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Abstract

The aim of this lecture is to investigate the mathematical frame for environment induced
superselection rules. Some exactly soluble models are dicussed in detail and norm estimates
on decoherence effects are derived.

1 Introduction

One of the puzzles of quantum mechanics is the question, how classical objects can arise in
quantum theory. Quantum mechanics is a statistical theory, but its statistics differs on a fun-
damental level from the statistics of classical objects. It is known since a long time that the
statistical results of quantum mechanics become consistent with a classical statistics of facts,
if the superposition principle is reduced to superselection sectors, i.e. coherent orthogonal sub-
spaces of the full Hilbert space. The mathematical structure of quantum mechanics and of
quantum field theory provides us with only a few superselection rules, the most important being
the charge superselection rule related to gauge invariance, see e.g. [4] [14] and the references
given therein. But there are definitively not enough of these superselection rules to understand
classical properties in quantum theory. A possible solution of this problem is the emergence of
effective superselection rules due to decoherence caused by the interaction with the environment.
A detailed investigation of these problems together with an extensive list of references up to 1996
is given in [6].

The aim of this lecture is to present the mathematical context of decoherence and induced
superselection rules. For that purpose some exactly soluble models of open systems are inves-
tigated. The dynamics of the total system — including the open system and the environment —
is always determined by a semibounded Hamiltonian. Norm estimates of the off-diagonal parts
of the statistical operators intertwining between different superselection sectors are discussed in
detail.

The lecture is organized as follows. After a short introduction to superselection rules and
to the dynamics of subsystems in Sects. 2 and 3, several models are presented in Sect. 4. For
a class of simple models, given in Sect. 4.1, the transition between the induced superselection
sectors is suppressed uniformly in trace norm. A more realistic example with a quantum field as
environment is investigated in Sect. 4.2. In this case the infrared behaviour of the environment
is of essential importance for the emergence of induced superselection rules. Uniform estimates,
which persist for arbitrary times, are only possible in the limit of infrared divergence.

For the models of Sects. 4.1 and 4.2 the projection operators onto the induced superselection
sectors commute with the Hamiltonian. By adding a scattering potential we obtain in Sect. 4.3
a model, which still has induced superselection sectors, and for which the projection operators
onto these sectors do not commute with the Hamiltonian. In Sect 4.4 we present a spin model
which has induced superselection sectors only in an approximate sense.
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2 Superselection rules

We start with a few mathematical notations. Let H be a separable Hilbert space, then the
following spaces of linear operators are used.

B(H): The R-linear space of all bounded self-adjoint operators A. The norm of this space
is the operator norm || A]|.

7T (H): The R-linear space of all self-adjoint nuclear operators A. These operators have a
pure point spectrum «; € R, i = 1,2, ..., with Y, |o;| < co. The natural norm of this space is
the trace norm|/A||; = trvVATA =3, |o;|. Another norm, used in the following sections, is the
Hilbert—Schmidt norm [|A||s = Vtr AT A. These norms satisfy the inequalities ||A| < [|A]l2 <
JAIL.

D(H): The set of all statistical operators, i.e. positive nuclear operators W with a normalized
trace tr W = 1.

P(H): The set of all rank one projection operators P?.

These sets satisfy the obvious inclusions P(H) C D(H) C T(H) C B(H).

Any state of a quantum system is represented by a statistical operator W € D(H), the
elements of P(H) thereby correspond to the pure states. Any (bounded) observable is repre-
sented by an operator A € B(H), and the expectation of the observable A in the state W is
the trace tr W A. Without additional knowledge about the structure of the system we have to
assume that the set of all states corresponds exactly to D(H), and the set of all (bounded)
observables is B(H). The state space D(H) has an essential property: it is a convex set, i.e.
Wi, Wy € D(H) implies MWy + AoWo € D(H) if A\j2 > 0 and A; + A2 = 1. Any statistical
operator W € D(H) can be decomposed into pure states W = Y, w, P! with P} € P(H) and
probabilities w,, > 0, >, w, = 1. An explicit example is the spectral decomposition of W. But
there are many other possibilities. It is exactly this arbitrariness that does not allow a classical
interpretation of quantum probability. A more detailed discussion of the state space of quantum
mechanics can be found in [10].

The arbitrariness of the decomposition of W originates in the superposition principle. The
superposition principle can be restricted by superselection rules. Here we do not want to discuss
the arguments to establish such rules, for that purpose see e.g. [4][14] and also Chap. 6 of
[6], or to refute them, see e.g. [12]. We only refer to some important consequences for the
structure of the state space. In a theory with discrete superselection rules like the charge
superselection rule, the Hilbert space H splits into orthogonal superselection sectors H,,, m € M,
such that H = @,, H,,. Pure states with charge m (in appropriate normalization) are then
represented by vectors in H,,, and superpositions of vectors with different charges have no
physical interpretation. The projection operators P, onto the orthogonal subspaces H,, satisfy
PPy, = 0mn and Y, Py, = I. The set of states is reduced to those statistical operators which
satisfy P,,W = W P, for all projection operators F,,, m € M. The state space of the system is
then

DY = {WGD(H)|W:ZPmWPm}. (1)

An equivalent statement is that all observables of such a system have to commute with the
projection operators P, m € M, and the set of observables of the system is given by

BY = {A EBH)| A= ZPmAPm} : (2)

The projection operators { P,,, | m € M} are observables, which commute with all observables
of the system, and they can be interpreted as classical observables.



In theories with continuous superselection rules the finite or countable set of projection
operators {P,,, m € M} is substituted by a (weakly continuous) family of projection operators
P(A) indexed by measurable subsets A C R, see e.g. [1]. These projection operators have to
satisfy

P(A; UAy) = P(A1) + P(Ag) forallintervalls Ay, Ag (3)
P(A1)P(Ag) =0 ifAjNAy=0, and P(0)=0, P(R)=1.

The set of observables is now given by
B% ={AcB(H) | AP(A) = P(A)A, A C R}, but there is no formulation of the corresponding
set of states within the class of nuclear statistical operators.

Remark 1 The statements about superselection rules are statements about the mathematical
structure of a theory. The strict superselection rules considered so far are rather unstable against
slight modifications of the theory. Take e.g. the quantum field theory of elementary particles with
the superselection rules of baryonic charge. If we add to the Hamiltonian a small term, which
allows the decay of the proton (as done in grand unified theories), the superselection rule of
baryonic charge is spoiled. What remains is a strong quantitative suppression of matriz elements
of observables which intertwine between different sectors.

The importance of superselection rules for the transition from quantum probability to classi-
cal probability is obvious. But there remains an essential problem: Only very few superselection
rules can be found in quantum mechanics and quantum field theory that are compatible with the
mathematical structure and with experiment. A satisfactory solution to the problem of classical
observables is the emergence of effective superselection rules induced by the interaction with the
environment.

3 Dynamics of subsystems

In the following we consider an open system, i.e. a system S which interacts with an environment
E, such that the total system S+ F satisfies the usual Hamiltonian dynamics. The Hilbert space
Hs+ g of the total system S+ F is the tensor space Hg ® Hg of the Hilbert spaces for S and for
E. Let W € D(Hgtg) be the state of the total system and A € B(Hg) be an observable of the
system S, then the expectation trg; W (A® Ig) satisfies the identity trs+ g (AR Ig)W = trg Ap
with the reduced statistical operator p = trgW € D(Hg). We shall refer to p = trgW as the
state of the subsystem.

As mentioned above we assume the usual Hamiltonian dynamics for the total system, i.e.
W — W(t) =U@#)WUT(t) € D(Hgy ) with the unitary group U(t) = exp(—iHgsy gt) generated
by the total Hamiltonian Hg,g. Except for the trivial case that S and F do not interact, the
dynamics of the reduced statistical operator

plt) = trp UOWU™ (2) (4)

is no longer unitary, and it is exactly this dynamics which can produce effective superselection
sectors. More explicitly, the Hamiltonian of the total system can provide a family of projection
operators {P,,, m € M} which are independent from the initial state, such that the statistical
operator behaves like

p(t) = Prp(t) P (5)

in sufficiently short time. An equivalent statement is that the superpositions between vectors
of different sectors P, Hg are strongly suppressed, Pp,p(t)P, — 0 for t — oo if m # n. Any
mechanism, which leads to this effect, will be called decoherence.



In the case of induced continuous superselection rule the asymptotics is more appropriately
described in the Heisenberg picture, as stated above. But the decoherence effect is also seen in
the Schrodinger picture:

P(A1)p(t)P(Ag) — 0 for t — oo if A and Ay have a positive distance.

The investigation of the models in the following sections allows to give a more precise meaning
to the statement (5). All models (with partial exception of the spin model in Sect. 4.4) have
superselection sectors in the following sense

Definition 1 The subspaces P, Hg, m € M, are denoted as induced superselection sectors of
the dynamics (4), if for all observables A € B(Hg), which have no diagonal matriz elements,
i.e. PpAP, = O, m € M, and for all initial states W € Dy C D(Hgs+g), where Dy is a dense
subset of D(Hs+k), the trace

tro m(A® Ig)UWUT(t) = trgAp(t)
vanishes if t — oco.

Since only weak convergence is used, trgyp(A @ Ig)U()WUT(t) — 0 for W € D; C
D(Hs+pg) implies that this trace vanishes for all W € D(Hgig). Definition 1 is therefore
equivalent to a definition with W € Dy C D(Hg4g) substituted by W € D(Hgig), and the
superselection sectors do not depend on the choice of the dense subset D1 C D(Hgstk).

This definition is so far rather useless, since it does not specify the time scale of decoherence.
The investigation of the models will clarify the dependence of this time scale on the initial state,
especially its matrix elements related to the environment.

4 Models of decoherence

In the following we present models for which the Hamiltonian of the total system provides a
family of projection operators { P,,, m € M} such that the off-diagonal elements P,,,p(t) P, m #
n, of the statistical operator of the reduced dynamics (4) can be estimated with the trace norm.
Especially we are interested to derive a uniform decrease

| Pmp(t)Pyll; — 0fort — oo if m #n (6)

for arbitrary initial states p(0) € D(Hg). But such a result is only possible for the simple models
of Sect. 4.1. In Sects. 4.2 and 4.3 we shall see that the decoherence of more realistic models
yields more complicated results.

The models of Sects. 4.1 and 4.2 have the following structure. The total Hamiltonian on
Hs+r = Hg ® Hg has the form

Hsip=Hs®Ip+1s®Hp+A®B (7)

where Hg is the Hamiltonian of S, Hg is the Hamiltonian of £, and A ® B is the interaction
term between S and £ with self-adjoint operators A on Hg and B on Hg. This Hamiltonian
can be written as

Hgip = <H - %A2) @Ip+i (A0 Iy +Is@ B +Is® (HE - 532). Tt is semibounded from
below, if the operators Hg — %AQ and Hg — %32 are semibounded operators on Hg or Hg
respectively. We make the following additional assumptions

1) The operators Hg and A commute, [Hg, A] = O, hence
[Hs ®Ip,A® B] = 0.



2) The operator B has an absolutely continuous spectrum.

The assumption 1) is a rather severe restriction, which will be modified only in Sects. 4.3
by adding a scattering potential V', which has not to commute with any of the other operators.
The investigation of the spin model in Sect. 4.4 shows that at least a reduced form of this
assumption must hold in order to retain induced superselection rules. The assumption 2) has
more technical reasons. It implies that estimates can be derived in the limit ¢ — oo (without
recurrences) in agreement with Definition 1.

For the purpose of this paper it is sufficient to consider operators A which have a pure point
spectrum

A=Y AnPr. (8)

In the following we shall see that exactly the projection operators of this spectral decomposition
determine the induced superselection sectors. If we allow a continuous spectrum for A, then the
projection operators {P,,,m € M} are substituted by a weakly continuous family of projection
operators P(A) as introduced in (3)), and continuous superselection sectors will emerge. Instead
of trace norm estimates like (6) we obtain Hilbert—Schmidt norm estimates for || P(A)p(t)P(A")|],
if the sets A and A’ have a finite distance, see Sect. 7.6 of [6].

As a consequence of assumption 1) we have [Hg, P,,] = O for all m € M. The Hamiltonian
(7) has therefore the form

Hsip=Hs®Ig+» Py ®Ty, with Ty, = Hg + A B. (9)
m

The calculation of the reduced dynamics (4) leads to
Pop(t)P, = P, e st (trEe_iFtheiF"t) efstp, (10)

where the operators P, are the projection operators of the spectral representation (8) of A,
see e.g. Sect. 7.6 of [6]. For a factorizing initial state W = p ® w with p € D(Hg) and a
reference state w € D(HEg) of the environment, the operator (10) simplifies to Pp,p(t) P,

P, e st peitist p, Xm,n(t) with

ijn(t) — tl"E (eiFnte—iFmtw> , (11)

and the emergence of dynamically induced superselection rules depends on an estimate of this
trace.

4.1 The Araki—Zurek models

The first soluble models for the investigation of the reduced dynamics have been given by Araki
[1] and Zurek [15], and the following construction is essentially based on these papers. In addition
to the specifications made above, we demand that

3) the Hamiltonian Hg and the potential B commute, [Hg, B] = O.

We first investigate P, p(t) P, for a factorizing initial state W = p®w. Under the assumption
3) the trace (11) simplifies to xmn(t) = trg (e_i()‘m_)‘")Btw). Let B = [g APg(d)) be the
spectral representation of the operator B. Then, as a consequence of assumption 2), for any
w € D(HEg) the measure du(\) := trg (Pg(d\)w) is absolutely continuous with respect to the



Lebesgue measure, and the function x(t) := tr (e_ZBtw) = [g e ™ du()) vanishes if t — co. But
to have a decrease which is effective in sufficiently short time, we need an additional smoothness
condition on w (which does not impose restrictions on the statistical operator p € D(Hg) of the
system §). If the integral operator, which represents w in the spectral representation of B, is
a sufficiently differentiable function (vanishing at the boundary points of the spectrum) we can
derive estimates like |x(t)| < C,(1 + |t|)~7 with arbitrarily large values of v. Such an estimate
leads to the upper bound for the norm (6)

[P p() Prlly < [Xma(t)] < Cy (144 )77 (12)

if (A, —Ap| > 0 > 0. The constants v > 0, § > 0 and C, > 0 do not depend on the initial
state p(0) = p € D(Hg). Moreover one can achieve large values of v and/or small values of the
constant C., if the reference state w € D(Hg) is sufficiently smooth.

These results depend on the reference state w only via the decrease of x(¢). We could have
chosen a more general initial state W € D(Hgg)

W:Zcﬂpu@)w“ (13)
I

with p, € D(Hs), w, € D(Hg) and numbers ¢, € R which satisfy 3°, [cu| < oo and 3, ¢, =
tr W = 1. The set (13) is dense in D(Hgtg). With the arguments given above for factorizing
initial states the statement of Definition 1 can be derived for all initial states (13), and the sectors
P, Hg are induced superselection sectors in the sense of this definition. Moreover, assuming that
the components of the statistical operator W affiliated to the environment are sufficiently smooth
functions in the spectral representation of B, the sum >_, ‘cﬂ trg (e*’()‘m*’\")Bth)‘ satisfies a
uniform estimate (12). Hence the time scale of the decoherence can be as short as we want
without restriction on p(0) = trgW =}, ¢\ py-

4.2 The interaction with a Boson field

In this section we present a model without the restriction 3) on the Hamiltonian. As specific
example we consider an environment given by a Boson field. Such models can be calculated
explicitly, and they have often been used as the starting point for Markov approximations.

As Hilbert space H g we choose the Fock space based on the one particle space H(!) = £2(R.)

with inner product (f | g) = [5° f(k)g(k)dk. The one-particle Hamilton operator, denoted by
g, is the positive multiplication operator (£f) (k) := (k) f(k) with the positive energy function
e(k) =c-k, c>0, k€ Ry, defined for all functions f with

(14 e(k))f(k) € L%(Ry). The creation/annihilation operators a; and aj are normalized to

{ak, aﬂ = d(k — k’). The Hamiltonian of the environment is then

HE:/ e(k)a; axdk.
0

With a*(f) = [3° f(k)af dk and a(f) = [5° f(k)ardk we define field operators by

O(f):= 273 (at(f) + a(f)) for real functions f € £L2(Ry). The interaction potential is chosen
as B = ®(f) with
(1+871) fe?®y)and |[E2f]| <272, (14)

The restriction H? 3 f H <273 implies that Hg — %@2( f) is bounded from below, a necessary
condition to have a semibounded total Hamiltonian (7), see [11]. An example for the total



Hamiltonian is given by a single particle coupled to the quantum field with velocity coupling

1
Hsyp = §P2®IE+P®<I>(f)+IS®HE

= %(P®1E+Is®(1)(f))2+fs® (HE_;CDQ(f))

Since the particle is coupled to the field with A = P, the reduced dynamics yields in this case
continuous superselection sectors for the momentum P of the particle.

The operators (9) I'y, are substituted by Hy := Hg+A®(f), A € R, which are Hamiltonians
of the van Hove model [8], see also [3] and [5]. The restriction (14 &1) f € £?(R) is necessary
to guarantee that all operators Hy, A € R, are unitarily equivalent and defined on the same
domain. To derive induced superselection sectors we have to estimate the time dependence of
the traces xos(t) = trpUyps(t)w, a # (3, where the unitary operators U,g(t) are given by

Uap(t) = exp(iHqt) exp(—iHpat),

see (11). In [11] the following results are derived for states w which are mixtures of coherent
states.

a) Under the restrictions (14) the traces xqs(t) do not vanish for ¢t — oo.

b) If ®(f) has contributions at arbitrarily small energies, the traces xqs(t),« # 3, can nev-
ertheless strongly decrease within a very long time interval 0 < ¢ < T'. Estimates like (12)
are substituted by || Pp(t)P,|l; < 9(t) or |[P(A)p(t)P(A")||, < 9¥(t). But in contrast to

(12) the function 9J(t) increases again if t > T' for some large T

c) For fixed e # 3 a limit xo5(t) — 0 for t — oo is possible if £71 f € £2(R.) is violated, i.e.
in the case of infrared divergence.

A large infrared contribution is therefore essential for the emergence of induced superselection
sectors of the system S. This model has of course not the complexity of quantum electrody-
namics, where infrared divergence of the electromagnetic field is related to the classical static
limit of the fields. But nevertheless this model indicates that also the classical appearance of
the matter might be related to the infrared divergence of the electromagnetic field.

The role of infrared divergence can be illustrated by another singular limit of the model: the
coupling to a free particle. We can restrict the one—particle space H® to the one dimensional
space C, and the free field becomes a harmonic oscillator of frequency € = ¢ > 0. In the
(singular) limit € — 0 we obtain the Hamiltonian with coupling to a free particle

1
Hg = §P2 with coupling B = Q. (15)

Then trgUaypg(t)w can be calculated by standard methods, see the article [13] of Pfeifer, who has
used this model to discuss the measurement process of a spin. With (15) we can easily derive
trgUap(t)w — 0 if ¢ — oo and o # § for all statistical operators w of the free particle. But
the Hamiltonian (7) of the total system is unbounded from below — corresponding to infrared
divergence in the field theoretic model.

As in Sect. 4.1 the choice of the initial state W of the total system can be extended to (13)
with p, € D(Hg) and mixtures of coherent states w, € D(Hpg). This class of states is again
dense in D(Hgs+E), and, at least in the infrared divergent case, we obtain induced superselection
sectors in the sense of Definition 1.



4.3 Models with scattering

For all models presented so far the projection operators onto the induced superselection sec-
tors P, ® Is commute with the total Hamiltonian [P, ® Is, Hs4+g] = O. We now modify the
Hamiltonian (7) to

H=Hg p+V=Hs@Ip+Is®@Hg+ A B+V

where the operator V is only restricted to be a scattering potential. This property means that
the wave operator ) = lim;_, exp(iHt) exp(—iHg pt) exists as strong limit. To simplify the
arguments we assume that there are no bound states such that the convergence is guaranteed
on Hgyp with QF = Q1. Then the time evolution U(t) = exp(—iHt) behaves asymptotically
as Up(t)Q" with Up(t) = exp(—iHgygt). More precisely, we have for all W € D(Hg_ p)

lim [U@OWU*(2) - Uo(t)mwgwg(t)H1 =0 (16)
in trace norm. Following Sect. 4.1 the reduced trace trgUp (t)QTWQU (t) produces the superse-
lection sectors Py, Hg which are determined by the spectrum (8) of A. The asymptotics (16) then
yields (in the sense of Definition 1) the same superselection sectors for p(t) = trgU(t)WU ™ ().
Moreover we can derive fast decoherence by additional assumptions on the initial state and on the
potential. For that purpose we start with a factorizing initial state W = p(0) ® w with smooth w.
To apply the arguments of Sect. 4.1 to the dynamics Uy (t)QTW QU (t) the statistical operator
Q7 (p ® w) Q has to be a sufficiently smooth operator on the tensor factor Hg for all p € D(Hyg).
That is guaranteed if we choose as scattering potential a smooth potential in the sense of Kato
[9]. Then both the limits, (16) and lim; oo HPm (trEUo(t)Q+WQUJ(t)> P"H1 =0, m # n, are
reached in sufficiently short time. Hence p(t) can decohere fast into the subspaces P, Hg which
are determined by the spectrum (8) of A. But in contrast to (12) one does not obtain a uniform
bound with respect to the initial state p(0), since the limit (16) is not uniform in W € D(Hg_ ).

A final remark should be added. Although the estimates are not uniform in p(0), the bounds
on decoherence are nevertheless stronger than those derived in the Coleman-Hepp model [7].
For any given initial state p(0) € D(Hg) we have an estimate ||p(t)||; < ¢ (1 + [t|)™7 with some
constant ¢ > 0. Consequently, for this initial state p(0) the expectation values trg p(t) A are
uniformly bounded by |trg p(t) A| < ¢ ||A] (14 |t|)”" for all observables A € B(Hg). Such a
uniform estimate does not hold in the Coleman-Hepp model [2].

4.4 A spin model

The following model illustrates that the assumption 1) on the Hamiltonian can be violated
only in a restricted sense — e. g. by a scattering potential as seen in Sect. 4.3 — in order
to maintain induced superselection sectors. The model of this section has a non—vanishing
commutator [A, Hg], and there remain off-diagonal contributions of the statistical operator.
But the magnitude of these off-diagonal contributions are limited by the magnitude of [A, Hg].

The Hilbert space of this model is Hsy g = Hs ® Hg with Hg = C? and Hg = L2(R). The
Hamiltonian has the form (7) with the following specifications

Hgy = %(&’5)@&, with @ € R3, & Pauli matrices, 1 € C?,
Hpf(x) = bz? f(x) with a positive constant b > 0, f(z) € L2(R),
%0’3, with a real coupling parameter A,

A
B f(z) = af (), f(z) € L2(R).



The total Hamiltonian Hgyp = Hs ® I+ Is ® Hgp + A ® B is bounded from below. The
commutator [Hg, A] vanishes only if @ = const €3.

The statistical operator of the spinf% system is a spin density matrix p (p) =
1 (1 + po) with a polarization vector in the unit ball j’€ B® = {5’ € R? | |p] < 1}. For the total
system we assume an initial state W = p () ® w where w is a statistical operator on £L%(R)
with a smooth integral kernel w(z,y). In [10] the reduced dynamics p(t) = trgU(t)WU T (t) with
U(t) = exp(—iHg1pt) is calculated. For ¢ — oo the operator p(t) converges to the state p(q),
where the polarization vector ¢ is given by the linear mapping

7= Mp:= / dzw(z, 2)ii(z) (7 (z)) (17)

with the unit vector 7i(z) = |@ — Az@s| " (@ — Azé3). Under appropriate conditions for the initial
state w of the environment, the difference

p(t) — p () can be uniformly estimated by || p(t) — p(q)||; < c(1+t|)™7. The mapping (17) is a
symmetric contraction on R?, with the properties

1. If @ || €3 the mapping (17) reduces to Mp = €3 (€3p), and we obtain the results discussed
in Sect. 4.1. We have |Mp| = |p] for p' || €5, and only in this case p(t) is not affected by
the decoherence.

2. If @ has components orthogonal to €3, also the direction of Mp depends on p, and |Mp| < |p]
holds for all vectors p’ # 0.

In the second case there are no projection operators which commute with all operators
p (Mp), p € B3 and there are no induced superselection sectors (as defined above).

But if [Hg, A] is very small, more precisely a3 + a3 < a3, the vector Mp has very small
components orthogonal to €3, and the off-diagonal matrix elements of the operators p (Mp) are
negligible for all 7’ € B3. Hence one can still speak about induced superselection sectors in some
approximative sense.



5 Concluding remarks
g
1. If induced superselection sectors exist, they are fully determined by the interaction in the
sense of Definition 1.
2. A fast suppression of the off-diagonal matrix elements P, p(t)FP,, m # n, of the reduced
statistical operator is possible, if the initial state
W € D(Hsy+r) has “smooth” contributions with respect to the environment, i.e. in the
sense discussed at the end of Sect. 4.1.
3. A uniform emergence of superselection sectors with respect to
p(0) € D(Hg) is consistent with the mathematical rules of quantum theory. But in more
realistic models with scattering the estimates are no longer uniform with respect to the
initial state of the system.
4. In models with a Bose field as environment a large infrared contribution is important for
the emergence of induced superselection sectors.
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