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Abstract

Let H1, H2 be complex Hilbert spaces, H be their Hilbert tensor product and

let tr2 be the operator of taking the partial trace of trace class operators in H with

respect to the space H2. The operation tr2 maps states in H (i.e. positive trace

class operators in H with trace equal to one) into states in H1. In this paper we give

the full description of mappings that are linear right inverse to tr2. More precisely,

we prove that any a�ne mapping F (W ) of the convex set of states in H1 into the

states in H that is right inverse to tr2 is given by W 7! W 
D for some state D in

H2.

In addition we investigate a representation of the quantum mechanical state

space by probability measures on the set of pure states and a representation { used

in the theory of stochastic Schr�odinger equations { by probability measures on the

Hilbert space. We prove that there are no a�ne mappings from the state space of

quantum mechanics into these spaces of probability measures.

1 INTRODUCTION

In quantummechanics the states of a physical system are given by the statistical operators

or density matrices in the Hilbert space associated to this system. The state of a subsystem

is uniquely calculated as the reduced statistical operator by the partial trace. But it seems

that the inverse problem: to de�ne a linear mapping from the set of states of a subsystem

to the set of states of an enlarged system such that the reduced state coincides with the

original state, has not been studied systematically in the literature. In this article we

want to investigate this lifting problem of states and the adjoint problem of reducing

observables in some detail.

In the sequel all Hilbert spaces are assumed to be complex (and separable). For

any Hilbert space we denote by L(H) the (complex) vector space of all linear bounded

operators in H; by La(H) we denote the real vector subspace of L(H) consisting of all

self-adjoint operators from L(H), by L+(H) we denote the cone of positive operators

within L(H) (and hence within La(H)). The (complex) vector space of all trace class

operators in H is denoted by L1(H). In addition we use the following notations: L+
1 (H) =

L+(H) \ L1(H), La1(H) = L+
1 (H) \ La(H), and D(H) is the convex set of all operators
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from L+
1 (H) having trace equal to one. If H is the Hilbert space associated to a physical

system, then the elements of La(H) represent the (bounded) observables of the system, the

elements of D(H) represent (mixed and pure) states, and the closed subset P(H) � D(H)

of rank one projection operators represents the pure states.

If S and E are physical systems with Hilbert spaces HS and HE , then the Hilbert space

of the composite system { denoted by S�E { of these systems is the Hilbert tensor product

of Hilbert spaces HS and HE, i.e. H = HS 
HE . The scalar product in H is written as

h ; iH ; the corresponding notations are used for scalar products in HS and HE. Hence S

is a subsystem of the quantum system S � E, and the system E can be interpreted as an

environment of HS. For any state W 2 D(H) of the total system S � E the state of the

system S { called the reduced state { is given by the partial trace trHEW 2 D(HS ): This

partial trace is uniquely de�ned for allW 2 L1(H) as the operator trHEW 2 L1(HS) which

satis�es the identity htrHEWx1; x2iHS =
P

j
hW (x1
 eE

j
); (x2
 eE

j
)iH for an orthonormal

basis
�
eE
j

	
of HE and all x1; x2 2 HS. The mapping W ! trHEW; L1(H) ! L1(HS), is

obviously linear and continuous.

By the partial trace we can calculate the Schr�odinger dynamics of the subsystem S
{ the so called reduced dynamics { from the Schr�odinger dynamics of the whole system

S � E. But in general, this dynamics does not depend linearly on the initial state of

the subsystem, see Remark 2. In order to obtain the linear dependence one has to �nd

a linear solution for the lifting problem, which can be formulated as follows. For any

state WS 2 L1(HS) to �nd a state F (WS) 2 L1(H) such that trHEF (WS) = WS ; such a

mapping FS is called the lifting.

The simplest solution of this problem is given by the mapping FD : L1(HS) �! L1(H),

W 7! W 
D, where D is an element of L1(HE), which is usually called a reference state.

This choice is well known from the theory of open systems, see e.g. [1],[2],[3].

The main theorem of the paper { Theorem 1 of the next section { implies that actually

any linear lifting coincides with FD, for some D.

Remark 1 The vector space La(H) of bounded observables can be identi�ed with the space

of continuous a�ne linear functionals on the state space D(H) equipped with the topology

induced by the trace norm k:k1 of L1(H) � D(H), see e.g. [4]. A�ne linearity means

that such a functional f : D(H) �! R respects the mixing property: f(�W1 + �W2) =

�f(W1)+�f(W2) for 0 � �; � � 1 with �+� = 1, and W1;W2 2 D(H). In fact, any such

a functional can be uniquely extended to a continuous C -linear functional �f : L1(H) �! C ,

see e.g. [5]. Since L(H) is dual to L1(H), with the duality pairing

L(H) �L1(H) �! C : (A;W ) 7! hA;W i � trHAW; (1)

there exists Af 2 L(H) such that for any W 2 L1(H) the identity f (W ) = trHWAf is

true.

On the other side, according to Gleason's theorem [6], the state space D(H) can be

identi�ed with the set of linear functionals ! : L(H) �! C having the following properties:

(1) if A 2 L+(H) then !(A) � 0;

(2) !(Id) = 1;

(3) !(
P

j
Pj) =

P
j
!(Pj) for any �nite or countable family of mutually orthogonal

projectors.
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For any ! which satis�es these constraints there exists an element W! 2 D(H) such

that !(A) = trHW!A is true for all A 2 L(H). The natural norm of the state space is

supkAk=1 j!(A)j which coincides with the trace norm of W!.

Remark 2 The time evolution of a composite system with Hilbert space H = HS 
 HE

in the Schr�odinger picture is given by a family �t; t 2 R or t 2 R+, of continuous a�ne

linear mappings �t : D(H) �! D(H). We normalize these evolutions by �0(W ) = W .

The a�ne linear mappings �t can be extended to C -linear mappings on L1(H), again

denoted by �t. In the usual case of a Hamiltonian (unitary) dynamics we have �t(W ) =

U(t)WU+(t) with the unitary group U(t) on H generated by the Hamiltonian. But more

general evolutions like semigroups are admitted in the sequel. The mappings �t have

unique extensions to continuous C -linear mappings �t of L1(H) into L1(H). The duality

(1) then allows to determine the Heisenberg evolution, a family 	t of continuous linear

operators on L(H). Any Schr�odinger evolution �t on D(HS 
HE) induces a unique time

evolution �t = trHE�t(W ) of the system HS . In order to obtain a linear dependence on

the initial state � = �t=0 we need an a�ne linear mapping F of D(HS ) into D(HS 
HE).

Then the mapping � 7! W = F (�) 7! �t = trHE�t(W ) is a linear time evolution on

D(HS ). This time evolution has the correct initial condition �t=0 = � if F satis�es the

constraint trHEF (�) = �. The Heisenberg dynamics of the system then follows from the

duality (1) applied to L(HS) and L1(HS).

The paper is organized a follows. In Sec. 2 we prove the main result of the paper {

Theorem 1 { describing all linear liftings. In Sec. 3 we consider a theorem { Theorem

2 { that is in a sense dual to Theorem 1 and describes a reduction of observables of the

system H to observables of the system HS .

In the �nal Sec. 4 we consider the case of a classical state space, i. e. a space

of probability measures, and the representation of the quantum mechanical state space

D(H) by probability measures either on the set of pure states { the Choquet representation

{ or on the Hilbert space { a representation used in the theory of stochastic Schr�odinger

equations. The space D(H) is a convex set with the closed set P(H) of pure states

as extremal points. Any W 2 D(H) can be represented by an integral over the pure

states W =
R
P(H)

�(dP )P , where �(dP ) is a probability measure on P(H). Since this

representation has been derived by Choquet for general convex sets, see e.g. [7], we

denote the (non-unique) measure �(dP ) as Choquet measure of W . In Theorem 3 we

prove that there does not exist a linear mapping 
 from the space D(H) into the set

of probability measures on the set P(H) such that the measure 
(W ) is the Choquet

measure of the state W 2 D(H). This theorem is in fact a consequence of Theorem

1. In Sec. 4 we deduce Theorem 3 from the structural di�erence between the classical

and the quantum mechanical state spaces. Both these spaces are convex sets. But the

classical state space is a simplex whereas D(H) not, see e.g. [8]. Finally we investigate

the representation of the state space by probability measures on the Hilbert space. Also

in this case the structural di�erence between the quantum mechanical state space and the

space of probability measures does not allow an a�ne linear mapping from D(H) into the

measure space.
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2 LINEAR LIFTINGS

The main result of the paper is the following theorem.

Theorem 1 Let F : D(HS) �! D(HS 
 HE) be an a�ne linear mapping such that

trHEF (�) = � for all � 2 D(HS ). Then there exists an element �E 2 D(HE) such that

F (�) = � 
 �E.

Proof The mapping F can be extended (uniquely) to the C -linear mapping of L1(HS)

into L1(HS 
 HE) that we shall denote by the same symbol. This extension has the

following properties:

F (L+
1 (HS)) � L

+
1 (HS 
HE); (2)

F (La1(HS)) � L
a

1(HS 
HE); (3)

we shall use these properties later.

Let fei; i 2 Ng (respectively, ffj; j 2 Ng) be an orthonormal basis in HS (respectively,

inHE). Without loss of generality we assumeHS andHE to be in�nite-dimensional. Then

H = span fei 
 fj; i 2 N; j 2 Ng. We realize L1(HS) as a vector space of complex valued

functions on N2: gij 2 C : i 2 N; j 2 N. Analogously, we realize L1(H) = L1(HS 
 HE)

as a vector space of complex valued functions on N4: F (g)kl
ij
; i; j; k; l 2 N. We say that

bij; i; j 2 N is a (k; l)-component of F 2 L1(H) and denote it by (F )kl if F kl

ij
= bij for all

i; j 2 N. We say that F has only the components of some type if all components of other

type are equal to zero. Let us note that

trHEF (g) = g ,

1X
i=1

F (g)kl
ii
= gkl; 8k; l 2 N: (4)

Consider the following basis fgkl; k � l; gkl�; k < lg in L1(HS):

gkl
ij
=

�
1 if (i; j) 2 f(k; k); (k; l); (l; k); (l; l)g;
0 otherwise

; gkl�
ij

=

8>>>><
>>>>:

1 if (i; j) = (k; k);

i if (i; j) = (k; l);

�i if (i; j) = (l; k);

1 if (i; j) = (l; l);

0 otherwise.

Firstly, all gkl and gkl� are positive operators, therefore F (gkl) and F (gkl�) are also

positive and hence F (gkl)mm

ii
� 0 and F (gkl�)mm

ii
� 0 for all i;m 2 N. Due to (4)P1

i=1 F (g
kl)mm

ii
= gkl

mm
= 0 for m 6= k;m 6= l and

P1
i=1 F (g

kl�)mm

ii
= gkl�

mm
= 0 for

m 6= k;m 6= l. From this follows that

F (gkl)mm

ii
= 0;m 6= k;m 6= l; i 2 N; F (gkl�)mm

ii
= 0;m 6= k;m 6= l; i 2 N: (5)

Secondly, all gkl and gkl� are self-adjoint, therefore F (gkl) and F (gkl�) are also self-

adjoint and hence

F (gkl)nm
ji

= F (gkl)mn

ij
and F (gkl�)nm

ji
= F (gkl�)mn

ij
for all i; j; k; l;m; n 2 N: (6)
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The further proof is organized as follows. First, we show that F (gkk) has only (k; k)-

component (Step 1), F (gkl); k < l (resp., F (gkl�); k < l) has only (k; k), (k; l), (l; k), (l; l)-

components (Step 2). Furthermore, we prove that non-zero components of F (gkl) are equal

(Step 3) and that non-zero components of F (gkl�) satisfy (F )kk = �i(F )kl = i(F )lk = (F )ll

(Step 4). Finally, we denote elements of the only non-zero component of F (g11) by aij
and show that any non-zero component of F (gkl) is equal to aij (Step 5) and that the

non-zero components of F (gkl�) satisfy (F )kk = �i(F )kl = i(F )lk = (F )ll = aij (Step 6),

which completes the proof.

In the proof we shall also use the following (obvious) lemma.

Lemma 1 Let a � 0; b � 0; c � 0 be real numbers; then

�
(t; p) 2 R2 : (1 + t)(1 + p) � 1; t+ 1 � 0

	
�

�
(t; p) 2 R2 : (b+ at)(b+ cp) � b2; b+ at � 0

	
, a = c � b:

Proof of Theorem 1 (continued)

Step 1. Consider gkk 2 L1(HS); k 2 N and restrict F (gkk) to the space hem
 fi; en
 fji,
where (m;n) 6= (k; k). In this basis F (gkk) has the form

�
F (gkk)mm

ii
F (gkk)nm

ji

F (gkk)mn

ij
F (gkk)nn

jj

�
:

Because eitherm 6= k or n 6= k we have due to (5) that either F (gkk)mm

ii
= 0 or F (gkk)nn

jj
=

0. F (gkk) is positive, hence F (gkk)mm

ii
F (gkk)nn

jj
�F (gkk)nm

ji
F (gkk)mn

ij
� 0. Combining this

conditions together with (6) we get

F (gkk)mn

ij
= 0 8i; j;m; n 2 N; (m;n) 6= (k; k);

i.e. F (gkk) has only (k; k)-component.

Step 2. Consider gkl 2 L1(HS); k; l 2 N; k < l and restrict F (gkl) to the subspace

hem 
 fi; en 
 fji, where (m;n) does not take values (k; k), (k; l), (l; k), (l; l). In this

basis F (gkl) has the form �
F (gkl)mm

ii
F (gkl)nm

ji

F (gkl)mn

ij
F (gkl)nn

jj

�
:

Due to the conditions on (m;n) it follows from (5) that either F (gkl)mm

ii
= 0 or F (gkl)nn

jj
=

0. F (gkl) is positive, hence F (gkl)mm

ii
F (gkl)nn

jj
� F (gkl)nm

ji
F (gkl)mn

ij
� 0. Combining this

conditions together with (6) we get

F (gkl)mn

ij
= 0 8i; j;m; n 2 N with (m;n) =2 f(k; k); (k; l); (l; k); (l; l)g ;

i.e. F (gkl) has only (k; k), (k; l), (l; k), (l; l)-components.

Analogously (substituting gkl� for gkl) we prove that F (gkl�) has only (k; k), (k; l),

(l; k), (l; l)-components.
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Step 3. First, let us show that the main diagonals of the non-zero components of F (gkl)

are equal, i.e. F (gkl)kk
ii

= F (gkl)kl
ii
= F (gkl)lk

ii
= F (gkl)ll

ii
: Restrict F (gkl) to the subspace

hek 
 fi; el 
 fii. In this basis F (gkl) has the form�
F (gkl)kk

ii
F (gkl)lk

ii

F (gkl)kl
ii

F (gkl)ll
ii

�
:

This matrix is positive, hence F (gkl)kk
ii
F (gkl)ll

ii
� F (gkl)lk

ii
F (gkl)kl

ii
� 0, i.e.

jF (gkl)kl
ii
j �
p
F (gkl)kk

ii
F (gkl)ll

ii
(note that F (gkl)kk

ii
and F (gkl)ll

ii
are real and non-negative).

Due to (4)
P1

i=1 F (g
kl)kk

ii
=
P1

i=1 F (g
kl)kl

ii
=
P1

i=1 F (g
kl)lk

ii
=
P1

i=1 F (g
kl)ll

ii
= 1 and hence

1 =

1X
i=1

ReF (gkl)kl
ii
�

1X
i=1

jF (gkl)kl
ii
j �

1X
i=1

q
F (gkl)kk

ii
F (gkl)ll

ii

�

1X
i=1

F (gkl)kk
ii
+ F (gkl)ll

ii

2
= 1;

and therefore all parts of the inequality must be equal. We have

q
F (gkl)kk

ii
F (gkl)ll

ii
=
F (gkl)kk

ii
+ F (gkl)ll

ii

2
=) F (gkl)kk

ii
= F (gkl)ll

ii

and

ReF (gkl)kl
ii
= jF (gkl)kl

ii
j = F (gkl)kk

ii
=) F (gkl)kl

ii
= F (gkl)lk

ii
= F (gkl)kk

ii
:

Hence the diagonal elements F (gkl)kk
ii

= F (gkl)kl
ii
= F (gkl)lk

ii
= F (gkl)ll

ii
are equal.

Secondly, let us show that the corresponding non-diagonal elements of the non-zero

components of F (gkl) are equal, i.e. F (gkl)kk
ij

= F (gkl)kl
ij
= F (gkl)lk

ij
= F (gkl)ll

ij
; where

i 6= j. Denote ai=F (g
kl)kk

ii
. Restrict F (gkl) to the subspace hek 
 fi; ek 
 fj; el 
 fji. In

this basis F (gkl) has the form0
@ F (gkl)kk

ii
F (gkl)kk

ji
F (gkl)lk

ji

F (gkl)kk
ij

F (gkl)kk
jj

F (gkl)lk
jj

F (gkl)kl
ij

F (gkl)kl
jj

F (gkl)ll
jj

1
A =

0
@ ai �y �x

y aj aj
x aj aj

1
A = A:

If aj = 0 then obviously x = y = 0 as A is positive. If aj 6= 0 then

detA = �y(�yaj � �xaj) + x(�yaj � �xaj) = �ajjy � xj2 � 0 =) x = y;

and we have derived F (gkl)kk
ij
= F (gkl)kl

ij
= F (gkl)lk

ij
= F (gkl)ll

ij
for all i; j.

Step 4. Firstly, let us prove F (gkl�)kk
ii

= �iF (gkl�)kl
ii
= iF (gkl�)lk

ii
= F (gkl�)ll

ii
; i.e. that

this condition holds on the main diagonals of non-zero components of F (gkl�). Analo-

gously to the previous step, we get jF (gkl�)kl
ii
j �
p
F (gkl�)kk

ii
F (gkl�)ll

ii
(note that F (gkl�)kk

ii

and F (gkl�)ll
ii
are real and non-negative). Due to (4)

P1
i=1 F (g

kl�)kk
ii

=
P1

i=1 F (g
kl�)ll

ii
=

1;
P1

i=1 F (g
kl�)kl

ii
= i,

P1
i=1 F (g

kl�)lk
ii
= �i and hence

1 =

1X
i=1

ImF (gkl�)kl
ii
�

1X
i=1

jF (gkl�)kl
ii
j �

1X
i=1

q
F (gkl�)kk

ii
F (gkl)ll

ii

�

1X
i=1

F (gkl�)kk
ii
+ F (gkl�)ll

ii

2
= 1;
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and therefore all parts of inequality must be equal. Analogously to the previous step we

have

F (gkl�)kk
ii
= F (gkl�)ll

ii

and

ImF (gkl�)kl
ii
= jF (gkl�)kl

ii
j = F (gkl�)kk

ii
=) F (gkl�)kl

ii
= F (gkl�)lk

ii
= F (gkl�)kk

ii

and hence F (gkl�)kk
ii
= �iF (gkl�)kl

ii
= iF (gkl�)lk

ii
= F (gkl�)ll

ii
.

Secondly, let us show that this property holds also for corresponding non-diagonal el-

ements of the non-zero components of F (gkl�), i.e. F (gkl�)kk
ij

= �iF (gkl�)kl
ij
= iF (gkl�)lk

ij
=

F (gkl�)ll
ij
if i 6= j.

Denote ai = F (gkl�)kk
ii
. Restrict F (gkl�) to the subspace hek 
 fi; ek 
 fj; el 
 fji. In

this basis F (gkl�) has the form

0
@ F (gkl�)kk

ii
F (gkl�)kk

ji
F (gkl�)lk

ji

F (gkl�)kk
ij

F (gkl�)kk
jj

F (gkl�)lk
jj

F (gkl�)kl
ij

F (gkl�)kl
jj

F (gkl�)ll
jj

1
A =

0
@ ai �y �x

y aj iaj
x �iaj aj

1
A = A:

If aj = 0 then obviously x = iy = 0 as A is positive. If aj 6= 0 then

detA = �y(�yaj � i�xaj) + x(�i�yaj � �xaj) = �ajjiy � xj2 � 0 =) x = iy;

and hence F (gkl�)kk
ij
= �iF (gkl�)kl

ij
= iF (gkl�)lk

ij
= F (gkl�)ll

ij
holds for all i; j.

Step 5. Firstly, let us show that the main diagonals of non-zero components of all

F (gkl); k � l; are equal, i.e. we have to prove

F (gkk)kk
ii

= F (gll)ll
ii
= F (gkl)kl

ii
for all k < l:

Consider g(t) = gkl + tgkk + pgll, where t + p + tp � 0; p + 1 � 0 and k < l. The

operator g(t) is positive hence F (g(t)) is also positive. Restrict F (g(t)) to the subspace

hek 
 fi; el 
 fii. In this basis F (g(t)) has the form

�
F (g(t))kk

ii
F (g(t))lk

ii

F (g(t))kl
ii

F (g(t))ll
ii

�
=

�
F (gkl)kk

ii
+ tF (gkk)kk

ii
F (gkl)lk

ii

F (gkl)kl
ii

F (gkl)ll
ii
+ pF (gll)ll

ii

�
:

This matrix is positive, hence

(F (gkl)kk
ii
+ tF (gkk)kk

ii
)(F (gkl)ll

ii
+ pF (gll)ll

ii
) � (F (gkl)kl

ii
)2

(note that F (gkl)kl
ii
, F (gkl)kk

ii
+tF (gkk)kk

ii
, and F (gkl)ll

ii
+pF (gll)ll

ii
are real and non-negative).

We apply Lemma 1 with a = F (gkk)kk
ii
, b = F (gkl)kl

ii
, c = F (gll)ll

ii
, which gives us

F (gkk)kk
ii

= F (gll)ll
ii
� F (gkl)kl

ii
:

Taking into account the fact that
P1

i=1 F (g
kk)kk

ii
=
P1

i=1 F (g
ll)ll

ii
=
P1

i=1 F (g
kl)kl

ii
= 1 we

get

F (gkk)kk
ii
= F (gll)ll

ii
= F (gkl)kl

ii
:

7



Secondly, let us show that the remaining elements of the non-zero components of

F (gkl); k � l are equal. For that purpose we prove

F (gkk)kk
ij
= F (gll)ll

ij
= F (gkl)kl

ij
for all i 6= j and all k < l

using again the operator g(t). Denote ai = F (gkl)kk
ii
. Restrict F (g(t)) to the subspace

hek 
 fi; ek 
 fj ; el 
 fji. In this basis F (g(t)) has the form

0
@ F (g(t))kk

ii
F (g(t))kk

ji
F (g(t))lk

ji

F (g(t))kk
ij

F (g(t))kk
jj

F (g(t))lk
jj

F (g(t))kl
ij

F (g(t))kl
jj

F (g(t))ll
jj

1
A

=

0
@ F (gkl)kk

ii
+ tF (gkk)kk

ii
F (gkl)kk

ji
+ tF (gkk)kk

ji
F (gkl)lk

ji

F (gkl)kk
ij
+ tF (gkk)kk

ij
F (gkl)kk

jj
+ tF (gkk)kk

jj
F (gkl)lk

jj

F (gkl)kl
ij

F (gkl)kl
jj

F (gkl)ll
jj
+ pF (gll)ll

jj

1
A

=

0
@ ai + tai x+ ty x

�x+ t�y aj + taj aj
�x aj aj + paj

1
A = A:

If aj = 0 then obviously x = y = 0 as A is positive. If aj 6= 0 then

detA = aia
2
j
(1 + t)2(1 + p) + (x+ ty)aj�x+ x(�x+ t�y)aj � xaj(1 + t)�x

�(x+ ty)(�x+ t�y)aj(1 + p) � aia
2
j
(1 + t)

= �
aj

1 + t
jx(1 + t)� (x+ ty)j2 � 0 =) x = y:

This means that

F (gkl)kk
ij
= F (gkk)kk

ij
:

Step 6. Firstly, let us show that the main diagonals of non-zero components of all

F (gkl�); k < l, satisfy the equality

F (gkk)kk
ii

= �iF (gkl�)kl
ii
= iF (gkl�)lk

ii
= F (gll)ll

ii
:

Thereby we use the same arguments as in the previous step considering the operator

g�(t) = gkl� + tgkk + pgll, where t+ p+ tp � 0; p+1 � 0 and k < l. The operator g�(t) is

positive, hence F (g�(t)) is also positive. Restrict F (g�(t)) to the subspace hek
fi; el
fii.
In this basis F (g�(t)) has the form

�
F (g�(t))kk

ii
F (g�(t))lk

ii

F (g�(t))kl
ii

F (g�(t))ll
ii

�
=

�
F (gkl�)kk

ii
+ tF (gkk)kk

ii
�F (gkl�)kl

ii

F (gkl�)kl
ii

F (gkl�)ll
ii
+ pF (gll)ll

ii

�
: (7)

Note that �iF (gkl�)kl
ii
, F (gkl�)kk

ii
+ tF (gkk)kk

ii
, and F (gkl�)ll

ii
+ pF (gll)ll

ii
are real and non-

negative. The matrix (7) is positive, hence

(F (gkl�)kk
ii
+ tF (gkk)kk

ii
)(F (gkl�)kk

ii
+ pF (gll)ll

ii
) � �jF (gkl�)kl

ii
j2 = j � iF (gkl�)kl

ii
j2:

8



We apply Lemma 1 with a = F (gkk)kk
ii
, b = �iF (gkl�)kl

ii
, c = F (gll)ll

ii
, which gives us

F (gkk)kk
ii
= F (gll)ll

ii
� �iF (gkl�)kl

ii
:

Taking into account the fact that
P1

i=1 F (g
kk)kk

ii
) =

P1
i=1 F (g

ll)ll
ii
= �

P1
i=1 iF (g

kl�)kl
ii
= 1

we get

F (gkk)kk
ii
= �iF (gkl�)kl

ii
= iF (gkl�)lk

ii
= F (gll)ll

ii
for all k < l:

Secondly, let us show that the remaining elements of the non-zero components of

F (gkl�); k < l, satisfy

F (gkk)kk
ij
= F (gkl�)kk

ij
if i 6= j

using again the operator g�(t). Denote ai = F (gkl�)kk
ii
. Restrict F (g�(t)) to the subspace

hek 
 fi; ek 
 fj ; el 
 fji. In this basis F (g�(t)) has the form

0
@ F (g�(t))kk

ii
F (g�(t))kk

ji
F (g�(t))lk

ji

F (g�(t))kk
ij

F (g�(t))kk
jj

F (g�(t))lk
jj

F (g�(t))kl
ij

F (g�(t))kl
jj

F (g�(t))ll
jj

1
A

=

0
@ F (gkl�)kk

ii
+ tF (gkk)kk

ii
F (gkl�)kk

ji
+ tF (gkk)kk

ji
F (gkl�)lk

ji

F (gkl�)kk
ij
+ tF (gkk)kk

ij
F (gkl�)kk

jj
+ tF (gkk)kk

jj
F (gkl�)lk

jj

F (gkl�)kl
ij

F (gkl�)kl
jj

F (gkl�)ll
jj
+ pF (gll)ll

jj

1
A

=

0
@ ai + tai x+ ty �ix

�x+ t�y aj + taj �iaj
i�x iaj aj + paj

1
A = A:

If aj = 0 then obviously x = y = 0 as A is positive. If aj 6= 0 then, analogously to the

previous step,

detA = �
aj

1 + t
jx(1 + t)� (x+ ty)j2 � 0 =) x = y:

This means that

F (gkl�)kk
ij
= F (gkk)kk

ij
:

Denote aij = F (g11)11
ij

and consider �E 2 L
+
1 (HS) that has the form aij in the basis

fei; i 2 Ng. It is easy to see now that F (�) = �
 �E for each � 2 L1(H). The theorem is

proved. 2

Remark 3 The theorem implies that the linear lifting F is continuous.

Remark 4 If we skip the constraint trHEF (�) = �, more general liftings are possible.

Let �E 2 D(HE) be a reference state, and Kn a family of bounded operators in H which

satisfy
P

n
K+

n
Kn = Id, then

� 7�! F (�) =
X
n

Kn (�
 �E)K
+
n

(8)

is a linear and continuous mapping D(HS) ! D(H): Such liftings are used in general

investigations of the process of measurement [9] and in information theory, see e. g. [10].
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Remark 5 It is well known that any mixed state � of a system S can be obtained as the

reduced state of a pure state in an extended system S � E, if only dimHE � dimHS , see

e.g. [11]. But due to Theorem 1 the pure state cannot depend linearly on the state �. The

representation by a pure state is actually a generalization of the classical Gram's theorem

from linear algebra. To see this let HS be realized as L2(
;B
; �
) where 
 is a set ,

B
 is a �-algebra of its subsets, �
 a non-negative �-additive measure on B
. Then the

space H = HS 
HE is isomorphic to the space L2(
;B
; �
;HE) of HE-valued Bochner

square �
-integrable functions on 
. The corresponding isomorphic map HS 
 HE !

L2(
;B
; �
;HE) is denoted by '. On the other hand, the space HS 
HS can be realized

as L2(
 � 
;B
 
 B
; �
 
 �
), and hence the space L+
1 (HS) can be considered as a

vector subspace of the latter space which includes all Hilbert-Schmidt operators in HS . Any

normalized vector a 2 HS 
HE ; kak = 1, spans a one-dimensional subspace of HS 
HE

and de�nes a unique projection operator Pa 2 D(HS 
HE). If fa 2 L2(
;B
; �
;HE) is

de�ned by fa = '(a) then the reduced state of pure state Pa is given by

S(!1; !2) = hfa(!1); fa(!2)iHE : (9)

Now the generalization of Gram's theorem can be formulated as follows: For any S 2
L+
1 (HS) there exists a vector a 2 HS 
HE; kak = 1, for which (9) holds. If 
 is a �nite

set and �
 is the counting measure, we obtain the classical Gram's theorem.

3 REDUCING OBSERVABLES

The problem of linear liftings of states is closely related to the problem of reducing ob-

servables of the total system H to observables of the subsystem HS .

Lemma 2 Let F : L1(HS) �! L1(HS 
 HE) be a continuous mapping and let F � :

L(HS
HE) �! L(HS) be its adjoint mapping; then F �(B
IdE) = B for all B 2 L(HS)

i� trHEF (�) = � for all � 2 L1(HS).

Proof If B 2 L(HS) then, according to the de�nition of the duality between L(H) and

L1(H), hB 
 IdE; F (�)i = trH(B 
 IdE)F (�) = trHSB� = hB; �i. This identity together

with the de�nition of the duality between L(HS) and L1(HS) implies that

F �(B 
 Id) = B: (10)

On the other hand, if F � satis�es (10) then, for B 2 L(HS) and � 2 L1(HS),

hB 
 IdE; F (�)i = hF �(B 
 IdE); �i = hB; �i = trHSB�: (11)

But hB 
 IdE; F (�)i = trHSB(trHEF (�)). Hence hB; �i = trHSB� = hB; trHEF (�)i,
and as the latter identity holds for any B, we �nally obtain � = trHEF (�). The lemma is

proved. 2

Theorem 1 and Lemma 2 imply the following theorem.

Theorem 2 If R : L(HS
HE)! L(HS) is a linear mapping, continuous in the ultraweak

or (�(L(H);L1(H)); �(L(HS);L1(HS))) topology, see e.g. Sec. VI.6 of [4], and if

R(B
 IdE) = B is true for all B 2 L(HS) then there exists an element �E 2 D(HS) such

that R(A) = trHEA(IdS 
 �E) for all A 2 L(H).
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4 PROBABILITY MEASURES

The classical analog of the case considered in Theorem 1 is much simpler and admits

non-factorizing answers. Let T be a topological space, then Cb(T ) is the vector space of

all bounded continuous functions on T , M(T ) is the vector space of all Borel (signed)

measures on T equipped with the topology �(M(T ); Cb(T )), and Mp(T ) is the closed

convex set of probability measures on T . The Dirac measure at point t 2 T will be

denoted by �t. Let Q and P be topological spaces, E = Q�P the product space, and G :

Mp(E)!Mp(Q) be the mapping induced by the projection pr
Q
: E ! Q. The mapping

G can be (uniquely) extended by linearity to an R-linear mapping M(E)!M(Q). For

any measure � 2 M(E) the measure G� 2 M(Q) is called the marginal of �. The right

inverse of G will be called a lifting.

Lemma 3 Let f : Q!Mp(E) be a continuous function such that Gf(q) = �q, then the

mapping F :M(Q)!M(E) de�ned by

F� :=

Z
Q

f(q)�(dq) (12)

is a linear lifting. Any linear lifting has this representation.

Proof Take the Dirac measure �q then the integral is F�q = f(q) 2 Mp(E) and we have

GF�q = Gf(q) = �q. The general case follows by linearity and continuity. On the other

hand, if G is a linear lifting, then (12) follows with the function f(q) = F�q. 2

If f(q) factorizes into f(q) = �q � � with � 2 M(P ), the lifting (12) factorizes into

F(�) = � � �. But one can obviously choose non-factorizing functions f(q) such that

F(�) is not a product measure. To give an explicit example we split Q into two disjoint

measurable sets Q = Q1 [Q2 and denote by �1(q) and �2(q) the characteristic functions

of the sets Q1 and Q2. Then

f(q) = �1(q)�q � �p1 + �2(q)�q � �p2 (13)

with two points pj 2 P; j = 1; 2; p1 6= p2, yields an example of a non-factorizing lifting.

The state space D(H) of a quantum mechanical system is a closed convex set with the

pure states P(H) as extremal points. AnyW 2 D(H) can be represented by the Choquet

integral [7]

W =

Z
P(H)

P �(dP ) (14)

where �(dP ) is a { in general non-unique { measure in the convex set Mp(P(H)) of

probability measures on P(H), see e. g. [12]. This representation relates the quantum

mechanical state space with the space of probability measures, and one might ask whether

it is possible to �nd an a�ne linear mapping 
 : D(H) ! M(P(H)) such that (12) is

valid for all W 2 D(H) with the measure �(dP ) = 
W (dP ).

Theorem 3 There does not exist an a�ne linear mapping 
 : D(H)!Mp(P(H)) such

that the representation (12) holds for all W 2 D(H) with �(dP ) = (
W )(dP ).

11



Proof If such a mapping 
 exists then any pure state has to be represented by an atomic

measure on the one-point set containing just this pure state. Moreover this mapping can

be extended to an R-linear mapping 
 : La1(H)!M(P(H)). Since there are �nite sets of

pure states which are linearly dependent in La1(H) { e.g. any four projection operators on

the Hilbert subspace C 2 of H { whereas the set of atomic measures is linear independent

in M(P(H)) we obtain contradiction to the linearity of 
. 2

The proof given here exploits the di�erent structures of the convex sets D(H) and

Mp(P(H)): the space of measures is a simplex whereas D(H) not. Theorem 3 is also

closely related to our main Theorem 1, it is actually a consequence of it. To see that

implication assume such an a�ne linear mapping 
 exists. Then the lifting problem of

Sec. 2. has the following solution in contradiction to Theorem 1.

In the �rst step the statistical operator � 2 D(HS) is mapped onto the measure 
� 2

Mp(P(HS)). Following Lemma 3 we can lift this measure to a measure � 2 Mp(P(HS)�
P(HE)). Thereby we can choose a lifting such that � is not a product measure, take e.g.

(13). The operator

W =

Z
P(HS)�P(HE)

PS 
 PE �(dPS � dPE) (15)

has the partial trace trHEW =
R
P(HS)

PS (
�)(dPS) = �. All steps of the mapping �!W

are a�ne linear. Since the measure � does not factorize, the statistical operator W has

not the product form �
 �E, and we have obtained a contradiction to Theorem 1.

In addition to the representation of states by a probability distribution on the set of

pure states there exists a representation of any state by a random vector distributed by a

probability measure on the Hilbert space. Such a representation is used in the theory of

Schr�odinger (-Belavkin) stochastic equations (see [13], [14] and references therein), which

gives both, a phenomenological description of continuous measurements, and a Markovian

approximations for the reduced dynamics.

By M(H) we denote the space of all �-additive signed measures on the �-algebra of

Borel subsets of H. The space of probability measures on H is denoted byMp(H), the set

of all measures concentrated on Hnf0g byM0(H), and the set of all probability measures

concentrated on Hnf0g by M0
p
(H) =M0(H) \Mp(H).

In the theory of stochastic Schr�odinger equations a probability measure � 2 M0
p
(H)

represents the state B 2 D(H) ifZ
H

hz;Azikzk�2�(dz) = !B(A) � trHAB (16)

is valid for all observables A 2 L(H). Thereby any measure � 2 M0
p
(H) represents a

state, and any state W 2 D(H) can be represented by such a measure.

For the proof of the �rst statement takeA 2 L(H). Then the function jhz;Azij kzk�2 is

bounded by kAk for all z 6= 0, and the integral !�(A) :=
R
H

kzk�2hz;Azi�(dz) is de�ned.

Moreover, it is easy to see that all demands of Gleason's theorem, see Remark 1, are

ful�lled. Hence there exists a state W 2 D(H) such that !�(A) = trHAW .

On the other hand, given a statistical operator a probability measure for the repre-

sentation (16) can be constructed as follows. For any B 2 D(H), let �0
B
2 M0

p
(H) be a

probability measure with the correlation operator B, i.e. for all z1; z1 2 H the identity
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hz1; Bz2i =
R
hz1; zihz; z2i�

0
B
(dz) is true. It is worth noticing that among the measures �0

B

there exist precisely one Gaussian measure with zero mean value. The positive measure

�B 2 M
0(H) is then de�ned by �B = hz; zi�0

B
= kzk

2
�0
B
; i.e. for any Borel subset A of HR

we have �B(A) =
R
A

hz; zi�0
B
(dz). The identity trH B = 1 implies that �B is a probability

measure on H; in fact �B(H) =
R
hz; zi�0

B
(dz) = trH B = 1. For any observable A 2 L(H)

the function H 7�! R
1 : z 7�! 1

kzk2
hz;Azi is a random variable on the probability space

(H; �B). The mean value �A of this random variable

�A =

Z
H

hz;Azikzk�2�B(dz) =

Z
H

hz;Azi�0
B
(dz) = trH AB

is exactly the expectation of the observable A in the state B 2 D(H). Hence the measure

�B 2 M
0
p
(H) represents the state B.

There exists an a�ne linear mapping from the measures � 2 M0
p
(H) into the set

of measures of the Choquet representation. Let ' : Hnf0g ! P(H) be the map-

ping a 7! Pa, where Pa is the projection operator onto the subspace f�a j � 2 C g, i.e.

Pab = hb j ai kak
�2
a for all b 2 H. Then the measure �'�1 2 Mp(P(H)) is de�ned by

�'�1(R) = � ('�1(R)) for any measurable set R � P(H) of projection operators. This

mapping � 7! �'�1 is a�ne linear. If � 2 M0
p
represents a state W 2 D(H), then (16)

and the de�nition of �'�1 yield

h z1 jWz2i
(16)
=

Z
H

h z1 j zi h z j z2i kzk
�2�(dz) =

Z
P(H)

h z1 j Pz2i (�'
�1)(dP ):

But that means W =
R
P(H)

P (�'�1)(dP ), and �'�1 is the Choquet measure of the state

W .

The measures in the representation (16) are highly nonunique; the arbitrariness is

even larger than in the case of the Choquet representation, and one might ask again

for an a�ne linear lifting D(H) ! M0
p
(H). But assume such an a�ne linear lifting


 : D(H) !M0
p
(H) exists, then it induces an a�ne linear lifting D(H) ! Mp(P(H))

by W 7! 
(W ) 7! (
(W ))'�1 and we have obtained a contradiction to Theorem 3.

Corollary 1 There does not exist an a�ne linear mapping 
 : D(H) ! M0
p
(H) such

that for any W 2 D(H) the measure 
(W ) represents the state W .
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