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ABSTRACT

The classi�cation of quasi - primary �elds is outlined. It is proved that the only

conserved quasi - primary currents are the energy - momentum tensor and the O(N)-

Noether currents. Derivation of all quasi - primary �elds and the resolution of de-

generacy is sketched. Finally the limits d = 2 and d = 4 of the space dimension

are discussed. Whereas the latter is trivial the former is only almost so. (To ap-

pear in the Proceedings of the XXII Conference on Di�erential Geometry Methods in

Theoretical Physics, Ixtapa, Mexico, September 20-24, 1993)

1 SOME GENERAL REMARKS

We have studied only a very special example of a critical �eld theory at dimen-

sions 2 < d < 4. Nevertheless we believe that the results are relevant for many

critical �eld theories, in particular sigma models in a neighbourhood of a free

theory. Our neighbourhood is de�ned by a 1
N

expansion.

In this r�esum�e we extract results from a series of papers on this subject [1-7]

published by us in the last three years, and from earlier literature on conformal

�eld theory in general [8, 9] or conformal sigmamodels in particular [10]. These

results may have di�erent status but we condense them equally into "theorems"

which should not be considered as mathematical theorems but as tested con-

jectures. General statements of quantum �eld theory and group theory are
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2 Chapter 1

thus mixed up with conclusions from low order perturbative expansions. Let

us start with such a theorem which certainly disappoints many of the readers:

Theorem 0: Almost none of the structures of conformal �eld theory at d = 2

can be rediscovered at 2 < d < 4.

2 DEFINITION OF THE MODEL

We start with the partition function

Z =

Z
D[~S]D[�] exp

�
�

Z
dx

h1
2
(@�~S)

2(x) + z
1

2�(x)(~S
2
(x) � 1)

i�
(1)

where

~S : O(N )- vector, O(d) - scalar;

� : O(N )- O(d) - scalar;

d = 2� : space - time dimension

If ~S and � are normalized in a standard fashionD
Sa(x)Sb(0)

E
= �ab

�
x
2
�
��

(5)

D
�(x)�(0)

E
=

�
x
2
�
��

(6)

the critical coupling constant z becomes a computable function of N , and

N !1 : z = O( 1
N
) (7)

The limit N !1 is a free �eld limit

lim
N!1

~S(x) = ~s(x) (8)

but ~s(x) possesses in�nitely many components which leads to problems some-

times. A saddle point expansion of (0) gives the 1
N

- expansion.

A critical theory such as this is conformally covariant. Operator product ex-

pansions (OPE) generate a �eld algebra A(~S; �) of the two fundamental �elds
~S and � which is associative and possesses a commutation property connected

with the crossing behaviour of n - point functions. The building blocks of

A(~S; �) are the conformal or quasiprimary �elds (qp - �elds ).



Field structure of critical O(N) - vector nonlinear � - models 3

Theorem 1: All qp - �elds belong to representations of the conformal group

characterized by two quantum numbers only: �, the scaling di-

mension under dilatations and l, the tensor rank under space -

time rotations.

These are the elementary representations. In addition the qp - �elds transform

irreducibly under O(N ). We ascribe to them a Young frame Y .

Consider the dimension �� of the qp - �eld �

�� = [��] + �(�) (9)

[��] : the normal dimension

�(�) = O( 1
N
) : the anomalous dimension (11)

By de�nition

[��] = p(� � 1) + q; p; q 2 IN0 (12)

[�S ] = � � 1 (13)

So we expect that in the limit N !1 � tends to a normal product of p �elds
~S with not more than q derivatives (see below).

Each elementary representation [�; l] of a qp - �eld possesses a dual represen-

tation [�0; l0] (" shadow representation ")

�
0 = d� � + 2 l (14a)

l
0 = l (14b)

The two - point functions

D
�[�;l](x)�[�;l](0)

E
and

D
�[�0;l0 ](x)�[�0;l0](0)

E

are as kernels and up to a normalization inverse to each other. An n - point

function of �[�;l] is transformed into an n - point function of �[�0;l0] by amputa-

tion. Therefore we have

Theorem 2: The �elds �[�;l] and �[�0;l0 ] are dynamically equivalent.

So from each pair �[�;l], �[�0;l0 ] we would like to choose only one representative

as basis element of A(~S; �). We will in fact be able to do that but in an

unexpected fashion.
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From

[�0] = d�
�
p(�� 1) + q

�
+ 2l

= (2� p)(� � 1) + 2� q + 2l (17)

we see that the � - �eld can be considered as the shadow �eld of�
~S
2
(x)
�
ren.

(18)

since

p = 2; q = 0; l = 0 implies [�0] = 2 (19)

Inspection of the action in (0) also suggests this interpretation of �.

Next we decompose q in (11) as

q = l + t = l + 2r (t: twist) (20)

where r is the number of � �elds bound into � at N !1 and l is the number

of derivatives. p, l and r (or t) serve as quantum numbers in a neighbourhood

of N !1.

3 CLASSES OF QP - FIELDS

Construction of the qp - �elds goes by OPE and harmonic analysis. This au-

tomatically orders the qp - �elds according to increasing dimensions �. From

the interpretation of the quantum numbers p, l, t in (11), (3) we can naturally

expect these numbers to be bounded by

p � 0; l � 0; t � 0 (21)

Infact, this is ful�lled by our construction. Most of the shadow �elds are for-

bidden by (3) but a few of them are still permitted. We put all qp - �elds with

the same Y and p into a class (Y; p). A generic class looks graphically as Fig.1.

Labels may be multiply occupied by qp -�elds, which are distinguished by their

anomalous dimensions (" degeneracy "). Some of the simplest classes look

di�erent indeed.

(A) The class ( ; 1) containing the fundamental �eld ~S. At t = 0 there is only

the scalar �eld ~S. At the level t = 2, l = 0 we would expect the shadow

�eld ~S0 of ~S. But it is not found, this level is empty. The level t = 4, l = 2

is twofold degenerate.
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Figure 1: A generic class (Y; p)
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Figure 2: The class (2; 1)

(B) The class (;; 0) containing the fundamental �eld �. At t = 2 we have only

the � �eld (we start counting from t = 2 in this case). At t = 4 we have

only even l and at t � 6, l = 1 is empty.
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Figure 3: The class (;; 0)
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Figure 4: The class (;; 2)
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Indeed, fusion of two qp - �elds into a third one by OPE

A(x)B(0) =
�
x
2
� 1

2
(�C��A��B)

C(0) + : : : (22)

abbreviated as

A 
 B ! C (23)

is analogous with the formation of bound states. Two bosonic �'s cannot

be bound together to a state with odd l and for more than three �'s l = 1

is also excluded by bose symmetrization.

(C) The class (;; 2) containing the energy - momentum tensor T�� .

The level t = 0, l = 0 has been found unoccupied. The shadow �eld of �

should appear on this level, or, according to our remark above, the �eld�
~S
2
(x)
�
ren.

. Thus the sigma - model constraint works and this �eld has

been eliminated. The energy - momentum tensor �eld lies at

t = 0; l = 2; � = [�] = 2� = d (24)

Looking through the classes more carefully, we recognize that the elimination

of shadow �elds has been completed.

In [4] we showed that elimination of the shadow �eld of � was directly re-

lated with a renormalization condition. Using dressed propagators and vertices

(represented as Polyakov triangles �) we have three such conditions

+ z r r + : : : = 0 (S)

2
N

+ z r r + : : : = 0 (�)

s = z
s
s s��

��

@@
@@

+ : : : (�)

These three conditions su�ce to determine �(S), �(�) and z. A generalization

of the argument in [4] shows validity of
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Theorem 3: The requirement that one (two) shadow �eld(s) of the fundamen-

tal �elds do(es) not show up replaces one (two) renormalization

condition(s).

The status of the proof is still not satisfactory: O( 1
N2 ) calculations at best.

The theorem (" equivalence theorem ") is very powerful in practice.

The � - �eld produces a �eld algebra A(�) which is a subalgebra of A(~S; �). It

contains only O(N )- scalars, among them the energy - momentum tensor T��

T�� 2 (;; 2) (26)

Indeed

� 
 � ! T (27)

at O( 1
N
) , so p is not conserved at this order. Moreover

T 
 T ! � (28)

so all A(�) can be generated from T (at d = 2 T generates not only Vir � Vir

but W algebras as well!).

Theorem 4: The only conserved qp - currents in A(~S; �) are T�� and J�;ab,

the Noether currents of O(N )- symmetry from the class ( ; 2).

Let us sketch the proof. Denote by #Y the number of blocks in the Young

frame Y . Then

p � #Y = 2n; n 2 IN0 (29)

This is obvious at N = 1 since n is the number of contractions applied to

the normal product of p vector �elds ~s. But in a neighbourhood of N = 1 it

remains valid due to standard arguments of harmonic analysis.

Next we use a classical lemma of conformal �eld theory ([5], Appendix A) for

qp - �elds which are symmetric tensors in spacetime. In fact for 2 < d < 4 we

have the situation of d = 3: symmetric tensors are su�cient. The lemma says

that a qp - current is conserved if and only if

l � 1; � = [�] = 2�� 2 + l (30)

i.e.

p = 2; l � 1; t = 0 (31)
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and

�(�) = 0 (32)

This leaves as candidates the classes

( ; 2); ( ; 2); (;; 2) (33)

In each case the t = 0 towers are nondegenerate with the following anomalous

dimensions at leading order

( ; 2) :
�(Ml)

�(S)

( ; 2) :
�(Jl)

�(S)

9>>=
>>;

= 2
(l � 1)(2�� 2 + l)

(�� 1 + l)(� � 2 + l)

l even

l odd (34)

(;; 2) :
�(Tl)

�(S)
=

8>>>>>>><
>>>>>>>:

0; (l = 2)

2(l � 1)+
1

2
l�2X
p=1

�
(p+ 1)!

�2 (2�+ 1 + p)l�4�2p

(2�+ 1)l�4
;

(l � 4; even)

(35)

The curves for the expression (34) are presented in [6], Fig. 6. None of these

functions changes sign. They vanish identically for J1 and T2 and are otherwise

di�erent from zero for all 2 < d < 4. It is also important to guarantee that no

empty levels are �lled up at higher orders of 1
N
or that degeneracy appears this

way. The �rst is made sure by crossing symmetry, the second possibility can

at present not be excluded.

4 FUSION

Each qp - �eld has a pedigree of fusion. The internal lines are arbitrary qp -

�elds which can be produced from the parents. This means that the fusion

coe�cients e�ective at a vertex must be nonzero:

f
C
AB 6= 0 (37)

Theorem 5: Fusion coe�cients vanish only if the corresponding Littlewood -

Richardson coe�cients of O(N ) are zero or if this follows from a

crossing symmmetry selection rule.
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Figure 5 A pedigree of fusion

As an example let A = B scalar and the Littlewood - Richardson coe�cient be

symmetric (antisymmetric) under exchange of A and B. Then odd (even) l are

forbidden for C. Another example is the fusion

� 
 ~S (38)

which leads to any level of the class ( ; 1) at O( 1
N
) already, but in the class of

degenerate levels only to one linear combination of qp - �elds . So to resolve

degeneracies we have to consider di�erent pedigrees with the same �nal level.

Theorem 6: The qp - �elds with l = 0 are never degenerate.

This corresponds to the uniqueness of a ground state in QM.

We introduce the concept of " dominant channel fusion " (DCF). This kind of

fusion acts already at O(1) and produces scalar qp - �elds of the type

(Y; p; [�]; l) = ( p ; p; p(�� 1) + 2r; 0) (39)

from qp - �elds of the same type. Let two such qp - �elds with labels fp1; r1g,

fp2; r2g be given. The resulting �eld has labels fP;Rg with

P = p1 + p2 (40)

R = r1 + r2 (41)

For DCF normal dimensions are additive and degeneracy does not occur. Only

symmetric O(N ) tensors are produced by de�nition. Pedigrees with DCF at
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each vertex produce a qp - �eld of type (7) which depends only on the numbers

p of ~S �elds and r of � �elds entering and not on the form of the pedigree. In

other words: DCF is abelian.

We denote the qp - �elds (7) by M
fp;rg

0 . Any qp - �eld on the level

( p ; p; p(�� 1) + 2r + l; l) (42)

is denoted M
fp;rg

l;k where k is introduced to take account of the degeneracy. We

are interested in the fusion process

M
fp1;r1g
0 
 M

fp2;r2g
0 ! M

fp1+p2;r1+r2g

l;k
(43)

If we keep

P = p1 + p2; R = r1 + r2 (44)

�xed but let p1, r1 run, we obtain di�erent combinations of M
fP;Rg

l;k which can

be resolved.

Technically one considers the four - point functions

D
M
fp1;r1g
0 (y1)M

fp2 ;r2g
0 (y2)M

fp0

1
;r0
1
g

0 (y3)M
fp0

2
;r0
2
g

0 (y4)
E

(45)

with �xed

P = p1 + p2 = p
0

1 + p
0

2

R = r1 + r2 = r
0

1 + r
0

2 (47)

On the one hand these four - point functions (7) are calculated from a 2(P +R)

- point function involving 2P ~S �elds and 2R � �elds by OPE reduction via

DCF. This is mainly a combinatorical task bringing in the " replica parameters

" p1, r1, p2, r2, p
0

1, r
0

1, p
0

2, r
0

2 and, at O(
1
N
) , the connected four - point functions

D
SSSS

E
conn

;

D
����

E
conn

;

D
�S�S

E
conn

(48)

which are explicitly known [3,4,5]. Crossing between the unprimed factors

exchanges

p1 $ p2; r1 $ r2 (49)

so that we can use the crossing symmetric combinations

t1 = r1r2; t2 = p1p2; t3 = p1r2 + p2r1 (50)
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Figure 6 Conformal exchange amplitude

On the other hand we compare the four - point function (7) with conformal

exchange amplitudes (this is an element of harmonic analysis). This allows

us to extract expressions for X
k

f
Ml;k

12 f
Ml;k

1020 (51)

and X
k

f
Ml;k

12 f
Ml;k

1020 �(Ml;k) (52)

The fusion constants f
Ml;k

12 are functions of the replica parameters

f
Ml;k

12 = Fl;k(p1; r1; p2; r2) (53)

By a simultanous diagonalization procedure for the two expressions obtained

for (6), (6) we can extract the fusion coe�cients and the anomalous dimensions

. The fusion coe�cients are obtained in the form

f
Ml;k

12 = polynomial in the replica parameters giving (�1)l

under crossing times an algebraic function depending

homogenously on t1, t2, t3

(54)

We have in fact solved the following cases [7]

P = 0, R arbitary > 0: levels 0 � l � 6 and t = 2R in the class (;; 0).

Degeneracy sets in at R � 4 and l � 4,

R = 0, P arbitary > 0: levels 0 � l � 6 and t = 0 in the classes

( P ; P ). Degeneracy sets in at

P � 4 and l � 4.

In both cases the anomalous dimensions are

�(Ml;k)

�(S)
= rational functions of � at leading order. (55)
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and the algebraic function in (53) reduces to a (nonhomogeneous) polynomial

of either t1 or t2.

If RP 6= 0, degeneracy starts already at R + P � 3, l � 2. We resolved only

the cases 0 � l � 3. Moreover we �nd

�(Ml;k)

�(S)
= algebraic (irrational) function of � at leading order. (56)

Many in�nite sequences of anomalous dimensions are known now and in these

sequences we can study limits. Consider a tower of nondegenerate qp - �elds

M
fP;Rg

l , P , R �xed, l running. Then in the DCF process (7) the pair of

qp - �elds on the left hand side is uniquely determined. At leading order in 1
N

we �nd

lim
l!1

�(M
fP;Rg

l ) = �(M
fp1;r1g

0 ) + �(M
fp2;r2g

0 ) (57)

Instead in the case of degeneracy

�(M
fP;Rg

l ) = O
�
l2

N

�
(58)

which makes the 1
N

expansion asymptotic only if N � l2. We could also think

of keeping l �xed and letting P , R run. Then

�(M
fP;Rg

l ) = O
� 1

N
� second order polynomial in P and R

�
(59)

imposing a similiar restriction on N .

We emphasize that our method of constructing the states M
fP;Rg

l by forcing

all internal qp - �elds of the pedigree to have tensor rank zero may be too

restrictive for large l. In a forthcoming article we will study an alternative

algorithm which remains correct at large l as well.

5 THE LIMITS D& 2 AND D% 4

For any 2 < d < 4 the limit N ! 1 leads to a free �eld theory. In this

limit each qp - �eld � 2 A(~S; �) possesses a corresponding qp - �eld ' in the

free �eld algebra A0(~s). In Green functions involving � �elds we may �rst

amputate them and perform the limit afterwards. At the boundaries d = 2,
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d = 2 d = 4

z1 0 2

z2 0 2

�1(S) 1 2

�2(S) 1 2

�1(�); � 6= S 1 1

Table 1 Table of zero orders.

d = 4 the behaviour of coupling constant and critical indices

�(�) =

1X
k=1

�k(�)

Nk
(60)

�1(S) = 2
sin��

�

�(2�� 2)

�(�+ 1)�(�� 2)
(61)

z =

1X
k=1

zk

Nk
(62)

concerning their zero orders in d is listed in table 1.

All critical exponents vanish at both limits. These limits are therefore con-

nected with free �eld theory.

At d = 4 we obtain a free �eld theory in the trivial sense that

lim
d%4

~S(x) = ~s(x); 4~s(x) = 0

~s(x) : N - component O(N ) - vector �eld (64)

As a test we can calculate the limit of
D
�~S�~S

E
after amputation. This limit

d = 4 is assumed �eldwise and is an isomorphism of �eld algebras in the

straightforward sense. Let A;B;C 2 A(~S; �)

A(x)B(0) =
�
x
2
� 1

2
(�C��A��B)(�)

f
C
AB(�)C(0) + : : : (65)

Then if a, b, c are the corresponding free �elds

a(x) b(0) =
�
x
2
� 1

2
(�C��A��B)(2)

f
C
AB(2) c(0) + : : : (66)
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The limit �! 2 is performed termwise.

This is not true at the other limit d = 2. First we consider the two conserved

qp - currents

� : T�� or J�;ab

which have well de�ned local �eld limits

' : t�� or j�;ab

Both T and J can be constructed from fusion of ~S
 ~S . We introduce the Ward

identities in any ad hoc normalization and normalize the �elds � 3 fT; Jg,

' 3 ft; jg relative to the same Ward identities. Conformal invariance implies

the same scaling dimension and tensor structure for � and ' so that

D
�(x)�(0)

E
= C�(�)

D
'(x)'(0)

E
(69)

By explicit calculation we �nd

lim
�&1

C�(�) = 1�
l + 1

N
+ O

� 1

N2

�
(70)

l = tensor degree of � (1 or 2)

Ward identities can be derived from the two - point functions. Instead of

normalizing �elds by three - point functions and comparing the two - point

functions we can introduce a standard normalization of two - point functions

D
�(x)�(0)

E
=

�
x
2
�
���

� tensor(x) (72)

with the tensor factors connected to Gegenbauer polynomials which can be

submitted to an ad hoc normalization, say C
��1
l (1) = 1, too. Doing that, the

factors C�(�) appear in the three - point functions as fusion coe�cients. It

becomes clear that the appearance of such factors is quite general. Consider

the fusion of n �elds ~S by DCF into the �eld M
fn;0g
0 . In the free �eld limit this

corresponds to taking the Wick normal product

: ~s n


: (73)

Two such �elds multiply as

: ~s
p1



: (x) : ~s
p2



: (0) = : ~s
p1+p2



: (0) + : : : (74)
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whereas DCF yields

M
fp1;0g
0 (x)M

fp2;0g
0 (0) = f

�
x
2
�
O(��1)

M
fp1+p2;0g
0 (0) + : : : (75)

The exponent of x2 contains only anomalous dimensions and tends to zero at

� = 1. Computation of f gives

f(�) = 1+
�

(�� 1)(�� 2)
�(S) p1p2 +O

� 1

N2

�
(76)

so that, with (60)

lim
�&1

f(�) = 1�
p1p2

N
+O

� 1

N2

�
(77)

Then we end up with a �nal

Theorem 7: The d = 2 limit is into the universality class of the polynomial

algebra of free �elds. Fusion coe�cients are O( 1
N
) deformed with

respect to free �eld theory.

In particular this implies that exponential expressions of free �elds (" vertex

operators ") cannot arise. Moreover the � = d� 2 expansions (which are in the

literature since about 1976) are correct only if applied to critical indices and

not to amplitudes. To our knowledge this restriction has never been clearly

expressed before.
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