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Abstract

The behavior of the divergent part of the bulk AdS/CFT e�ective action is

considered with respect to the special �nite di�eomorphism transformations acting

on the boundary as a Weyl transformation of the boundary metric. The resulting

1-cocycle of the Weyl group is in full agreement with the 1-cocycle of the Weyl

group obtained from the cohomological consideration of the e�ective action of the

corresponding CFT.
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1 Introduction

The conformal anomaly plays an important role in the investigation of non-renormalization

properties of supersymmetric theories in di�erent dimensions. Investigation of the struc-

ture of the conformal or trace anomaly has a 20 years history [1], but its general structure

was �rst discovered in [2] using a scaling property of the e�ective action.The cohomo-

logical properties of trace anomalies were considered in [3, 4] and the connection with

1-cocycles of the Weyl group was established. This cohomological object is important

because it can be considered as the full e�ective action in a conformal at background.

The structure of the conformal anomaly can be considered in a general way using the

Wess-Zumino consistency condition [5] and cocyclic properties of the e�ective action,

the nonlocal terms of which generate the anomaly after local Weyl variation. The exact

values of coe�cients of di�erent terms in the anomaly could be �xed by calculation in

perturbation theory using the free �eld representation.

The AdS/CFT correspondence [6] provides an important tool for the calculation of

conformal anomaly coe�cients and conformal correlation functions in the large N limit

of N = 4 Super-Yang-Mills in d = 4 and superconformal theories in other dimensions.

In this approach the anomaly appears after classical calculation of the on-shell d + 1

dimensional e�ective action in the form of logarithmically divergent terms [7]. Thus the

AdS/CFT approach o�ers the possibility to investigate the e�ective action in the strong

coupling limit. The Weyl transformation properties and some cohomological consider-

ations in this approach were presented in [8]. The authors of the latter discovered the

relation between the in�nitesimal Weyl transformation of the boundary metric and a

certain one-parameter family of d + 1 dimensional di�eomorphisms. The �nite form of

these di�eomorphisms was obtained in [9]. In this note we reproduce the 1-cocycle of

the Weyl group in d = 2; 4 from investigation of the behavior of the divergent part of the

AdS/CFT e�ective action with respect to these �nite di�eomorphism transformations.

We show that a cut-o� regularization of the pure bulk contribution in the e�ective action

(without boundary term) is responsible for the anomaly and the cocycle generation after

applying the di�emorphism transformation, and correctly reproduces the 1-cocycle of the

Weyl group (analogue of the Liouville action) in d = 2 and 4 dimensions. In Section 2 we

review the cohomological structure of the e�ective action and the derivation of 1-cocycles

of the Weyl group. In Section 3 we derive this cocycle from the Heningson-Skenderis ap-

proach using �nite di�eomorphism transformations of bulk divergent terms.
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2 Cocycle of the Weyl Group

In this section we review the cohomological properties of the CFT e�ective action in the

external gravitational �eld. This consideration is based on the results of [10] , [4].

We consider the e�ective action for d-dimensional conformal matter ' in an external

gravitational �eld:

W (g) = ln

Z
Dg' expf�SCFT ('; g)g (1)

where SCFT ('; g) is the classical Weyl and di�eomorphism invariant action for matter

�elds and where the Weyl transformation is de�ned as:

gij ! e2�(x)gij ; '! e��(x)': (2)

Here � is the conformal weight of the matter �eld. Then, for an in�nitesimal �, we can

write the equation for the anomaly

��W (g) =

Z
T i

i
��(x)

p
gd2kx: (3)

The Wess-Zumino consistency condition in the case of Weyl transformations is simply a

statement of the symmetry of the second conformal variation of the e�ective action:

�2W (g)

��(x)
p
g��(y)

=
�2W (g)

��(y)
p
g��(x)

(4)

or, in other words,
�A(x)
��(y)

=
�A(y)
��(x)

(5)

where we set T i

i
= A(x).

The considerations of [2, 4] lead to the following general structure of the solution of

the Wess-Zumino consistency condition in all (even) dimensions. For any local function

of the metricA(g) (i.e. the anomaly) the WZ consistency condition provides the following

statement, concerning the structure of A(g):

1) A(g) is a sum of the following terms with arbitrary coe�cients:

a)Type A- Euler density,

b)Type B- Weyl-invariant polynomials over the Riemann tensor and its covariant

derivatives,

c) Covariant total derivatives of polynomials over the Riemann tensor and its covariant

derivatives.

We can add the following comment:

2) The latter type of the anomalies are the Weyl variations of local functionals of the

metric. Taking into account the fact, that the de�nition of the measure in the functional
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integral can always be changed by multiplying the measure by an exponential of the local

functionals (counterterms) of the metric, one can deduce, that the third (i.e. c)) type

of solutions of the WZ condition are in that sense inessential and might be called trivial

below.

So we can classify the possible anomalies in d=2 and d=4 in the following way:

1) In d = 2 there is only a type A anomaly,

A2 = � c

24�
R (6)

where c is the central charge of the corresponding CFT2;

2) In d=4 there are nontrivial type A and B anomalies,

A4 = �E4 + �I4 (7)

where E4 is the Euler density and I4 the square of the Weyl tensor,

E4 = RijklRijkl � 4RijRij +R2; (8)

I4 = �C ijklCijkl = �RijklRijkl + 2RijRij � 1

3
R2: (9)

The constants � and � depend upon the speci�c mode content of the theory and inter-

action.

We now consider the change of the measure in the functional integral for the conformal

matter �eld ' in the external gravitational �eld under the �nite Weyl transformation (2).

The measure in the functional integral changes in the following way:

D
e2�(x)g

' = Dg' expS(�; g) (10)

This type of relation is very important since it is, for example, the starting point for the

calculation of the critical exponent of 2d gravity [11].

The action S(�; g) in (10) has to satisfy some conditions. First, in the case of in-

�nitesimal transformations ��(x) it has to reproduce the trace anomaly:

S(��(x); gij) =

Z
T i

i
��(x)

p
gd2kx (11)

Second, S(�; g) has to satisfy the following property, which follows from the application

of (10) to the composition of two Weyl transformations �1 and �2:

S(�1 + �2; g)� S(�1; e
2�2g)� S(�2; g) = 0 (12)

which means that S(�; g) is the 1-cocycle of the group of Weyl transformations [12].
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On the other hand, the action S(�; g) coincides with the �nite variation of the anoma-

lous e�ective action, due to the properties (1) and (10). In other words

S(�; g) = W (e2�g)�W (g); (13)

and non-triviality of the cocycle S(�; g) follows from the fact that W (g) is a non-local,

Diff(2k)-invariant functional of g�� in the case of type A and B anomalies. Thus, we

can easily calculate the trivial cocycles (type c)) as a coboundary of local counterterms

W0(g) which we shall call from now on 0-cochains:

S0(�; g) = 4W0(g); (14)

where we have de�ned the coboundary operator 4 on 0-cochains as the �nite Weyl vari-

ation (13). Then we can de�ne 1-cochains as local functions W1(�; g) of group parameter

and metric with coboundary operator:

4W1(�1; �2; g) =W1(�1 + �2; g)�W1(�1; e
2�2g)�W1(�2; g) (15)

It is easy to see that 42 = 0 which is exactly the cocyclic property (12). One can

generalize this construction on higher cohomologies of the Weyl group [12].

The nontrivial cocycles can be obtained from the solution of eq. (12) with condition

(11). To obtain the solution we have to take �2 = � and �1 = �� and get the di�erential

form of (12):

�S(�; g) = S(��; e2�g) =

Z
A(R(e2�g))��

p
gd2kx: (16)

The explicit form of the solution for the two-dimensional case is the well-known Liouville

action [13]

Sd=2(�; g) =
c

24�

Z
d2x

p
g(gij@i�@j� �R�): (17)

We can restore this cocycle in the usual way using the variation of the non-local e�ective

action:

Sd=2(�; g) = 4 �c
96�

Z p
gR

1p
g2

p
gR: (18)

In four dimensions the explicit form of the cocycle, corresponding to E4, was �rst found

in [10],

SE(�; g) =
Z
d4x

p
g
�
2(ri�ri�)2 + 4ri�ri�r2�

�4(Rij � 1

2
gijR)ri�rj� � �E4

�
: (19)

For type B anomaly in d = 4 there is a linear nontrivial cocycle corresponding to the

single invariant density CijklC
ijkl:

SC(�; g) =

Z
CijklC

ijkl�(x)
p
gd4x: (20)
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This expression satis�es the cocyclic property (12) and can appear in the Weyl trans-

formation of the measure (10). All other freedom in the de�nition of the cocycle of the

Weyl group is connected with the special choice of local counterterms in the regular-

ized e�ective action. These counterterms will generate trivial cocycles corresponding to

the type c) full derivative contribution in the anomaly. In d=4 we have only one local

counterterm with independent Weyl variation and therefore here we can obtain only one

trivial cocycle:

S0(�; g) = 4
Z
R2pgd4x: (21)

As was shown in [10] this trivial cocycle can be used to reduce the nontrivial one connected

with the Euler density up to the second order in � with the fourth-order conformal-

invariant di�erential operator acting on a scalar �eld of zero conformal weight as a kinetic

term and then can be expressed as a Weyl variation of some nonlocal e�ective action

(analog of Liouville theory in d=4). The same but much more complicated structure

exists also in d=6 [4] and d=8 [14]. Finally we want to describe the cocycle of the Weyl

group for N = 4 Super-Yang-Mills theory. It is well known that the anomaly of this

theory vanishes for a Ricci-at background [7] and has the following form:

A = �
�
E(4) + I(4)

�
= 2�

�
1

3
R2 �RijRij

�
; � = �N2 � 1

64�2
: (22)

We can easily solve our equation (16) and obtain the cocycle for the d=4, N = 4

SYM anomaly or we can consider this cocycle as a sum of (19) and (20) corresponding

to Euler density and Weyl invariant I4,

S�(E+I)(�; g) = 2�
Z
d4x

p
g
h
(ri�ri�)2 + 2ri�ri�r2�

�2(Rij � 1

2
gijR)ri�rj� �

�
1

3
R2 �RijRij

��
: (23)

3 Holographic E�ective Action and Cocycle

We now try to derive the latter cocycle from the Heningson-Skenderis AdS construction.

It is well known that the e�ective action of all maximally supersymmetric theories in

d=3,4, and 6 can be derived from the on-shell d+1 dimensional gravitational action with

asymptotically AdS classical solution [7]:

W =
1

2k2
d+1

Z
M
d+1

ddxd�
p
G (R+ 2�)� 1

2k2
d+1

Z
@M

d

dd�
p
2K; (24)

� = �d(d� 1)

2
; K = D�n

�: (25)

The boundary term (with  the induced metric, K the trace of the extrinsic curva-

ture and n� a unit vector normal to the boundary) is necessary in order to obtain an
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action which depends only on �rst derivatives of the metric and to obtain a well-de�ned

variational problem with Dirichlet boundary conditions for the usual Einstein equations.

The metric G�� is degenerate on the boundary and the boundary metric is de�ned up

to conformal transformations. To obtain the anomalous e�ective action following stan-

dard procedures [7] we have to solve the equation of motion for this action using the

Fe�erman-Graham [15] coordinate system for d + 1 dimensional metrics G�� :

ds2 = G��dx�dx� =
d�2

4�2
+
gij(�; x)

�
dxidxj; (26)

�; � = �; 1; 2; :::d; i; j = 1; 2; :::d;

g(x; �) = g(0) + � � �+ �d=2g(d) + h(d)�
d=2 ln � + � � � : (27)

The equations of motion determine g(n)(x) in terms of g(0)(x):

g(2)ij =
1

d� 2
(R

(0)
ij �

1

2(d � 1)
R(0)g(0)ij); (28)

g(4)ij = � � � :

We then have to insert this expansion of g into the on-shell gravitational action (24)

and perform the integration over �. However, the on-shell action diverges because the

boundary metric is degenerate. We therefore we have to regularize the action using a

restriction on the � integral with some infrared cut-o� � � ", and evaluate the boundary

term at � = ". Then

S =
1

2k2
d+1

Z
ddx

Z
��"

d�
d

�
d

2
+1

q
g(x; �)� 1

k2
d+1

Z
@M"

d

dd�
p
K: (29)

The resulting on-shell e�ective action contains divergences as poles 1
"n
, a logarithmic

divergence and a �nite part (which is the essential e�ective action if we apply the minimal

renormalization scheme):

Wreg =
1

2kd+1

Z
ddx

q
det g(0)

�
"�d=2a(0) + : : :� ln "a(d)

�
+Wfinite: (30)

From this expression we can easily recognize the anomalous behavior of the unknown

Wfinite by investigating the behavior of the divergent terms with coe�cients a(n); n =

0; 1; ::::; d with respect to scale transformation of the metric [7], �g(0) = 2��g(0) and

�" = 2��", with constant ��. Taking into account that the entire action (30) is invariant

and all negative powers of " terms are scale invariant, one can derive from variation of

the logarithmically divergent term that the holographic anomaly is:

A = � 1

kd+1
a(d): (31)

The explicit expressions of the logarithmically divergent terms [7, 17] in d = 2 and d = 4

are: a(2) =
1
2
R and a(4) = �RijRij=8 + R2=24. The value of the gravitational constant
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in d = 5 can be obtained from [16],

1

2�25
=

N2

8�2
; (32)

where N is the number of coincident D3 branes. It is easy to see that inserting this

expression into (32), we can recognize the anomalous coe�cient of N = 4 SYM in the

large N limit. The origin of this anomaly generation is also well-known [8]. There are

special d + 1 dimensional di�eomorphisms of asymptotic AdS space-time parameterized

with one scalar function �(x) acting on the boundary as a Weyl transformation of the

metric g(0).These di�eomorphisms leave the form of the Fe�erman-Graham metric invari-

ant. Solving this condition we can write down the following important formulas for such

di�eomorphisms [9] in the form of power series in �0:

� = �0e�2�(x
0) +

X
k=2

a(k)(x
0)�0k; xi = x0i +

X
k=1

ai(k)(x
0)�0k; (33)

a(2) = �1

2
(@�)2e�4�; a(3) =

1

4
e�6�

�
3

4
(@�)2+ @i�@j�g(2)ij

�
; (34)

ai(1) =
1

2
@i�e�2�; ai(2) = �1

4
e�4�

�
@k�g

ik

(2) +
1

2
@i�(@�)2 +

1

2
�i

kl
@k�@l�

�
: (35)

The nice property of these di�eomorphisms is that the transformation rules for g(n) are

the usual Weyl transformations of metric g(0):

g0(0)ij = e2�g(0)ij; (36)

g0(2)ij = g(2)ij +rirj� �ri�rj� +
1

2
(r�)2g(0)ij; (37)

g0(2)ij = � � � :

The important point here is that the anomalies are described only by the logarithmic

divergence originating only from the bulk integral. The interesting point about the

boundary extrinsic curvature term is the following: there is no contribution from this

term in the anomaly, because there is no � integral there, and there is no " independent

R2 order contribution from this term . We can easily check this from the de�nition of

the boundary term at the point � = " [7]:

1

2kd+1

Z
@M

d

dd�
p
2D�n

� =
1

2kd+1

Z
ddx

1

�d=2

�
�2d

q
det g(x; �) + 4�@�

q
det g(x; �)

�
j�=�;
(38)

using the trivial identity

(�2d + 4�@�)�
d=2 = 0: (39)

In addition we can note that the coe�cient h(d) in the expansion of the metric is traceless

and there is no room for a contribution in the anomaly from this term also. The absence

of an " independent term is important because this R2 type term could be considered
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like a local counterpart to the e�ective action and produce after Weyl variation a trivial

(2R) contribution in the anomaly. We can now try to apply the special di�eomorphisms

(33) to the divergence part of the e�ective action (30), and we can expect to obtain

our cocycle (23) constructed earlier from the solution of the cohomological equation

(12). Before doing that we note that the de�nitions of boundary and boundary term are

invariant with respect to d + 1 dimensional di�eomorphisms. Indeed, the de�nition of

the regularized boundary X�(�) = (xi = �i; � = ") will change after di�eomorphism

to X 0�(�) = (x0i = x0i(�; "); �0 = �0(�; ")) where x0i(x; �); �0(x; �) are di�eomorphism

functions inverse to those de�ned in (33). But the boundary term depends on the d + 1

dimensional covariant divergence of the normal vector D0

�
n0� = D�n

� and on the induced

metric ij(�) which is also invariant:

ij(�) = G��

@X�

@�i

@X�

@�i
= G0

��

@X 0�

@�i

@X 0�

@�i
: (40)

Thus we can deduce that there is no contribution to the cocycle from the boundary term,

just as there is no contribution from this term in the anomaly. Then we can concentrate

on the pure bulk contribution in the e�ective action:

W bulk

reg
=

1

2k2
d+1

Z
ddx

Z
��"

d�
d

�
d

2
+1

q
g(x; �): (41)

After integration in d = 2; 4 we obtain the divergent part of the action:

W bulk

d=2 =
1

2k2
d+1

Z
ddx

q
g(0)(x)

�
2

"
� ln "

1

2
R

�
; (42)

W bulk

d=4 =
1

2k2
d+1

Z
ddx

q
g(0)(x)

�
2

"2
+

1

3"
R � ln "

�
1

24
R2 � 1

8
RijRij

��
: (43)

We can now apply di�eomorphisms (33) to the bulk e�ective action (41) and calculate

the cocycle of the Weyl group because this transformation reproduces on the boundary

the usual Weyl transformation of the boundary metric. For this one should note that the

integrand of (41) is the covariant volume
p
G, so that we get the following transformation

of our parameters.Instead of initial coordinates x; � , metric g(x; �) = g[g0(x; �)] and

integration limit � = ", we have now x0; �0; g0(x0; �0) = g0[g00(x
0; �0) = e2�(x

0)g0(x
0)] and an

x0-dependent integration limit �0 = f(x0; "), where f(x0; ") is the solution with respect to

�0 of the equation

" = �(x0; �0) = �0e�2�(x
0) +

X
k=2

a(k)(x
0)�0k (44)

which follows from (33) to (37). The solution of (44) is

�0 = f(x0; ") = "e2�(x
0) +

X
k=2

b(k)(x
0)"k; (45)
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b(2)(x
0) = �a(2)(x0)e6�(x0) =

e2�(x
0)

2
@i�(x

0)@j�(x
0)gij(0); (46)

b(3)(x
0) = 2a2(2)(x

0)e10�(x
0) � a(2)(x

0)e8�(x
0)

=
e2�(x

0)

4

�
5

4
(@�)4� @i�(x

0)@j�(x
0)gij(2)

�
; (47)

b(4)(x
0) = � � � :

Finally we have to calculate the cocycle by performing the following transformation of

the divergent part of the bulk e�ective action

S(�; g(0)) = lim
"!0

"
1

2k2
d+1

Z
ddx0

Z
�0�f(x0;")

d�0
d

�0
d

2
+1

q
g0(x0; �0)

� 1

2k2
d+1

Z
ddx

Z
��"

d�
d

�
d

2
+1

q
g(x; �)

#
: (48)

Actually for calculation of the transformed action in d = 2; 4 we only have to replace in

(42) to (43) " by f(x0; ") and g(0) by g
0

(0). We use the following formulas

1

f(x0; ")
= e�2�(x

0)

�
1

"
� 1

2
@i�(x

0)@j�(x
0)g

ij

(0) +O(")
�
; (49)

1

f(x0; ")2
= e�4�(x

0)

�
1

"2
� 1

"
@i�(x

0)@j�(x
0)g

ij

(0)

+
1

2

�
1

4
(@�)4 + @i�(x

0)@j�(x
0)g

ij

(2)

�
+O(")

�
; (50)

a
0

(2)(g
0

(0)) = e�2�
�
a(2)(g(0)) +2�

�
; d = 2; (51)

a
0

(4)(g
0

(0)) = e�4�
�
a(4)(g(0))� 1

2
ri

��
R

ij

(0) �
1

2
R(0)g

ij

(0)

�
@j�

+
1

2
rj(@�)2�ri�2� �ri�(@�)2

��
d = 4: (52)

We �nd that in (48) all divergences will cancel for both d = 2; 4 cases (which is a nice

indication of the correctness of our idea) and we obtain the following �nite expressions

for (48) in d = 2; 4

Sd=2(�; g(0)) =
1

2k23

Z
d2x

p
g(gij@i�@j� �R(0)�); (53)

Sd=4(�; g(0)) =
1

2k25

Z
d4x

p
g

�
1

4
(@�)4+

1

2
2�(@�)2� 1

2

�
Rij

(0) �
1

2
R(0)g

ij

(0)

�
@i�@j�

� 1

4

�
1

3
R2
(0) �Rij

(0)R
(0)
ij

��
: (54)

These expressions are in full agreement with (17) and (23) after using the standard

relation 1
2k23

= c

24�
and the 5d gravitational constant (32). Thus we have shown that

�nite di�eomorphisms (33) applied to bulk contributions of the AdS e�ective action

generate cocycles of the Weyl group in dimensions 2 and 4 with the right form.
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4 Conclusion

Above we considered the 1-cocycle of the Weyl group (i.e. integral trace anomaly) in

the AdS/CFT approach. We have shown that special d+1 dimensional di�eomorphisms

[8] of the �nite form [9] applied to the divergent part of the AdS action originating

from the bulk integral reproduce the 1-cocycle of the Weyl group corresponding to the

correct anomaly in d = 2; 4. It will be interesting to extend this consideration to d = 6.

This will be interesting because the renormalization properties of anomaly coe�cients

in AdS7=CFT6 still lack explanation because we still do not have a good explanation

of the renormalization of the Euler density coe�cient from the weak to the strong-

coupling regimes [18] for the (2,0) tensor multiplet, like the di�erence in the R-symmetry

anomaly structure for this multiplet in weak and strong-coupling regimes [19]. Thus

any investigation in the �eld of anomalous behavior in the AdS/CFT picture will be

interesting and important.
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