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Abstract

We develop a method of singularity analysis for conformal graphs which, in particular, is applicable

to the holographic image of AdS supergravity theory. It can be used to determine the critical exponents

for any such graph in a given channel. These exponents determine the towers of conformal blocks that

are exchanged in this channel. We analyze the scalar AdS box graph and show that it has the same

critical exponents as the corresponding CFT box graph. Thus pairs of external �elds couple to the same

exchanged conformal blocks in both theories. This is looked upon as a general structural argument

supporting the Maldacena hypothesis.
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1 Introduction

The AdS/CFT correspondence [1]-[4] connects N = 4 supersymmetric SU(N) Yang-Mills theory in

four dimensions at large N and strong 't Hooft coupling � = g2YMN with type IIB supergravity on the

AdS5�S5 background based on a perturbatively de�ned action. The correspondence works by comparison

of series expansions in powers of 1
N2 . At leading order many predictions have been veri�ed, and at next

order, results such as concerning anomalies, nonrenormalization theorems and 1
N2 -corrections to �eld

dimensions for composite �elds and structure constants of the SYM4 �eld algebra have been obtained

[5]-[11].

In this context the evaluation of AdS graphs, that represent the holographic image of the AdS pertur-

bation expansion in powers of �0

R2 = ��
1

2 , confronts us with serious technical problems whose di�culty

goes much beyond the corresponding CFT at space graphs. Partly with techniques developed �rst for

CFT in at space, the exchange graph was calculated and studied in a series of works [12, 13]. The

results of all such calculations were �nally expressed in terms of generalized hypergeometric functions.

However, in some cases the �eld dimensions had to be specialized to small natural numbers.

Due to these di�culties, we advocate another approach in this work. We present Green functions

as multiple "Mellin-Barnes integrals" 4 over a meromorphic function �. This function � is de�ned as

the integral over a positive function on a compact domain. Usually one would expand this integral into

a series of ratios of gamma functions, so that � obtains poles from the gamma functions and from the

divergence of the series. The latter are di�cult to work out 5. Thus we would like to extract the poles of

� by another method. The relevant poles of �, namely those to the right of the Mellin-Barnes contours,

originate from the divergence (in�nity) of the integrand at certain faces or intersections of faces of the

regular polyhedral integration domain. So guessing them is not di�cult. These poles form sequences

which are integrally spaced and tend to +1. Of course at the end all Mellin-Barnes integration contours

are shifted to +1, so that we �nd series expansions again.

In Section 2 we discuss this method and typical results from the point of view of unitarity of Green

functions and operator product expansions. Important information on the structure of the �eld algebra is

obtained this way. Since AdS/CFT correspondence also implies (supposedly) a correspondence between

both �eld algebras (all orders of 1
N2 included), the AdS conformal �eld theory as the holographic picture

of supergravity and at space CFT must therefore already show a partial correspondence on the level of

the meromorphic functions �. We demonstrate that this is in fact true for the box graph.

In Section 3 we study once again the exchange graph as a simple example of the previously developed

4Inverse Mellin transforms and Barnes integrals are equivalent

5Except for the functions, say, 2F1(1) and 3F2(1) almost nothing is known
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method.

In Section 4 we treat the box graph with arbitrary �eld dimensions 6 with our method. We do not

give all the details of the lengthy analysis.

A few remarks are added in Section 5.

2 Critical exponents and unitarity

We discuss here the connection between unitarity, operator product expansions and the "critical ex-

ponents", that we shall introduce now. Consider a four-point function in at space CFTd. Its Green

µ µ

µµ

4

1 2

34

1 2

3

Figure 1: An unspeci�ed four-point function of CFTd

function G can be split into a covariant multiplier and an invariant function ~G

G(x1; x2; x3; x4) = (x212)
�

1

2
(�1+�2��3+�4)(x213)

�
1

2
(�1��2+�3��4) (x223)

1

2
(�1��2��3+�4)(x234)

��4 ~G(u; v)

(2.1)

where

xij = xi � xj (2.2)

and

u =
x214x

2
23

x212x
2
34

; v =
x213x

2
24

x212x
2
34

(2.3)

are conformal invariant variables. If we intend an operator product expansion in the channel

(1; 4)  ! (2; 3)

6This arbitrariness is essential
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we must let

u! 0; v ! 1: (2.4)

The function ~G(u; v) can in turn be decomposed as

~G(u; v) =

KX
k=1

uk Fk(u; v); (2.5)

where Fk are holomorphic functions in the neighborhood of (2.4) and possess the Taylor expansion

Fk(u; v) =

1X
m;n=0

un (1� v)m

n!m!
c(k)mn: (2.6)

The k are the "critical exponents". Of course, the k are, due to possible changes in the covariant

multiplier (2.1), de�ned up to a common additive constant. So, what is the physical information encoded

in these exponents?

Consider the exchange of the scalar �eld of dimension � in the channel 7

(1; 4)  ! (2; 3)

as described by Fig.2 where the dimension � is assumed to be generic. Note, that the CFTd covariant

3

4

1

2

2

3

µ

µ4

1

δ

µ

µ

Figure 2: Scalar �eld exchange in the direct channel

vertex functions Z
dy

nY
i=1

((y � xi)
2)��i (2.7)

are necessarily "unique", i.e. they satisfy the condition

nX
i=1

�i = d: (2.8)

A full vertex, such as in Fig.2, can always be resolved in three unique vertices (Fig.3) in an unambiguous

fashion. This fact can be readily used to compute the Green function corresponding to Fig.2. The result

7We call the exchange channel the "direct" channel
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ε
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Figure 3: Representation of a full three vertex by three unique vertices

is explicitly known [14] and can be represented as

~G(u; v) =

2X
k=1

uk Fk(�;u; v) (2.9)

with

1 =
1

2
(� � �1 � �4) (2.10)

2 =
1

2
(d� � � �1 � �4) (2.11)

and, after an appropriate renormalization,

F2(�;u; v) = F1(d� �;u; v): (2.12)

On the other hand, for the holographic image of the AdS exchange graph Fig.4, termed "Witten graph",

1

4 3

2

3µµ

µ
2

µ1

4

δ

Figure 4: The Witten exchange graph

we obtain

~GW (u; v) =

3X
k=1

uk FW;k(�;u; v) (2.13)

with

21 + (�1 + �4) = �1 + �4; (2.14)

22 + (�1 + �4) = �2 + �3; (2.15)

23 + (�1 + �4) = �: (2.16)
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Of course (2.10) and (2.16) are identical. On the other hand there are striking di�erences. In CFT jargon

the k = 2 term in (2.9) is called "shadow term" of the k = 1 term. Its appearance is a consequence of

conformal harmonic analysis on Rd and the equivalence of scalar representations with dimension � and

d� �. Only if

� �
d

2
+ 1 (2.17)

a scalar �eld of dimension d� � exists and we have two equivalent formulations of the same CFTd: each

external leg of a Green function with dimension � can by amputation be transformed into a leg with

dimension d � � and vice versa. This shadow term is absent in (2.13). Instead, there are two terms

k 2 1; 2, which are obviously connected with the exchange of some �elds of dimension

�1 + �4 + n (�2 + �3 + n); n 2 N0:

Now we remember that unitarity of the S-matrix in perturbative quantum �eld theory is usually

formulated by Cutkosky's rule [15]: cutting a graph (Fig.5) through internal lines and replacing these

.

cut

.

.

.

.

.

.

Figure 5: Cutkosky cut through three internal lines of a graph

by a sum over the corresponding states (with appropriate normalization) gives an absorptive part of the

original Green function. In CFT, we can reduce these states by operator product expansion to states

created by conformal blocks of �elds. In Fig.2 there is one conformal block, namely the conformal �eld of

dimension � and all its derivative �elds. The same is true for Fig.4 and the part k = 3, (eqn.(2.16)). The

part k = 1 (eqn.(2.14)) involves an in�nite number of conformal tensor �elds of rank l with dimension

�1 + �4 + l + 2t

and their derivative �elds. In fact, there are two parameters l (rank) and t (twist) to label all blocks

exchanged. The same is true for k = 2. The fact that for k = 3 only one block is exchanged is reected

in the analytic property of FW;3(u; v). Thus we conclude that each critical exponent corresponds to an

in�nite tower of conformal blocks, that this tower is determined by a Cutkosky cut acting on internal

and external lines and that 2k+�1+�4 is in fact the dimension of the lowest dimensional scalar �eld in
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the tower, which in turn can be understood as "composite �eld" of the �elds belonging to the lines cut.

Thus the di�erence between CFTd and AdSd+1 theory is in the exchange graphs:

1. there is no shadow term in AdSd+1;

2. there are terms from cutting external lines in AdSd+1. As was argued [13] in the shadow term in

CFTd and the external line terms in AdSd+1 are necessary to guarantee analytic behavior in the

crossed channel.

Indeed, it turns out that such di�erences between CFTd and AdSd+1 seem to arise only in the exchange

graphs 8 in the direct channel.

Next we consider a CFTd box graph with four unique vertices (Fig.6). The uniqueness conditions

imply certain constraints on the dimensions of the external and internal �elds, e.g.

λ

λλ

µ

µ

1 2

3

4

4

λ3 µ3

µ1
1

2

2

4

Figure 6: The CFTd box graph with unique vertices

�1 + �3 = �2 + �4 = 2d�
4X
i=1

�i: (2.18)

This box graph Green function is explicitly known [16] and

~G(u; v) =

3X
k=1

uk Fk(u; v) (2.19)

with

1 = 0; (2.20)

2 =
1

2
(�1 + �3 � �1 � �4); (2.21)

3 =
1

2
(�2 + �3 � �1 � �4); (2.22)

Now we have Cutkosky cuts through the external pairs of lines as well (1; 3). We note that the box

graph with non-unique vertices (full vertices) has not been calculated yet. Since the critical exponents

8The usual notation is "one-particle reducible graphs"
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Figure 7: The AdSd+1 box graph with generic dimensions

determine the towers of conformal blocks that are coupled to the pairs of external and internal �elds in

the direct channel, they enter the structure of the �eld algebra. If the Maldacena conjecture in the strong

version is correct, the large � 1
N
-expanded SYMd with gauge group SU(N) and N = 4 supercharges has

the same �eld algebra as the holographic image of the AdSd+1 supergravity with coupling constants of

order 1
Nk , k 2 2N. Therefore the results (2.19) - (2.22) should hold in the case of the Witten graph Fig.7

as well. We shall prove in the sequel, that this is correct indeed.

3 The singularity analysis of conformally covariant Green func-

tions

We aim at a direct determination of the critical exponents k (2.5) before attempting the explicit evalua-

tion of integral representations. The Taylor coe�cients c
(k)
mn (2.6) are then �nally represented as integrals

which eventually can be evaluated numerically. Since analytic continuation of the integral representa-

tions in the parameters (�eld and space dimension) o� the domain of absolute convergence is always

tacitly understood, the integrals must necessarily be transformed into absolutely convergent expressions

by substraction regularization methods before the numerics can be performed. The method of analyzing

conformal Green functions developed by us consists of several steps:

1. We derive a multi-parametric Mellin-Barnes integral representation, where the integrand � depends

meromorphically on the Mellin-Barnes parameters and the �eld and space dimensions. This function

� is itself given as an integral of a positive function over a compact polyhedral domain Kn in Rn

with possible zeros and in�nities on the boundary on Kn . Kn is the n-dimensional generalization

of the regular tetrahedron K 3 or the regular triangle K 2 . Kn is bounded by (n + 1) faces Kn�1 ,

which intersect in edges Kn�2 etc.
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2. If the integrand is +1 on a face or a lower dimensional intersection K r , then poles may appear in

the Mellin-Barnes parameters on the "right" side of the Mellin-Barnes contours.

3. Two Mellin-Barnes parameters are connected with the kinematical variables u and 1� v (2.3) by

the powers

u�1 (v � 1)�2 : (3.1)

The pole positions of � in �2 lie in N0 and the shift of the �2 integration contour to +1 gives

simple power series in 1� v. The pole positions in �1 lie in di�erent sequences

[
k

fk +N0g (3.2)

which leads us to the series representations (2.5), (2.6).

4. Since the zero of an analytically continued integral is di�cult to recognize (zeros can only arise

after analytic continuation since the original integrand is a positive function) the list of candidates

for the exponents fkg is generally too long. We can reduce this list by di�erent arguments, e.g. a

"beta-function argument" and a symmetry argument.

As a nontrivial example of describing our method, we choose the holographic image of the AdSd+1 graph

in Fig.4. Due to conformal invariance, a Green function can be completely reconstructed if three of its

n � 3 variables are �xed to the values, say

x1 = 0; x2 =1; x3 arbitrary unit vector

We shall exploit this fact by letting x3 !1, but keeping translational and scale invariance

lim
x3!1

(x23)
�3 G(x1; x2; x3; x4) = (x212)

��� ~G(u; v) (3.3)

with

u =
x214
x212

; v =
x224
x212

(3.4)

and

�� =
1

2
(�1 + �2 � �3 + �4): (3.5)

Denoting the bulk variables of AdSd+1 by w1; w2; w3; ::: and boundary variables by ~x, ~y, ~z, ...we have for

the bulk-to-boundary propagators (i 2 f1; 2; 3; 4g) [12]

K�i(w; xi) = c�i

�
w0

w2
0 + (~w � ~x)2

��i
(3.6)

9



where

c�i =
�(�i)

�
d
2 �(�i)

; (�i = �i �
1

2
d) (3.7)

and

lim
x3!1

(x23)
�3 K�3(w; x3) = c�3 w

�3
0 (3.8)

For the bulk-to-bulk propagator we use the Mellin-Barnes integral representation [12]

G�(w;w
0) =

1

2�i

Z +i1

�i1

ds�(�s) ei�s
�(�+ 2s)

�(~� + s+ 1)

1

2�
d
2

"
w0w

0

0

w2
0 + w020 + (~w � ~w0)2

#�+2s
(3.9)

with ~� = � � 1
2
d. The graph of interest (Fig.4) is, up to coupling constants, factorials and symmetry

factors, represented by the integralZ
d�(w)d�(w0)G�(w;w

0)
Y

i2f1;4g

K�i(w; xi)
Y

j2f2;3g

K�j (w
0; xj) (3.10)

where d� is the invariant AdSd+1 measure

d�(w) =
dw0 d~w

wd+10

(3.11)

The integration starts by using a �-function auxiliary integration for each denominator in (3.6), (3.9)

1

k x k2�
=

1

�(�)

Z
1

0

dt t��1e�tkxk
2

(3.12)

distributing the parameters ftig1;2;4 to the K�i and r to G�. Then w0 and w
0

0 can be integrated givingY
i2f1;2g

1

2
�(

1

2
�i) �

�
1

2
�i

i (3.13)

with

�1 = r + t1 + t4; �2 = r + t2 (3.14)

and

�1 = �1 + �4 + �+ 2s� d; �2 = �2 + �3 + �+ 2s� d (3.15)

The ~w; ~w0 integration is Gaussian and gives

(
�2

detA
)
d
2 expf�TA�1��Dg (3.16)

with

A =

0
@ �1 �r

�r �2

1
A ; (3.17)

D =
X
i

tix
2
i ; (3.18)

� =

0
@t1x1 + t4x4

t2x2

1
A (3.19)

10



The exponent (3.16) can be written as a quadratic form

�
1

detA

X
i<j

�ij(xi � xj)
2 (3.20)

where

�12 = rt1t2; �14 = �2t1t4; �24 = rt2t4 (3.21)

Since we aim at an expression of the type (2.6), we can use (3.4) to write (3.20) as

�x212
�0

detA
f1 +

�14

�0
u+

�24

�0
(v � 1)g (3.22)

with

�0 = �12 + �24 = rt2(t1 + t4) (3.23)

Following Symanzik [17], the second and third term in (3.22) are represented by Mellin-Barnes integrals

e�x =
1

2�i

Z +i1

�i1

d� �(��)x� (3.24)

Finally we perform one integration by introducing scaled parameters

T = r +
X

i2f1;2;4g

ti; ti = T�i; i 2 f1; 2; 4g; r = T�; (3.25)

so that

detA = T 2 [�(1� �) + �2(1� �� �2)]: (3.26)

The remaining parameter integrals can then be summed up into a meromorphic function.

�(�1; �2; s) = �(��1)�(��2)�(�s)

Z
K2

d�1d�2d�4d� �(1� �1 � �2 � �4 � �)�
�1�1
1 �

�2�1
2 �

�4�1
4 ��+2s�1

� (1� �2)
�

1

2
�1(�+ �2)

�
1

2
�2 [��2(�1 + �4)]

�����2 [�1�4(�+ �2)]
�1(

�4

�1 + �4
)�2

� [�(1� �) + �2(1� �� �2)]
�

1

2
d+�� (3.27)

and this enters a threefold Mellin-Barnes integral

~G(u; v) =
1

8�
3

2
d

�(�3)Q4

i=1 �(�i)
(2�i)�3

+i1ZZZ
�i1

d�1d�2ds
�( 1

2
�1)�(

1
2
�2)�(��+ �2 + �2)

�(~� + s+ 1)

� ei�s u�1 (v � 1)�2 �(�1; �2; s) (3.28)

with �� = 1
2
(�1+�2��3+�4), see (3.5). Such a representation (3.27), (3.28) of any four-point function

for CFTd or AdSd+1 �eld theory is the starting point for our singularity analysis, leading to the critical

exponents.
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In this particular case we can simplify the integral representation (3.27) by integrating over � in

�1 = ��; �4 = �(1� �) (3.29)

�(�1; �2; s) =
�(�1 + �1)�(�4 + �1 + �2)

�(�1 + �4 + 2�1 + �2)
�(��1)�(��2)�(�s)

Z
K2

d�d�2d��(1� � � �2 � �)

� ��1+�4���+�1�1 (1� �)�
1

2
�2+�1 �

�2�����1�1
2 (1� �2)

�
1

2
�1

� ��+2s�����1�1[�(1� �) + �2(1� �� �2)]
�

1

2
d+�� (3.30)

Here �2 has vanished from the integral into the factor in front. Except for the factor �(��2), there is no

pole to the right of the �2 Mellin-Barnes contour. This a general feature since (see(3.23)) in Kn

0 �
�24

�0
=

�24

�12 + �24
� 1 (3.31)

There are obviously poles from the faces �2 = 0 and � = 0 in �1, arising from the Mittag-Le�er expansion

t��1�(t) �=
poles only

1X
n=0

(�1)n�(n)(t)

n!(�+ n)
(3.32)

with positions �� 2 N0. Including the poles in �1 from the factor �(��1), we have three possibilities:

(n 2 N0)

1.

�1 = n (3.33)

2.

from �2 = 0 : �1 = �2 ���+ n (3.34)

3.

from � = 0 : �1 = �+ 2s���+ n (3.35)

In the cases (1.) and (2.) we get the critical exponents

1 = 0; (3.36)

2 =
1

2
(�2 + �3 � �1 � �4) (3.37)

whereas case (3.) necessitates knowledge of the pole positions in s. One possibility is that these poles

are produced by �(�s), then

�1 = ����+ n; (3.38)

3 = ���� (3.39)

12



There is another candidate for poles in �1, namely the intersection of the faces (2) and (3):

�2 = � = 0; � = 1: (3.40)

We use the parameters

� = ! ; �2 = !(1�  ); � = 1� ! (3.41)

The behavior of the integrand at w ! 0 is given byZ
0

d! !(�2�����1)+(�+2s�����1)+(�
1

2
�2+�1)+(�

1

2
d+��)�1 (3.42)

The exponent is

1

2
�+ s�

1

2
(�1 + �4)� �1 � 1 (3.43)

and gives rise to poles in �1 at

4.

�2 = � = 0 : �1 =
1

2
�+ s�

1

2
(�1 + �4) + n (3.44)

If the s poles are from �(�s), we get from (3.44)

�1 =
1

2
(�� �1 � �4) + n; (3.45)

4 =
1

2
(�� �1 � �4) (3.46)

But there exist other s-poles. If we consider (3.44), set n = 0 and insert the delta function following

from (3.32) into (3.30), there remains the  -integral, see (3.41)

Z 1

0

d  �+2s�����1�1(1�  )�2�����1�1j�1= 1

2
�+s� 1

2
(�1+�4)

=
1

�(�3)
�(

1

2
(�2 + �3 � �)� s)�(

1

2
(�+ �3 � �2) + s) (3.47)

which shows, that there exist relevant s-poles from the �rst factor in the numerator. For arbitrary n in

(3.44) the poles lie at

s+ n =
1

2
(�2 + �3 � �) + n0; n0 2 N0 (3.48)

If we consider (3.35) at n = 0 and insert it together with the delta function (3.32) into (3.30), then

the integral turns into a beta-function

Z 1

0

d�2�
(�2�����1�1)+(�

1

2
�2+�1)+(�

1

2
d+��)

2 (1� �2)
(�1+�4���+�1�1)�

1

2
�1+(�

1

2
d+��)

=
1

�(0)
�(

1

2
(�2 � �3 � �)� s)�(

1

2
(�� �2 + �3) + s) (3.49)
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The denominator is unchanged if we let n in (3.35) assume arbitrary values fromN0. Thus the denomina-

tor of the beta-function lets the singularity (3.35) vanish, implying that (3.38), (3.39) do not exist either.

Only in exceptional cases do we get control over the zeros when we can perform an integral completely.

Often the integral is a beta-function, then we call our way of proof "the beta-function argument". More

e�ort is needed to evaluate integrals in terms of functions p+1Fp(1) in which case the zeros are also

controllable.

A simple but surprisingly powerful argument to eliminate whole sequences of poles comes from the

symmetry of the graph (Fig.4). We de�ne this symmetry to consist of those mappings of the graph on

itself:

(a) which lead to the same graph after an appropriate relabelling of the external coordinates and the

�eld dimensions;

(b) leave u and v invariant.

In the case of Fig.4, this leads to a group Z2 � Z2, generated by the reections

S1 : 1 ! 2; 3 ! 4

S2 : 1 ! 4; 3 ! 2 (3.50)

While the Green function G(x1; x2; x3; x4) is invariant under Z2�Z2 by de�nition, the invariant function

~G is not. Let Si( ~G) denote the function obtained by applying (3.50) to the dimensions in ~G, then from

(2.1) we obtain

~G(u; v) = u�iv�iSi( ~G)(u; v) (3.51)

with

S1 : �1 =
1

2
(�2 + �3 � �1 � �4); �1=

1

2
(�1 + �3 � �2 � �4) (3.52)

S2 : �2 = 0; �2 = �1 (3.53)

Inserting (3.51) into (2.5), we see that the labels fkg of k are submitted to a representation of Z2 �Z2:

Si ! �i, so that:

Si(k) + �i = �i(k) (3.54)

Si(Gk)v
�i = G�i(k) (3.55)

Holomorphy of Gk at v = 1 is obviously not touched by (3.55). Applying (3.54) to the graph Fig.4, we

�nd

�1(1) = 2; �1(2)= 1;

�2(1) = 1; �2(2) = 2 (3.56)
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and

�1;2(4) = 4 (3.57)

whereas 3 does not �t into any representation.

4 The AdS box graph

Now we turn to the box graph Fig.7. In terms of bulk-to-bulk propagators G� and bulk-to-surface

propagators K�, the Green function is given by the integral

G(x1; x2; x3; x4) =

Z 4Y
i=1

d�(wi)K�i(xi; wi)G�i(wi; wi+1); w5 = w1 (4.1)

Again we consider the limit (3.3), (3.8). Due to the four bulk-to-bulk propagators, the invariant Green

function ~G(u; v) has the form of a sixfold Mellin-Barnes integral9

~G(u; v) =
1

28�2d
�(�3)Q4

i=1 �(�i)
(2�i)�6

+i1ZZ
�i1

d�1d�2

+i1ZZZZ
�i1

f
4Y
i=1

dsi
�( 1

2
�i)

�(~�i + si + 1)
g

� �(��+ �1 + �2) e
i�
P

i
si u�1 (v � 1)�2 �(�1; �2; s1; s2; s3; s4) (4.2)

where

�i = �i + �i + 2si + �i�1 + 2si�1 � d; (�0 = �4; s0 = s4) (4.3)

and the meromorphic function � is given by

�(�1; �2; s1; s2; s3; s4) =

2Y
i=1

�(��i)
4Y

j=1

�(�sj)

Z
K6

(

4Y
i=1(6=3)

d�i �
�i�1
i )(

4Y
j=1

d�j �
�j+2sj�1

j �
�

1

2
�j

j )

� �(1�
4X

i=1(6=3)

�i �
4X

j=1

�j) �(A)
�

d
2
+�� f

�����1��2
0 f�11 f�22

Here

�i = �i + �i + �i�1; (�3 = 0; �0 = �4) (4.4)

and the remaining functions f0; f1; f2 and �(A) can be represented best with the help of elementary

symmetric polynomials

S2(1; 2; 3) = �1�2 + �1�3 + �2�3

S3(1; 2; 3; 4) = �1�2�3 + �1�3�4 + �2�3�4 + �1�2�4 (4.5)

9All the techniques and notations used are the same as in the preceeding section.
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namely

f0 = �2[�1�4S2(1; 2; 3) + (�1 + �4)S3(1; 2; 3; 4)] (4.6)

f1 = �1�4[S3(1; 2; 3; 4) + �2�4(�2 + �3)] (4.7)

f2 = �2�4[S3(1; 2; 3; 4) + �1�2�3] (4.8)

�(A) = �1�2�4(�2 + �3) + �1�2S2(2; 3; 4) + �1�4S2(1; 2; 3)

+ �2�4(�1 + �4)(�2 + �3) + (�1 + �2 + �4)S3(1; 2; 3; 4) (4.9)

The function �(A) originates from the determinant in the Gaussian integration. It is obvious that

0 �
f2

f0
� 1 on K 6 (4.10)

so that the only relevant poles in �2 arise from �(��2).

The analysis of the pole positions in �1 is rather involved. In the sequel n0 2 N0 holds throughout.

There is one face of type K 5 producing a singularity:

I �2 = 0: poles appear at

�1 =
1

2
(�2 + �3 � �1 � �4) + n0 (4.11)

1 =
1

2
(�2 + �3 � �1 � �4) (4.12)

There are two faces of K 4 type leading to poles.

II �1 = �2 = 0: we introduce the parameters

�1 = ��; �2 = �(1� �) (4.13)

and let �! 0. This gives pole positions

�1 = �1 + �2 + 2(s1 + s2)���+ n0 (4.14)

If the pole positions of s1; s2 are chosen from N0, we get

2 = �1 + �2 ��� (4.15)

The other case is

III �1 = �3 = 0: this case is treated analogously to case (II). We �nd poles at

�1 = �1 + �3 + 2(s1 + s3)���+ n0 (4.16)

If the pole positions of s1; s3 are from N0, we �nd

3 = �1 + �3 ��� (4.17)
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Now we come to the intersections K 5 \ K 4 and K 4 \ K 04 of K 3 type.

IV �1 = �2 = �3 = 0: we choose as parameters

�i = ��i; i 2 f1; 2; 3g;
X
i

�i = 1 (4.18)

and let �! 0. Pole positions are

�1 = �1 +
1

2
(�2 + �3) + 2s1 + s2 + s3 �

1

2
(�1 + �2 + �4) + n0 (4.19)

If the fsig3i=1 have poles in N0, we get

4 = �1 +
1

2
(�2 + �3)�

1

2
(�1 + �2 + �4) (4.20)

V �1 = �2 = �2 = 0: we choose as parameters

�i = ��i; i 2 f1; 2g; �2 = ��3 (4.21)

and let �! 0. The poles of �1 appear at

�1 =
1

2
(�1 + �2 � �1 � �4 + �3) + s1 + s2 + n0 (4.22)

Provided the poles of s1; s2 are in N0, we �nd

5 =
1

2
(�1 + �2 � �1 � �4 + �3) (4.23)

However, if we perform some of the integrations after insertion of the delta function �(0)(�) corre-

sponding to the pole (4.28) by (3.32), we obtain a beta function with denominator �(�2n0). So

these poles (V) cancel completely.

VI �1 = �3 = �2 = 0: We proceed as in the case (V) and get as pole positions

�1 = �1 + �3 +
1

2
(�2 + �3 � �1 � �4)�

1

2
d+ 2(s1 + s3) + n0 (4.24)

which, if the poles of s1; s3 are in N0, gives

6 = �1 + �3 +
1

2
(�2 + �3 � �1 � �4)�

1

2
d (4.25)

VII Finally, there is one K 2 face: �2 = �1 = �2 = �3 = 0: coordinates are

�i = ��i; i 2 f1; 2; 3g; �2 = ��4;
X
i

�i = 1 (4.26)

and we let �! 0. We get the pole positions

�1 =
1

2
(�1 + �3 � �1 � �4) + s1 + s3 + n0 (4.27)

If s1; s3 have poles in N0, we obtain

7 =
1

2
(�1 + �3 � �1 � �4): (4.28)
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The symmetry group of the graph Fig.7 is the same as that of Fig.4: Z2 � Z2. It acts on the �i as

S1(�i) = �i; i 2 1; 3; S1(�2)= �4; S1(�4) = �2 (4.29)

S2(�i) = �i; i 2 2; 4; S2(�1)= �3; S2(�3) = �1 (4.30)

This rules out all 's, except 1; 7 and of course 0 = 0, which originates from the �1 poles of �(��1).

Thus the AdS box graph has the same critical exponents as the CFT box graph Fig.6.

The poles in s4 are all from �(�s4). The other variables (s1; s2; s3)produce poles of the function �

(4.4) that can be ordered in (triple) sequences

f(�1 + n1; �2 + n2; �3 + n3); �i �xed; ni 2 N0 runningg (4.31)

In the two tables below we list all possible triples (�1; �2; �3) and their connection ("origin") with the �1

singularities (I) - (VII). The entries in the tables originating from the cases VI or VII are marked by (*).

The corresponding ni runs over
1
2
N0 (not N0).

origin �1 �2 �3

I 0 0 0

II 1
2
(�2 � �1 � �2) 0 0

II 0 1
2
(�2 � �1 � �2) 0

II,IV,VII 0 1
2
(�2 � �1 � �2)�

1
2
(�2 + �3 � �1 � �3)

II,IV,VII 1
2
(�2 � �1 � �2)� 0 1

2
(�3 + �2 � �3)�

II,IV,VII 1
2
(�2 + �3 � �1 � �3)

1
2
(�3 � �2 � �3)� 0

VI � 1
2
(�1 + �3) +

1
4
d� 0 0

VI 0 0 � 1
2
(�1 + �3) +

1
4
d�

VII 1
2
(�2 + �3 � �1 � �3) 0 0

VII 0 0 1
2
(�2 + �3 � �1 � �3)

VII 0 1
2
(3�2 � d� �1 � �2)

1
2
(�2 + �3 � �1 � �3)

VII 1
2
(3�2 � d� �1 � �2) 0 1

2
(�2 � �3 � 2�2 + �3 + d)

VII 1
2
(�2 + �3 � �1 � �3)

1
2
(��2 + �3 + 2�2 � �3 � d) 0

Table 1: Sequences of fs1; s2; s3g poles contributing to u
1F1(u; v), 1 =

1
2
(�2 + �3 � �1 � �4)

5 Concluding Remarks

We have proved that for the box graphs of CFTd and AdSd+1 supergravity, we obtain the same critical

exponents, namely those which are determined from the "Cutkosky rule" with external lines included. We
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origin �1 �2 �3

IV 0 1
2
(�2 � �1 � �2) 0

VII 0 0 0

VII 0 1
4
(��1 � 2�2 + �3 + �2 � �3)� 0

VII 0 1
2
(�1 � �2 + 2�3 + �2 � 2�3 � d)� 0

Table 2: Sequences of fs1; s2; s3g poles contributing to u7F7(u; v), 7 =
1
2
(�1 + �3 � �1 � �4)

suggest that this behavior is also shown by other one-particle-irreducible graphs. Each critical exponent

k belongs to one or more sequence of poles in the Mellin-Barnes parameters (s1; s2; s3), each of which is

generated by a triple (�1; �2; �3) (see (4.31)), and each sequence contributes to the coe�cient c
(k)
mn in (2.6).

The larger the number of k; �1; �2; �3 that are nonzero, the smaller the number of remaining integrations.

More details on this can be found in [18].

Acknowledgements

The authors thank A. C. Petkou for interesting discussions during the initial stages and one of us (W.

R.) thanks the sta� of the Werner-Heisenberg-Institut in Munich for their hospitality during the �nal

stage of this work.

References

[1] J. Maldacena, \The large N limit of superconformal �eld theories and supergravity", Adv. Theor.

Math. Phys. 2 (1998) 231-252, hep-th/9711200.

[2] S.S. Gubser, I.R. Klebanov and A. M. Polyakov, \Gauge theory correlators from noncritical string

theory", Phys. Lett. B428 (1998) 105, hep-th/9802109.

[3] E. Witten, \Anti-de Sitter space and holography", Adv. Theor. Math.Phys. 2 (1998) 253-291, hep-

th/9805028.

[4] J. L. Petersen, \Introduction to Maldacena Conjecture on AdS/CFT, hep-th/9902131; O. Aharony,

S.S. Gubser, J. Maldacena, H. Ooguri and Y. Oz, \Large N �eld theories, string theory and gravity",

hep-th/9905111.

[5] A. Bilal, C.-S. Chu, \A note on the Chiral Anomaly in the AdS/CFT correspondence and 1
N2 correc-

tion", hep-th/9907106; \Testing the AdS/CFT correspondence beyond the large N , hep-th/0003129.

19

http://xxx.lanl.gov/abs/hep-th/9711200
http://xxx.lanl.gov/abs/hep-th/9802109
http://xxx.lanl.gov/abs/hep-th/9805028
http://xxx.lanl.gov/abs/hep-th/9805028
http://xxx.lanl.gov/abs/hep-th/9902131
http://xxx.lanl.gov/abs/hep-th/9905111
http://xxx.lanl.gov/abs/hep-th/9907106
http://xxx.lanl.gov/abs/hep-th/0003129


[6] A. Petkou, K. Skenderis, \A non-renormalization theorem for conformal anomalies", hep-th/9906030.

[7] M. Bianchi, S. Kovacs, \Non-renormalization of extremal correlators in N = 4 SYM theory", hep-

th/9910016.

[8] B. Eden, P.S. Howe, C. Schubert, E. Sokatchev, P. C. West, \Extremal correlators in four-dimensional

SCFT", hep-th/9910150.

[9] E. d'Hoker, S. D. Mathur, A. Matusis, L. Rastelli, \The operator product expansion of N = 4 SYM

and the 4-point functions of supergravity", hep-th/9911222.

[10] G. Arutyunov, S. Frolov, A. C. Petkou, \The Operator Product Expansion of the Lowest Weight

CPOs in N = 4 SYM4 at Strong Coupling", hep-th/0005182.

[11] S. Penati, A.Santambrogio , D. Zanon, \Two-point functions of chiral operators in N = 4 SYM at

order g4", hep-th/9910197; \Correlation functions of chiral primary operators in perturbative N = 4

SYM", hep-th/0003026.

[12] H. Liu, \Scattering in Anti-de-Sitter space and Operator Product Expansion", hep-th/9811152;

D. Freedman, S. D. Mathur, A. Matusis, L. Rastelli, \Correlation functions in the CFTd/AdSd+1

correspondence", hep-th/9804058.

[13] L. Ho�mann, A. Petkou, W. R�uhl, \Aspects of the Conformal Operator Product Expansion in

AdS/CFT Correspondence", hep-th/0002154.

[14] V. K. Dobrev, G. Mack, V. B. Petkova, S. G. Petrova, I. Todorov, Harmonic analysis on the n-

dimensional conformal group and its applications to conformal quantum �eld theory, Lecture Notes

in Physics, Vol.63, Springer-Verlag, Berlin (1977).

[15] R. E. Cutkosky, J. Math.Phys.1 (1960), 429; see also C. Itzykson, J.-B. Zuber, Quantum Field

Theory, Mc Graw-Hill, New York (1980): Section 6-3-4.

[16] K. Lang, W. R�uhl, \The critical O(N) �-model at dimension 2 < d < 4 and order 1
N2 : Operator

product expansions and renormalization", Nucl.Phys. B377 (1992), 371.

[17] K. Symanzik, \On Calculations in Conformal Invariant Field Theories", Lett. Nuovo Cim. 3 (1972),

734.

[18] L. Ho�mann, University of Kaiserslautern, PhD Thesis, to appear.

20

http://xxx.lanl.gov/abs/hep-th/9906030
http://xxx.lanl.gov/abs/hep-th/9910016
http://xxx.lanl.gov/abs/hep-th/9910016
http://xxx.lanl.gov/abs/hep-th/9910150
http://xxx.lanl.gov/abs/hep-th/9911222
http://xxx.lanl.gov/abs/hep-th/0005182
http://xxx.lanl.gov/abs/hep-th/9910197
http://xxx.lanl.gov/abs/hep-th/0003026
http://xxx.lanl.gov/abs/hep-th/9811152
http://xxx.lanl.gov/abs/hep-th/9804058
http://xxx.lanl.gov/abs/hep-th/0002154

