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Abstract

We develop a constructive method to derive exactly solvable quan-

tummechanical models of rational (Calogero) and trigonometric (Suther-

land) type. This method starts from a linear algebra problem: �nding

eigenvectors of triangular �nite matrices. These eigenvectors are tran-

scribed into eigenfunctions of a selfadjoint Schr�odinger operator. We

prove the feasibility of our method by constructing an "AG3 model" of

trigonometric type (the rational case was known before from Wolfes

1975). Applying a Coxeter group analysis we prove its equivalence

with the B3 model. In order to better understand features of our

construction we exhibit the F4 rational model with our method.
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1 Introduction

The completely integrable models are traditionally characterized by their

relation with simple Lie algebras An; Bn; Cn; Dn; G2; F4; E6; E7; E8. This

relation is the starting point of the Hamiltonian reduction method exploited

by Olshanetsky and Perelomov [1]. These models possess as limiting cases the

trigonometric (Sutherland) and rational (Calogero) models that are exactly

soluble, i.e. their eigenvalues and eigenvectors can be derived by elementary

methods.

This exact solvability has been shown to follow from the fact that the

Schr�odinger operators can, after a "gauge transformation", be rewritten as

a quadratic form of Lie algebra operators. These Lie algebra operators are

represented as di�erential operators acting on polynomial spaces. This pro-

gram was formulated in [2] and successfully applied �rst to the An series in

[3]. Then it was carried over to the other sequences Bn; Cn; Dn and G2 and

even to corresponding supersymmetric models [4, 5].

Our aim was to turn the arguments around and to develop an algorithm

which may allow us to construct new exactly soluble models. First investi-

gations were presented in [6]. The program contains two major and separate

issues, to render a second order di�erential operator curvature free and to

�nd a �rst order di�erential operator satisfying an integrability constraint. In

this paper we present our algorithm in the following version. We start from

a standard at Laplacian and introduce Coxeter (or Weyl) group invariants

as new coordinates. If the Coxeter group contains a symmetric group as sub-

group, these invariants are built from elementary symmetric polynomials.

The second order di�erential operators obtained this way are curvature free

by construction, and act on polynomial spaces of these Coxeter invariants

that form a ag. This ag is de�ned by means of a characteristic vector

(~p-vector).

Then we solve the integrability constraints by constructing "prepoten-

tials" with a �xed algorithm. These prepotentials de�ne the gauge transfor-

mation alluded to above which renders the di�erential operator the form of

a standard Schr�odinger operator of N particles in 1-dimensional space with

a potential. Each prepotential contributes an additive term to this poten-

tial with a free (real) coupling constant. Finally the prepotentials de�ne the

ground state wave function of the Schr�odinger operator which originates from

the trivial polynomial in the ag and thus contains no further information.

Except a possible oscillator prepotential in the translation invariant cases,

the prepotentials are in one-to-one relation with the orbits of the Coxeter

group.

We show that all known exactly soluble models can be obtained this way

(at present we have to make an exemption with respect to E6; E7; E8, but

this will soon be overcome). Applying the method of constructing the Coxeter
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invariants of A2 [4] to A3, we obtain an "AG3 model". Its Coxeter diagram

is that of the a�ne Coxeter group B̂3, which possesses the same invariants

as the Coxeter group B3. This leads to an explicit proof of the equivalence of

the AG3 model with the B3 model. Thus a translation invariant four{particle

model after separation of the c.m. motion is shown to be equivalent with a

translation non{invariant three-particle model. In this paper we also discuss

F4 from the view point of our algorithm. The Schr�odinger operator obtained

(only the rational case) deviates slightly from the one given in [1] (probably

due to a simple printing error in [1]).

Thus our method shifts the centre of interest from the simple Lie alge-

bras and their homogeneous spaces to the corresponding Weyl groups and by

generalization to the Coxeter groups. On the other hand, the di�erential op-

erators acting on polynomial spaces of Coxeter invariants de�ne Lie algebras

of their own, but at present these algebras are only of marginal interest.

2 The constructive program

We are interested here in the bound state spectrum of Schr�odinger operators.

The whole analysis is therefore performed in real spaces. Consider a ag of

polynomial spaces VN(~p); N 2 ZZ�, ~p 2 INn

VN(~p) = span fzr11 zr22 :::zrnn jr1p1 + r2p2 + :::+ rnpn � Ng (2.1)

(pi 2 IN)

We consider di�erential operators of �rst order

D
(1)

[~�;a] = z[~�]
@

@za
(2.2)

(~� a multi-exponent)

and of second order

D
(2)

[~�;a;b] = z[~�]
@2

@za@zb
(2.3)

that leave each space VN (~p) invariant. If

~p = (1; 1; :::; 1) (2.4)

then the operators (2.2) generate the full linear (inhomogeneous) group of

IRn and the operators of second order (2.3) can be obtained as products from

the �rst order operators, i.e. in (2.2)

~� = e(c); e
(c)
b = �cb or ~� = 0 (2.5)

and in (2.3)

~� = e(c) + e(d) or ~� = e(c) or ~� = 0 (2.6)
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Now we consider a candidate for a future Schr�odinger operator

D = �
X
~�;a;b

g[~�;a;b]D
(2)

[~�;a;b]

+
X
~�;c

h
[~�;c]D

(1)

[~�;c]
(2.7)

The eigenvectors and values of D in VN can be calculated easily by �nite

linear algebra methods. Let

UN = VN=VN�1 (2.8)

and the diagonal part of D on UN be de�ned as DN

DNUN = DUN \ UN (2.9)

If the eigenvalues of DN are all di�erent, the number of eigenvectors equals

dimUN . But if some eigenvalues coincide (this is true in the generic case!) the

number of eigenvectors is smaller. Then the Hilbert space on which the �nal

selfadjoint Schr�odinger operator is acting is not an L2 -space. The missing

eigenfunctions can be described. For more details see [6].

If we want completely integrable models we must make sure that a com-

plete set of involutive di�erential operators exists. For this task Lie algebraic

methods may be very helpful.

Given a di�erential operator (2.7) one can characterize the vector ~p in

(2.1) by inequalities

g[~�;a;b] 6= 0 ) ~p~�� pa � pb � 0 (2.10)

h
[~�;c] 6= 0 ) ~p~� � pc � 0 (2.11)

There should be enough equality signs in (2.10),(2.11) for a chosen ~p so that
DN 6= 0. It turns out that there exists a minimal ~p-vector ~pmin so that the

VN(~pmin) spaces are maximal: For each N; ~p there is N 0 so that

VN(~p) � VN 0(~pmin) (2.12)

It is convenient to work only with this minimal ~p-vector.
The �rst step in transforming D into a Schr�odinger operator is to write

it symmetrically

D = �
X
a;b

@

@za
g�1
ab (z)

@

@zb
+
X
a

ra(z)
@

@za
(2.13)

where

g�1
ab =

X
~�

g[~�;a;b]z
[~�] (2.14)
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We write g�1
ab because this is the inverse of a Riemann tensor. The Riemann

tensor gab is assumed to be curvature free. The task to make it so will not

arise in this work. But we mention that we developed a minimal algorithm

to solve this issue.

Following the notations of [6] we "gauge" the polynomial eigenfunctions

' of D by

 (z) = e��(z)'(z) (2.15)

so that

e��De+� = � 1p
g

X
a;b

@

@za
(
p
gg�1

ab )
@

@zb
+W (z) (2.16)

(g = (det g�1)�1).

This is possible if and only if

X
b

g�1
ab (z)

@

@zb
[2�� ln

p
g] = ra(z) (2.17)

which implies integrability constraints on the functions fra(z)g. If they are

ful�lled we obtain a "prepotential"

� = lnP (2.18)

so that

� = 2�� ln
p
g (2.19)

In most cases studied, we found solutions for � as follows. Let

det g�1(z) =
rY

i=1

Pi(z) (2.20)

where fPi(z)g are di�erent real polynomials. Then

�(z) =
rX

i=1

i lnPi(z) (2.21)

with free parameters i solves the requirement that fra(z)g (2.17) belong to

di�erential operators leaving each VN invariant. In particular

r(i)a (z) =
1

Pi(z)

X
b

g�1
ab (z)

@Pi

@zb
(2.22)

are polynomials. Inserting (2.20), (2.21) in (2.19) we obtain �nally

� =
1

2

rX
i=1

(i �
1

2
) lnPi (2.23)

5



We will later see that in the case of the models of Calogero type a term

0 lnP0 (2.24)

can be added to �, where

P0(z) = ez1 (2.25)

is not contained in det g�1 as a factor. This prepotential gives rise to the

oscillator potential.

Finally we mention that e�� is the ground state wave function of the

Schr�odinger operator, as follows from (2.15).

The expression [6], (6.17) for the potential W (z) contains a term linear

in �

�
X
a;b

@

@za

 
g�1
ab

@�

@zb

!
= �1

2

rX
i=1

(i �
1

2
)
X
a

@

@za
r(i)a (2.26)

Each divergence X
a

@

@za
r(i)a (z) = C(i) (2.27)

ought to be a constant. From now on we shall dismiss all constant terms in

W (z).

We can then write the potential as

W (z) =
X
i;j

ijRij(z) (2.28)

Rij =
X
a;b

g�1
ab

@ lnPi

@za

@ lnPj
@zb

(2.29)

ij =
1

4
(ij �

1

4
) (i; j 6= 0): (2.30)

In the cases of this article

Rij = const if i 6= j (2.31)

If we then set

i = ��i +
1

2
(i 6= 0) (2.32)

we obtain

W (z) =
rX

i=1

iiRii(z) (2.33)

with

ii =
1

4
�i(�i � 1) (2.34)

As stated in the Introduction the variables fzig appearing in this section

are identi�ed with Coxeter invariants formed from root space coordinates
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fxng or fyng. These invariants are either polynomial or trigonometric. Fi-

nally we return from the invariant coordinates fzig to the root space coordi-
nates fxng in the Schr�odinger operator (2.16). Each contribution

Rii =
Qii

Pi
(2.35)

admits a partial fraction decomposition due to the factorization of the prepo-

tentials Pi (Section 5). The label i = 1 is always reserved to a "Vandermonde

prepotential", i.e.

P1 �
Y
i<j

(xi � xj)
2 or

Y
i<j

(sin(xi � xj))
2 (2.36)

or alike.

3 Translation invariant models

3.1 Relative coordinates

The Laplacian for an Euclidean space IRN

� =
NX
i=1

@2

@x2i
(3.1)

is translation invariant. We introduce relative coordinates by

yi = xi �
1

N
X (3.2)

X =
NX
i=1

xi (3.3)

They separate the Laplacian such that

� = N
@2

@X2
+

NX
i=1

@2

@y2i
� 1

N

 
NX
i=1

@

@yi

!2

(3.4)

We use all fyigNi=1 as coordinates on the plane

NX
i=1

yi = 0 (3.5)

in order to maintain permutation symmetry.
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3.2 Elementary symmetric polynomials

Elementary symmetric polynomials of N variables fqigNi=1 are de�ned by a

generating function
NX
n=0

pn(q)t
n =

NY
i=1

(1 + qit) (3.6)

They are invariant under the symmetric group SN . For each g 2 SN we have

a sector (simplex) Eg � IRN

Eg = fqi1 < qi2 < : : : < qiN ; in = g(n)g (3.7)

so that

IRN =
[

g2SN

�Eg (3.8)

Inside Eg we can use the fpngNn=1 as coordinates since

Mni =
@pn

@qi
(3.9)

detM = (�1)[N2 ]V (q1; q2; :::qN ) (3.10)

where V is the Vandermonde determinant.

3.3 The AN�1 series

The root system of AN�1 and the corresponding Weyl group possess elemen-

tary symmetric polynomials as invariants. We express the Laplacian in each

sector Eg (3.7) intersected with the plane (3.5) in terms of these polynomials

�n(y1; :::; yN) = pn(q)jqi=yi all i (3.11)

The dynamics will be bounded to such sectors by corresponding potential

walls automatically.

Then (see [3]) it results

NX
i=1

@2

@y2i
� 1

N

 
NX
i=1

@

@yi

!2

=
NX

n;m=2

g�1
nm

@2

@�n@�m
+

NX
n=2

hn
@

@�n
(3.12)

with

g�1
nm(�) =

1

N
(m� 1)(N � n+ 1)�n�m � Tn�1;m�1(�) (3.13)

and

Tnm(�) =
X
l�1

(2l + n�m)�n+l�m�l (3.14)
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Here it is understood that

�0 = 1

�1 = 0

�n = 0 for n < 0; n > N (3.15)

In this case det g�1 is indecomposable as a polynomial, so we set

P0 = e!�2 (3.16)

P1 = det g�1 = CNV (y1; :::; yN)
2 (3.17)

The resulting vectors fragN2 are

r(0) = (�2�2;�3�3; :::;�N�N ) (3.18)

r(1) : explicit formulas known only forN � 4 (3.19)

and the potential is

1

2
W (x) =

1

2
!2

NX
i=1

x2i + g
X

1�i<j�N

(xi � xj)
�2 (3.20)

The corresponding Sutherland models are obtained as follows. We use as

coordinates a system f�ngNn=2 de�ned by (these di�er from those in [3])

�0 =
NY
i=1

cos yi (3.21)

and

�n = �0 � pn(q)jqi=tan yi (3.22)

The identity

1 = exp

0
@i NX

j=1

yj

1
A

=
NY
j=1

(cos yj + i sin yj)

=
NX
n=0

in�n(y) (3.23)

allows us to eliminate �0 and �1 in terms of the remaining f�ngNn=2 so that

polynomials go into polynomials.
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The Laplacian is expressed correspondingly as

NX
i=1

@2

@y21
� 1

N

 
NX
i=1

@

@yi

!2

=

=
NX

n;m=2

g�1
nm

@2

@�n@�m
+

NX
n=2

hn
@

@�n
(3.24)

g�1
nm(�) = �Tn+1;m+1(�)� Tn+1;m�1(�)

�Tn�1;m+1(�)� Tn�1;m�1(�)

+
1

N
[(m+ 1)�m+1 + (m� 1)�m�1]

�[(N � n� 1)�n+1 + (N � n+ 1)�n�1] (3.25)

with Tnm as in (3.14).

Once again det g�1 is indecomposable, so we set

P1 = det g�1 = C 0
N
~V (y1; :::; yN)

2 (3.26)

where
~V (y1; :::; yN) =

Y
i<j

sin(yi � yj) (3.27)

has the symmetry of the Vandermonde determinant (translations and per-

mutations). The vector r(1) is known only up to N = 4. Finally we obtain

as potential
1

2
W (x) = g

X
1�i<j�N

sin(xi � xj)
�2 (3.28)

In each case AN�1 the minimal p-vector is (1; 1; :::; 1) 2 INN�1.

3.4 The G2 and AG3 models

The models G2 and AG3 belong also to the domain of translation invariant

models [4]. For G2 we start from A2 and extend its Weyl group by a ZZ2

group

yi ! �yi
As invariant variables we use [4]

�2 = �2 (3.29)

�3 = � 23 (3.30)
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In these variables

3X
i=1

@2

@y2i
� 1

3

 
3X

i=1

@

@yi

!2

=

=
3X

a;b=2

g�1
ab

@2

@�a@�b
+

3X
a=2

ha
@

@�a
(3.31)

We �nd

g�1(�) =

 
�2�2; �6�3
�6�3; +8

3
�22�3

!
(3.32)

so that

det g�1 = �4

3
�3(4�

3
2 + 27�3) (3.33)

Thus as ansatz for the prepotentials we use

P0 = e!�2 (3.34)

P1 = 4�32 + 27�3 (3.35)

P2 = �3 (3.36)

The r-vectors (justifying this ansatz) are

r(0) = (�2�2;�6�3) (3.37)

r(1) = (�6; 0) (3.38)

r(2) = (�6;+8

3
�22) (3.39)

The minimal ~p-vector is

~p = (1; 2) (3.40)

The potential is

1

2
W (x) =

1

2
!2

3X
i=1

x2i (3.41)

+g1
X

1�i<j�3

(xi � xj)
�2 + g2

X
i<j;k=2(i;j)

(xi + xj � 2xk)
�2

with

g1 = �1(�1 � 1)

g2 = 3�2(�2 � 1) (3.42)

If

�2 = 0 or �2 = 1 (3.43)

we return to the A2 model.
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In the Sutherland case we use as variables

�2 = �2 (3.44)

�3 = �2
3 (3.45)

leading to the inverse Riemann tensor

g�1 =

 
�2�2 � 2�2

2 +
2
3
�3; ��3(6 +

16
3
�2)

��3(6 +
16
3
�2);

8
3
�2
2�3 � 8�2

3

!
(3.46)

Now det g�1 is decomposable with

det g�1 = �4

3
�3P1(�) (3.47)

and

P1(�) = 4�2
3 + �3(8�

2
2 + 36�2 + 27) + 4�3

2(1 + �2) (3.48)

P2(�) = �3 (3.49)

The r-vectors are

r(1) = (�6� 8�2;�16�3) (3.50)

r(2) = (�6� 16

3
�2;

8

3
�2
2 � 16�3) (3.51)

The resulting potential is

1

2
W (x) = g1

X
1�i<j�3

sin(xi � xj)
�2

+
1

9
g2

X
i<j;k=2(i;j)

sin
1

3
(xi + xj � 2xk)

�2 (3.52)

In the case of the A2 models the spaces VN decompose into even and

odd subspaces in �3 (or �3) which are left invariant separately under action

of the Laplacian. In the case of the odd spaces we can factor �3(�3) and
leave an even space as well. In each case we obtain a polynomial space in

the variables �2; �3 = � 23 (�2; �3 = �2
3). Thus starting from such polynomial

space and multiplying with � �23 (��23 ) we obtain the A2 model if �2 = 0 or

�2 = 1 but a new potential in all other cases.

It is plausible that a similar procedure works forA3 but not forAN�1; N �
5. In the latter models we have two or more odd variables �3; �5; :::(�3; �5; :::)

and there is no factorization of the odd invariant subspaces. Let us sketch

the A3 model whose extension leads to the AG3 model [8].

In this case the variables are chosen as in (3.29), (3.30), (3.44), (3.45)

�2 = �2; �3 = � 23 ; �4 = �4 (3.53)
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The inverse Riemann tensor is

g�1 =

0
B@
�2�2; �6�3; �4�4
�6�3; 4�3(�

2
2 � 4�4); �2�3

�4�4; +�2�3; �2�2�4 + 3
4
�3

1
CA (3.54)

The determinant is decomposable as

det g�1 = �3P1(�) (3.55)

and the ansatz for the prepotentials is

P0(�) = e!�2 (3.56)

P1(�) = 27�23 � 256�34 + 128�22�
2
4 (3.57)

�16�42�4 + 4�32�3 � 144�2�3�4

P2(�) = �3 (3.58)

The r-vectors come out as

r(0) = (�2�2;�6�3;�4�4) (3.59)

r(1) = (�12; 0;�2�2) (3.60)

r(2) = (�6; 4(�22 � 4�4); �2) (3.61)

The potential for this Calogero type model is

1

2
W (x) =

1

2
!2

4X
i=1

x2i (3.62)

+g1
X

1�i<j�4

(xi � xj)
�2 + g2

X
3 terms

(xi + xj � xk � xl)
�2

with

g1 = �1(�1 � 1); g2 = 2�2(�2 � 1) (3.63)

It was discovered �rst by Wolfes, [7].

The Sutherland model is obtained in the same fashion. With

�2 = �2; �3 = �2
3 ; �4 = �4 (3.64)

the inverse Riemann tensor is

g�1
22 = �2�2 � 2�2

2 � 8�4 + 2�3 + 8�2�4 + 8�2
4 (3.65)

g�1
23 = �6�3 � 4�2�3 (3.66)

g�1
24 = �4�4 � 6�2�4 + �3 + 4�2

4 (3.67)

g�1
33 = 4�3[�4�4 + �2

2 � 4�2�4 + 4�2
4 � 2�3] (3.68)

g�1
34 = �2�3 � 6�3�4 (3.69)

g�1
44 = �2�2�4 +

3

4
�3 (3.70)
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Its determinant decomposes

det g�1 = ��3P1(�) (3.71)

P1(�) = 256�6
4 + 32 further terms (3.72)

(equ. (A.2) from [8])

P2(�) = �3 (3.73)

and the r-vectors are

r(1) = (�16�2 � 12;�24�3;�12�4 � 2�2) (3.74)

r(2) = (�4�2 � 8; 16�2
4 � 16�4�2 + 4�2

2 � 8�3 � 16�4;�6�4 + �2) (3.75)

The factorization of �3 which is necessary in this case is

�3 = �
Y

1�i<j�3

sin(yi + yj) (3.76)

implying
Q22

P2

= 4
X

1�i<j�3

(sin(yi + yj))
�2 (3.77)

This gives the potential

1

2
W (x) = g1

X
1�i<j�4

(sin(xi � xj))
�2

+
1

4
g2

X
3 cases

(sin
1

2
(xi + xj � xk � xl))

�2 (3.78)

The discussion of this AG3 model is resumed in Section 5.

4 Translation non-invariant models

4.1 The BCN and DN models

As we shall see there is only one series with two (Calogero) and three (Suther-

land) independent coupling constants. For any such model we use as Carte-

sian coordinates fxigNi=1 and require permutation symmetry SN and reection

symmetry (ZZ2)
N xi ! �xi for each i separately. Then the natural coordi-

nates invariant under these group actions are [5]

�n(x) = pn(q)jqi=x2
i
; all i (4.1)

There is a bilinear relation with the fpn(x)gNn=1

�n(x) =
2nX
k=0

(�1)n�kp2n�k(x)pk(x) (4.2)
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The inverse Riemann tensor for the full Laplacian (3.1) is then

g�1
nm(�) = 4Mnm(�) (4.3)

where we introduce the shorthand

Mnm(�) =
X
l�0

(2l + n�m+ 1)�n+l�m�1�l (4.4)

Its determinant factorizes

det g�1 = (�1)[N2 ]4N�NP1(�) (4.5)

where

P1(�) = NN�N�1
N + ::: (4.6)

= DNV (x
2
1; x

2
2; :::x

2
N)

2

and

P2(�) = �N (4.7)

Both functions P1; P2 factorize in a trivial way. In the general case there is

no explicit expression for r(1) but

r(2)a = 4(N � a+ 1)�a�1 (4.8)

If follows

R22 = 4
�N�1

�N
= 4

4X
i=1

x�2
i (4.9)

The resulting potential is, including an oscillator potential

1

2
W (x) =

1

2
!2

NX
i=1

x2i + g1
X

1�i<j�N

[(xi � xj)
�2 + (xi + xj)

�2]

+g2

NX
i=1

x�2
i (4.10)

g1 = �1(�1 � 1) (4.11)

g2 =
1

2
�2(�2 � 1) (4.12)

In the Sutherland case we use coordinates

�0 =
NY
i=1

cos2 xi (4.13)

�n(x) = �0(x)pn(q)jqi=tan2 xi; all i (4.14)

n 2 f1; 2; :::Ng

15



From the identity

1 =
NY
i=1

(cos2 xi + sin2 xi)

=
NX
n=0

�n(x) (4.15)

we learn how to eliminate �0 in facour of f�ngNn1 so that a polynomial of

f�ngNn=0 remains a polynomial.

In this case the inverse Riemannian is

g�1
nm = 4fMn+1;m+1(�) +Mn;m(�)

�Mn;m+1(�)�Mn+1;m(�)g (4.16)

and the determinant decomposes as

det g�1 = 4N(�1)[N2 ]�0�NP1(�) (4.17)

Now the factorization of P1(�) is

P1(�) = D0
N

Y
1�i<j�N

(cos2 xi sin
2 xj � sin2 xi cos

2 xj)
2 (4.18)

and we choose

P2(�) = �N (4.19)

P3(�) = �0 (4.20)

Again we have no general explicit expression for r(1) but

r(2)a = 4[(N � a+ 1)�a�1 � (N � a)�a] (4.21)

r(3)a = 4[(a+ 1)�a+1 � a�a] (4.22)

so that

R22 =
�N�1

�N
= 4

NX
i=1

cot2 xi (4.23)

R33 =
�1

�0

= 4
NX
i=1

tan2 xi (4.24)

Thus we end up with a potential

1

2
W (x) = g1

X
1�i<j�N

[(sin(xi � xj))
�2 + (sin(xi + xj))

�2]

+g2

NX
i=1

(sin xi)
�2

+g3

NX
i=1

(cos xi)
�2 (4.25)
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where g1;2 are as in (4.11),(4.12) and

g3 =
1

2
�3(�3 � 1) (4.26)

An alternative form of the potential is obtained from

g2

sin2 x
+

g3

cos2 x
=
g2 � g3

sin2 x
+

4g3

sin2 2x
(4.27)

If we set g2 = g3 or g3 = 0 we obtain di�erent samples of the BCN or DN

series. We mention �nally that the minimal p-vector is in all cases

~p = (1; 1; :::1) 2 INN (4.28)

4.2 The F4 model

The F4 model belongs also to the translation noninvariant class. The Weyl

group of F4 possesses four basic polynomial invariants

I1(x); I3(x); I4(x); I6(x) (4.29)

(In of degree 2n) which can be expressed as polynomials in the f�ng4n=1 as

follows

I1 = �1 (4.30)

I3 = �3 �
1

6
�1�2 (4.31)

I4 = �4 �
1

4
�1�3 +

1

12
�22 (4.32)

I6 = �4�2 �
1

36
�32 +

1

24
�22�

2
1 �

1

64
�2�

4
1 (4.33)

In these coordinates the inverse Riemannian can be given as

g�1
1m = 4mIm (4.34)

g�1
33 =

20

3
I4I1 �

2

3
I3I

2
1 (4.35)

g�1
34 = 8I6 � 3I23 �

13

3
I4I

2
1 �

3

4
I3I

3
1 (4.36)

g�1
36 = 16I24 + I6I

2
1 + 14I4I3I1 +

5

2
I23 I

2
1 �

1

4
I4I

4
1 �

5

32
I3I

5
1 (4.37)

g�1
44 = �4I4I3 � 2I6I1 +

3

4
I4I

3
1 +

3

4
I23I1 +

3

16
I3I

4
1 (4.38)

g�1
46 = 8I24I1 + 2I4I3I

2
1 �

1

8
I4I

5
1 (4.39)

g�1
66 = 30I6I4I1 +

21

2
I6I3I

2
1 �

3

32
I6I

5
1 + 12I24I3 + 6I4I

2
3 I1

�3

8
I4I3I

4
1 +

3

4
I33I

2
1 +

3

1024
I3I

8
1 �

3

32
I23I

5
1 (4.40)
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The determinant decomposes into two factors

det g�1 =
1

3072
P1(I)P2(I) (4.41)

where P1(I) is connected with the Vandermonde determinant squared as

usual

P1(I) = �4096I34 + 432I43 + 3072I26 � 2304I6I4I
2
1

�576I6I3I31 + 864I4I
2
3 I

2
1 + 216I4I3I

5
1

+432I24I
4
1 + 27I23I

6
1 � 2304I6I

2
3 + 216I33I

3
1 (4.42)

or in factorized form

P1(I) = �16
Y

1�i<j�4

(x2i � x2j)
2 (4.43)

and P2(I)

P2(I) = 36864I26 � 18432I6I4I
2
1 � 4608I6I3I

3
1 + 32I6I

6
1

�49152I34 � 36864I24I3I1 + 1536I24I
4
1

+768I4I3I
5
1 � 12I4I

8
1 � 9216I4I

2
3 I

2
1

�768I33 I31 + 96I23I
6
1 � 3I3I

9
1 (4.44)

which factorizes as

P2(I) = �12�4(64�4 � 16�22 + 8�2�
2
1 � �41)

2

= �12x21x22x23x24
Y

�2;�3�42f1;0g

(x1 �
4X

i=2

(�1)�ixi)2 (4.45)

The r-vectors are

r(1) = (48;�2I21 ; 0; 36I4I1 + 12I3I
2
1 �

3

16
I51 ) (4.46)

r(2) = (48;�4I21 ;�12I3; 24I4I1 + 6I21I3 �
3

8
I51 ) (4.47)

The potential resulting is

1

2
W (x) =

1

2
!2

X
1�i�4

x2i + g1
X

1�i<j�4

[(xi � xj)
�2 + (xi + xj)

�2]

+g2f
X

�2;�3;�4

2f+1;0g

4

 
x1 �

4X
i=2

�ixi

!�2

+
4X

i=1

x�2
i g (4.48)

where g1;2 are as in (4.11),(4.12). The minimal p-vector is

~p = (1; 2; 3; 5) (4.49)
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5 Coxeter groups, orbits and prepotentials

The prepotentials used in the empirical constructions of sections 3 and 4 ne-

cessitate a mathematical interpretation. LetW be a Coxeter group generated

by the reections

fs�g (5.1)

where � are roots running over a set

� = f�gM1 (5.2)

The roots span an Euclidian space V . In this space the reections fs�g act
by

x 2 V : s�x = x� 2
(�; x)

(�; �)
� (5.3)

If the Coxeter group W is "crystallographic", it is a Weyl group (for more

details see [9]).

We denote a set of basic polynomial invariants of W by

fz1(x); : : : ; zn(x)g; n = dimV (5.4)

Invariance means

zi(w
�1x) = zi(x)

= wzi(x) (5.5)

for all w 2 W . The Jacobian for the transition fxjg ! fzig

J = det

(
@zi

@xj

)
(5.6)

can be factorized as follows ([9], Proposition 3.13).

Each reection s� leaves a hyperplane H� in V pointwise �xed, let H� be

given by a linear function l�
l�(x) = 0 (5.7)

Then due to the proposition

J = C
Y

�2�+

l�(x) (5.8)

with �+ the set of positive roots. The proof of this proposition is rather

elementary.

For any inverse Riemann tensor fg�1g of Sections 3 and 4 we obtain this

way

det g�1
ab = C2

Y
�2�+

l�(x)
2 (5.9)
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If � decomposes into orbits under W

� =
[
i

�i (5.10)

then

Pi =
Y

�2�+

i

l�(x)
2 (5.11)

is an invariant polynomial under action of W and therefore a polynomial in

the basic invariants

Pi = Pi(z1; : : : ; zn) (5.12)

These polynomials are the prepotentials constructed in Sections 3 and 4. The

factorization of these prepotentials as quoted at the end of Section 2 (eqns.

(2.35),(2.36)) and used throughout in Sections 3 and 4 is based on (5.11).

We emphasize that our empirical results of Sections 3 and 4 indicate the

validity of further mathematical propositions which could not be traced in

the literature:

1. an analogous factorization theorem for the trigonometric invariants;

2. the polynomial properties ("integrability") of the functions r(i)(z) (2.22).

Now we return to the AG3 model of Section 3. We identify the roots

involved in a model using (5.7),(5.9)

l�(x) = (�_; x)

(�_ =
2�

(�; �)
; the "dual" of �) (5.13)

and the Sutherland version whose potential is

1

2
W (x) =

X
orbits i

gi
X
�2�+

i

[sin l�(x)]
�2 (5.14)

Thus the simple roots of A3

�1 = e1 � e2

�2 = e2 � e3 (5.15)

�3 = e3 � e4

are completed by a fourth root in AG3

�4 = e3 + e4 � e1 � e2 (5.16)

The corresponding Coxeter-diagram is shown in Fig. 1. It belongs to the
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4

1

3

2

Figure 1: Coxeter diagram of B̂3

a�ne Coxeter group B̂3 ([9], Figure 1 in Section 2.4).

The coordinates of the B̂3 root space with respect to the standard basis

ffig3i=1 are denoted f�ig3i=1, those of AG3 with respect to the standard basis

feig4i=1 by fxig4i=1 as before. The simple roots of B3 are

�1 = f1 � f2; �1 = f2 � f3; �3 = f3 (5.17)

and B̂3 is obtained by adjoining

�4 = �f1 � f2 (5.18)

It follows that

s4

0
B@
�1
�2
�3

1
CA =

0
B@
��2
��1
�3

1
CA (5.19)

leaves the Coxeter invariants of B3

�1(�) =
X

1�i�3

�2i (5.20)

�2(�) =
X

1�i<j�3

�2i �
2
j (5.21)

�3(�) = �21�
2
2�

2
3 (5.22)

invariant, too. This suggests the equivalence of the AG3 and the B3 models.

An explicit identi�cation of the simple roots

f1 =
1

2
(e1 � e2 � e3 + e4) (5.23)

f2 =
1

2
(�e1 + e2 � e3 + e4) (5.24)

f3 =
1

2
(�e1 � e2 + e3 + e4) (5.25)

gives (i; j 2 f1; 2; 3g)
xi � xj = �i � �j (5.26)

x4 � xj =
X
i(6=j)

�i (5.27)
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    reduction

A G G2 2 2

   adding  a  
  reflection

Figure 2: Extending the Coxeter diagram of A2 to Ĝ2 and reduction to G2

It follows

g1
X

1�i<j�4

[sin(xi � xj)]
�2 +

1

4
g2

X
3 cases

[sin
1

2
(xi + xj � xk � xl)]

�2

= g1
X

1�i<j�3

f[sin(�i � �j)]
�2 + [sin(�i + �j)]

�2g+ 1

4
g2

3X
i=1

[sin �i]
�2

(5.28)

Moreover the rational invariants (3.64) can be identi�ed with the invariants

(5.20){(5.22)

�2(x) = �1

2
�1(�) (5.29)

�3(x) = +
1

4
�3(�) (5.30)

�4(x) = �1

4
�2(�) +

1

16
�1(�)

2 (5.31)

This establishes the equivalence between the two models.

Our method involves a reduction of the a�ne Coxeter group B̂3 to the

Coxeter group B3 having the same invariants. It may therefore be of interest

that the construction performed in [4] is analogous (see Fig. 2).
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