which

we do not attempt to go into here. We only indicate in Appendix A the �rst

necessary step in that direction, i.e. the derivation of large{h asymptotic ex-

pansions for the Fourier coe�cients of Mathieu functions. In this connection we

make the following two observations. 1) Eq.(80) is invariant under interchanges

x $ �=x;	 $ 	x which means that the inner or string region is equivalent

or dual to the outer or brane region. 2) Due to the SL(2; R) invariance of the

D3{brane its action is mapped into that of an equivalent D3{brane by S{duality

transformations[35] or, in other words, weak{strong duality takes the D3{brane

into itself[3]. It would be interesting to �nd some connection between these

properties, or equivalently the symmetry which the SL(2; R) invariance of the

D3{brane action imposes on the S{matrix.

The quantity 
 is now to be determined from eq. (99). One �nds

sin�
 = sin ��

�
� iei�2 q cos�� �

q
1 + ei�q sin2 ��

�
(102)

It remains to determine the Floquet exponent � in terms of q and h. In Appendix

B we derive the appropriate large{h behaviour of � for the case of the periodic

Mathieu equation. Replacing there the eigenvalue � by a = (l+ 1
2
)2 and observing

that h2 remains h2, the appropriate relation for our considerations is

cos �� + 1 =
�e4h

(8h)q=2

�
1 + 3(q2+1)

64h

�[3
4
� q

4
]�[1

4
� q

4
]
+O(

1

h2
)

�

=
e4h

(8h)q=2

��1 + 3(q2+1)

64h

�
�( q+1

2
) cos( q�

2
)p

2�2q=2
+O(

1

h
)

�
(103)

Since the right hand side grows exponentially with increasing h the Floquet ex-

ponent � must have a large imaginary part. Since the right hand side is real, the
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real part of � must be an integer. Using Stirling's formula we can approximate

the equation for q ' h (i.e. irrespective of what the value of l is) as

cos�� + 1 =

s
h

2
cos(

h�

2
)(e7=32)h=2 '

s
h

2
e1:8h cos(

h�

2
) (104)

>From eq.(101) and eq.(102) we obtain

Sl = ieil�
�
cos �� �

p
cos2 �� � 1� eiq�

�
(105)

>From this we obtain the absorptivity A(l; h) of the l{th partial wave, i.e.

A(l; h) := 1� jSlj2 (106)

with near asymptotic behaviour

A(l; h) ' 1 � 2�(16h)q

e8h
n
�( q+1

2
)
o2 (107)

In Figs. 2, 3 and 4 we plot A(l; h) as a function of h. One can clearly see the

expected asymptotic approach to unity and in Fig. 2 some sign of rapidly damped

oscillations. This behaviour agrees with that obtained on general grounds in

ref.[15]. We also observe that in the high energy limit logarithmic contributions

as in the low energy expansions, discovered originally in [16, 17, 18], and typical

of the low energy expansions of [13] and [19], do not arise. Of course, these plots

do not extend down to h = 0, since our asymptotic solutions become meaningless

in that domain. The continuation to h = 0 can be obtained, however, from small{

h expansions such as those derived in refs.[13] and [19]. Thus the absorptivity

A(l; h) is known over the entire range of h. We observe that Sl = 0 for q =

1; 3; 5; � � �, with [(l+ 1=2)2 + 2h2]=2h ' 1; 3; 5; � � �. Only in the plot for l = 2 is h

su�ciently large to hint at these zeros.

7 Concluding remarks

Branes, whether fundamental or solitonic, play an important role in all aspects

of string theory. In particular D{branes have been looked at as string{theory

analogues of solitons of simple �eld theories, and some of their important proper-

ties such as charges are well understood. Our �rst objective in the above was to

investigate properties of solitonic objects of Born{Infeld theory in ways familiar

from �eld theory, in particular their classical stability. It was shown that the BIon

and the catenoid as distinct, i.e. free objects, are stable con�gurations whereas

the brane{antibrane system is unstable; we also recognised the zero modes as-

sociated with these and their signi�cance. We then considered the D3{brane of

Born{Infeld theory and recognised this as a BPS state that preserves half of the

number of supersymmetries as discussed in detail already in [2]. The equation of
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small 
uctuations about this D3{brane was derived and shown to be convertible

into a modi�ed Mathieu equation. The low energy solutions of this equation, the

S{matrix for scattering of a massless scalar o� the brane and the corresponding

absorption and re
ection amplitudes are similar to those for the dilaton{axion

system investigated �rst in refs.[16, 17, 18], where the important logarithmic con-

tributions were discovered, and then investigated in extensive detail in [13] and

[19]. Here we performed the high energy calculations which complement in par-

ticular those of [19], thus completing the investigation of the modi�ed Mathieu

equation for the purpose of obtaining absorption cross sections for all such cases.

In particular the behaviour of the important Floquet exponent involved in these

calculations (in general a complex quantity) is now fully understood, the Floquet

exponent being vital in the evaluation of the S{matrix which we derive and the

calculation of the corresponding absorption amplitudes and cross sections. Ac-

cording to our �ndings the high energy limit of the absorption cross section does

not involve logarithmic contributions, quite contrary to the low energy limit.

The high energy case considered here is not only of interest in the immediate

context of the Born{Infeld model considered here, but together with the low{

energy case also of considerable interest in connection with the concept of duality

which links weak coupling with strong coupling. The D3{brane with Schr�odinger

potential coupling e!2, which links the gauge �eld charge e with energy! of the

incoming scalar �eld is presumably the ideal example for the investigation of

this property. Investigations elucidating this aspect are of considerable inter-

est. We also envisage interest in the study of non{BPS con�gurations, including

sphalerons and bounces, as a matter of principle, i.e. even if the e�ect of these

is not of dominant importance. Finally we remark that it should be possible to

proceed directly from the S{matrix derived in ref.[19] to the high{energy case

here by using appropriate asymptotic expansions for the cylindrical functions

and expansion coe�cients involved (for the latter such expansions do not seem

to have been given in the published literature so far, but we comment on these

in Appendix A).
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Appendix A

In ref. [19] on the absorptivity of the D3{brane of the dilaton{axion system

it was shown that the S{matrix for scattering of a massless scalar �eld o� the

brane is given by

S =
(R � 1

R
)e�i�l

Rei�� � e�i��

R

(A.1)

where

R =
M

(1)
�� (0; h)

M
(1)
� (0; h)

;

M (1)
�
(z; h) being the modi�ed Mathieu function expanded in terms of Bessel func-

tions, i.e.

Me�(0; h)M
(1)
�
(z; h) =

1X
r=�1

c�2r(h
2)J�+2r(2h cosh z)

(an expansion with better convergence to use in practice is one in terms of prod-

ucts of Bessel functions as shown in ref.[19]) where Me�(z; h) is the Fourier or

Floquet solution of the Mathieu equation. In the published literature the co-

e�cients c�2r(h
2) have only been considered as power series in rising powers of

h2, and consequently were used in ref. [19] in the small h2 or low energy do-

main. It would be very interesting to make the transition to the large{h2 or

high energy case directly from this expression by developing large{h2 asymptotic

expansions of the Mathieu function Fourier coe�cients c�2r(h
2) (for the Bessel

functions the corresponding expansions are known). We know of no publication

where such expansions have been given, but one of us (M.{K.) remembers from

private communication with the author of ref.[37] that these Stokes{type asymp-

totic expansions can indeed be obtained. One writes the recurrence relation of

the coe�cients (cf. [31], p.106)

c2�+2 + c2��2 =
[�� (� + 2�)2]

h2
c2� (A.2)

(the Mathieu equation being y00 + (� � 2h2 cos 2x)y = 0). For jh2j ! 1 this

implies

c2�+2 / i(2�+2)=2

Setting

c2�+2 � b�+1; b� = i���

we have

b�+1 + b��1 =
[� � (� + �)2]

h2
b�;

��+1 + ���1 =
�i[�� (� + �)2]

h2
�� (A.3)

>From this we deduce that the next approximation to c2�+2 is obtained from

�r = 1 +
i

h2

rX
�=0

�
(� + �)2 � �

�
(A.4)
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The sums on the right hand side can be evaluated. E.g.

rX
�=0

�2 = 12 + 22 + 32 + � � �+ r2 =
1

6
r(r + 1)(2r + 1)

so that one obtains

�r = 1 +
i

h2

�
r(r + 1)(2r + 1)

6
+ 2�

r(r � 1)

2
+ �2 � �

�
(A.5)

Proceeding in this way one can indeed obtain the desired asymptotic expansion

of the coe�cients c2�. (In fact the asymptotic expansion of the Bessel function

{ similar to that of a linear combination of Hankel functions { can be obtained

from its recurrence relation in a very similar way).

Appendix B

For the determination of the large{h behaviour of the Floquet exponent � we

make use of results of ref.[34]. A fundamental pair yI; yII of respectively even and

odd solutions of the original periodic Mathieu equation with eigenvalue � de�ned

by

yI(�z) = yI(z); yII(z) = �yII(�z)
can be chosen to satisfy the following boundary conditions (cf. e.g. [31], pp.99,100)

yI(0) = 1; yII(0) = 0; yI
0(0) = 0; yII

0(0) = 1

>From its original de�ning property the Floquet exponent � can then be shown

to be given by (cf. [31], p.101)

cos�� = yI(�;�; h
2) (B.1)

so that (cf.[31], p. 100)

cos �� + 1 = 2yI(�=2;�; h
2)yII

0(�=2;�; h2) (B.2)

The solutions yI(z); yII(z) can be identi�ed with the large{h solutions ce; se of

ref.[34](there eqs.(64))in terms of functions A(z); �A(z) as in eq.(84) above with

normalization constants N0; N
0
0, i.e. in leading order

ce(o) = 2N0A(0); se0(0) = 4hN0
0A(0)

from which we deduce in leading order for large jhj that
N0 = 2�3=2; N0

0 = 2�5=2=h

Eqs.(65) of ref.[34] give the large{h expansions of yI(�=2;�; h
2) and yII

0(�=2;�; h2).

Inserting these multiplied by the appropriate normalization constants into eq.(B.2)

and retaining the dominant terms for large jhj we obtain

cos�� + 1 =
�e4h

(8h)q=2

�
1 + 3(q2+1)

64h

�[3
4
� q

4
]�[1

4
� q

4
]
+O(

1

h2
)

�
(B.3)
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in agreement with a result cited in ref.[31](p.210) from [36] with logarithmic cor-

rections. We, however, see no such logarithmic terms in the simpler formulation

of ref.[34]. The relation (B.3) we rediscovered here has practically been unknown,

largely in view of the di�culty to extract it from the complicated considerations

of ref.[36]. Our derivation above is simple and closes a di�cult gap which the

author of ref.[32] commented upon with the words: \It is not likely at this stage

that an analytic relation will ever be found connecting (our) � and 
 to (our) a2

and h2". Our search of later literature did not uncover other derivations. The

main source summarizing more recent developments in the �eld of the Mathieu

equation is ref.[38].
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Figure Captions

Figure 1

The function q(h) plotted versus h, which, of course, is valid only away from

h = 0. The plot should be compared with graphs in ref.[32] where a similar but

less convenient quantity is used.

Figure 2

The absorptivity A(l; h) for l = 0.

Figure 3

The absorptivity A(l; h) for l = 1.

Figure 4

The absorptivity A(l; h) for l = 2.
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