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Abstract

The tunnel splitting in biaxial antiferromagnetic particles is stud-

ied with a magnetic �eld applied along the hard anisotropy axis. We

observe the oscillation of tunnel splitting as a function of the mag-

netic �eld due to the quantum phase interference of two tunneling

paths of opposite windings. The oscillation is similar to the recent

experimental result with Fe8 molecular clusters.

The macroscopic quantum phenomenon of magnetic particles at low tem-

perature has attracted considerable attention both theoretically and exper-

imentally in recent years [1{3]. The magnetization vector in solids is tradi-

tionally viewed as a classical variable. The quantum transition of the mag-

netization vector M between di�erent easy directions in a single domain

ferromagnetic (FM) grain, in particular the coherent tunneling between two

degenerate orientations of the magnetization called the macroscopic quantum
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coherence (MQC) [?], has been studied extensively for its exotic characters

far from that of classical system. Quenching of MQC for half-integer spin is

a fascinating e�ect [?, 5, 7, 8]and can be used to test the macroscopic quan-

tum tunneling experimentally. The quenching of MQC in spin particles is

analysed with the help of the phase interference of spin coherent state-paths

which possess a phase with an obvious geometric meaning [5]. Although the

quenching of MQC has been interpreted as Kramers, degeneracy, the e�ect

of geometric phase interference is far richer than that. By investigating the

quantum tunneling in biaxial ferromagnetic particles with a magnetic �eld

applied along the hard axis Garg [9] found a new quenching of tunneling

splitting which is not related to Kramers; degeneracy since the external �eld

breaks the time reversal symmetry. The Zeeman energy of the biaxial spin

particle in the external magnetic �eld results in additional topological phases

of the tunnel paths which lead to the quantum phase interference. The tun-

neling splitting therefore oscillates with respect to the magnetic �eld.

According to a recent report [10] the oscillation of tunneling splitting

was observed experimentally in molecular clusters Fe8 which at low temper-

ature behavior like a nanomagnet, namely, a ferromegnetic particle. A more

detailed analysis of quantum phase interference with instanton method in

context of spin coherent-state-path-integrals has been given recently [11]. In

the present letter we investigate the similar e�ect of quantum phase inter-

ference in antiferromagnetic (AFM) particles. Since the tunneling rate in

AFM particles is much higher than that in the FM particles of the same

volume [12], the AFM particles are expected to be a better candidate for

the observation of MQP than the FM particles [12]. The AFM particle is

usually described by the N�eel vector of the two collinear sublattices whose

magnetizations are coupled by strong exchange interaction. External mag-

netic �eld dose not play a role since the net magnetic moment vanishes for

idealized sublattices. The quantum and classical transitions of the N�eel vec-

tor in antiferromagnet have been well studied [13] in terms of the idealized

sublattice model. The temperature dependence of quantum tunneling was

also given for the same model [?] and the theoretical result agrees with the

experimental observation [15]. A biaxial AFM particle with a small non-

compensation of sublattices in the absence of an external magnetic �eld was

studied in Ref. [16] where it was shown that the uncompensated magnetic

moment leads to a modi�cation of the oscillation frequency around the equi-

librium orientations of the N�eel vector. In the present letter we demonstrate

that the uncompensated magnetic moment of a small biaxial AFM parti-

cle possesses a Zeeman energy in an external magnetic �eld applied along

hard axis and thus a topological phase depending on the magnetic �eld is in-

troduced similarly to the phase in ferromagnetic particles [9]. The quantum
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phase interference results in the oscillation of tunneling splitting as a function

of magnetic �eld which may be regarded as a kind of the Aharonov-Bohm

e�ect.

We consider in the following a biaxial AFM particle of two collinear FM

sublattices with a small non-compensation. Assuming that the particle pos-

sesses a X easy axis and XY easy plane , and the magnetic �eld h is applied

along the hard axis (Z axis), the Hamiltonian operator of the AFM particle

has the form

Ĥ =
X
a=1;2

�
k?Ŝ

z2
a
+ kqŜ

y2
a
� 
hŜz

a

�
+ JŜ1 � Ŝ2 (1)

where k?; kq > 0 are the anisotropy constants, J is the exchange constant, 


is the gyromagnetic ratio,and the spin operators in two sublattices Ŝ1 and Ŝ2

obey the usual commutation relation
h
Ŝi

a
; Ŝ

j

b

i
= i~�

ijk
�
ab
Ŝk

b
(i; j; k = x; y; z; a; b= 1; 2).

The matrix element of the evolution operator in spin coherent-state repre-

sentation is

hN
f
je�2iĤT=~

jN
i
i =

Z "
M�1Y
k=1

d� (N
k
)

# "
MY
k=1

hN
k
je�i�Ĥ=~

jN
k�1i

#
(2)

Here we de�ne jNi = jn1ijn2i, jNM
i = jN

f
i = jn1;f ijn2;fi; jNo

i = jN
i
i =

jn1;iijn2;ii, tf � t
i
= 2T and � = 2T=M . The spin coherent state is de�ned as

jn
a
i = e�i�aĈjS

a
; S

a
i; (a = 1; 2) (3)

where n
a
= (sin �

a
cos�

a
; sin�

a
sin�

a
; cos�

a
) is the unit vector, Ĉ

a
=sin�

a
Ŝx

a
�cos�

a
Ŝy

a

and jS
a,Sai is the reference spin eigenstate. The measure is de�ned by

d� (N
k
) =

Y
a=1;2

2S
a
+ 1

4�
dn

a;k
; dn

a;k
= sin�

a;k
d�

a;k
d�

a;k
; (4)

In the large S limit we obtain [17]

hN
f
je�2iĤT=~

jN
i
i = e�iS0(�f��i)

Z Y
a=1;2

D[�
a
]D[�

a
] exp

�
i

~

Z
tf

ti

Ldt

�
(5)

The Lagrangian is de�ned by L = L0 + L1 with

L0 =
X
a=1;2

S
a

_�
a
cos�

a
� JS1S2 [sin �1 cos �2 cos (�1 � �2) + cos �1 cos �2] (6)
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L1 =
X
a=1;2

�
k?S

2
a
cos2 � + kqS

2
a
sin2 �

a
sin2 �

a
� 
hS

a
cos �

a

�
(7)

where S0 = S1 + S2 is total spin of two sublattices. Since S1 and S2 is

almost antiparallel, we may replace �2 and �2 by �2 = � � �1 � �
�
and �2 =

� + �1 + �
�
; where �

�
and �

�
denote small 
uctuations .Working out the


uctuation integrations over �
�
and �

�
the transition amplitude Eq.(5) reduces

to

hN
f
je�2iĤT=~

jN
i
i = e�iS0(�f��i)

Z Y
a=1;2

D[�]D[�] exp

�
i

~

Z
tf

ti

�Ldt

�
(8)

�L = 


�
m



_� cos � +

�
?



H _�sin2� +

�

2
2

�
_�
2
+ _�

2
sin2 �

��
� V (�; �) ; (9)

where V (�; �) =
�

K? cos

2 � +K
q
sin2 � sin2 ��mh cos � �

�?

2
h2 sin2 �

�
;and

(�1; �1) has been replaced by (�; �). m = 
~ (S1 � S2) =
 with 
 being the

volume of the AFM particle and �
?
= 


2

J

. K? = 2k?S
2=
 andKq = 2kqS

2=


(setting S1 = S2 = S except in the term containing S1�S2) denote the trans-

verse and the longitudinal anisotropy constants, respectively.

We assume a very strong transverse anisotropy, i:e: K? � Kq .In this

case the N�eel vector is forced to lie near the XY plane. Replacing � by �

2
+

� where � denotes the small 
uctuation and carrying out the integral over �

we obtain

hN
f
je�2Ĥ�=~

jN
i
i =

Z
D[�] exp

�
�

1

~

Z
�f

� i

L
eff

d�

�
(10)

where

L
eff

=
I

2

�
d�

d�

�2

+ i�
d�

d�
+ V (�) (11)

is the e�ective Euclidean Lagrangian. � = it and � = iT .I = 
(I
a
+ I

f
)

where I
a
= m2= (2
2K?) and I

f
= �

?
=
2 are the e�ective FM and AFM

moments of inertia [18], respectively. V (�) = 
K
q
sin2 � is the e�ective

potential and � = ~S0 � I
h. The second term in Eq.(11) , i:e: i�d�

d�

which

is the total time derivative has no e�ect on the classical equation of motion,

however it leads to a path dependent phase in Euclidean action. The classical

equation of motion is seen to be

4



I

2

�
d�

d�

�2

� V (�) = 0 (12)

� = 0 and � are two equilibrium orientation of the N�eel vector. The N�eel

vector may transit by tunneling through potential barriers from one orienta-

tion (� = 0) to another (� = �) along clockwise or anticlockwise paths. The

instanton solutions of Eq.(12) are then obtained as

��
c
(� ) = �2 arctan (e!0�) (13)

where !0 =
p
2Kq
=I is the small oscillation frequency of the N�eel vector

around its equilibrium orientation. ��
c
(� ) and �+

c
(�) denote instanton solu-

tions with clockwise and anticlockwise windings respectively. The Euclidean

actions evaluated along the instanton trajectories are seen to be

S�
E
=

Z
L
eff

d� = 2I!0 ��� (14)

The quantum phase interference of clockwise path \�" and anticlockwise

path \+" is seen to be (see Fig.1)

e�S
+

E + e�S
�

E � e�2I!0=~ cos (��) (15)

where � = �

~
= S0 +

h

hc

with h
c
= ~


I

. Since the potential V (�) is periodic

and can be regarded as a one-dimensional superlattice. Using the Bloch

theory the low-lying energy spectrum could be determined as [19]

E0 = "0 � 2�"0 cos � (� + �) (16)

Where � is Bloch wave vector which can be assumed to take either of the

two values 0 and 1 [20]. �"0 =
2~!0
�

e�2I!0=~ is the usual overlap integral or

simply the level shift induced by tunneling through any one of the barriers .

Thus the tunneling splitting is seen to be

�" = j2�"0 cos � (� + 1) � 2�"0 cos ��j = 4�"0 jcos ��j (17)

which is a function of the external magnetic �eld like in the ferromagnetic par-

ticle case [9{11].When h = 0, Eq.(17) reduces to the previous result [16] where

the tunneling splitting is quenched when S0 =half-integer. With nonzero

magnetic �eld the tunneling splitting would be quenched whenever � = n+ 1

2

or h =
�
S0 � n� 1

2

�
~=I
 where n is an integer. Fig.2 shows the oscillation

of the tunneling splitting with respect to the external magnetic �eld. This

quenching is due to the quantum phase interference of two tunneling paths

of opposite windings. The period of oscillation is given by
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�h =
~

I

: (18)

We have demonstrated a macroscopic quantum interference e�ect in the

tunneling of the magnetization of antiferromagnetic particles. Such particles

open thus a new avenue to test macroscopic quantum interference e�ects.

Experimental tests of our prediction could thus make an important contri-

bution to our understanding of the transition region between the microscopic

and the macroscopic world.
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Figure Caption:

Fig.1: Quantum phase interference of two tunnel paths of opposite wind-

ings

Fig.2: Oscillation of tunneling splitting as a function of the external �eld

with the solid line for S0 =half-integer and the dotted line for S0 = integer

7



ar
X

iv
:c

on
d-

m
at

/0
00

11
44

   
11

 J
an

 2
00

0

0

Fig.1 

V(φ)

φ
π-π

- +



ar
X

iv
:c

on
d-

m
at

/0
00

11
44

   
11

 J
an

 2
00

0

 

Fig.2  

0

∆ε/∆ε0

h/h
c


