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Abstract

In the context of AdS=CFT correspondence the two Wilson loop correlator

is examined at both zero and �nite temperatures. On the basis of an entirely

analytical approach we have found for Nambu{Goto strings the functional

relation dS
(Reg)
c =dL = 2�k between Euclidean action Sc and loop separation

L with integration constant k, which corresponds to the analogous formula

for point{particles. The physical implications of this relation are explored in

particular for the Gross{Ooguri phase transition at �nite temperature.
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Recently much attention has been paid to the Wilson loop correlator in large{N gauge

theory. This interest results mainly from the fact that AdS=CFT duality [1] [2] makes it more

tractable to understand this highly nontrivial quantum �eld theory e�ect through a classical

description of the string con�guration in the AdS background. Using this AdS=CFT duality

Maldacena [3] was able to calculate for the �rst time the expectation value of the rectangular

Wilson loop operator at zero temperature and found that the interquark potential exhibits

the Coulomb type behavior expected from conformal invariance of the gauge theory, as well

as indications of the screening of the charge. Furthermore Witten [4] has shown that the

AdS=CFT duality can be used to explore �nite temperature behavior of gauge theory by

compactifying the AdS Euclidean time on a circle of radius / 1/temperature.

Maldacena's computational technique has already been extended to the �nite tempera-

ture case by replacing the AdS metric by a Schwarzschild{AdS metric [5,6] which implies

the same boundary conditions [7]. The main di�erences of the �nite temperature case from

the zero temperature one are (1) the presence of a maximal separation distance between

quarks, and (2) the appearance of a cusp (or bifurcation point) in the plot of interquark

potential{vs{interquark distance. These di�erences strongly suggest that there is a hidden

functional relation between physical quantities, and indeed such a relation has been derived

explicitly in Ref. [8].

In this letter we show that there is a similar relation in the two Wilson loop case.

It is known [9] that the correlation function of two circular Wilson loops implies a phase

transition analogous to that between the catenoid as minimal solution of the area connecting

two concentric circles [10] and the associated discontinuous Goldschmit solution. In fact,

this Gross{Ooguri(GO) phase transition takes place due to the instability of the classical

string con�guration. The GO phase transition at zero temperature has been examined in

more detail in Ref. [11] by solving the equations of motion of the Nambu{Goto string action.

In this letter we will approach the GO phase transition at zero temperature entirely

analytically, which enables us to derive a functional relation dSReg
c =dL = 2�k between the

regularized Euclidean classical action SReg
c and the separation L of the Wilson loops, k
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being a constant of integration. We will also approach the GO phase transition at �nite

temperature and examine the physical implications of the functional relation at the �nite

temperature phase transition.

We use the classical Nambu{Goto action for a string world sheet

SNG =

Z
d�d�

q
detg��@�X�@�X� : (1)

where g�� is the Euclidean AdS5 � S5 metric. We want to study the theory of a type IIB

string with coordinates X�(�; �) which ends on the near extremal D3{brane, as the dual of

an SU(N) gauge theory in the sense of refs. [1,3], the case of large N in the gauge theory

corresponding to weak coupling perturbative string theory in the semiclassical approxima-

tion, and so to supergravity expanded about an AdS5�S5 background. The quantity under

the square root is the induced metric on the world sheet of the Nambu{Goto string.

The near extremal Euclidean Schwarzschild{AdS5 metric of a D3{brane (with constant

dilaton, and the S5 coordinates eliminated) [12] is given in Poincar�e coordinates by

ds2E =

"
U2

 
f(U)dt2 +

3X
i=1

dxidxi

!
+
f(U)�1

U2
dU2

#
: (2)

Here t is Euclidean time of target space, and we choose Rads = �0 = 1 for simplicity, where

Rads and �0 are the radius of AdS5 and Regge slope respectively [1]. U is the holographic

coordinate [1]. The function f(U) is given by f(U) = 1 � U4
T=U

4 where U2
T is a parameter

proportional to the energy density above extremality on the brane [1]; UT is proportional to

the external temperature T de�ned by T = UT=�Rads [6] which enters through the periodic

identi�cation of t! t+ 1=T to make the horizon at U = UT regular [9]. The world volume

coordinates t; xi of the brane can be regarded as coordinates of the dual 3 + 1 dimensional

gauge theory.

For simplicity again, we choose cylindrical coordinates dxidxi = dx2+dr2+r2d�2, which

results in

ds2E =
1

z2

"
(1 � U4

Tz
4)dt2 +

dz2

1� U4
T z

4
+ dx2 + dr2 + r2d�2

#
(3)
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where z � 1=U . Thus the AdS boundary is located at z = 0.

For reasons of symmetry we make the following ansatz for the minimal surface [11]

X0 = t = 0; X1=r = � = �; X2 = x(� ); X3 = r(� ); X4 = z(� ): (4)

Then (with elements g�� of eq.(3) ) the Nambu{Goto action becomes

SNG = 2�
Z
d�

r

z2

q
LT (5)

where

LT = x02 + r02 +
z02

1� U4
T z

4
(6)

and the prime denotes di�erentiation with respect to � . The Euler{Lagrange equations

derived from action (5) are

r

z2
x0p
LT

= k; (7)

d

d�

"
rr0

z2
p
LT

#
�
p
LT

z2
= 0;

d

d�

"
rz0

z2
p
LT (1 � U4

Tz
4)

#
+
2r
p
LT

z3
� 2U4

T rzz
02

p
LT (1� U4

T z
4)2

= 0;

where k is the integration constant arising from the equation of motion for x.

With a gauge choice � = x the equations of motion take the form

r02 +
z02

1 � U4
T z

4
+ 1 =

r2

k2z4
; (8)

r00 � r

k2z4
= 0;

d

d�

"
z0

1 � U4
T z

4

#
+

2r2

k2z5
� 2U4

T z
3z02

(1� U4
T z

4)2
= 0:

We now assume that two circular Wilson loops are located at x = �L=2. Then we have

to solve Eq.(8) with boundary conditions

r(�L=2) = r(L=2) = R; (9)

z(�L=2) = z(L=2) = � � 0:
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Here R and L are respectively the radius of the circular Wilson loops and the distance

between them. We also introduced the positive in�nitesimal constant � for the regularization

of the minimal surface area later.

We �rst consider the zero temperature case (UT = 0). This case has been analyzed in

Ref. [11] partly analytically. Here we approach this case entirely analytically using various

kinds of elliptic functions. This completely analytical approach enables one to derive a

hidden functional relation explicitly.

For UT = 0 Eqs.(8) become

r02 + z02 + 1� r2

k2z4
= 0; (10)

r00 � r

k2z4
= 0;

z00 +
2r2

k2z5
= 0;

and after some manipulations can easily be shown to yield the equation r2 + z2 + x2 = a2,

which is solved by

r =
p
a2 � x2 cos �; (11)

z =
p
a2 � x2 sin �;

where a2 � R2 + L2=4, and � obeys

�0 = � a

a2 � x2

s
cos2 �

k2a2 sin4 �
� 1: (12)

Here we take the upper sign for x 2 [�L=2; 0] and the lower sign for x 2 [0; L=2].

Using the integral formula [13]

Z b

t
dt

s
b� t

(a� t)(t� c)(t� d)
= (a� b)g

h
�(�; �2; �)� F (�; �)

i
(13)

where a > b � t � c > d, and

� =

vuut(b� c)(a� d)

(a� c)(b� d)
; g =

2q
(a� c)(b� d)

(14)

� =

s
b� c

a� c
; � = sin�1

vuut(a� c)(b� t)

(b� c)(a� t)
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and � and F are elliptic integrals of the third and �rst kinds respectively, one can show

directly that

I(�) �
Z �

0
d�

sin2 �p
cos2 � � k2a2 sin4 �

(15)

=
1

ka

�+ � 1p
�+ � ��

"
�

0
@sin�1

vuut(�+ � ��)(1� cos2 �)

(1� ��)(�+ � cos2 �)
;
1 � ��

�+ � ��
; �

1
A

�F
0
@sin�1

vuut(�+ � ��)(1 � cos2 �)

(1 � ��)(�+ � cos2 �)
; �

1
A
#

where

�� =
(2k2a2 + 1) �

p
1 + 4k2a2

2k2a2
; (16)

� =

vuut�+(1� ��)

�+ � ��
:

Using Eq.(15) one can integrate Eq.(12) completely. The �nal result for � assumes the

form

I(�) =
1

2ka
ln
(a+ L

2
)(a� x)

(a� L
2
)(a� x)

; (17)

where the upper and lower signs correspond again to x 2 [�L=2; 0] and x 2 [0; L=2] respec-

tively.

From Eqs.(12) and (17) one can show easily that �(�L=2) = �(L=2) = 0 and �0 �

�(0) = cos�1
p
��, where the latter is the result of �

0(0) = 0. Inserting x = 0 in Eq.(17) and

realizing that sin�1
r

(�+���)(1�cos2 �)

(1��
�

)(�+�cos2 �)
! �

2
at this point, one can derive

F =
1

2
ln
a+ L

2

a� L

2

= ln

q
R2 + L2

4
+ L

2

R
(18)

where

F =
�+ � 1p
�+ � ��

"
�

 
1� ��

�+ � ��
; �

!
�K(�)

#
(19)

and � and K are complete elliptic integrals.

Hence the k{dependence of L is obtained by solving
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L = (2 sinhF)R (20)

numerically. Fig. 1 shows the k{dependence of L when R = 1. Fig. 1 indicates that there

is a maximal distance L� for the existence of the classical catenoid solution. If L > L�,

the classical catenoid solution becomes unstable and hence the physically relevant solution

in this case becomes two discontinuous one Wilson loop solutions, which are the so{called

Goldschmit discontinuous solutions.

The minimal surface is directly computed by calculating the classical action

Sc = 4�
Z �0

�

R

cot2 �p
cos2 � � k2a2 sin4 �

: (21)

Using the integral formulas [13]

Z b

t

dt

t� c

s
a� t

(b� t)(t� c)(t� d)
=

a� b

b� c
g

Z u1

0
nc2udu; (22)

Z
nc2udu =

1

�02

h
�02u� E(u) + dnu tnu

i
;

where a > b � t � c > d,

g =
2q

(a� c)(b� d)
; �2 � 1 � �02 =

(b� c)(a� d)

(a� c)(b� d)
(23)

� = sin�1

vuut(a� c)(b� t)

(b� c)(a� t)
; u1 = sn�1[sin�]

one can directly evaluate Eq.(21) which is

Sc =
4�R

�
+ S(Reg)

c ; (24)

S(Reg)
c = 4�(1 + 4k2a2)

1

4

h
(1 � �2)K(�)� E(�)

i
;

where � is the same as that of Eq.(16).

The area of the discontinuous solution has been calculated in Ref. [14] using the special

conformal transformation. Of course, this can also be evaluated directly by considering the

case of one circular Wilson loop. Then the minimal surface of the discontinuous solution is

Sdc =
4�R

�
+ S

(Reg)

dc ; (25)

S
(Reg)

dc = �4�:
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One should note that S(Reg)
c coincides with S

(Reg)

dc at k = 0. This is expected from the �rst

of Eqs.(7) which indicates that there is no propagation of the string along x when k = 0.

Fig. 2 shows the L{dependence of S(Reg)
c and S

(Reg)

dc . One should note that S(Reg)
c merges

smoothly with S
(Reg)

dc at L = 0, which indicates again that S(Reg)
c = S

(Reg)

dc at k = 0. The

appearance of the cusp in S(Reg)
c at L = L� strongly suggests that there is a hidden functional

relation [8] in the case of the two Wilson loop correlator.

In order to derive this relation explicitly we di�erentiate S(Reg)
c and L with respect to the

elliptic modulus �. This is straightforwardly achieved using the various derivative formulas

of elliptic functions [13]. The �nal relations are simply

dS(Reg)
c

d�
= � 4��

(2�2 � 1)
3

2

[K(�)� 2E(�)] ; (26)

dL

d�
= � 2a

�0
p
2�2 � 1

[K(�)� 2E(�)] :

One should note that the coe�cients of the complete elliptic integrals in the brackets coincide

with each other, which, thus yields

dS(Reg)
c

dL
= 2�k: (27)

As observed in Ref. [8], this relation has a close analogy with the point{particle formula

dSE=dP = E, where SE, P and E are Euclidean action, period and energy of the classical

point{particle. It is worthwhile noting that Eq.(27) and a condition S(Reg)
c = S

(Reg)

dc at L = 0

determine completely the L{dependence of S(Reg)
c from the k{dependence of L since Eq.(27)

says that S(Reg)
c = 2�

R
kdL up to the constant.

We now turn to the GO phase transition at �nite temperature. In this case it seems

impossible to attack Eqs.(8) analytically. However, the analysis of the zero temperature

case shows how one can solve Eqs.(8) numerically. In fact, one can solve the second and

third of Eqs.(8) simultaneously using the �rst equation as a relation of boundary conditions

at x = 0. Solving these coupled di�erential equations completely determines L and R. If R

is �xed by R0, the only step that remains is to select the solutions which yield R = R0.
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Fig. 3 shows the k-dependence of L at �nite temperature when R = 1. Fig. 3 indicates

that the peak point moves to the right, and the maximum distance of the Wilson loop L�

becomes larger when the temperature increases.

Next we consider the minimal surface area in the �nite temperature case. For this

quantity the numerical approach is not a useful tool in view of the divergent term which

arises in the course of the calculation. It is, in fact, a formidable task to regularize the

minimal surface in the numerical technique. However, assuming that Eq.(27) also holds in

the �nite temperature case, one can conjecture the L{dependence of S(Reg)
c from Fig. 3 since

Eq.(27) tells us that S(Reg)
c = 2�

R
kdL up to a constant. To �x this constant we need S

(Reg)

dc

of the �nite temperature case.

However, even with the numerical technique the computation of S
(Reg)

dc is not an easy

problem { again in view of the divergent term. In order to evaluate S
(Reg)

dc at �nite temper-

atures we observe that the minimal surface becomes

Sc = 4�k

"
rr0 jx=L

2

�
Z L

2

0
dxr02

#
: (28)

This is obtained from Eq.(5) and Eq.(8) and by performing an appropriate partial integra-

tion. If one examines the behavior of r(x) and z(x) as x! L=2, it is easy to show that the

second term in Eq.(28) is �nite. Hence the divergence of Sc is contained in the �rst term of

Eq.(28). In the zero temperature case, for example, one can derive the asymptotic behavior

of r(x) and z(x) for x � L=2:

r � R � 1

2R

�
3R

kL

�2

3

y
4

3 +
y2

2R
+ � � � ; (29)

z �
�
3R

kL

�1

3

y
2

3 � 3

5RkL
y2 +

1

2R2

�
3R

kL

�1

3

y
8

3 + � � � ;

where y2 � L2=4�x2. It is important to note that the coe�cient of y2 in r is not determined

by direct expansion but from the relation r2+z2+x2 = a2, which does not have a counterpart

in the �nite temperature case. Hence in the zero temperature case rr0 jx=L

2

becomes

rr0 jx=L

2

=
R

k�
� L

2
(30)
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which yields same divergence term 4�R=� and S(Reg)
c = �2�kL� 4�k

R L

2

0 dxr02. If one plots

this numerically, one can reproduce S(Reg)
c in Fig. 2. The important point one should

note is that the �nite term in 4�krr0 jx=L

2

; i :e: � 2�kL, becomes zero in the limit k ! 0.

Thus the limit k ! 0 of S(Reg)
c , which is nothing but S

(Reg)

dc , originates from the second

term of Eq.(28). We believe this property is maintained in the �nite temperature case.

Then one can plot the temperature{dependence of S
(Reg)

dc which is shown in Fig. 4. Fig. 4

completely determines the shift constant in S(Reg)
c = 2�

R
kdL. Fig. 5 shows S(Reg)

c at various

temperatures. As explained the appearance of cusp in S(Reg)
c indicates the non-monotonic

behavior of k-dependence of L.

In summary, we analyzed above the Gross{Ooguri phase transition at zero and �nite

temperatures. We obtained the functional relation dS(Reg)
c =dL = 2�k which is the Nambu{

Goto string analogue of the formula relating Euclidean action to period and energy of a

classical point{particle [15]. It is interesting to investigate this point{particle analogy in

more detail by calculating the spectrum of the 
uctuation operator. This work is in progress.
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FIGURES

FIG. 1. k-dependence of L at zero temperature

FIG. 2. L-dependence of S
(reg)
c and S

(reg)

dc at zero temperature

FIG. 3. k-dependence of L at �nite temperature

FIG. 4. temperature-dependence of S
(reg)

dc

FIG. 5. L-dependence of S
(reg)
c at �nite temperature
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