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Abstract

We analyse 4-dimensional massive '4 theory at �nite temperature T in the

imaginary-time formalism. We present a rigorous proof that this quantum �eld

theory is renormalizable, to all orders of the loop expansion. Our main point

is to show that the counterterms can be chosen temperature independent, so

that the temperature ow of the relevant parameters as a function of T can be

followed. Our result con�rms the experience from explicit calculations to the

leading orders. The proof is based on ow equations, i.e. on the (perturbative)

Wilson renormalization group. In fact we will show that the di�erence between

the theories at T > 0 and at T = 0 contains no relevant terms. Contrary to

BPHZ type formalisms our approach permits to lay hand on renormalization

conditions and counterterms at the same time, since both appear as boundary

terms of the renormalization group ow. This is crucial for the proof.
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1 Introduction

Field theories at �nite temperature and density have been proposed as the fundamental

underlying theory for the description of the physics of the early universe. A proposed

scenario for baryogenesis is by the electroweak phase transition [1]. QCD is expected to

become decon�ned at high temperature. The formation of a quark gluon plasma and the

phase transitions of QCD are supposed to be visible in relativistic heavy ion collision and

astrophysics [2]. A modern presentation of �nite temperature �eld theory can be found

in [3].

Beyond their phenomenological implications, quantum �eld theories at �nite tem-

perature are very challenging also from the more theoretical point of view. There is a

real-time as well as an imaginary-time formalism, the �rst describing dynamical and the

second equilibrium properties [4]. Many fundamental issues and problems are unsolved

so far or require a deeper understanding. Quantum �eld theories are subject to enhanced

complexities compared to zero temperature and zero density. This is largely related to

the presence of additional length scales, due to the interaction with a heat bath. On the

various scales the properties of the theory are considerably di�erent.

The separation of scales is widely believed to be an intrinsic property of the �eld theory.

In QCD the scales are associated to the generation of electric and magnetic screening and

plasmon masses. In the framework of perturbation theory, this manifests itself in terms of

IR divergences that are \severe". They are not removable as it is the case at temperature

T = 0 by adjusting the renormalization prescription [5]. Various elaborate resummation

techniques have been proposed to (at least partially) remove the IR singularities and in

addition compute screening masses in perturbation theory. In any case, all the approaches

(need to) aim at a clean separation of IR and UV behaviour.

A precondition of all these considerations is renormalizability. Renormalizability is

an essential requirement of any local quantum �eld theory, both at zero and non-zero

temperature [6]. It implies that the correlation functions stay �nite as the UV-cuto�

�0, say, is removed, �0 ! 1, and that the limit is parametrized by a set of renormal-

ized (relevant) coupling constants. Moreover, it is crucial that renormalization can be

achieved in a temperature independent way, which means that the �eld theory renormal-

ized at zero temperature stays UV �nite at every T > 0 as well. This is often taken for

granted even for complicated theories, such as gauge theories. Temperature independent

renormalizability is indispensable for relating bare and renormalized coupling constants

in a T -independent way. It is thus required when formulating Callan-Symanzik type of

equations that govern the T -dependence of observables, including correlation functions
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and e�ective masses. More generally it implies that the static and dynamic properties

mediated by the interactions with a heat bath are intrinsic features of the �eld theory

itself.

Various attempts and steps towards proving renormalizability exist [7]. In order to

separate o� the IR problem from the UV scale, a massive �eld theory is considered. Both

in the real- and in the imaginary-time formalism, the investigations are commonly based

on a Feynman diagrammatic approach in momentum space. In the real-time descrip-

tion, it is argued that the part of the propagator which depends on the temperature T

or the chemical potential � decays exponentially fast for large momenta, so it should be

\innocent" of any UV problem. In the imaginary-time formalism the approach is gener-

ically more \cumbersome", but it is again argued that in the sum over the Matsubara

frequencies all T - or �-dependent UV divergences cancel out.

Experience obtained by explicit computations to leading orders of perturbation theory

con�rms that, once IR and UV singularities are properly disentangled, all UV divergences

found are T -independent and are removed by the zero temperature counterterms. How-

ever, this is not so for non-zero chemical potential � (associated to a �nite density). A

�eld theory that has been renormalized at � = 0 is able to generate �-dependent UV di-

vergences that are not removed by the � = 0 counterterms. A simple example is given by

a 4-dimensional Yukawa model, with a chemical potential associated to the fermion num-

ber. In the framework of the renormalization group, the chemical potential introduces

an additional relevant operator, so at least one additional renormalization condition is

expected. This also indicates a possible problem for the analytic continuation from the

euclidean to the real-time formulation, in agreement with a discussion [8] in the framework

of axiomatic quantum �eld theories at �nite temperature, where the problem of proving

the existence of correlation functions (even at � = 0) in the real-time formalism has been

stressed.

The renormalization of �eld theories at T = 0 is well understood. Strong statements

and proofs on the renormalizability of various �eld theories relevant in physics exist,

including several di�erent regularization and renormalization schemes, see e.g. [9, 10].

Unfortunately, this sophistication does not extend to �nite T so far. Rigorous proofs do

not exist, to the best of our knowledge. We would like to point out, however, that recently

rigorous bounds, uniform in the temperature, have been established for the perturbative

correlation functions of many-fermionmodels. Here renormalization is necessary to obtain

well-behaved bounds on the IR side, when approaching the Fermi surface, whereas the

UV regularization is kept �xed. Feldman et al. [11] renormalize the many-fermion models

with T -independent counterterms, as we do.
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In this paper we give a mathematical proof that massive '4 theory at �nite T , in

the imaginary-time formalism, is renormalizable. More precisely, we show, to all orders

of the loop expansion, that all correlation functions become UV �nite at every �nite T

once the theory has been renormalized at T = 0 by (one of the) usual renormalization

prescriptions.

The proof is given in the framework of Wilson's ow equation. It avoids the analysis

of individual Feynman integrals (or Feynman sums), which requires the involved combi-

natorics encoded in the forest formula for overlapping divergences. Moreover it avoids

the formulation and proof of a power counting theorem. Using ow equations, the proof

of renormalizability merely amounts to establish appropriate bounds in momentum space

on the correlation functions, which are viewed as coe�cient functions of the associated

generating functional. The proof is by induction on the number of loops.

This paper is organized as follows. In Sect. 2 we introduce our basic notations. This

includes the de�nition of the generating functional L�;�0 (') of the connected, free prop-

agator amputated Green functions on \momentum scale �", with 0 � � � �0, where

�0 denotes the UV cuto�. The dependence of L�;�0 on the scale � is described by the

so-called Wilson ow equation. We recap the basic steps of proving renormalizability

of 4-dimensional '4 �eld theories at zero temperature by means of the ow equation.

Renormalizability is stated in terms of uniform bounds on the (coe�cient functions of

the) solution L�;�0(') of the ow equation and its derivative with respect to the UV-

cuto� �0, with boundary conditions imposed at � = 0 for the relevant couplings and at

� = �0 for the irrelevant interactions.

In Sect. 3 we show that the di�erence D�;�0 (';T ) of the generating functionals at

temperature T > 0 and T = 0 :

D�;�0 (';T ) � L�;�0 (';T )� L�;�0(') (1)

has the properties of an irrelevant operator in the sense of the renormalization group 4.

More precisely, T -independence of the counterterms means that the boundary condition

D�0 ;�0(';T ) � 0 (2)

4For the de�nition of the momentum space �eld variables ' and their position space Fourier transform

'̂ we refer to the beginning of sect.3 : Equ. (1) should be understood in the weak sense, i.e. in a formal

power series expansion w.r.t. �h and as an identity for all coe�cient functions generated by the generating

functionals. For the equation to make sense as it stands the variables '̂ have to be appropriately

restricted, for instance to be smooth functions, supported in the interval [0; �] in the x0-component in

position space.
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holds. From this we derive strong bounds on all scales � for D�;�0 (';T ) . Together with

the bounds on L�;�0(') this proves UV �niteness of massive '4
4 for every �nite T , that is,

lim
�0!1;�!0

L�;�0(';T ) (3)

exists, to all orders of the loop expansion. As an immediate consequence, the theory is

also made UV �nite by imposing normalization conditions on the mass, the wave function

constant and on the quartic coupling constant at any �xed temperature T0 . In Sect. 4 we

summarize our central statements and give a short outlook.

2 Renormalization of zero temperature '4
4 theory

- a short reminder

Perturbative renormalizability of euclidean zero temperature '4
4 theory will be established

by analysing the generating functional L�;�0 of connected (free propagator) amputated

Green functions (CAG). The upper indices � and �0 enter through the regularized prop-

agator

C�;�0(p) =
1

p2 +m2
fe
�
p2+m2

�2
0 � e�

p2+m2

�2 g (4)

or its Fourier transform

Ĉ�;�0(x) =
Z
p

C�;�0(p) eipx ; (5)

where we use the shorthand Z
p

:=

Z
IR4

d4p

(2�)4
: (6)

We assume

0 � � � �0 �1 (7)

so that the Wilson ow parameter � takes the role of an infrared (IR) cuto�5, whereas

�0 is the ultraviolet (UV) regularization. The full propagator is recovered for � = 0 and

�0 !1 . We also introduce the convention

'̂(x) =
Z
p

'(p) eipx ;
�

�'̂(x)
= (2�)4

Z
p

�

�'(p)
e�ipx : (8)

For our purposes the "�elds" '̂(x) may be assumed to live in the Schwartz space S(IR4).

For �nite �0 and in �nite volume the theory can be given rigorous meaning starting from

5Such a cuto� is of course not necessary in a massive theory. The IR behaviour is only modi�ed for

� above m.
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the functional integral

e�
1

�h
(L�;�0('̂)+I�;�0) =

Z
d��;�0 (�̂) e

�
1

�h
L
�0;�0(�̂+ '̂) ; (9)

where the factors of �h have been introduced to allow for a consistent loop expansion in

the sequel. In (9) d��;�0(�̂) denotes the (translation invariant) Gaussian measure with

covariance �hĈ�;�0(x). The normalization factor e�
1

�h
I
�;�0

is due to vacuum contributions.

It diverges in in�nite volume so that we can take the in�nite volume limit only when it

has been eliminated [10]. We do not make the �nite volume explicit here since it plays no

role in the sequel.6

The functional L�0 ;�0('̂) is the bare action including counterterms, viewed as a formal

power series in �h . Its general form for symmetric7 '4
4 theory is

L�0 ;�0('̂) =
g

4!

Z
d4x '̂4(x) +

+

Z
d4x f

1

2
a(�0)'̂

2(x) +
1

2
b(�0)

3X
�=0

(@�'̂)
2(x) +

1

4!
c(�0)'̂

4(x)g ; (10)

where g > 0 is the renormalized coupling, and the parameters a(�0); b(�0); c(�0) ful�ll

a(�0); b(�0); c(�0) = O(�h) : (11)

They are directly related to the standard mass, wave function and coupling constant

counterterms. Since in the ow equation framework it is not necessary to introduce

bare �elds in distinction to renormalized ones (our �eld is the renormalized one in this

language), there is a slight di�erence, which is to be kept in mind only when comparing

to other schemes. The Wilson ow equation (FE) is obtained from (9) on di�erentiating

w.r.t. � . It is a di�erential equation for the functional L�;�0 :

@�(L
�;�0+I�;�0) =

�h

2
h
�

�'̂
; (@�Ĉ

�;�0)
�

�'̂
iL�;�0 �

1

2
h
�

�'̂
L�;�0 ; (@�Ĉ

�;�0)
�

�'̂
L�;�0i : (12)

6A rigorous treatment of the thermodynamic limit requires to replace the propagator (5) by a �nite

volume version, e.g. Ĉ
�;�0

V

(x; y) = �
V
(x) Ĉ�;�0(x�y)�

V
(y) ; where �

V
is the characteristic function of

the volume V , and to regard the Gaussian measure with covariance Ĉ
�;�0

V

(x; y) . In this case the quantity

I
�;�0

V

is obviously well de�ned, at any order l in �h . Then (12) is well-de�ned. After decomposing L
�;�0

V

w.r.t. powers of �h and of the �eld '̂ , we realize that the coe�cient functions L
�;�0

l;n

are well-de�ned in

the thermodynamic limit, since they are given as �nite sums over UV-regularized connected diagrams.

The existence of the thermodynamic limit is of course con�rmed by the bounds on the solutions of the

FE. It should also be feasible to study the thermodynamic limit itself with the aid of the FE in �nite

volume, by proving inductively uniform bounds on the (appropriately de�ned) "translational invariant

part" of the �nite volume Green functions and a convergence statement analogous to (18).
7The necessary generalizations in the nonsymmetric case will be surveyed in the end of the next

section.
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By h ; i we denote the standard scalar product in L2(IR
4; d4x) . Changing to momentum

space and expanding in a formal powers series w.r.t. �h we write with slight abuse of

notation

L�;�0(') =
1X
l=0

�hl L�;�0
l

(') : (13)

From L
�;�0
l

(') we then obtain the CAG of loop order l in momentum space as 8

(2�)4(n�1)�'(p1) : : : �'(pn)L
�;�0
l

j'�0 = �(4)(p1 + : : :+ pn)L
�;�0
l;n

(p1; : : : ; pn�1) ; (14)

where we have written �'(p) = �=�'(p). Note that our de�nition of the L
�;�0
l;n

is such that

L
�;�0
0;2 vanishes. The absence of 0-loop two (and one-) point functions is important for the

set-up of the inductive scheme, from which we will prove renormalizability below. The

FE (12) rewritten in terms of the CAG (14) takes the following form

@�@
w
L
�;�0
l;n

(p1; : : : pn�1) =
1

2

Z
k

(@�C
�;�0(k)) @wL�;�0

l�1;n+2(k;�k; p1; : : : pn�1) (15)

�
X

l1+l2=l; w1+w2+w3=w
n1+n2=n

1

2

"
@w1L�;�0

l1 ;n1+1
(p1; : : : ; pn1) (@

w3@�C
�;�0(p0)) @w2L

�;�0
l2;n2+1

(pn1+1; : : : ; pn)

#
ssym

;

where p0 = �p1 � : : :� pn1 = pn1+1 + : : :+ pn :

Here we have written (15) directly in a form where also momentum derivatives of the

CAG (14) are performed, and we used the shorthand notation

@w :=
n�1Y
i=1

3Y
�=0

(
@

@pi;�
)wi;� with w = (w1;0; : : : ; wn�1;3); jwj =

X
wi;� ; wi;� 2 IN0 : (16)

The symbol ssym 9 means summation over those permutations of the momenta p1; : : : ; pn,

which do not leave invariant the subsets fp1; : : : ; pn1g and fpn1+1; : : : ; png. Note that the

CAG are symmetric in their momentumarguments by de�nition. A simple inductive proof

of the renormalizability of '4
4 theory has been exposed several times in the literature [10],

and we will not repeat it in detail. The line of reasoning can be resumed as follows.

The induction hypotheses to be proven are :

A) Boundedness

j@wL�;�0
l;n

(~p)j � (� +m)4�n�jwj P1(log
� +m

m
)P2(

j~pj

� +m
) : (17)

8The normalization of the L
�;�0

l;n

is de�ned di�erently from earlier references.
9It is de�ned di�erently from the symbol sym in [10], the present conventions being slightly more

elegant.
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B) Convergence

j@�0@
w
L
�;�0
l;n

(~p)j �
1

�2
0

(� +m)5�n�jwjP3(log
�0

m
)P4(

j~pj

� +m
) :10 (18)

Here and in the following the P denote (each time they appear possibly new) polynomials

with nonnegative coe�cients. The coe�cients depend on l; n; jwj;m, but not on ~p; �; �0.

We used the shorthand ~p = (p1; : : : ; pn�1) and j~pj = supfjp1j; : : : ; jpnjg. The statement

(18) implies renormalizability, since it proves that the limits lim�0!1; �!0L
�;�0
l;n

(~p) exist

to all loop orders l . But the statement (17) has to be obtained �rst to prove (18). The

inductive scheme to prove the statements proceeds upwards in l, for given l upwards in

n, and for given (l; n) downwards in jwj, starting from some arbitrary jwmaxj � 3. The

important point to note is that the terms on the r.h.s. of the FE always are prior to the

one on the l.h.s. in the inductive order. So the bound (17) may be used as an induction

hypothesis on the r.h.s. Then we may integrate the FE, where terms with n + jwj � 5

are integrated down from �0 to �, since for those terms we have the boundary conditions

following from (10)

@w L�0 ;�0
l;n

(p1; : : : pn�1) = 0 ; for n+ jwj > 4 ; (19)

whereas the terms with n + jwj � 4 at the renormalization point - which we choose

at zero momentum for simplicity - are integrated upwards from 0 to �, since they are

�xed by (�0-independent) renormalization conditions, �xing the relevant parameters of

the theory11 :

L
0;�0
l;2 (p) = aR

l
+ bR

l
p2 +O((p2)2) ; L

0;�0
0;4 (0) = g ; L0;�0

l;4 (0) = cR
l
; l � 1 : (20)

Symmetry considerations tell us that there are no other nonvanishing renormalization

constants apart from aR
l
; bR

l
; cR

l
, and the Schl�omilch or integrated Taylor formula per-

mits us to move away from the renormalization point, treating �rst L0;�0
l;4 and then the

momentumderivatives of L0;�0
l;2 , in descending order. With these remarks on the boundary

conditions, and using the bounds on the propagator and its derivatives

j@w@�C
�;�0(p)j � ��3�jwjP(jpj=�) e�

p2+m2

�2 ; (21)

statement A) above is straightforwardly veri�ed by inductive integration of the FE. Once

this has been achieved statement B) follows on applying the same inductive scheme to

bound the solutions of the FE, integrated over � and then derived w.r.t. �0 .

10 In fact, in symmetric '4
4
theory 1

�
2

0

can be replaced by �

�
3

0

as shown in [13].
11The simplest choice would be to set aR

l

= 0; bR
l

= 0; cR
l

= 0 , in which case the renormalized coupling

is identical to the connected four point function at zero momentum. A shift away from zero momentum

would result in nonvanishing terms cR
l
, just to mention one example of more general choices.
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3 Temperature independent renormalization of

�nite temperature '4
4 theory

We �x the notations recalling at the same time some basic facts about euclidean �nite

temperature �eld theory. The scalar �eld '̂(x) becomes periodic in x0 at �nite tem-

perature with period � = 1=T . Correspondingly position space integrals over the zero

component of the coordinates are now restricted to the compact interval [0; �] . Symbols

denoting �nite temperature quantities will generally be underlined, thus we write

p := (p
0
; ~p) := (2�nT; ~p) ; n 2 ZZ ;

Z
p

:= T
X
n2ZZ

Z
IR3

d3p

(2�)3
: (22)

We also introduce the convention

'̂(x) :=

Z
p

'(p) eipx ; '(p) =

Z
�

0
dx0

Z
IR3

d3x '̂(x) e�ipx ; (23)

�

�'̂(x)
=

(2�)3

T

Z
p

�

�'(p)
e�ipx ;

�

�'(p)
=

T

(2�)3

Z
�

0
dx0

Z
IR3

d3x
�

�'̂(x)
eipx : (24)

The regularized propagator now takes the form

C�;�0(p) =
1

p2 +m2
fe
�
p2+m2

�2
0 � e�

p2+m2

�2 g : (25)

The generating functional of the �nite temperature CAG will be called L�;�0(';T ). In

analogy with (14) we de�ne the CAG through

�'(p
1
) : : : �'(p

n
)L

�;�0
l

(';T )j'�0 = (26)

(
T

(2�)3
)n�1 �0;(p

1;0
+:::+p

n;0
) �

(3)(~p1 + : : :+ ~pn)L
�;�0
l;n

(p
1
; : : : ; p

n�1
;T ) :

At this stage we could prove renormalizability of the �nite temperature theory in the

same way as for the zero temperature theory. A slight di�erence is that the relations (20)

are to be replaced by

L
0;�0
l;2 (p;T ) = aR

l
(T ) + bR;0

l
(T ) p2

0
+ bR;1

l
(T ) ~p 2 + O(p4) ;

L
0;�0
0;4 (p = 0;T ) = g ; L0;�0

l;4 (p = 0;T ) = cR
l
(T ) ; l � 1 ; (27)

since the space-time O(4)-symmetry is broken down to a ZZ2 � O(3)-symmetry which

demands a new renormalization condition. However we want to go beyond and prove

temperature independent renormalizability, in the sense that the counterterms can be

9



chosen temperature independent. To do so, it is advantageous to pass directly to the

di�erence between the �nite and zero temperature theories, which we will do now. Note

in this respect that if we wanted to prove the renormalizability of the �nite temperature

theory, keeping the counterterms �xed at their zero temperature values, would not work

within our scheme and procedure : The CAG would become arbitrarily divergent in

�0 with increasing loop order, since integrating relevant terms from �0 to 0 (instead

of integrating them from a renormalization condition �xed at � = 0 up to �0 ) gives

divergent integrals. Thus we rather study the di�erence functions

D
�;�0
l;n

(fpg) := L
�;�0
l;n

(fpg;T ) � L
�;�0
l;n

(fpg) : (28)

We only de�ne and need the di�erence CAG D
�;�0
l;n

at the external momenta (fpg) :=

(p
1
; : : : ; p

n�1
). From the FE (15) and the analogous equation for the L�;�0

l;n
(fpg;T ) we

can derive a FE for the D�;�0
l;n

(fpg) in the following form :

@�D
�;�0
l;n

(fpg) =
1

2

Z
k

(@�C
�;�0(k))D�;�0

l�1;n+2(k;�k; fpg) (29)

+
1

2

�Z
k

(@�C
�;�0(k))L�;�0

l�1;n+2(k;�k; fpg) �
Z
k

(@�C
�;�0(k))L�;�0

l�1;n+2(k;�k; fpg)

�

�
X

l1+l2=l;
n1+n2=n

1

2

("
L
�;�0
l1;n1+1

(p
1
; : : : ; p

n1
;T )(@�C

�;�0(p0)) D�;�0
l2;n2+1

(p
n1+1

; : : : ; p
n
)

#
ssym

+

"
D

�;�0
l1;n1+1

(p
1
; : : : ; p

n1
)(@�C

�;�0(p0)) L�;�0
l2;n2+1

(p
n1+1

; : : : ; p
n
)

#
ssym

)
;

where again

p0 = �p
1
� : : :� p

n1
= p

n1+1
+ : : :+ p

n
:

The boundary conditions we want to impose on the system D
�;�0
l;n

are (from the previous

remarks) obviously the following ones :

D
�0 ;�0
l;n

(p
1
; : : : ; p

n�1
) = 0 ; l; n 2 IN : (30)

To start the induction we also note

D
�;�0
0;n (p

1
; : : : ; p

n�1
) = 0 ; n 2 IN ; (31)

at the tree level all di�erence terms D
�;�0
0;n vanish. This follows from the fact that re-

stricted to the momenta (p
1
; : : : p

n�1
) the tree level functions L

�;�0
0;n (p

1
; : : : p

n�1
;T ) and

L
�;�0
0;n (p

1
; : : : p

n�1
) agree. Now we would like to use the same inductive scheme proceeding

10



upwards in l, and for given l upwards in n, to prove the �niteness of lim�0!1;�!0D
�;�0
0;n .

Due to the form of (30) we always integrate the FE for D
�;�0
l;n

from �0 down to �, since

the boundary terms at �0 always vanish. We want to prove the following

Theorem :

jD
�;�0
l;n

(p
1
; : : : ; p

n�1
)j � (� +m)�s�n P1(log

� +m

m
)P2(

jfpgj

� +m
) ; (32)

j@�0D
�;�0
l;n

(p
1
; : : : ; p

n�1
)j �

1

�2
0

(� +m)�s�n P3(log
�0

m
)P4(

jfpgj

� +m
) : (33)

The nonnegative coe�cients in the polynomials P depend on l; n; s;m and (smoothly) on

T , but not on fpg; �; �0 . The positive integer s 2 IN may be chosen arbitrarily.

The �nite temperature CAG L
�;�0
0;n (p

1
; : : : ; p

n�1
;T ) , when renormalized with the same

counterterms as the zero temperature ones, satisfy the same bounds as in (17,18) re-

stricted to w = 0 . The coe�cients in the polynomials P may now depend on l; n;m and

(smoothly) on T .

Remark : It is possible to prove the bounds (17,18) also for derivatives of the �nite tem-

perature CAG L
�;�0
0;n (p

1
; : : : ; p

n�1
;T ) . In the pi;0-components di�erentiations then have

to replaced by �nite di�erences. However these bounds are not needed in the inductive

proof, so we skip them here.

Proof : We �rst prove (32) and and the statement corresponding to (17) for w = 0 ,

using the inductive scheme indicated previously. Regarding the FE (29) we state that it

is compatible with the inductive scheme and that the only term in which (32) cannot be

used as an induction hypothesis is the following one :Z
k

(@�C
�;�0(k))L�;�0

l�1;n+2(k;�k; fpg) �
Z
k

(@�C
�;�0(k))L�;�0

l�1;n+2(k;�k; fpg) : (34)

So our sharp �-bound on D
�;�0
l;n

can only be veri�ed if it holds for this di�erence term.

Here we use (17,18) and the Euler-MacLaurin-formula, see e.g. [12]. We can rewrite (34)

as
�2

�3

Z
d3~k

(2�)4
e�

~k2+m2

�2

�
2�T

X
n2ZZ

g(2�nT )�
Z
1

�1

dk0 g(k0)

�
; (35)

where we introduced the function

g(k0) = e�
k2
0

�2 L
�;�0
l�1;n+2(k;�k; fpg) for ~k; fpg �xed : (36)

The Euler-MacLaurin formula for our case can be stated in the form

2�T
X
n2ZZ

g(2�nT )�
Z
1

�1

dk0 g(k0) = ��T [g(1)� g(�1)] (37)

11



+
r+1X
k=1

b2k(2�T )
2k

(2k)!
[g(2k�1)(1)� g(2k�1)(�1)] + Rr+1 :

Here b2k are the Bernoulli numbers. We observe that passing to the limit of an in�nite

integration interval is justi�ed, since the function g(k0) and its derivatives vanish rapidly

at in�nity. The remainder Rr+1 obeys the following bound [12]

jRr+1j � 4 e2�T 2r+3

Z
1

�1

dk0 jg
(2r+3)(k0)j ; (38)

therefore we obtain, using again (17,18)

jRr+1j � T 2r+3 (� +m)2�n

�2r+2
P1(log

� +m

m
)P2(

jfk; pgj

� +m
) : (39)

Note that r 2 IN can be chosen arbitrarily here, and the bound for (34) is thus

T 2r+3 e�
m2

�2
(� +m)2�n

�2r+2
P1(log

� +m

m
)P2(

jfk; pgj

� +m
) (40)

� T 2r+3 (� +m)2�n�2r�2 P3(log
� +m

m
)P4(

jfk; pgj

� +m
) :

After this preparation we consider the induction process : At each loop order we �rst

prove (32), and then (17) for �nite T and corresponding momenta. This second step is

trivial from (17,18) at T = 0, from the de�nition (28) and from (32) 12. We know already

the theorem to be true at 0 loop order. This and the form of the FE (29) implies that we

do not need a bound on any of the L
�;�0
l;n

(fpg;T ) in the inductive bound on D
�;�0
l;n

at the

given loop order l.

It is instructive to regard how the induction starts at loop order l = 1. Treating �rst

the case n = 2 we �nd that the only nonvanishing contribution on the r.h.s. of the FE

stems from (34), and it is momentum independent, so that integrating over � we get

jD
�;�0
1;2 (p)j � c (� +m)�2r�1

with a suitable constant c , depending on r . For n = 4 also the last two terms on the

r.h.s. of the FE contribute. Using the result for D
�;�0
1;2 (p) , integration over � gives

jD
�;�0
1;4 (fpg)j � (� +m)�2�2r�1P(

jfpgj

� +m
) :

From this one inductively obtains the bound for n � 6

jD
�;�0
1;n (fpg)j � (� +m)�(n�2)�2r�1P(

jfpgj

� +m
) :

12We may choose the bounds for s = 0 from (32,33) when bounding the �nite temperature CAG, so

that polynomials appearing in the bounds may be chosen s-independent.
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Having bounded the di�erence functions D
�;�0
1;n we can bound the CAG L

�;�0
1;n (T ) =

L
�;�0
1;n (T=0) + D

�;�0
1;n , see (28). Then we may proceed inductively to higher loop orders

and verify the inductive bound

jD
�;�0
l;n

(fpg)j � (� +m)�(n�2)�2r�1P1(log
� +m

m
)P2(

jfpgj

� +m
) :

This proves the �rst part of the theorem on writing s = 2r� 1 for s odd, and majorizing

to obtain even s. It follows that the L
�;�0
l;n

(T ) may be bounded in agreement with (17,18).

Now we turn to the proof of the statement (33) which implies convergence of the D
�;�0
l;n

for �0 ! 1 . The proof is based on the same inductive scheme and starts from the FE

(29) integrated over � from �0 to � , and then derived w.r.t. �0 . The result is of the

form

� @�0 D
�;�0
l;n

(fpg) = [RHS of (29)]j�=�0 +

Z �0

�
d� @�0 [RHS of (29)](�) ; (41)

and we denote the RHS of this equation shortly as

I�0
l;n
(fpg) + I�;�0

l;n
(fpg) :

Since we have imposed L
�0;�0
l;n

(T ) � L
�0 ;�0
l;n

, and since moreover these terms vanish for

n � 6, we �nd

I�0
l;n
(fpg) = ��n;2

"Z
k

e
�
k2+m2

�2
0

�3
0

�

Z
k

e
�
k2+m2

�2
0

�3
0

#
L
�0;�0
l�1;4 : (42)

Since L
�0;�0
l�1;4 � cl�1(�0) ; l > 1 and L

�0;�0
0;4 � g , see (10), we realize that (42) is momen-

tum independent. The di�erence can be calculated explicitly or bounded again using the

Euler-MacLaurin formula, and we obtain

jI�0
l;n
j � �n;2�

�2�2r
0 P(log

�0

m
) (43)

for r 2 IN and a suitable P depending on r. To get a bound on I�;�0
l;n

(fpg) we apply

the derivative in (41) to all entries using the product rule (noting that when applied to

@�C
�;�0 it gives zero). In any case the derivative brings down the required factor of ��20 ,

either by (18), or by (33) together with the induction hypothesis. Apart from this the

bound (33) is obtained similarly as (32), using in particular the Euler-MacLaurin formula

for the di�erence term (34) derived w.r.t. �0 . This proves also (33).
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We end this section with two remarks on possible generalizations. First the preceding

analysis can be extended to nonsymmetric '4
4-theory. The action (10) then has to be

replaced by

~L�0;�0('̂) = L�0;�0('̂) +
h

3!

Z
d4x '̂3(x) +

Z
d4x f

1

3!
d(�0) '̂

3(x) + v(�0) '̂(x)g (44)

with the tree level three-point coupling h and �0-dependent parameters

d(�0) ; v(�0) = O(�h) (45)

implementing the counterterms necessary to renormalize the one- and three-point func-

tions. Correspondingly we pose additional renormalization conditions

L
0;�0
l;1 = vR

l
; L

0;�0
l;3 (0) = dR

l
for l 2 IN ; (46)

to be joined to (20). Then the bounds (17,18) hold again, but are no more trivially ful�lled

for n odd.13 Once the theory at T = 0 is bounded, the di�erences (28) again yield the

theory at T > 0 . Bounds corresponding to (32,33) are proven proceeding as before, in

the symmetric case.

As a second remark, we point out that for the existence of the large cuto� limit �0 !

1, it is not necessary that the relevant coupling constants are subject to normalization

conditions at zero temperature. Equally well we can impose normalization conditions at

some temperature T0 > 0 . We pointed out that at �nite temperature the space-time

O(4)-symmetry is broken down to ZZ2 � O(3) . Then the 3 independent renormalization

constants aR, bR and cR at T = 0, (20), become replaced by four parameters aR(T0),

bR;0(T0), b
R;1(T0) and cR(T0) at T0, cf. (27), corresponding to four relevant couplings.

However, starting from an O(4)-symmetric zero temperature theory we have proved that

L�;�0(';T0)� L�;�0 (') (47)

has the properties of an irrelevant operator. This implies that for given bR;0(T0) there

is a unique choice for bR;1(T0) , or vice versa, such that the �nite temperature theory

stems from an O(4)-symmetric zero temperature theory. Any di�erent choice would be

associated to a zero temperature theory, where O(4)-symmetry is broken by hand through

the renormalization conditions. Note that the O(4)-symmetric choice is generally not the

one where bR;0(T0) = bR;1(T0) : Integration over � , starting from the same counterterms

(the O(4)-symmetric ones) will lead to a �nite di�erence at � = 0 , since O(4)-invariance

13These bounds can be improved by replacing n by n̂, de�ned to be the smallest even integer greater

or equal to n .

14



is broken in the propagator. Otherwise stated, the fact that the �nite temperature theory

stems from an O(4)-symmetric zero temperature theory, can be simply recognized on

inspection of the counterterms, but not on the renormalization conditions.

4 Summary

We have presented a proof for the perturbative renormalizability of massive �nite tem-

perature '4
4 -theory. The starting point are the bounds (17,18) which prove the renorma-

lizability of the zero temperature theory. In the ow equation framework they serve at

the same time as induction hypotheses for the inductive proof. Bounds of this type have

by now been rigorously established for nearly all theories of physical interest, including

gauge theories, where the restoration of the Ward identities in the �nal theory pose an

additional problem, to be solved by a suitable restriction on the renormalization condi-

tions. Taking due care of the exceptional momentum problem, corresponding bounds can

also be established for theories with massless particles.

To extend the bounds to the corresponding �nite temperature theories presents no

really new problems for the practitioner. The main problem to be solved rather is that

the existence of the correlation functions in the large cuto� limit should be proven with-

out changing the counterterms. In our setup this corresponds to posing the boundary

conditions (30) for the di�erence Green functions D between the T > 0 and the T = 0

theories. The anounced result is contained in the bounds (32,33). The main new tech-

nical tool used to get there is the Euler-MacLaurin formula, generalized to an in�nite

integration interval for a rapidly decaying integrand. It is applied to the di�erence terms

appearing in the ow equations for the functions D that are not bounded by the induc-

tion hypothesis alone, (see (34)- (40)). Here it comes to our help that the bounds (17,18)

are su�ciently powerful so as to transform momentum derivatives into negative powers

of � . Via the Euler-MacLaurin formula it is then possible to gain an arbitrary power in

� paying the corresponding power in T (see 39). This achieves (far more than) showing

that all di�erence functions D are irrelevant. For the latter a gain of a power of �2+"

would have su�ced. We emphasize again that our result agrees with the experience and

intuition gained from explicit perturbative calculations.

Renormalization is a central issue that is strongly related to the fundamental principles

of local quantum �eld theory. Renormalizability of a �eld theory gives it a meaning beyond

some low energy e�ective model. The techniques we have presented here for proving

renormalizability of a �eld theory at �nite temperature mainly rely on two properties.

The �rst property is renormalizability at zero temperature. The second one is that the
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di�erence between the theory at �nite and zero temperature act like an irrelevant operator

that does not spoil renormalizability. Renormalization group ow equations provide an

appropriate tool to put this statement on a strong basis and prove renormalizability for

�nite temperature. We expect that these methods generalize appropriately to apply to

more realistic and complex �eld theories such as QCD, where both the UV and the IR

scale problem are to be attacked.
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