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Abstract

Following our earlier investigations we examine the quantum{classical wind-

ing number transition in the Abelian-Higgs system. It is demonstrated that

the winding number transition in this system is of the smooth second order

type in the full range of parameter space. Comparison of the action of classical

vortices with that of the sphaleron supports our �nding.

Recently much attention has been paid to the decay-rate transition between the low-

temperature instanton-dominated quantum tunneling regime and the high-temperature

sphaleron-dominated thermal activity regime in quantum mechanics [1,2], in �eld theo-

retical and gauge models [3{6], and in cosmology [7{9]. In particular the winding number
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transitions in gauge theories are too complicated to handle analytically, and hence most cal-

culations of this type rely on numerical simulation with the help of computers. It is, however,

usually di�cult to obtain a good physical insight from numerical calculations alone. Hence,

it is important to develop alternative methods which enable one to extend the analytical

approach as far as possible. Investigations along these directions were developed recently

by using nonlinear perturbation theory [10] or by counting the number of negative modes

of the full Hessian around the sphaleron con�guration [11]. Although these two methods

start from completely di�erent points of view, they both yield the same criterion for a sharp

�rst-order transition in the scalar �eld theories. Since the explicit form of the criterion is

model-dependent, it is better to explain brie
y how the criterion is derived at this stage. Let

u0 and �0 be eigenfunction and eigenvalue of the negative mode of the 
uctuation operator

ĥ around sphaleron. Therefore, the sphaleron frequency 

sph

is de�ned as 

sph

� p��0.

Then the type of the transition is determined by computing the nonlinear corrections to

the frequency. Let, for example, 
 be a frequency involving the nonlinear corrections. If



sph

� 
 < 0, the energy dependence of the period of the periodic instanton becomes a

nonmonotonic function. This is easily conjectured from the fact that the energy-dependence

of the period exhibits the increasing and decreasing behaviours near the sphaleron and vac-

uum instanton. From this conjecture and the relation dS=d� = E where S, � , and E are

classical action, period, and energy respectively, one can imagine that the temperature de-

pendence of instanton action consists of monotonically decreasing and increasing parts when



sph
�
 < 0 [12], which results in the discontinuity in the derivative of action with respect

to temperature and hence, generates the sharp �rst-order transition. This is the main idea

of Ref. [4,10].

Some applications of this criterion to condensed matter physics [10,13,14], �eld the-

oretical but non-gauge models [4,15], and cosmology [9,16] verify that this is physically

reasonable. However, the usefulness of such a criterion in the case of gauge theories is not

clear without an application in a speci�c model. This is clearly desirable since the winding

number transitions in gauge theories imply additional complications such as gauge �xing
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procedure and it is important to understand the implication of those in physical phenomena

such as baryon- and lepton-number violating processes.

In order to obtain some insight into such transitions at higher temperatures, the criterion

is here applied to the Abelian{Higgs model, which may be the simplest model among the

gauge theories which support both vacuum instanton and sphaleron con�gurations.

We start with the Euclidean action of the d = 2 Abelian-Higgs model:

S
E
=

Z
d�dx

"
1

4
F
��
F
��
+ (D

�
�)�D

�
�+ �[j � j2 �v

2

2
]2
#

(1)

where F
��

= @
�
A
�
� @

�
A
�
and D

�
= @

�
� igA

�
.

It is well-known that action (1) is mathematically equivalent to Ginzburg-Landau theory

[17] and supports a vortex solution [18] as a zero temperature solution. The temperature

dependence of the classical action for the periodic solution in this model is calculated in Ref.

[19] using some special numerical techniques. The �nal numerical result of Ref. [19] shows

that the winding number phase transition in this model is of the smooth second-order type

in the range of 1=4 < M
H
=M

W
< 4, where M

H
=
p
2�v and M

W
= gv. In this paper we

will follow the method developed in Ref. [4] and show that the type of the transition does

not change over the full range of parameter space, i.e. it is always of the smooth second

order type.

The static solutions for the action (1) whose �eld equations are

@
�
F
��

= ig [��(D
�
�)� (D

�
�)��] (2)

D
�
D

�
� = 2��(j � j2 �v

2

2
);

can be easily obtained:

A
sph

0 = A
sph

1 = 0 (3)

�
sph

=
vp
2
tanh

s
�

2
vx:

In order to prove that (A
sph

0 ; A
sph

1 ; �
sph

) are genuine sphaleron con�gurations in this model,

we introduce a non-contractible loop [20{22]
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�A0 = �A1 = 0 (4)

�� = e
is

"
vp
2
cos s+ ih(x) sin s

#

where s is a loop parameter de�ned in the region 0 � s � �. Note that �� becomes a

trivial vacuum at the end points of s. In addition, the minimizing condition of energy

E(�;A) = R
dxL

E
, where L

E
is Euclidean Lagrangian density in Eq.(1), makes h(x) to be

h(x) =
vp
2
tanh

0
@sin s

s
�

2
vx

1
A : (5)

Hence, h(x) coincides with �
sph

when s = �=2. It is easy to show that the energy along the

minimal energy loop has a maximum at s = �=2, which proves that (A
sph

0 ; A
sph

1 ; �
sph

) are

sphaleron con�guration.

Chern-Simons number at � = �0 in this model is de�ned as

N
cs
=

1

�v2

Z
�0

�1
d�

Z 1

�1
dx@

�


�

(6)

where the generalized Chern-Simons current 

�
is



�
= �

��

"
i�
�
D

�
�� g

2
v
2

2
A
�

#
: (7)

In fact, @
�


�
is a lower bound of L

E
when g =

p
2�. To computeN

cs
along the loop, we treat

the loop parameter as an Euclidean time-dependent quantity s = s(� ) with s(� = �1) = 0,

s(� = 1) = �, and s(� = �0) = s0. Then it is straightforward to show that N
cs
along the

loop is

N
cs
=
s0

�
� sin 2s0

2�
: (8)

Hence, the sphaleron con�guration(s0 = �=2) has half-integer Chern-Simons number

whereas the trivial vacuum(s0 = 0; �) has integer one, which allows us to interpret the

sphaleron as a classical solution sitting at the top of the barrier separating the topologically

distinct vacua. The classical action corresponding to that of the sphaleron is easily shown

to be
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S
sph

=
E
sph

T
sph

(9)

where T
sph

, the inverse of the sphaleron period, is interpreted as a temperature and

E
sph

=
2
p
2�

3
v
3 (10)

which is interpreted as the barrier height. Since the sphaleron is a static solution, one may

wonder how to de�ne the sphaleron period or frequency. In fact, the sphaleron frequency

is de�ned by using a periodic instanton solution �
PI
(�; x;E) which is a time-dependent

solution of the Euclidean �eld equation (2) in the full range of energy 0 < E < E
sph

.

Since it is well known that �
PI
(�; x;E = 0) and �

PI
(�; x;E = E

sph
) coincide with vacuum

instanton and sphaleron respectively, we de�ne the sphaleron frequency is frequency of

lim
E!Esph

�
PI
(�; x;E).

In order to be able to examine the type of quantum-classical transition we have to

introduce the 
uctuation �elds around the sphaleron and expand �eld equations up to the

third order in these �elds. If, however, one expands Eq.(2) naively, one will realize that the


uctuation operators are not diagonalized and, hence, the spectra of these operators are not

obtainable analytically. To solve this problem we �x a gauge as a R
�
gauge [23,24] by adding

as gauge �xing term

S
gf

=
1

2�

Z
d�dx

�
@
�
A
�
+
ig

2
�(�2 � �

�2)

�2
(11)

to the original action (1). Then, the �eld equations are slightly changed to

@
�
F
��
+
1

�
[@

�
@
�
A
�
+ ig�(�@

�
�� �

�
@
�
�
�)] = ig [��(D

�
�)� (D

�
�)��] (12)

D
�
D

�
�+ ig�

�
"
@
�
A
�
+
ig�

2
(�2 � �

�2)

#
= 2��(j � j2 �v

2

2
):

It is easy to show that the sphaleron solution (3) and the corresponding action (9) are not

changed under the R
�
gauge.

We now introduce the 
uctuation �elds around the sphaleron as follows:
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A0(�; x) = a0(�; x)

A1(�; x) = a1(�; x) (13)

�(�; x) =
1p
2

2
4v tanh

s
�

2
vx+ �1(�; x) + i�2(�; x)

3
5

where a0, a1, �1, and �2 are real �elds. After introducing the new space-time variables

z0 �
s
�

2
v� (14)

z1 �
s
�

2
vx;

dimensionless parameters

� � 2M
W

M
H

=

s
2g2

�
; (15)

and, for convenience, a function of �

s1 �
s
�2 +

1

4
� 1

2
; (16)

one can show that at � = 1 the �eld equation (12) can be expanded as

l̂

0
BBBBBBBBBB@

a0

�+

��

�1

1
CCCCCCCCCCA
= ĥ

0
BBBBBBBBBB@

a0

�+

��

�1

1
CCCCCCCCCCA
+

0
BBBBBBBBBB@

G
a0

2

G
�+

2

G
�
�

2

G
�1

2

1
CCCCCCCCCCA
+

0
BBBBBBBBBB@

G
a0

3

G
�+

3

G
�
�

3

G
�1

3

1
CCCCCCCCCCA

(17)

where

l̂ =

0
BBBBBBBBBB@

@
2

@z
2
0

0 0 0

0 @
2

@z
2
0

0 0

0 0 @
2

@z
2
0

0

0 0 0 @
2

@z
2
0

1
CCCCCCCCCCA
; ĥ =

0
BBBBBBBBBB@

ĥ
a0

0 0 0

0 ĥ
�+

0 0

0 0 ĥ
�
�

0

0 0 0 ĥ
�1

1
CCCCCCCCCCA
; (18)

and the functions G2 and G3 are given in the appendix (A.1). Here, �+ and �� are de�ned

as
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�+ �
1p

cosh�

�
cosh

�

2
a1 + sinh

�

2
�2

�
; (19)

�� �
1p

cosh�

�
� sinh

�

2
a1 + cosh

�

2
�2

�

where � = sinh�1 2� and

ĥ
a0
= � @

2

@z
2
1

� �
2sech2z1 + �

2
;

ĥ
�+

= � @
2

@z
2
1

� (s1 � 1)s1sech
2
z1 + �

2
;

ĥ
�
�

= � @
2

@z
2
1

� (s1 + 1)(s1 + 2)sech2z1 + �
2
; (20)

ĥ
�1
= � @

2

@z
2
1

� 6sech2z1 + 4:

The spatial parts of the 
uctuation operators ĥ
a0
, ĥ

�+
, ĥ

�
�

, and ĥ
�1

are various kinds of

P�oschl-Teller type operators whose spectra are summarized in Ref. [25]. It is easy to show

that the spectra of ĥ
a0

and ĥ
�+

consist of only positive modes whose explicit forms are

not necessary for further study. What we need are only the negative mode of ĥ
�
�

whose

eigenfunction  
(�
�

)
�1 and eigenvalue �

(�
�

)
�1 are

 
(�
�

)
�1 (z1) = 2�(s1+1)

vuut �(2s1 + 3)

�(s1 + 1)�(s1 + 2)

1

coshs1+1 z1
; (21)

�
(�
�

)
�1 = �s1 � 1;

and the full spectrum of ĥ
�1
, which is summarized in Table I. It is easy to show that the

zero mode  
(�1)
0 in Table I is propotional to @�

sph
=@z1, which indicates the translational

symmetry of the Abelian-Higgs system.

Now, we have to carry out the perturbation to derive the criterion for the sharp �rst{

order transition as suggested in Ref. [10,14]. Since l̂ and ĥ in Eq. (17) are expressed in a

matrix form, it is impossible to use the criterion derived in Ref. [10,14] directly. In this case

we have to repeat the perturbation procedure with a spectrum of the full spatial 
uctuation

operator ĥ as suggested in Ref. [4]. Computing the nonlinear corrections of the sphaleron

frequency 
 perturbatively, one can derive the �nal result of the criterion for the sharp

�rst-order transition in this model as a following inequality:
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I1(�; v) + I2(�; v) + I3(�; v) < 0 (22)

where

I1(�; v) = <  
(�
�

)
�1 (z1) j D(1)

1 >;

I2(�; v) = <  
(�
�

)
�1 (z1) j D(2)

1 >; (23)

I3(�; v) = <  
(�
�

)
�1 (z1) j D(3)

1 > :

Here D
(1)
1 (z1), D

(2)
1 (z1), and D

(3)
1 (z1) are given in the appendix (A.2). Since T

sph
in Eq. (9)

is the inverse of the sphaleron period, the action of the sphaleron becomes

S
sph

=
8�

3
p
s1 + 1

v
2
: (24)

In deriving S
sph

in Eq. (24) one has to use the rescaling de�nition of space-time variables

(14) and 

sph

=
p
s1 + 1 which is given in the appendix.

Now, in order to compute D
(i)
1 (z1) i = 1; 2; 3 we are in a position to compute g

�1;1(z1)

and g
�1;2(z1) explicitly which is given in the appendix (A.3). The function g

�1;1(z1) is ex-

plicitly derived as follows. We de�ne

q1(z1) � ĥ
�1
�1

sinh z1

cosh2s1+3
z1

or equivalently

ĥ
�1
q1(z1) =

sinh z1

cosh2s1+3
z1

: (25)

Multiplying the zero mode of ĥ
�1

with Eq. (25), integrating over z1 from �1 to z1, and

performing partial integration twice, we can obtain the �rst-order di�erential equation for

q1(z1). Solving this di�erential equation one can obtain q1(z1) up to the constant of inte-

gration. This constant is determined by the fact that q1(z1) does not have a zero mode

component. Inserting q1(z1) into g�1;1(z1) one can derive the explicit form of g
�1;1(z1) which

is

g
�1;1(z1) =

1

4
p
�v

(s1 � 1
2
)(s1 + 1)�(s1 +

1
2
)

�(s1 + 1)

u(z1)

cosh2 z1
(26)
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where

u(z1) =
Z

z1

0

dy

cosh2s1 y
: (27)

Next we de�ne

q2(z1) �
�
ĥ
�1
+ 4
2

sph

��1 sinh z1

cosh2s1+3 z1
: (28)

Using the completeness condition as follows

q2(z1) =
�
ĥ
�1
+ 4
2

sph

��1 " 2X
n=1

j  (�1)
n

><  
(�1)
n

j +
Z
dk j  (�1)

k
><  

(�1)

k
j
#

sinh z1

cosh2s1+3
z1

; (29)

one can obtain the integral representation of q2(z1). Inserting this into g
�1;2(z1), we can

derive the �nal form of g
�1;2(z1)

g
�1;2(z1) =

1

2
p
�v

(s1 � 1
2
)(s1 + 1)(s1 + 2)�(s1 +

1
2
)

�(s1 + 1)

�
"

3
p
�

4(4s1 + 7)

�(s1 +
3
2
)

�(s1 + 3)

sinh z1

cosh2 z1
+
22s1+2(2s1 + 1)(2s1 + 3)

2��(2s1 + 5)
(30)

�
h
J1(�; z1) + 3 tanh z1 (J2(�; z1)� J4(�; z1))� 3 tanh2 z1J3(�; z1)

i #

where

J1(�; z1) �
Z 1

0
dk
k�(s1 + 1 + ik

2
)�(s1 + 1 � ik

2
)

4(s1 + 2) + k2
sin kz1;

J2(�; z1) �
Z 1

0
dk

�(s1 + 1 + ik

2
)�(s1 + 1 � ik

2
)

4(s1 + 2) + k2
cos kz1;

J3(�; z1) �
Z 1

0
dk
k�(s1 + 1 + ik

2
)�(s1 + 1 � ik

2
)

(1 + k2)[4(s1 + 2) + k2]
sin kz1; (31)

J4(�; z1) �
Z 1

0
dk

�(s1 + 1 + ik

2
)�(s1 + 1 � ik

2
)

(1 + k2)[4(s1 + 2) + k2]
cos kz1:

Now the computation of I1(�; v), I2(�; v), and I3(�; v) is straightforward and their �nal

form is given in the appendix (A.4). It is very interesting that I1(�; v) and I2(�; v) vanish

at s1 = 1=2 or, in terms of �, at � =
p
3=2.

The �-dependence of I1(�; v), I2(�; v), I3(�; v), and I1(�; v) + I2(�; v) + I3(�; v) is shown

in Fig. 1 which shows that the condition for the sharp �rst-order transition, i.e. (22), does
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not hold when � < 4. Ploting I1(�; v) + I2(�; v) + I3(�; v) in the range of large �, one can

con�rm numerically that it is a monotonically increasing function which indicates that the

sharp �rst-order transition does not occur in the full range of parameter space. This means

the winding number phase transition of this model is always smooth second-order as shown

in Ref. [19], where same conclusion was derived by numerical method in the restricted region

of parameter space.

There is another indirect method which con�rms our conclusion. If the transition is

second order and there is no interaction between vacuum instanton and anti-instanton, the

condition

2S1 > S
sph
; (32)

where S1 is the action of one instanton solution, has to be satis�ed. Since there is no

interaction between vortices at the Bogomol'nyi limit [26,27] which is � = 2 in this model,

we can use the condition (32) to check the credibility of our conjecture. Since S1 = �v
2 in

this limit, it is easy to show that

S
sph

2S1
= 0:833 < 1 (33)

which supports our conclusion.

In general, there is an interaction between vortices and hence, the condition (32) has to

be modi�ed to

S2 > S
sph
; (34)

where S2 is action of two interacting vortices, at arbitrary �. S1 and S2 at arbitrary � can be

computed numerically by employing the variation method [28]. S1, S2 and Ssph at various �

are summarized at Table II, which also con�rms our �nding at 0 < � < 4.

We hope our method can be applicable to the SU(2)-Higgs model which is most impor-

tant to understand the baryon-number violating process. The approach along this direction

is under investigation.
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TABLES

Eigenvalue of ĥ
�1

Eigenfunction of ĥ
�1

�
(�1)
0 = 0  

(�1)
0 (z1) =

p
3
2

1

cosh2 z1

�
(�1)
1 = 3  

(�1)
1 (z1) =

q
3
2

sinh z1
cosh2 z1

�
(�1)

k

= 4 + k2  
(�1)

k

(z1) = �
1p
2�

e
ikz1

(1+ik)(2+ik)

h
(1 + k2) + 3ik tanh z1 � 3 tanh2 z1

i

TABLE I. Eigenvalues and eigenfunctions of ĥ
�1

� S
sph
=�v2 S1=�v

2 S2=�v
2

0:5 2:43 1:79 4:31

1:0 2:10 1:34 2:94

1:5 1:85 1:13 2:34

2:0 1:67 1:00 2:00

2:5 1:53 0:91 1:78

3:0 1:42 0:85 1:62

3:5 1:33 0:80 1:50

4:0 1:25 0:76 1:40

TABLE II. S1, S2 and S
sph

at various values of �
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Appendix A

In this appendix we collect the lengthy expressions to make the main text to be simple

and compact.

In the expansion of equation of motion (17) the higher order terms G2 and G3 are
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a0

2 =
1

v

2
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vuut 2s1

s1 +
1
2

�+
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+ �
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In Eq. (23) Di

1(z1) i = 1; 2; 3 are

D
(1)
1 (z1) =

2�s1

v

vuut �(2s1 + 3)

�(s1 + 1)�(s1 + 2)
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and 

sph

=
q
��(��)�1 =

p
s1 + 1 is the zeroth order frequency of the sphaleron.

Using the explicit results of g
�1;1(z1) and g�1;2(z1) it is straightforward to calculate I1(�; v),

I2(�; v), and I3(�; v) given in Eq. (23):
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FIGURES

FIG. 1. The �-dependence of I1, I2, I3, and I1 + I2 + I3 at v = 1. From this �gure we can

conclude that the winding number transition of the Abelian-Higgs model is smooth second-order

in the full parameter range.
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