
ar
X

iv
:h

ep
-t

h/
99

02
11

4 
v2

   
5 

A
ug

 1
99

9

Renormalization Proof for Spontaneously broken

Yang-Mills Theory with Flow Equations

Christoph Kopper

Centre de Physique Th�eorique de l'Ecole Polytechnique

F-91128 Palaiseau, France

Volkhard F. M�uller

Fachbereich Physik, Universit�at Kaiserslautern

D-67653 Kaiserslautern, Germany

Abstract

Abstract: In this paper we present a renormalizability proof for spontaneously bro-

ken SU(2) gauge theory. It is based on Flow Equations, i.e. on the Wilson renormal-

ization group adapted to perturbation theory. The power counting part of the proof,

which is conceptually and technically simple, follows the same lines as that for any

other renormalizable theory. The main di�culty stems from the fact that the regular-

ization violates gauge invariance. We prove that there exists a class of renormalization

conditions such that the renormalized Green functions satisfy the Slavnov-Taylor iden-

tities of SU(2) Yang-Mills theory on which the gauge invariance of the renormalized

theory is based.
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1 Introduction

In the early seventies Wilson and his collaborators published their ideas on the renormaliza-

tion group and e�ective Lagrangians [WiKo], which have stimulated the progress of quantum

�eld theory and statistical mechanics ever since. In 1984 Polchinski [Pol] showed that these

ideas are suited as a basis for perturbative renormalization theory.1 He proved Euclidean

massive �4
4 to be renormalizable without introducing Feynman diagrams, thus sidestepping

the associated complicated analysis of their divergence/convergence properties. Instead, the

problem is solved by bounding inductively the solutions of a system of �rst order di�eren-

tial equations, the Flow Equations (FE), which are a reduction of the Wilson FE to their

perturbative content.

Over the past decade Polchinski's argument has been considerably simpli�ed technically,

extended to physical renormalization conditions and has been rendered rigorous [KKSa].

Beyond it has been applied, again in mathematical rigour, to nearly all situations of physical

interest: The �4
4 proof itself already also holds for any other massive theory with global sym-

metries only and renormalizable power counting, like e.g. the Yukawa-models, O(N)-models

etc. It could then be extended to Euclidean massless �4
4 [KK1] and QED4 [KK2] and also

to theories in Minkowski-space [KKSc]. The FE method also served to extract properties

of, or bounds on Green functions which were harder - if at all - to get by other methods.

We mention composite operator renormalization together with (generalized) Zimmermann

identities [KK3], Wilson's operator product expansion [KK4], Symanzik improvement in the

convergence of the regularized theory [Ke1, Wie], de Calan-Rivasseau large order bounds

on perturbation theory [Ke2], bounds on the singularities of Green functions at exceptional

momenta [KK1], analyticity properties of Green functions in Minkowski space [KKSc] and

decoupling theorems [Kim]. A recent review (in German) on previous work on FEs can be

found in [Kop]. We should also mention that the interest in FEs over the last decade goes far

beyond mathematical physics and has led to many interesting results, ideas and calculations

in theoretical physics. To give few examples we mention that critical exponents for �4
4-type

theories have been calculated in [TeWe]. Truncated FE have also been applied to the bound

state problem in [Ell], to Yang-Mills theory in [EHW], in particular to the study of vacuum

condensates in [ReWe].

Among the entries in our list on solved renormalization problems there is still one missing,

which is of fundamental importance in physics, namely nonabelian gauge theory. The present

paper is intended to close this gap by treating spontaneously broken SU(2)-Yang-Mills theory,

1Wilson himself remarked already in the late sixties that this should be possible, as we learned from E.

Br�ezin.
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which corresponds to the weak sector of the standard model.2 Another interesting problem,

which should be studied, is QCD where the problem of gauge invariance is intertwined with

the infrared problem. Since the latter has already been extensively studied we chose the

spontaneously broken theory which is infrared �nite and thus simpler. On the other hand

the Slavnov-Taylor identities (STI) or Ward identities of the spontaneously broken symmetry

are more complicated to analyse.3

The (ultraviolet) power counting part of the FE renormalization proof is (up to nota-

tional and other minor changes) the same and simple for all the above mentioned theories,

which renders the method attractive. Gauge theories, however, present a di�culty coming

from the wellknown fact that gauge symmetry is broken by cuto�s in momentum space, and

it is just the ow of such a cuto� which produces the FE. What we have to show is that

gauge invariance is restored when the cuto�s are taken away. On the level of the Green

functions (which are not gauge invariant) this means that we have to verify the STI of the

theory. They then allow to argue that physical quantities such as the S-matrix are gauge-

invariant[ZiJ]. On analysing the FE for a gauge theory one realizes that the restoration of

the STI depends on the choice of the renormalization conditions chosen and cannot be true

in general. More precisely, since gauge invariance is violated in the regularized theory, the

renormalization group ow will generally produce nonvanishing contributions to all those

relevant parameters of the theory, which are forbidden by gauge invariance, e.g. a nonin-

variant gauge �eld selfcoupling of the form ( ~A2)2. The question is then: Can we use the

freedom in adjusting the renormalization conditions such that the STI are nevertheless re-

stored in the end? To answer this question a �rst observation, already encountered when

treating QED, is crucial: The violation of the STI in the regularized theory can be expressed

through Green functions carrying an operator insertion, which depends on the regulators.

FE theory for such insertions tells us that these Green functions will vanish once the cuto�s

are removed, if we achieve renormalization conditions on the theory such that the inserted

Green functions (uniquely calculated from those) have vanishing renormalization conditions

for all relevant terms, i.e. up to the dimension of the insertion (which is 5 in our case).

Comparing the number of relevant terms for the SU(2) theory - 37 (see App.A)- and for the

insertion - 53 (see App.C)-, we realize that it is not possible to make vanish 53 terms on

adjusting 37 free parameters, unless there are linear interdependences. It is again the FE

2 for vanishing Weinberg angle. This is however not of decisive importance for the line of the argument.

It matters insofar as the explicit description and treatment of the whole SU(2)�U(1)-theory would require

much more space.
3 We mention also that FE and STI for pure Yang-Mills theory in the limit case without UV cuto� have

been considered in [BAM2].
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(in its global integrated form) which helps us to make transparent these interdependences.

The problem of how to �nd one's way through the STI and adjusting the renormalization

conditions appropriately is somewhat complicated through spontaneous symmetry breaking,

since the latter mixes Green functions of di�erent dimension.

One may of course ask the question whether such a proof of the renormalizability of

Yang-Mills theory is still necessary in view of the fact that the problem has been settled

in the seventies by the pioneering work of 't Hooft and Veltman and successors. With-

out going into details or giving references on work which has made entrance into nearly all

textbooks on quantum �eld theory or particle physics we would still like to mention that

there rests a bit of uneasiness on the mathematical physicists' side on the form in which

the subject has settled in the course of time. This is because the standard way in which

the argument is presented nowadays is based on two main ingredients: the existence of an

invariant regularization scheme, i.e. dimensional regularization, and algebraic manipula-

tions on generating functionals, which can be given rigorous meaning for regularized path

integral formulations. To date nobody has achieved a (rigorous) de�nition of dimensionally

regularized path integrals so that there remains a gap in the reasoning which could only be

closed if the analysis of the STI were directly performed on individual Feynman graphs, a

presumably awkward procedure. These arguments do not apply to the lattice regularization
4, which allows for a (particularly transparent) path integral formulation while respecting

gauge invariance. It violates Euclidean or Lorentz symmetry however. We emphasize the

work of Rei� as a largely coherent and rigorous analysis of the perturbative renormalization

problem of (QCD type) gauge theories on the lattice [Rei]. His work is based on an adap-

tation of BPHZ renormalization to the lattice, where quite a number of new problems appear.

As a guide to the logical structure of the paper we now expose the main line of arguments.

Our starting point is a massive UV regularized theory. The generating functional L�;�0 of the

connected amputated Green functions (CAG) with momenta in the interval [�;�0] satis�es

a ow equation (35) with respect to �, which when reduced to its perturbative content (37)

permits to bound inductively the l-loop n-point functions L�;�0
l;n in such a way (39, 43) that

their existence for �0 !1 becomes obvious. This is true for all theories renormalizable by

power counting under the condition that all relevant terms, i.e. local terms of mass dimension

� 4 are �xed by (�0-independent) renormalization conditions (r.c.). In gauge theories the

number of such terms is generally much bigger than the number of free parameters of the

theory. For our model the respective numbers are 37 (listed in App.A) and 8 (cf. (121)).

4the above mentioned algebraic analysis is however based on the continuum formulation.
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So most of the r.c. cannot be freely chosen for a gauge theory. A priori it does not seem

possible to guess which r.c. are the right ones.

Thus we analyse the action L0;�0 for general r.c. and expose the violation of the STI as a

functional associated with an operator insertion, which turns out to be of dimension 5. We

denote it as L1 = L0;�0
1 (75). This is achieved on using an UV regularized version (62, 66) of

the BRS transformation (13, 14, 18). General results from FE theory tell us that L0;�0
1 will

vanish for �0 !1 if all its relevant terms, i.e. the local parts of dimension � 5, are �xed to

be 0 by the r.c. and if the irrelevant terms in L
�0;�0
1 vanish su�ciently rapidly for �0 !1

(110). The 53 renormalization parts for L0;�0
1 (see App.C) are functions of the 37 r.c. for

L0;�0 and 7 free parameters in the BRS transformation (see App.B). Thus if the model can

be renormalized respecting the STI there must be linear interdependences among the 53

relations. These are not explicit in the theory L0;�0, since L0;�0 contains irrelevant terms

of arbitrary dimension which are not known explicitly. We therefore derive the violated

Slavnov-Taylor identities (VSTI) also in terms of the bare functionals L�0;�0 and L�0;�0
1 (98,

99), using again the FE for that purpose. The FE may also be used (104, 113-120) to relate

L
0;�0
1 and L

�0;�0
1 with each other (111, 112) so that - respecting the inductive procedure, i.e.

climbing up in the loop order l, and for given l in the number of external legs n - we may

hope to satisfy the STI (for �0 ! 1) as well by imposing the relevant terms in L�0;�0
1 to

vanish (instead of those in L0;�0
1 ). Since L�0;�0 does not contain unknown5 irrelevant terms

an explicit analysis of the bare STI is possible, and we can make vanish 53 terms order by

order in l on appropriately �xing L�0;�0 and the free BRS constants. However starting at

the wrong end - i.e. �xing counter terms instead of r.c. - we cannot prove renormalizability.

Thus the task is threefold :

i) Reveal a number of free renormalization constants corresponding to the free parameters

of the theory (121).

ii) Satisfy a subset of the STI for the relevant parts by choosing appropriate r.c. for L0;�0

(125, 127). This subset has to be chosen su�ciently large to get hold on the �niteness

problem, with the help of the FE and afterwards also of the STI themselves.

iii) Satisfy the remaining STI for the relevant parts by choosing the appropriate l-loop terms

in L�0;�0 (122, 123, 124). It is possible indeed to show that all remaining STI ((128, 129, 130)

and those mentioned after (131)) can be satis�ed. These are far more than the constants

�xed in iii). All this has to be done respecting the order of the inductive procedure.

If it were not possible to make ends meet (i.e. if either the subset in ii) is too small to prove

�niteness, or the one in iii) is too small in order to satisfy all STI) we would face what is

5 L�0;�0 will include some well-behaved irrelevant terms (107, 108) linked to the particular nature of the

cuto� (30) chosen.
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called an anomaly.

Our procedure is complicated by a technical point. The analysis of the relevant part of

the STI at � = 0 is muchmore complicated for L0;�0 than for �0;�0 , the generating functional

of the one-particle irreducible functions. For L0;�0 many more terms of the same loop order

may appear in a single STI. Passing to one-particle irreducible objects achieves to a con-

siderable degree the disentangling of the l-loop renormalization parts in the inhomogeneous

linear equations of App.C. So App.C has indeed been written for the �0;�0 - and not for the

L0;�0-functional. The price to pay is that we have to provide for the necessary machinery

for the �-functional (ow equations (87), STI (82)) too, using the Legendre transform (78,

79). This should not obscure the fact that all results of this paper are to be obtained from

L0;�0.

This paper is organized as follows. In chapter 2 we introduce the classical action of the

model and �x notations. In chapter 3 we introduce the concepts from FE theory and recall

the statements on renormalizability we need. As regards the general aspects on bounding

inductively solutions of the FE we tend to be short as long as the reasoning follows the lines of

previous papers. In chapter 4 we derive the VSTI for the regularized theory in various forms,

comment on the adaptation of the renormalization results to the vertex functions, analyse

the above mentioned operator insertion and show how to make vanish its relevant parts step

by step on disposing of the freedom in choosing the renormalization conditions. This is the

key part of the paper. With the aid of the results from chapter 3 it permits to prove that

the STI are restored and thus solves the renormalization problem for spontaneously broken

SU(2) Yang-Mills theory.

2 Classical theory and Tree approximation

We collect some basic properties of the classical Euclidean SU(2)- Yang-Mills-Higgs model in

four dimensional Euclidean spacetime, mainly to introduce the notation and the conventions.

We largely follow the textbook of Faddeev and Slavnov [FaSl].

The action considered involves the real Yang-Mills �eld fAa
�ga=1;2;3 and the complex

scalar doublet f��g�=1;2. All bosonic �elds appearing in this paper may be viewed as smooth

functions of (su�ciently) rapid fall-o�. Details do not matter in view of the fact that we do

not perform any nonperturbative analysis of path integrals. The action has the form

Sinv =
Z
dx

�
1

4
F a
��F

a
�� +

1

2
(r��)

�r��+ �(���� �2)2
�
; (1)
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with the curvature tensor

F a
��(x) = @�A

a
�(x)� @�A

a
�(x) + g�abcAb

�(x)A
c
�(x) (2)

and the covariant derivative

r� = @� + g
1

2i
�aAa

�(x) (3)

acting on the SU(2)-spinor �. The parameters g; �; � are real positive, �abc is totally skew

symmetric, �123 = +1, and f�aga=1;2;3 are the standard Pauli matrices. For simplicity the

wave function normalizations of the �elds are chosen equal to one. The action (1) is invariant

under local gauge transformations of the �elds

1

2i
�aAa

�(x) �! u(x)
1

2i
�aAa

�(x)u
�(x) + g�1u(x)@�u

�(x) ; �(x) �! u(x)�(x) (4)

with u : IR4 ! SU(2) smooth. A stable ground state of the action (1) implies spontaneous

symmetry breaking, taken into account by reparametrizing the complex scalar doublet as

�(x) =

0
@ B2(x) + iB1(x)

�+ h(x)� iB3(x)

1
A ; (5)

where fBa(x)ga=1;2;3 is a real triplet and h(x) the real Higgs �eld. Moreover, in place of the

parameters �; � we introduce the masses

m =
1

2
g�; M = (8��2)

1

2 : (6)

Aiming at a quantized theory we choose the 't Hooft gauge �xing

Sg:f : =
Z
dx

1

2�
(@�A

a
� � �mBa)2; (7)

with � 2 IR+, implemented by anticommuting Faddeev-Popov ghost and antighost �elds

fcaga=1;2;3 and f�c
aga=1;2;3 , respectively, via

Sgh = �
Z
dx�caf(�@�@� + �m2)�ab +

1

2
�gmh�ab +

1

2
�gm�acbBc � g@��

acbAc
�gc

b: (8)

Hence, the total "classical action" is

SBRS = Sinv + Sg:f: + Sgh; (9a)

which we decompose as

SBRS =

Z
dx fLquad(x) + Lint(x)g (9b)

7



into its quadratic part, with � � @�@�,

Lquad =
1

4
(@�A

a
� � @�A

a
�)

2 +
1

2�
(@�A

a
�)

2 +
1

2
m2Aa

�A
a
�

+
1

2
h(��+M2)h+

1

2
Ba(��+ �m2)Ba

��ca(��+ �m2)ca ; (10)

and into its interaction part

Lint = g�abc(@�A
a
�)A

b
�A

c
� +

1

4
g2(�abcAb

�A
c
�)

2

+
1

2
g
n
(@�h)A

a
�B

a � hAa
�@�B

a � �abcAa
�(@�B

b)Bc
o

+
1

8
gAa

�A
a
�

n
4mh+ g(h2 +BaBa)

o

+
1

4
g
M2

m
h(h2 +BaBa) +

1

32
g2
�
M

m

�2

(h2 +BaBa)2

�
1

2
�gm�ca

n
h�ab + �acbBc

o
cb

�g�acb(@��c
a)Ac

�c
b: (11)

In (10) we recognize that all �elds are massive and that no coupling term Aa
�@�B

a appears.

The propagators of the Yang-Mills �eld Aa
�, of the Higgs �eld h, and of the ghost �eld ca

and the Goldstone �eld Ba, are thus (respectively)

Cab
��(p) =

�ab

p2 +m2
f����(1��)

p�p�

p2 + �m2
g ; C(p) =

1

p2 +M2
; Sab(p) =

�ab

p2 + �m2
: (12)

The classical action SBRS in (9b) has the following properties

i) Euclidean invariance: SBRS is an O(4)-scalar.

ii) Rigid SO(3)-isosymmetry: The �elds fAa
�g; fB

ag; fcag; f�cag are isovectors and h is an

isoscalar; SBRS is invariant under global SO(3)-transformations.

iii) BRS-invariance: Introducing the classical composite �elds

 a
�(x) =

n
@��

ab + g�arbAr
�(x)

o
cb(x); (13a)

 (x) = �
1

2
gBa(x)ca(x); (13b)

 a(x) =

�
(m+

1

2
g h(x))�ab +

1

2
g�arbBr(x)

�
cb(x); (13c)


a(x) =
1

2
g�apqcp(x)cq(x) ; (13d)
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the BRS-transformations of the �elds are de�ned as

Aa
�(x) �! Aa

�(x)�  a
�(x)�; (14a)

h(x) �! h(x)�  (x)�; (14b)

Ba(x) �! Ba(x)�  a(x)�; (14c)

ca(x) �! ca(x)� 
a(x)�; (14d)

�ca(x) �! �ca(x)�
1

�
(@�A

a
�(x)� �mBa(x))� : (14e)

In these transformations � is a spacetime independent Grassmann element that commutes

with the �elds fAa
�; h;B

ag but anticommutes with the (anti-)ghosts fca; �cag. To show the

BRS-invariance of the total classical action (9) one �rst observes that the composite classical

�elds (13) are themselves invariant under the BRS-transformations (14). Moreover, we can

write (8) in the form

Sgh = �
Z
dx�caf�@� 

a
� + �m ag: (15)

Using these properties the BRS-invariance of (9) is straightforward (if somewhat tedious) to

verify.

It is convenient to add to the classical action (9) source terms both for the �elds and the

composite �elds (13), de�ning

Sc = SBRS+

Z
dxfa� 

a
�+ +

a a+!a
ag�
Z
dxfja�A

a
�+ sh+ b

aBa+ ��aca+�ca�ag: (16)

The sources a�; ; 
a have dimension 2, ghost number -1 and are Grassmann elements,

whereas !a has dimension 2 and ghost number -2; the sources �a and ��a have ghost number

+1 and -1, respectively, and are Grassmann elements. The BRS-transformation (14) of Sc

can be written as

Sc �! Sc +DSc� (17)

employing the BRS-operator D, de�ned by

D =

Z
dx

(
ja�

�

�a�
+ s

�

�
+ ba

�

�a
+ ��a

�

�!a
+ �a

 
1

�
@�

�

�ja�
�m

�

�ba

!)
: (18)

(Observe that � anticommutes with �; ��, too.)

For some purposes it will turn out convenient to regard the �elds and functionals thereof

in momentum space. Our conventions are

�(x) =

Z
p
eipx �̂(p) ;

Z
p
=

Z
d4p

(2�)4
; (19)
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where mostly we will omit the hat on �(p). From (19) we obtain

�

��(x)
=

Z
d4p e�ipx

�

��̂(p)
= (2�)4

Z
p
e�ipx

�

��̂(p)
:

For functionals with operator insertions like e.g.

S(x) :=
�Sc

�(x)
we de�ne S(p) :=

Z
d4x eipx S(x) (20)

(again in abusively shortened notation). For later use it will be convenient to introduce a

shortened collective notation for the �elds, sources and propagators. As for the latter, we

will sometimes denote all propagators (12) collectively by C. Furthermore we write

for the bosonic �elds '� = (Aa
�; h; B

a) with corresponding sources J� = (ja�; s; b
a ) ;

(21)

for all �elds � = ('� ; c
a; �ca) and for their sources K = (J� ; �

a; �a) ; (22)

and for the insertion sources � = (a�; ; 
a; !a) and � = (a�; ; 

a) : (23)

The quantization of the classical theory amounts to constructing a well-de�ned version of the

formal functional integral respresentation for the generating functional W of the connected

Green functions such that these functions satisfy the system of STI. Considering the formal

expression for the modi�ed generating functional

exp
1

�h
W = N

Z
[dAdh dB dc d�c] expf�

1

�h
Scg (24)

we observe that the quadratic part (10) appearing in Sc constitutes a well-de�ned Gaussian

measure6. In a formal loop expansion of the remaining part of the exponent the emerging

order �h0, i.e. the tree approximation, is well-de�ned and satis�es

DW jh0 = 0 ; (25)

which follows from (17) when using the invariance of the (formal) measure in (24) under

BRS transformations. In the sequel we will inductively tackle all orders �hl; l 2 IN, of the

loop expansion.

6Once we have introduced the regularization (30) the support of the measure consists of su�ciently

well-behaved functions.
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3 Flow Equations: Renormalizability without Slavnov-

Taylor Identities

3.1 The Flow Equations for the SU(2) Yang-Mills Higgs model

The FE of Wilson's renormalization group is obtained as a di�erential equation w.r.t. the

ow parameter �, which is the energy scale down to which the degrees of freedom have been

integrated out, starting from the UV region. We will consider the generating functional of

the connected amputated Green functions (CAG) which we denote as

L�;�0('� ; c; �c) (26)

with the following explanations: We have introduced an UV regularization7 �0 to have a

well-de�ned starting point, so that

0 � � � �0 < 1 : (27)

The functional L�;�0 ('; c; �c) is to be viewed as a formal power series in �h, since we are

studying the perturbative renormalization problem in the loop expansion. To be more precise

on its de�nition we write it as

L�;�0 =
1X

jnj=3

L�;�0
l=0;n +

1X
l=1

�hl
1X

jnj=1

L�;�0
l;n : (28)

Here the multiindex n denotes the number of �eld variables of each species appearing:

n = fnA; nh; nB; n�c; nc g; jnj := nA + nh + nB + n�c + nc : (29)

So for jnj = 4 we are e.g. regarding a four point function. (28) implies that, by de�nition,

at 0 loop order L�;�0 contains no contribution from the one- or two-point functions. With

this restriction it is the generating functional of the CAG of the following theory:

i) The propagators are those from (12) including the regulating factor

��;�0(p
2) =

��0(p
2) � ��(p

2)

��0(0)
with ��(p

2) = e�
1

�6
[(p2+m2)(p2+�m2)(p2+M2)] : (30)

7Furthermore we should restrict the theory to a �nite volume V as long as �eld independent vacuum

terms are generated by the ow, which diverge in in�nite volume by translation invariance. We do not make

this explicit here and refer the interested reader to previous work [KKSa, KK3].
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In the sequel this choice of the cuto� function turns out to be technically convenient8. Besides

being explicit it permits to verify easily the following bounds on the regularized propagators

C�;�0(p) := C(p)��;�0(p
2)

j(
jwjY
i=1

@

@p�i
)
@

@�
C�;�0(p)j �

8<
: C ; for 0 � � � m

��3�jwj P(jpj=�)��(p
2) ; for m � � � �0

9=
; : (31)

Here and in the following P denotes (each time it appears possibly a new) polynomial with

nonnegative coe�cients. These as well as the constant C depend on �; m; M; jwj, but not

on p; �; �0.

ii) The vertices are to be taken from our starting bare action (interaction Lagrangian inclu-

ding counter terms)

L0 := L�0;�0 : (32)

In the case of an invariant regularization we would choose here SBRS from (9b), modi�ed

by including counter terms of any order �hl, l � 1, of the same structure and by excluding

the 0-loop quadratic part. In our case such a restricted choice would not allow to prove

restoration of the STI. Therefore we will allow at �rst for all counter terms permitted by the

unbroken global symmetries of the theory, i.e. O(4) and SO(3)iso.

These terms will then become unique functions of the renormalization conditions chosen.

There are 37 such local terms of dimension � 4, corresponding to those listed in Appendix

A. At the tree level l = 0 we shall always consider the terms with jnj+ jwj � 4 to be given

by (11). We denote by

(2�)4(jnj�1)�n�(p)L
�;�0
l j��0 = �(p1 + : : :+ pjnj)L

�;�0
l;n (p1; : : : ; pjnj�1) (33)

the n-point CAG of loop order l involving the indicated number of (A�; h; B; �c; c) �elds.

We will also write ~p for (p1; : : : ; pjnj�1) in the following. We stay somewhat unprecise about

the momentum assignment to the �elds since this would unnecessarily blow up the notation.

We also omit vector and isovector indices. Finally we will also use the shorthand

@w :=

jnj�1Y
i=1

4Y
�=1

(
@

@p�i
)wi;� with w = (wi;1; : : : ; wjnj�1;4); jwj =

X
wi;� : (34)

8There is of course a lot of arbitrariness in this choice. What is needed is a su�ciently well-behaved

function tending to 1 for � ! 0, �0 ! 1, which is essentially supported for momenta between � and �0.

The veri�cation of the restoration of the STI in Ch.4 would be somewhat easier using a suitable regulating

function with compact support of the type ��(p) = K(p
2
+m

2

�2 ), where K(x) = 1; x � 1, K(x) = 0; x � 2,

K monotonic and smooth. But the choice (30) allows to perform the analytic continuation to Minkowski

space as shown in [KKSc], and it has the advantage that (��(p))
�1 is well-de�ned. Avoiding its appearance

is possible, but sometimes needs detours.
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The Flow equations (FE) have been derived quite generally several times, so we tend to be

short. The Wilson FE written for L�;�0 takes the form9

e�
1

�h
(L�;�0 + I�;�0 ) = e�h�(�;�0) e�

1

�h
L0 : (35)

Here �(�;�0) is the functional Laplace operator which in our theory takes the form

�(�;�0)=
1

2
h
�

�Aa
�

; C�;�0
��

�

�Aa
�

i+
1

2
h
�

�h
; C�;�0

�

�h
i+

1

2
h
�

�Ba
; S�;�0

�

�Ba
i+ h

�

�ca
; S�;�0

�

��ca
i :

(36)

Using our shorthand notation we obtain the FE for the CAG L
�;�0
l;n from (35) on deriving

w.r.t. �, expanding L as in (28) and using (33)

@�@
w L�;�0

l;n (~p) =
X

n0 ;jn0j=jnj+2

cn0

Z
k
(@�C

�;�0(k)) @wL�;�0
l�1;n0(~p; k;�k) (37)

�
X

l1+l2=l; w1+w2+w3=w

n1;n2 ;jn1 j+jn2 j=jnj+2

"
cn1;n2 @

w1L�;�0
l1;n1

(p1; : : : ; pjn1j�1)(@
w3@�C

�;�0(p0)) @w2L
�;�0
l2;n2

(�p0; : : : ; pjnj�1)

#
s;a

:

The constants cn0 ; cn1;n2 are combinatorial. The �eld assignment of the propagators C�;�0

is not written, it is implicit in the multiindices n0; n1; n2 related to n. On the r.h.s. the

integrated momentum k refers to that of the �elds from n0� n, and �p0 = p1 + : : :+ pjn1j�1.

Furthermore the subscripts s; a indicate (anti)symmetrization according to the statistics of

the various �elds, since we assume the L�;�0
l;n to be (anti)symmetrized from the beginning.

3.2 Renormalizability

The system of di�erential FE (37) can be integrated inductively, using mixed boundary

conditions (b.c.) :

A1) At � = �0 the n point functions with jnj+ jwj > 4, i.e. the irrelevant ones, are supposed

to be smooth functions of ~p; �0 obeying the bounds

j@wL�0 ;�0
l;n (~p)j � �

4�jnj�jwj
0 P1(log

�0

m
)P2(

j~pj

�0

) ; jnj+ jwj � 5 : (38)

The standard case are b.c., where the r.h.s. of (38) vanishes. We need to be slightly more

general to compensate for e�ects of the cuto� function �0;�0, see Ch.4, (107, 108).

A2) At � = 0 the CAG with jnj + jwj � 4, i.e. the relevant ones, are �xed, order by

order in �h at the renormalization point, which we choose at ~p = 0 for simplicity. The

9I�;�0 is the vacuum functional which strictly speaking exists only in �nite volume. Since it plays hardly

any role in the following, we do not discuss this issue here and refer to [KKSa, KK3] for further comments.
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renormalization conditions (r.c.) may be chosen weakly �0-dependent, we restrict to smooth

uniformly bounded functions of �0 converging for �0 !1. Of course we always restrict to

b.c. respecting the global (Euclidean and Iso-)symmetries.

With the FE we can inductively obtain the following bounds on the CAG L
�;�0
l;n :

Proposition 1 :

j@wL
�;�0
l;n (~p)j � (� +m)4�jnj�jwjP1(log

� +m

m
)P2(

j~pj

� +m
) : (39)

The polynomials P1; P2 have nonnegative coe�cients depending on l; n; w; �; m; M , but

not on ~p; �; �0.

We do not present a proof of the proposition since the line of thought is the same as in

the references [KKSa, KK3, Kop] and restrict to few comments. It proceeds by induction

upwards in the number of loops and for given loop order upwards in jnj (in contrast to the

procedure employed when expanding in a coupling constant : There one proceeds downwards

in jnj. For given l; n we proceed downwards in jwj, starting from some arbitrary10 jwmaxj � 3.

Thus we have to start at loop order l = 0 and from jnj = 3, since L
�;�0
l=0 does not contain

contributions for jnj � 2. (37) immediately gives

L�;�0
0;n (~p) = L�0;�0

0;n (~p) ; jnj = 3 ;

since the r.h.s. vanishes. Thus the bound is satis�ed. For jnj = 4; l = 0 we may also �x the

b.c. at � = �0, if we want to read them o� the action (11), since here the second term on

the r.h.s. of (37) contributes and leads to a one particle reducible di�erence between L�;�0
0;n

and L�0;�0
0;n . This digression of the rules A1), A2) is a pure matter of convenience however.

The inductive proof then proceeds by inserting the induction hypothesis on the r.h.s. of

the FE (which has already been bounded) and performing the momentum and �-integrals,

starting from the respective b.c. and using the bound (31). An important point to note

is the following : Which bounds for the L�;�0 can be obtained, depends only on the b.c.

imposed and on the propagators (and dimensionality). Note �nally that for the purpose of

renormalizability only the bound on L0;�0 in the limit �0 ! 1 is needed. The rest is of

technical nature. In the next chapter we want to make use of the following also somewhat

technical

Corollary : For given l0 > 0 and n0; w0 with jn0j+ jw0j � 4 we assume that the b.c. on

10The minimal value of 3 is needed, because for the relevant terms the passage from the �xed momentum,

at which the renormalization conditions are imposed, to any momentum is achieved by the Schl�omilch or

integrated Taylor formula [KKSa,Pol]. For the two point function there thus appear up to three derivatives.

If one also wants to prove smoothness one has to admit for arbitrarily high jw
max

j.
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the CAG @wL�;�0
l;n , (jwj � jwmaxj ), have been imposed in agreement with A1), A2) for l < l0

and arbitrary n; w ; and for l = l0 and jnj < jn0j and jwj � jw0j. Suppose that we �x the

b.c. for @w0L
�;�0
l0;n0

'on the wrong side', i.e. at �0, such that it obeys the bound

j@w0L
�0;�0
l0 ;n0

(0)j � �
4�jn0j�jw0 j
0 P(log(�0=m)) : (40)

Then we also have

j@w0L
�;�0
l0;n0

(0)j � �
4�jn0j�jw0j
0 P(log(�0=m)) : (41)

Proof : Due to our assumptions, the r.h.s. of the FE (37) is bounded by (39), since the

bounds on all terms preceding (l0; n0; w0) in the induction remain unchanged apart from

those with jwj > jw0j. Those are not needed however because we only make a statement at

the renormalization point ~p = 0 and thus do not require a bound on the Taylor remainder.

The deterioration of the bound then stems from both the b.c. contribution (40) and from

the fact that the r.h.s. of the FE has to be integrated from �0 to � (instead of integrating

from 0 to �), i.e. from the wrong side. This gives the bound

j@w0L�;�0
l0;n0

(0)j � �
4�jn0j�jw0j
0 P1(log(�0=m)) + j

Z �0

�
d�0�04�jn0j�jw0j�1P2(log(�

0=m))j

� �
4�jn0j�jw0j
0 P3(log(�0=m)) :

Note that the bound does not improve, if we set the b.c. for @w0L�0;�0
l0;n0

(0) equal to zero.

We remark that statements similar to that of the Corollary could also be extended to general

external momenta, they are not needed however. In response to the remarks made before

one may ask oneself whether the previous bounds (39) may be improved, if the b.c. are in

some sense smaller. This is indeed the case. Regard e.g. the CAG containing an odd number

of scalar �elds, i.e. nh + nB 2 2IN� 1. Then the following improved bounds hold :

j@wL�;�0
l;n (~p)j � (� +m)3�jnj�jwjP1(log

� +m

m
)P2(

j~pj

� +m
) : (42)

The main reason why we may expect an improvement of power counting for those terms in

our theory is that, as can be seen in App.A , at l = 0 the terms in question are all proportional

to a mass factor. Since we will not need such sharpened statements we do not give a proof

of (42) here. As usual the bound on the Green functions should be complemented by a

convergence statement, since (39, 42) would still admit bounded but oscillating solutions11.

Convergence follows from

11a possibility generally only envisaged by mathematical physicists since such oscillations are counterin-

tuitive to any experience from calculations
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Proposition 2 :

j@�0@
wL

�;�0
l;n (~p)j �

1

�2
0

(� +m)5�jnj�jwjP1(log(�0=m))P2(
j~pj

� +m
) : (43)

As before the nonnegative coe�cients in the (new) polynomials Pi may depend on l; n; w; �,

m, M , but not on ~p; �; �0. For the proof, which follows the same inductive scheme, we

refer again to the earlier references [KKSa, KK3, Kop].

3.3 Bounds on Green functions with Operator Insertions

The problem of renormalizing Green functions with operator insertions has been studied

quite generally in [KK3, KK4]. Again we state the propositions needed for SU(2) Yang-

Mills theory without proofs, restricting to remarks on the (minor) modi�cations needed. We

have to deal with two kinds of operator insertions here. The �rst are the BRS insertions

(13a)-(13d). These are de�ned as operator insertions of dimension 2, ghost number one

for (13a)-(13c) and ghost number 2 for (13d), which transform as vector-isovector, scalar-

isoscalar, scalar-isovector and scalar-isovector respectively. By the general renormalization

theory we thus have to allow for all counter terms of dimension� 2 and of the same symmetry

properties. In the bare action the insertions take the form

 a
�(x) = R0

1 @�c
a(x) +R0

2 g �
arbAr

�(x) c
b(x); (44a)

 (x) = �R0
3

1

2
g Ba(x)ca(x); (44b)

 a(x) = R0
4mca(x) +R0

5

1

2
g h(x) ca(x) +R0

6

1

2
g �arbBr(x) cb(x); (44c)


a(x) = R0
7

1

2
g �apqcp(x)cq(x) ; (44d)

where we demand

R0
i = 1 + O(�h) ; (45)

i.e. the counter terms are again viewed as formal power series in �h, and we of course assume

the insertions to agree with (13a-13d) at the tree level.

The following remark might be helpful, as regards the transformation (14e) of the anti-

ghost : We do not introduce constants R0
8; : : : ; R

0
11, corresponding to the terms of dimension

� 2 with the same symmetry properties (besides the ones in (14e) these are hBa and "abccb�cc).

The claim implicit (not only here, but throughout the literature) and veri�ed in Ch.4 is then

that it is possible to obtain a �nite renormalized theory12 satisfying the STI, by �xing these

12This is related to the fact that (14e) is linear in �.

16



constants at � = �0, i.e. on the wrong side ; in fact setting R0
8; R

0
9 = 1, R0

10; R
0
11 = 0.

In the more general case one would have to admit arbitrary values for these four constants

and to introduce another source for the respective composite operator. The (violated) STI

(see below (75, 82, 98)) would then take a more symmetric form, the terms involving Aa
�; B

a

being replaced by another one of the form hca; D Lai.

The insertions may be generated by the respective sources as in (16), we set

L�0;�0
� =

Z
dx fa�(x) 

a
�(x) + (x) (x) + a(x) a(x) + !a(x)
a(x)g ; (46)

and also

~L�0;�0 = L�0;�0 + L
�0;�0
� : (47)

We again get a Wilson FE (cf. (35)) for ~L�;�0 generating the CAG with operator insertions13

e�
1

�h
(~L�;�0 + ~I�;�0) = e�h�(�;�0) e�

1

�h
~L�0;�0 : (48)

Restricting our attention to CAG with one insertion, e.g.

L
�;�0
(x) :=

� ~L�;�0

�(x)
j�=0 (49)

(similarly for the other insertions) we obtain by deriving (48) w.r.t. � a linear FE for L
�;�0
(x) .

Writing similarly as in(33)

(2�)4(jnj�1)�n�(p)L
�;�0
(q);lj��0 = �(q + p1 + : : :+ pjnj)L

�;�0
(q);l;n(p1; : : : ; pjnj�1) (50)

we obtain the di�erential FE for CAG with one insertion

@�@
w L�;�0

(q);l;n
(~p) =

X
n0;jn0j=jnj+2

cn0

Z
k
(@�C

�;�0(k)) @wL�;�0
(q);l�1;n0(~p; k;�k) (51)

�
X

l1+l2=l; w1+w2+w3=w

n1;n2 ;jn1 j+jn2 j=jnj+2

"
cn1;n2 @

w1L�;�0
(q);l1;n1

(p1; : : : ; pjn1j�1)(@
w3@�C

�;�0(p0)) @w2L�;�0
l2;n2

(�p0; : : : ; pjnj�1)

#
s;a

the notation being that of (37). Since ghost and antighost in (36) do not appear symmetri-

cally, the �c (c)-derivative appears once in n1 (n2) and once in n2 (n1). In the following we

denote for shortness by �(q) any of the sources a�(q), (q), 
a(q), !a(q). Obviously each of

the insertions leads to a FE as (51). In the derivation of (51) no use is made of the speci�c

13Wewill only regard insertions with nonvanishing ghost number. Therefore the vacuum functional ~I equals

I, since there are no vacuum diagrams with nonvanishing ghost number, due to ghost number conservation

under the ow. Thus we will always write I subsequently.
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kind of insertion considered. Thus even more generally we replace �(q) by �(q) when talking

of an insertion of dimension D (instead of 2). This is because we also want to cover the

CAG with one insertion of dimension 5 describing the BRS violating terms of the regularized

theory. This insertion is analysed in Ch.4.1. The particular kind of insertion chosen only

comes into play when considering the b.c., which are �xed as follows :

B1) At � = �0 the n point functions @wL�;�0
�(q);l;n with jnj+ jwj > D, i.e. the irrelevant ones,

are supposed to obey the bounds (cf. A1, (38))

j@wL�0 ;�0
�(q);l;n(~p)j � �

D�jnj�jwj
0 P1(log

�0

m
)P2(

j~pj

�0

) ; jnj+ jwj > D : (52)

B2) At � = 0 the CAG with jnj+ jwj � D, i.e. the relevant ones, are �xed, order by order

in �h at the renormalization point ~p = 0, with the same restrictions as in A2).

Again (51) lends itself to an inductive scheme through which we may prove the renormal-

izability of the CAG with insertion. For the L�;�0
�(q);l;n there are seven free r.c. which �x the

seven parameters R0
i from (45). For the CAG L�;�0

�(q);l;n with insertion L
�0;�0
1 from (67) we

have to �x 53 r.c. corresponding to the list in App.C. Under these conditions our inductive

scheme may now also be employed to prove boundedness and convergence of inserted Green

functions.

Proposition 3:

j@wL�;�0
�(q);l;n(~p)j � (� +m)D�jnj�jwjP1(log

� +m

m
)P2(

j~pj

� +m
) ; (53)

j@�0@
wL�;�0

�(q);l;n(~p)j �
(� +m)D+1�jnj�jwj

�2
0

P1(log(�0=m))P2(
j~pj

� +m
) : (54)

Whereas the bounds from Proposition 3 are su�cient for our purposes as regards the func-

tions L�;�0
�(q);l;n, we need a stronger result for the BRS violating insertions L�;�0

�(q);l;n, which we

can achieve on imposing further restrictions on the b.c. It is important in this respect that

the FE for the inserted CAG is linear. This implies e.g. that multiplying all CAG with a

�- independent factor gives a new solution. If we want to show that the CAG L�;�0
�(q);l;n from

Ch.4.1 vanish in the limit �0 ! 1, the strategy is thus to reveal a negative power of �0,

which can be factorized from the CAG L�;�0
�(q);l;n. It is quite conceivably a su�cient condition

for achieving this, to require that all r.c. be bounded by a negative power of �0. The main

issue of Ch.4 will be to prove that there exist r.c. on the CAG such that the inserted CAG

describing BRS violation obey such suppressed r.c. Once this is accomplished we can rely

on the following proposition for the restoration of BRS invariance :

Proposition 4: Replace the statements from B2) on the renormalization conditions by
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B3) At � = 0 the L0;�0
�(q);l;n with jnj+ jwj � D are �xed at order �hl and ~p = 0 to be smooth

functions of �0 bounded by
1

�0

P(log(�0=m)) : (55)

Then we have the bound

j@wL
�;�0
�(q);l;n(~p)j �

1

�0

(� +m)D+1�jnj�jwj P1(log(�0=m))P2(
j~pj

� +m
) : (56)

Again we do not give a proof, but refer to our previous remarks, to [KK3] and in particular

to Prop.7 in the paper on QED [KK2], where similar results were obtained in the more

complicated situation of a massless theory. Proposition 4 obviously shows that the CAG

L�;�0
�(q);l;n vanish for �0 !1. We remark that in Ch.4 we will arrange for r.c. such that the

bound (55) can be set to 0. This does not improve (56), because of the nonvanishing b.c.

for the irrelevant terms (see B1), (52) above).

4 Restoration of the Slavnov-Taylor Identities

4.1 Violated Slavnov-Taylor Identities for Connected and Proper

Green functions

Once the physical free parameters of the theory, i.e. g; �; m and the gauge �xing pa-

rameter � 14 have been �xed, the Yang-Mills-Higgs theory should be uniquely determined

up to normalizations of the �elds. The standard tool to enforce this uniqueness are the

Slavnov-Taylor-identities. Whereas their role is twofold in renormalization procedures based

on invariant regularization schemes - apart from assuring uniqueness and physical gauge

invariance, they also serve as a technical tool to show inductively that the theory can be

renormalized without introducing counter terms not present in the bare action - we only have

to ensure their validity for the �rst purpose. At an intermediate stage they are inevitably

violated by the regularization in momentum space, as gauge invariance is. We want to show

that they hold after removing the regularization, if we choose the renormalization conditions

properly. Our starting point is the generating functional of the regularized Green functions

at the physical value � = 0 of the ow parameter. Remembering (21,22) we write

h�; Ki =
Z
dx f

X
�

'�(x)J�(x) + �ca(x)�a(x) + �a(x)ca(x)g : (57)

14on which physical quantities should not depend
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The Gaussian measure d��0(�) corresponding to the quadratic form 1
�h
Q�0 with

Q�0 =
1

2
hAa

�; (C
0;�0)�1�� A

a
� i+

1

2
hh; (C0;�0)�1h i +

1

2
hBa; (S0;�0)�1Ba i � h�ca; (S0;�0)�1ca i

(58)

is given by its characteristic functional

Z
d��0(�) e

1

�h
h�;Ki = e

1

�h
P (K) (59)

with

P (K) =
1

2
hja�; C

0;�0
�� ja� i +

1

2
hs; C0;�0 si +

1

2
hba; S0;�0bai � h�a; S0;�0�ai : (60)

The generating functional of the regularized Green functions may now be written as

Z0;�0(K) =

Z
d��0 (�) e

�
1

�h
L�0;�0 + 1

�h
h�;Ki : (61)

De�ning regularized BRS variations of the �elds through

�BRS '� (x) = �(�0;�0 �)(x) " ; �BRS c
a(x) = �(�0;�0


a)(x) " ; (62)

�BRS �c
a(x) = �[�0;�0(

1

�
@�A

a
� �mBa)](x) " ;

the BRS transform of the Gaussian measure is given by

d��0 (�) 7! d��0 (�)

�
1 +

1

�h

X
�

h'� ; (C
0;�0
� )�1�0;�0 �i " �

1

�h
h�ca; (S0;�0)�1�0;�0


ai " (63)

+
1

�h
h
1

�
@�A

a
� �mBa; �0;�0(S

0;�0)�1cai "

�
= d��0 (�)

�
1 �

1

�h
�BRSQ

�0

�
:

The BRS-variation of the measure has mass dimension 5, since �0;�0 just cancels its inverse

appearing in the inverted propagators in (63). This is convenient, and it is the basic reason

why we regularized the BRS-transformation. Requiring the invariance of the functional inte-

gral in (61) under (regularized) BRS-transformations of the �eld variables 15, (62) provides

us with the Violated Slavnov-Taylor identities (VSTI) :

0
!
=

Z
d��0 (�) e

�
1

�h
L�0;�0 + 1

�h
h�;Ki f�BRS h�; Ki � �BRS (Q

�0 + L�0 ;�0)g : (64)

15These transformations of variables and consequently (64) can be given rigorous meaning for the regular-

ized Gaussian integrals. Arguing formally (64) amounts to the somewhat sloppy statement that the Jacobian

of the BRS-transformation equals 1 which in turn has rigorous meaning for the lattice regularization, see

e.g. [Rei].
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The BRS variations in (64) can be generated using an appropriate operator insertion:

i) First we de�ne the modi�ed generating functional using (47)

~Z0;�0(K; �) =

Z
d��0 (�) e

�
1

�h
~L�0;�0 + 1

�h
h�;Ki (65)

together with the regularized BRS operator (compare to (18))

D�0 =
X
�

hJ� ; �0;�0
�

��
i + h��a; �0;�0

�

�!a
i + h(

1

�
@�

�

�ja�
�m

�

�ba
); �0;�0�

ai : (66)

ii) Secondly we de�ne the terms emerging from the BRS-noninvariance of the action to form

the insertion L
�0;�0
1 with ghost number 1

L
�0;�0
1 " := ��BRS(Q

�0 + L�0 ;�0) : (67)

Due to the regularizing factor �0;�0 in (62) the insertion L
�0;�0
1 is not a local operator. Using

(67) we introduce the generating functional

Z0;�0
� (K) :=

Z
d��0 (�) e

�
1

�h
(L�0;�0 +�L

�0;�0
1

)+ 1

�h
h�; Ki (68)

for � 2 IR. Now the VSTI (64) can be rewritten as

D�0
~Z0;�0(K; �)j��0 =

d

d�
Z0;�0
� (K)j�=0 : (69)

The modi�ed functionals from (65, 68) permit to de�ne the generating functionals of the

corresponding CAG with the respective insertions

~Z0;�0(K; �) = e
1

�h
P (K) e�

1

�h
(I0;�0+~L0;�0 ('� ;c;�c;�)); (70)

Z0;�0
� (K) = e

1

�h
P (K) e�

1

�h
(I0;�0+L

0;�0
� ('� ;c;�c)); (71)

with the relations

'�(x)=
Z
dy C0;�0

� (x�y)J�(y); c
a(x) = �

Z
dy S0;�0(x�y)�a(y); �ca(x)= �

Z
dy S0;�0(x�y)�a(y)

(72)

between the variables of the Z and L functionals. Introducing the shorthand

D� =

�
(��+m2)��� �

1� �

�
@�@� ; ��+M2 ; ��+ �m2 � D

�
(73)

for the inverted nonregularized propagators and also (remember (49))

L1 := L
0;�0
1 =

d

d�
L0;�0
� j�=0 ; L := L0;�0 = ~L0;�0 j��0 (= L0;�0

� j�=0) ; (74)
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since we will mostly regard the theory with � set to 0 in this section, we obtain from (69)

via (70, 71, 72) the VSTI for the connected amputated functions CAG

L1 = hca; D(
1

�
@�A

a
��mBa)i � hca; �0;�0(@�

�L

�Aa
�

�m
�L

�Ba
)i+

X
�

h'� ; D�L� i � h�c
a; D L!ai :

(75)

Since we also have to regard the proper vertex functions we de�ne in an intermediate step

the generating functional of connected nonamputated Green functions16

e
1

�h
~W (K;�) =

~Z(K; �)

~Z(0; 0)
(76)

(leaving out again the upper indices 0;�0). From this we derive using (69, 71, 72)

D�0
~W (K; �)j�=0 = �L1('� ; c; �c) : (77)

The Legendre transform of ~W now leads us to the generating functional of the proper vertex

functions. We set

~�('
�
; �c; c; �) + ~W (J� ; �; �; �) =

Z
dy f

X
�

'
�
J� + �c � + � cg (78)

with the relations

J�(x) =
�~�

�'
�
(x)

; '
�
(x) =

� ~W

�J�(x)
; (79)

�a(x) =
�~�

��ca(x)
; �ca(x) = �

� ~W

��a(x)
; �a(x) = �

�~�

�ca(x)
; ca(x) =

� ~W

��a(x)
:

Note that (78) says that J� ; : : : may be viewed as a formal power series in �h with coe�cients

depending on the classical �elds '
�
; : : : These series may be inverted to express '

�
; : : : as

series in terms of J� ; : : : As a consequence of (78) the relations

�~�

��
+
� ~W

��
= 0 (80)

and an analogous one for the derivative w.r.t. the source !a hold. Similarly as before we

write

� = ~�j��0 ; �� (x) =
�~�

�� (x)
j��0 : (81)

Then the VSTI for the proper vertex functions emerging from (77) (where the upper indices

� = 0; �0 in (82,83,84) are understood) read

X
�

h
��

�'
�

; �0;�0�� i � h
��

�ca
; �0;�0�!ai � h(

1

�
@�A

a
� � mBa); �0;�0

��

��ca
i = �1('; �c; c) (82)

16noting again that vacuum functionals should only appear before taking the in�nite volume limit
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with

�1('; �c; c) = L1('; �c; c) (83)

and

'� (x)=
Z
dy C�(x� y)

��

�'
�
(y)

; ca(x) =�
Z
dy S(x� y)

��

��ca(y)
; �ca =

Z
dy

��

�ca(y)
S(y � x) :

(84)

4.2 Flow Equations and Renormalizability of Vertex functions

In this section we shortly comment on ow equations for proper vertex functions. Such

FE have been analysed previously in [KKSc] for �44-theory, to prove analyticity statements

in Minkowski space. They have been derived and applied before in the literature, see e.g.

[BAM1, Wet]. Writing (70, 76, 78) with general � instead of � = 0 we may derive FE

similarly as in the previous chapter by deriving w.r.t. �. Deriving (76) we obtain

@� ~W�;�0(K; �) = @�P
�;�0 (K) � @� ~L

�;�0 ('� ; c; �c) ; (85)

and (78) then implies

@�~�
�;�0 + @� ~W�;�0 = 0 : (86)

Combining both equations and using the FE derived from (48) for the functional ~L�;�0 we

obtain the FE for ~��;�0 :

@�~�
�;�0 ('

�
; �c; c) �

1

2

X
�

Z
p
'
�
(p) @�(C

�;�0
� (p))�1'

�
(�p) +

Z
p
�ca(p) @�(S

�;�0(p))�1ca(�p)

= �h (@��(�;�0)) ~L
�;�0 ('� ; c; �c) : (87)

The functional on the r.h.s. has to be viewed as depending on the (classical) �elds '
�
; �c; c .

In momentum space the �elds '� ; �c; c are given in terms of those through

'� (p) = (2�)4C�;�0
� (p)

�~��;�0

�'
�
(�p)

; ca(p) =�(2�)4S�;�0(p)
�~��;�0

��ca(�p)
;

�ca(p) = (2�)4S�;�0(p)
�~��;�0

�ca(�p)

corresponding to (84). The r.h.s of (87) is expressed in terms of '
�
; �c; c 17 using the

following relations (and the chain rule)

(2�)�4 (C�;�0
� (p))�1'

�
(p) = �

� ~L�;�0

�'�(�p)
+

�~��;�0

�'
�
(�p)

;

17 Note that �(�;�0) in (87) is still the one in terms of the �elds '
�
; �c; c.
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(2�)�4 (S�;�0(p))�1ca(p) =
� ~L�;�0

��ca(�p)
�

�~��;�0

��ca(�p)
; (88)

(2�)�4 (S�;�0(p))�1�ca(p) = �
� ~L�;�0

�ca(�p)
+

�~��;�0

�ca(�p)
:

The inverted propagators appearing in (87, 88) remain only at the tree level, they cancel at

loop order � 1.

Considering �rst the functional without insertions we may again inductively bound the

functions @w�
�;�0
l;n proceeding as in Ch.3 upwards in l (note the factor of �h on the r.h.s.),

for given l upwards in jnj, and for given l, jnj downwards in the number of momentum

derivatives. The induction starts from the tree order vertex functional

��;�0
l=0 =

1

2

X
�

Z
p
'
�
(p) (C�;�0

� (p))�1'
�
(�p) �

Z
p
�ca(p) (S�;�0 (p))�1ca(�p)

+ (�
�;�0
3 + �

�;�0
4 )l=0 + L0

irrjl=0 : (89)

The tree level three and four point functions from the third term are given in App.A, the last

term is the tree level contribution to the irrelevant extension of L0 in (107, 108). Imposing

b.c. analogous to those imposed on the CAG from Ch.3.2 in A1), A2) we may then derive

the bounds

Proposition 5 :

j@w��;�0
l;n (~p)j � (� +m)4�jnj�jwjP1(log

� +m

m
)P2(

j~pj

� +m
) (90)

with the same comments as for Proposition 1.

We again skip the proof. Finally we note that to obtain the analogous renormalizability

statements for vertex functions with one insertion the FE (87) has to be derived w.r.t. the

corresponding source. Again a FE linear in terms of the inserted vertex functions, but

involving also the noninserted ones, emerges. Its solutions are bounded in the same way as

the corresponding CAG from Ch.3.

Since the analysis of the STI is more transparent in terms of the vertex functions, the

renormalization conditions will be imposed on those. We may then directly infer the �nite-

ness of the theory from the results of this section. We could also calculate from the b.c. on

the vertex functions those for the CAG, which then also satisfy A1),A2) and conclude on

the �niteness by Ch.3, so that we might have skipped this section altogether, paying instead

more attention on how to calculate b.c. on L from those for � and vice versa. Generally

speaking it seems to us that FE for vertex functions are useful in their own right. Never-

theless the CAG should perhaps be viewed as the "primary objects" of interest, since the
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FE for them takes a closed functional form. This closed form is of fundamental importance

for the analysis of the linear relations among the STI and thus crucial for the proof of the

Theorem and in particular Lemma 2 below.

4.3 Violated Slavnov-Taylor Identities for the bare functional L0

In this section we use again the abbreviations

� = �(0;�0) ; L = L0;�0; ~L = ~L0;�0 ; L0 = L�0;�0 ; ~L0 = ~L�0 ;�0 ; L0
1 = L

�0 ;�0
1 : (91)

Our starting point are the VSTI (75). By commuting the functional di�erential operator

appearing on the rhs of (75) with the renormalization group ow we will obtain the VSTI

in terms of L0. We introduce some further abbreviations:

�

�Ra(x)
=

1

�
@�

�

�Aa
�(x)

� m
�

�Ba(x)
; X = hDca; (

1

�
@�A

a
� �mBa)i ; (92)

Y = hca; �0;�0
�

�Ra
i �

X
�

h'� ; D�

�

��
i + h�ca; D

�

�!a
i :

Now we can write (75) in the form

L1 = e
1

�h
~L (X + �hY ) e�

1

�h
~Lj��0 : (93)

The last two factors may be rewritten as (remember (48))

(X + �hY ) e�
1

�h
~L = e

1

�h
I e�h� e��h� (X + �hY ) e�h� e�

1

�h
~L0 (94)

= e
1

�h
I e�h�

�
X + �hY � �h[�;X + �hY ] +

�h2

2
[�; [�;X + �hY ]]

�
e�

1

�h
~L0 :

We have to calculate the commutators

[�; Y ] = �h
�

��ca
; �0;�0S

�

�Ra
i �

X
�

h
�

�'�
; �0;�0

�

��
i + h

�

�ca
; �0;�0

�

�!a
i ; (95a)

[�;X] = hca; �0;�0
�

�Ra
i � h

�

��ca
; �0;�0(

1

�
@�A

a
� � mBa)i ; (95b)

[�; [�;X]] = �2 h
�

��ca
; �0;�0S

�

�Ra
i : (95c)

From these relations we obtain

(X +�hY ) e�
1

�h
~L = e

1

�h
I e�h�

�
hca; D (

1

�
@�A

a
� � mBa)i � h

� ~L0

��ca
; �0;�0(

1

�
@�A

a
� � mBa)i (96)
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+
X
�

h'� ; D�

� ~L0

��
i � h�ca; D

� ~L0

�!a
i +

X
�

h
� ~L0

�'�
; �0;�0

� ~L0

��
i � h

� ~L0

�ca
; �0;�0

� ~L0

�!a
i

�
e�

1

�h
~L0 :

Note that due to the form of ~L0 the contribution

�h
X
�

h
�

�'�
; �0;�0

�

��
i ~L0 � �h h

�

�ca
; �0;�0

�

�!a
i ~L0

vanishes and thus may be omitted in the parentheses in (96). On the other hand using (93,

74) we can also express (X + �hY ) e�
1

�h
~Lj��0 in terms of L0

1:

(X + �hY ) e�
1

�h
~Lj��0 = L1 e

�
1

�h
~Lj��0 (97)

= ��h
d

d�
e�

1

�h
L�j�=0 = (��h

d

d�
e
1

�h
I e�h� e�

1

�h
L0� j�=0) = e

1

�h
I e�h� L0

1 e
�
1

�h
L0 :

Remember that ~Lj��0 = L�j�=0 = L. Equality of (96) for � � 0 and (97) and invertibility

of exp �h� (in perturbation theory) now obviously give

hca; D (
1

�
@�A

a
� � mBa)i � h

�L0

��ca
; �0;�0(

1

�
@�A

a
� � mBa)i (98)

+
X
�

h'� ; D�L
0
�
i � h�ca; D L0

!ai +
X
�

h
�L0

�'�
; �0;�0L

0
�
i � h

�L0

�ca
; �0;�0L

0
!ai = L0

1 :

(98) is the VSTI for the bare functional L0. It turns out that it plays -unexpectedly- a

prominent role in the analysis of how the STI can be restored. Since we impose renormal-

ization conditions in momentum space we also express (98) through the Fourier transformed

�elds (using the conventions from Ch.2)

L0
1 =

Z
p
ca(p)(p2 + �m2)f�

i

�
p�A

a
�(�p) � mBa(�p)g (99)

� (2�)4
Z
p

�L0

��ca(p)
f
i

�
p�A

a
�(p) � mBa(p)g�0;�0(p

2)

+

Z
p
Aa
�(p)[(p

2 +m2)��� +
1 � �

�
p�p� ]L

0
a� (p)

+

Z
p
h(p)(p2 +M2)L0

(p)

+

Z
p
Ba(p)(p2 + �m2)L0

a(p) �
Z
p
�ca(p)(p2 + �m2)L0

!a(p)

+(2�)4
Z
p
�0;�0(p

2)

�
�L0

�Aa
�(p)

L0
a
�
(�p) +

�L0

�h(p)
L0
(�p) +

�L0

�Ba(p)
L0
a(�p) �

�L0

�ca(p)
L0
!a(�p)

�
:
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4.4 Choice of Renormalization Conditions and Restoration of the

Slavnov-Taylor-Identities

We have derived the STI in the previous two subsections for all three functionals �; L; L0.

In fact the L-functional is only needed as a connecting link between the other two. As we

mentioned before this threefold description will be required to recognize the linear interde-

pendences among the STI projected onto the relevant parts of the various functionals. For

this purpose we also need termwise equivalence relations among the relevant parts of � and

L0. These termwise equivalence relations are simpli�ed, if we assume that the renormaliza-

tion conditions for the functionals � or L are chosen such that:

� :=
��

�h(x)
j��0 = 0 ()

�L

�h(x)
j��0 = 0 : (100)

The condition (100) on the absence of tadpoles, although probably not indispensable, sim-

pli�es the subsequent formulae, and it is not really a physical restriction, but rather one on

the parametrization of the theory. Here and in the following we use the shorthand notation

@w�n�F j0

to denote the derivative of the functional F (which might be L or �) w.r.t. n �elds �, eval-

uated at � � 0, followed by removing the global �-function and performing the derivatives

@w. When we write

@w�n�F j0;0

we set in addition all momenta to 0 afterwards, and

@w�n�F j0;0;l (101)

is the l-th order coe�cient in the loop expansion of the previous expression. We now state

Lemma 1: Under the assumption (100) we have:

If for given l; n; w and for all l0; n0; w0 with l0 < l and (n0; w0) � (n; w) or with l0 = l and

(n0; w0) � (n; w) we have @w
0

�n
0

� �1j0;0;l0 = 0, then18

@w�n��1j0;0;l = 0 () @w�n�L1j0;0;l = 0 : (102)

Proof: (102) follows from (83, 84) on noting that all propagators are �nite and nonvanishing

and that all possible factorizations appearing when we apply the chain rule in going from

18We use the set theoretic relations for the multiindices n; w though strictly speaking they are sequences.

The symbol � means by de�nition strict inclusion.
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the L- to the �-functions or vice versa vanish due to the conditions on the lower dimension

terms.

Lemma 1 suggests that we satisfy the STI for the relevant terms proceeding upwards in the

number of �elds and momentum derivatives. The subsequent comparison of the VSTI for L

(75) and L0 (98) shows that we also should proceed upwards in the number of loops. Before

proceeding to the termwise comparison it is instructive to note quite generally that from

L1 =
d

d�
L�j�=0 and L0

1 =
d

d�
L0
�j�=0 (103)

it follows similarly as in (97) that

L1 e
�
1

�h
(L+I) = e�h�L0

1 e
�
1

�h
L0 ; (104)

and from the (perturbative) invertibility of e�h� we then obtain the relation

L1 = 0() L0
1 = 0 : (105)

Our goal is to arrange for renormalization conditions such that the relevant terms in �1

vanish, proceeding inductively in the number of loops l. These relevant terms are listed

in App.C, (I � XXIX). By the statements from Ch.2 and 4.2 and App.C there are no

nonvanishing relevant terms in �1 and L
0
1 at the tree level in the limit �0 ! 1 (this limit

remains formal before we have stated how to renormalize the theory in agreement with the

STI). Since in the relevant part of the VSTI there are contributions stemming from _� (106)

for �nite �0 which might conspire to give �nite contributions in the VSTI when combining

with divergent terms, our strategy is to compensate for them by introducing irrelevant terms

in the bare action L0. In this respect it is important to note that the termwise identities

(I-XXIX) take the same form for � and L0 apart from the crucial fact that

i) L0 contains only those irrelevant terms we are going to introduce explicitly,

and from the fact that

ii) there appear additional terms in (98) as compared to (82) which just replace those 0-loop

terms, excluded in L0 by its de�nition19, so that as a consequence the termwise identities

look as before (when ignoring the irrelevant terms).

We will shortly denote the relevant terms in L0 by adding a sub- or superscript 0 to the

corresponding term appearing in �. In the same way we denote (I �XXIX) written for L0

as (I0 � XXIX0). In a number of STI the irrelevant terms introduced in L0 below (107,

108) will make appearance, namely in III; V; V II; V III. For those terms the STI for L0

19these terms contribute only when performing up to three �eld derivatives.
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are rewritten explicitly in App.C including these terms. We use similar notation as in App.A

and App.C, in particular the shorthand

_� := _�0;�0(0) :=
d�0;�0(p

2)

dp2
jp2=0 = �

�m4 + (1 + �)m2M2

�6
0

(106)

and add the following contribution20 to L0

L0
irr =

Z
p

Z
q

�
�rstAr

�(p)A
s
�(q)B

t(�p� q) [ ��� (p
2 � q2) iAAB10 + (p�p� � q�q�)i

AAB
20 ] (107)

+ �cr(p)cr(q)h(�p� q) [ p2 i�cch10 + q2 i�cch20 + pq i�cch30 ]

+ �rst�cr(p)cs(q)Bt(�p� q) [ p2 i�ccB10 + q2 i�ccB20 + pq i�ccB30 ] :

We have presented L0 directly in momentum space, where we perform the analysis of the

STI. The letter i was chosen to remind of 'irrelevant', and we listed all terms of the respective

�eld content allowed by the global symmetries, which are of second order in the momenta.

The constants i : : : will be chosen as follows:

2 iAAB10 mR0
4 = � _� �m2

0 g R
0
2 ; iAAB20 = 0 ; (108)

m(i�ccB10 � i�ccB30 ) = � _� [mF �ccB
0 � �BB

0

1

2
g R0

6] ;
m

2
i�cch30 = _��hh

0

g

2
R0

3 ;

m

2
(2i�cch10 � i�cch30 ) = � _�[mF �cch

0 + �BB
0

g

2
R0

5] ;
m

2
(2i�cch20 � i�cch30 ) = �2 _�FBBh

0 mR0
4 ;

mR0
4(2 i

�ccB
10 � i�ccB30 ) = _���cc

0 g R
0
7 ; i�ccB20 = � _�F �ccB

0 :

These relations are written in terms of the linear combinations which appear in the respective

STI and are needed to verify them. By the general results of Ch.3 and Ch.4.2 the theory

stays �nite when adding such "irrelevant" dimension 5 terms to the bare action, under

the condition that these terms can be bounded by ��1
0 P1(log(�0=m))P2(

j~pj

�0
). If the relevant

terms appearing in (108) obey A1)(38), this bound is obvious from the fact that _� = O(��6
0 ).

After this modi�cation of the bare action we may state our

Induction hypothesis: For l � 1 and all l0 � l � 1

i) we assume that the theory to order l0 has been renormalized according to A1)(38) and

A2) for the � (or equivalently for the L) functional.

ii) Furthermore we assume

@w�n��1j0;0;l0 = 0 ; @w�n�L
0
1j0;0;l0 = 0 ; for (n;w) with jnj+ jwj � 5 : (109)

20We remark that when working with a regulator as in footnote 7, we could spare the detour (107,108),

because then _� would be zero.
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iii) Finally we assume that

j@w�n�L
�0;�0
1 j0;l0 j � O(�

5�jnj�jwj
0 )P1(log

�0

m
)P2(

j~pj

�0

) ; for (n;w) with jnj+ jwj > 5 : (110)

All these statements are ful�lled at the tree level by our assumptions on the tree level action.

The rest of this section is devoted to prove the

Theorem: The induction hypothesis holds at loop order l.

Proof : At loop order l we �rst prove the crucial

Lemma 2: For given (n;w) with jnj+ jwj � 5 under the assumptions (100, 109) and if

@w
0

�n
0

� L1j0;0;l = 0 ; @w
0

�n
0

� L
0
1j0;0;l = 0 for (n0; w0) � (n;w) and n0 � n (111)

the following equality holds:

@w�n�L1j0;0;l = @w�n�L
0
1j0;0;l : (112)

Proof: Due to the induction assumption ii), Lemma 1 and (111) we �nd

�
(��h)

d

d�
@w�n� e

�
1

�h
L�

�
j0;0;�=0;l = @w�n� L1j0;0;l (113)

noting that factorized terms give vanishing contribution, since jnj+ jwj � 5. On the other

hand we also obtain (cf. (104))

�
(��h)

d

d�
@w�n� e

�
1

�h
L�

�
j��0;�=0; l =

�
@w�n� (e

�h� L0
1 e

��h� e�
1

�h
L )

�
j��0; l : (114)

Note that here we do not yet restrict to vanishing momenta ~p, but assume that the mo-

menta of the �elds appearing in the derivatives to be called p1; : : : pjnj have been chosen

nonexceptional 21. Later we take ~p ! 0 22. We may rewrite the term e�h� L0
1 e

��h� as

e�h� L0
1 e

��h� = L0
1 +

5X
�=1

�h�

� !
[� ; L0

1]
� ; (115)

with the de�nition

[� ; � ]� := [� ; [: : : [� ; � ] : : :]]| {z }
� times

: (116)

21i.e. no subsum vanishes
22We point out that (113) should strictly speaking also be viewed as being obtained �rst for nonexceptional

~p, where correction terms appear, which then smoothly tend to 0 for ~p! 0, so that we need not pay attention

to them.
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In (115) we used that L0
1 is of degree 5 in the �elds. We may then de�ne

P 0
1 e

�
1

�h
L = (L0

1 +
5X

�=1

�h�

� !
[� ; L0

1]
� ) e�

1

�h
L ; (117)

and recognize P 0
1 as given by the sum over the contributions from the connected amputated

diagrams containing

i) exactly one vertex from L0
1

ii) up to 5 vertices from �L, which are all directly linked to the vertex from L0
1 via a

propagator from �

iii) multiplied by the monomial in the �elds produced by the derivatives from � acting on

the respective term in (�L), multiplied by the respective power of �h and a combinatoric

factor to be read from (117).

We now have to regard

@w�n�(P
0
1 e

�
1

�h
L)j��0; l : (118)

After performing the �eld and momentumderivatives and after splitting o� the global �(p1+

: : :+ pjnj)-function we let all momenta go to 0 so that then

@w�n�(P
0
1 e

�
1

�h
L)j0;0; l : (119)

is given by

the sum over all l-loop connected amputated diagrams containing exactly one vertex from

L0
1, jnj external lines of the kind speci�ed in �n�, up to 5 vertices from �L directly linked to

the one from L0
1 via a propagator, and weighed with a combinatoric factor as above. The

functions are derived w.r.t. external momenta as indicated through @w and taken at 0 external

momenta in the end.

Note that the restriction on the momenta avoids the production of disconnected terms by

momentum conservation. Now remembering (100) and the fact that L does not contain

0-loop two point functions we can use the induction hypothesis (109) and (111) to conclude

that all contributions to (119) vanish apart from the term

@w�n�L
0
1j0;0; l = @w�n�L

�0;�0
1 j0;0; l : (120)

Any other contribution would require nonvanishing @w
0

�n
0

� L
0
1j0;0; l0 with l

0 < l or (n0; w0) �

(n;w) and n0 � n. The term (120) then equals @w�n�L1j��0; 0; l by (113, 114) and subsequent

comments.

After these preparations we present the renormalization conditions at l-loop order, lower

orders being already �xed by induction. This means we �x the 37 relevant terms of the theory
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and the 7 normalization parameters Ri appearing in the BRS transformation at order �hl 23:

A) We �x � = 0 (100), and we choose freely in � the 8 terms24

�trans ; �long ; _�
BB
; _�

�cc
; �AB; FBBh; R2; R3 : (121)

This then �xes uniquely the corresponding terms in L. In fact we could interchange R1 with

�long, R4 with �AB, and/or FAAA with R2 in (121). We made the previous choice since it

simpli�es the check of the STI.

This means that we may choose freely all �eld normalizations with the exception of h25, one

global normalization for the BRS-transformations and the two couplings through FAAA and

FBBh. Our simplifying assumption � = 0 (100) is related to the freedom in choosing the

vacuum expectation value of the Higgs �eld.

B) We �x in ~L0 the following relevant terms:

R0
6 = R0

7 = R0
2 ; R0

5 =
(R0

2)
2

R0
3

: (122)

This means that R0
6; R

0
7 are �xed to equal R

0
2, which in turn is uniquely given at l loop order

by our free choice of R2, and by lower loop order constants �xed before. SimilarlyR0
5 is �xed

through R0
3 and R

0
2 at l loop order. Remember again that, by the FE for 1PI functions, an l-

loop contribution depends only on lower loop order terms and the l-loop boundary condition

for the term in question.

C) All those r0-terms in L0 having no tree correspondence are chosen equal to zero (11 terms

to be read from App.A), i.e.

rhBA20 ; : : : ; r�cc�cc0 = 0 : (123)

D) Furthermore we �x in L0 the following relevant terms

FBBA
0 = �

R0
3

2R0
2

F hBA
10 ; F �ccB

0 = �
R0

3

R0
2

F �cch
0 ; FAAhh

0 =
R0

5

R0
3

FAABB
10 : (124)

More precisely (124) should be understood as follows: The F -terms on the rhs in (124) will

be uniquely �xed as functions of (a subset of) the ones �xed previously in A)-C). Then we

�x each of the three terms on the lhs as a function of those on the rhs.

Finally also the remaining 18 relevant constants will be uniquely �xed as functions of the

previous ones in our sweep through the STI. Since 17 relevant terms (those from B)-D)) are

�xed on the wrong side, namely in L0, one may wonder, how we will get a �nite theory in the

23We mostly leave out the index l of the loop order for readibility in the rest of this subsection.
24cf. App.A (137) for the notation
25remember that h; Ba stem from the same complex scalar doublet (5)
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end. The tool to achieve this will in fact again be the STI, once we know they are satis�ed.

This is not unexpected from the traditional use made of the STI in renormalization proofs.

Now we �rst satisfy a subset of the STI (I-VIII) containing only up to three �eld derivatives

by choosing appropriately

�m2[��cc; R1] (Ia); �
BB[��cc; R4] (IIa) ; R1 (Ib) ; R4 (IIb) ; F

AAA[ _� �m2] (IIIb) ; (125)

F hBA
1 [R5; _�(F

�cch; �BB)] (V IIc) ; F
AAh[F hBA

1 ](V Ib) ; F
�ccA
1 [FBBA; r�ccA2 ] (IVb) ;

F �cch[FAAh; F hBA
1 ; rhBA2 ] (V Ia) ; �

�cc[R7; F
�ccB] (V IIIa) ; �

hh[R5;�
BB; F �cch] (V IIa) ;

_�hh[F hBA
1 ; _��hh] (V IIb) :

We wrote in brackets the STI which is satis�ed by the respective choice of a renormalization

constant and in square brackets the other relevant constants at loop order l , on which this

choice depends. In the square brackets we omitted the terms from (121), which are freely

chosen, and R1 and R4, which by (125) depend on such terms only. Note however that Ib

and IIb cannot be solved for R1 and R4 depending only on such terms, before we know that

Ia and IIa hold. Therefore we indicated the dependence on R1 and R4 in the �rst two terms.

At this stage R1 and R4 can already be seen to be �nite. All other terms, depending on

constants �xed on the wrong side, might diverge with �0. We come back to the �niteness

problem later and �rst convince ourselves that the system (125) is consistent, i.e. solvable.

This is a problem only, if a term is present before and within square brackets at the same

time, when we successively replace each term within square brackets by those on which it

depends at l loop.26 Checking the list we �nd that this happens only for F �cch, which, when

substituting F hBA
1 from (125), depends on itself. Solving for F �cch it appears with a coe�cient

1=� + _�m2(R4=R1). Since we know that R1; R4 are �nite, this coe�cient does not vanish

for �0 large.
27 As a result we may replace F �cch[F hBA

1 ; rhBA2 ] by

F �cch[rhBA2 ] : (126)

After this change one rapidly realizes the solvability of (125).

Now we impose renormalization conditions for the remaining 6 relevant terms by satis-

fying the following relations among (I �XXIX) for �.

FBBBB (X) ; FBBhh (XX) ; F hhhh (XIX) ; F hhh (IX) ; FAABB
1 (XIII2) ; F

AAAA
1 (XIVc) :

(127)

26E.g. at l loop R6 depends on R2 only by (122), whereas FBBA depends on R3; R2; F
hBA

1 by (124).
27� is supposed to be �nite, but �!1 may be taken after �0 !1.
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The order is important for the �rst four terms, for the last two it is arbitrary. Again we wrote

in parentheses the relation which is satis�ed by and which �xes the respective renormalization

condition.

At this stage the 37 + 7 relevant parameters are completely �xed. All the remaining

relations among the STI will now be veri�ed for L0. Since there are no dimension 3 terms

left, we start with the dimension 4 terms which have not yet been veri�ed. IV 0
a is the only

relation left among (I0 � V III0): Using (123) it takes the form

2mR0
4 F

BBA
0 + g=2R0

6 �
AB
0 + 1=� F �ccB

0 = 0 : (128)

From (125) we know V Ia and V Ib to be true. Lemma 2 then implies V I0a and V I0b to be

true as well. These relations together with (122, 123, 124) then allow to verify (128). Now

XI0 ; XII0 ; XIII01 (129)

are the last relations of dimension � 4 to be analysed. They follow directly from (122, 123,

124). By Lemma 2 we pass from L0
1 to L1 for XI; XII; XIII1.

Therefore Lemma 1 now tells us that all terms in �1 of dimension � 5 vanish i� they vanish

in L1, and Lemma 2 tells us that all terms in L0
1 of dimension � 5 vanish i� they vanish in

L1.

Among the relations containing 4 or more �eld derivatives the following ones

XIV 0
a ; XIV

0
b ; XIV

0
d ; XIV

0
e ; XV

0
1a ; XV

0
1b ; XV

0
2a ; XV

0
2b ; XV

0
2c ; XV I

0
a ; XV I

0
b ;

(130)

XV I0c ; XV II
0
a ; XV II

0
b ; XV III

0
a ; XV III

0
b ; XV III

0
c ; XXI

0 ; XXII0 �XXIX0

remain to be veri�ed. Only those written in (131) are not immediately obvious from (122,

123, 124). They can be veri�ed using the relations we wrote in parentheses

XV 0
1a (122; V I

0
b ; XIII

0
2) ; XV II

0
a (124; XIII

0
2 ; V I

0
b ) : (131)

We have not yet checked the following �ve relations of dimension 5 involving three �elds

only : IIIa; V; V IId; V IIIb; V IIIc ; which are the most delicate ones. They contain

terms multiplied by _�. For IIIa this is true when inserting FAAA from IIIb. We �rst forget

about these corrections and at the same time about the modi�cation of L0 by (107, 108)

and convince ourselves that the 5 STI are ful�lled in this case. To do so we use the following

relations

I0b ; II
0
b ; IV

0
b ; V II

0
c : (132)
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First we can verify V 0 using (124, 122) and V II0c . Next we regard III
0
a and realize that it

amounts to show that

g R0
2(1 + �long;0) = F �ccA

1;0 : (133)

The lhs equals g (R0
2=R

0
1)(1+

_�
�cc
) by I0b , the rhs equals �g=mR0

2 �
AB
0 � 4R0

4 F
BBA
0 by IV 0

b .

Using II0b for the �rst and V
0 for the second term we recognize now that (133) holds. V II0d

follows directly from (122), and V III0b follows similarly as III0a from IV 0
b , II

0
b and V

0; V III0c

follows from (122). Now we also take into account the correction terms : Those relations

among (I0 � XXIX0) which are a�ected by L0
irr (107) are listed explicitly in App.C. On

inspection one realizes that the choice (108) exactly cancels all terms � _� in (I0�XXIX0).

Thus all STI are ful�lled in our theory, and item ii) of the induction hypothesis is satis�ed

to loop order l. What remains to show is that the theory de�ned up to l-loop order is �nite

for �0 !1. As we noted, apart from the 9 evidently �nite constants in (121), �niteness of

R1 and R4 can be inferred from (125). To proceed further it is important to note that all

irrelevant terms appearing in the STI apart from those in (107, 108) are a priori �nite at

l-loop since they only depend on the renormalization conditions at order l0 � l�1. The next

step is then to convince oneself of the fact that (FAAA)0;�0 has a �nite limit for �0 ! 1.

As we see from IIIb the �niteness of F
AAA follows, if we can show that _� �m2 has a �nite

limit. From (122, 123, 124) it is evident that all relevant parameters �xed on the wrong side

(at � = �0) satisfy the bound assumed in the Corollary from Ch.3.2. From this Corollary

(adapted to the �-functional) and the induction hypothesis we therefore conclude that �m2

is bounded by �2
0P(log

�0
m
), whereas _� � ��6

0 . This proves the �niteness of FAAA.28 Then

we go through the STI as follows:

FAAAA
1 (XIVc); r

AA�cc
1 (XIVb); r

AAAA
2 (XIVa); r

AA�cc
2 (XIVe); r

BB�cc
1 (XV1b); (134)

r�cc�cc (XV IIIb) ; r
�ccA
2 (XV IIIc) ; r

AABB
2 (XXII) :

In parentheses we wrote the STI from which the �niteness of the respective relevant term

may be inferred. In r�cc�cc (XV IIIb) note that XV IIIb does not depend on r�ccA2 at l-loop

order. We now infer from V IId that

rhBA2 = 2m _� [FBBh
0

R0
4

R1

]jl + finite has a �nite limit for �0 !1 : (135)

Here the �rst contribution stems from the irrelevant term m
2
(2i�cch20 � i�cch30 ) = �2m _� FBBh

0 R0
4

in (108). In V IId this contribution appears among the irrelevant terms and originates from

the b.c. at � = �0. Note that F
BBh
0 ; R0

4 diverge at most linearly with �0 using the results

28 Using the STI we may in fact show at this stage that �m2 diverges at most logarithmically.
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from Ch.3.2 and Ch.4.2. Disposing of the �niteness of R2 and r
hBA
2 �niteness follows now

also for

R6 (XV Ia); R7 (XV IIIa); r
hh�cc (XV IIb); r

hB�cc (XXV III); rBB�cc
2 (XXV II); FBBBB (X) :

Similarly as in (135) we may now conclude from V the �niteness of FBBA (V ) . Next we

pass through the following �niteness chain

F �ccA
1 (IVb); F

AABB
1 (XV1a); F

AAh(XIII2); F
hBA
1 (V Ib); F

�ccB(IVa); �
�cc(V IIIa); �

BB(IIa),

�m2(Ia); and then we can establish �niteness of F �cch (V Ia) ; R5 (V IIc or XV Ib) .

Finally it is easy to convince oneself of the �niteness of the remaining constants

�hh (V IIa) ; _�
hh
(V IIb) ; F

BBhh (XX) ; F hhh (IX) ; F hhhh (XIX) ; FAAhh (XV IIa) :

In regarding the previous series of �niteness statements it is interesting to note that it is

�rst extracted for the pure gauge sector and last for the terms involving the h �eld.29 By

now all of the 44 relevant constants are known to be �nite, and thus item i) of the induction

hypothesis to loop order l is veri�ed.30 Once i) ii) are veri�ed, item iii) immediately follows

from the general bounds in Ch.3.2 on noting that

a) from our choice of the bare action it is evident that @w�n�L
0
1j0;0;l = 0 ; jnj > 5 ;

b) the irrelevant terms in L0
1 generated from those introduced in (107) on BRS transformation

obey the required bound as a consequence of the previous �niteness statements

c) all other irrelevant terms in L0
1 are generated by momentum derivatives acting on the

regulating factor �0;�0(p), which automatically produces (more than) the required negative

powers of �0.

So the induction hypothesis holds to l-loop order. This ends the proof of the Theorem.

Once the Theorem is proven, Proposition 4 tells us that the STI hold in the limit �0 !1.

Concluding Remarks

We have presented a renormalization proof for spontaneously broken Yang-Mills theory based

on the Wilson renormalization group. The renormalization conditions admissible in view of

the STI could be stated explicitly in (121) to (127).31 We tried to avoid any equivocality

as regards the analytical status of the statements we made, in particular for which values

of the cuto�s they hold. We did not make use of unregularized path integrals. We think

that the analytical aspect is generally somewhat neglected in the recent literature including

textbooks. We did not attempt at generality on the symmetry or group theoretical aspects,

29This is reminiscent of the fact that the radiative corrections in the scalar boson sector are more rapidly

divergent, namely quadratically, than all other ones.
30The smoothness assumption directly follows from the smoothness of the regulator and from the b.c.

which depend on �0 only through the regulator.
31Using in particular (123) it should be possible to derive the antighost equation of motion often used in

textbooks [FaSl], [ZiJ].
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which have been studied extensively in the literature, and restricted for simplicity to the

physically interesting SU(2) case. We think it would be worth-while to extend the work

- with the same precision on the analytical status - to the physical consequences to be

drawn from the STI, in particular the gauge invariance of the S-Matrix. Further interesting

problems to be treated in this context are the renormalization of QCD and the analysis of

anomaly problems and of the action principle.

Appendix A

Here we consider the generating functional for the proper vertex functions

�(A;h;B; �c; c) =
4X

n=1

�n + �(n>4);

n counting the number of �elds, and extract its relevant part, i.e. its local �eld content with

mass dimension not greater than four. Generally we will not underline the �eld variable

symbols in the Appendices, though of course all � functional arguments should be understood

as such. In App.A and App.B the regulators are not explicited, apart from the subsequent

comments on the two-point functions, where contributions arising for �nite �0 are explicited.

1) One-point function:

�1 = �ĥ(0):

2) Two-point functions:

�2 =

Z
p

(
1

2
Aa
�(p)A

a
�(�p)�

AA
�� (p) +

1

2
h(p)h(�p)�hh(p) +

1

2
Ba(p)Ba(�p)�BB(p)

��ca(p)ca(�p)��cc(p) +Aa
�(p)B

a(�p)�AB� (p)

)
;

�AA�� (p) = ���(m
2 + �m2) + (p2��� � p�p�)(1 + �trans(p

2)) +
1

�
p�p�(1 + �long(p

2)) ;

�hh(p) = p2 +M2 + �hh(p2) ; �BB(p) = p2 + �m2 + �BB(p2) ;

��cc(p) = p2 + �m2 + ��cc(p2) ; �AB� (p) = ip��
AB(p2) :

Besides the unregularized tree order there emerge 10 relevant parameters from the vari-

ous self energies: �m2;�trans(0);�long(0);�
hh(0); _�hh(0);�BB(0); _�BB(0);��cc(0), _��cc(0) and

�AB(0), where we used the notation _P(0) � (@p2
P
)(0).

By (78, 79, 84) the 0-loop-order functional �
0;�0
2;l=0 carries the inverted regulating factor
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(�0;�0)
�1(p2) = 1 � _� p2 + O((p2)2) with _� = �(�m4 + (1 + �)m2M2)=�6

0 . Therefore

all self energies vanish at order l = 0 , whereas

_�hh
l=0(0) = � _�M2 ; _�BB

l=0(0) = _��cc
l=0(0) = � _� � m2 ; (136)

�transjl=0(0) = � _�m2 ; �longjl=0(0) = � _� � m2 :

To clearly isolate the tree level cuto� e�ects from the loop contributions we introduce the

notation

�(0) = �(0) � �(0)jl=0 ; _�(0) = _�(0) � _�(0)jl=0 : (137)

3) Three-point functions:

Only the relevant part is given explicitly: r = O(�h) denotes a relevant parameter which

vanishes in the tree order, otherwise a relevant parameter is denoted by F . Moreover, we

indicate an irrelevant part by a symbol On; n 2 IN, indicating that this part vanishes as an

n-th power of the momentum in the limit when all momenta tend to zero homogeneously.

�3 =

Z
p

Z
q

(
�rstAr

�(p)A
s
�(q)A

t
�(�p� q)�AAA��� (p; q)

+Ar
�(p)A

r
�(q)h(�p� q)�AAh�� (p; q) + �rstBr(p)Bs(q)At

�(�p� q)�BBA� (p; q)

+h(p)Br(q)Ar
�(�p � q)�hBA� (p; q) + �rst�cr(p)cs(q)At

�(�p� q)��ccA
� (p; q)

+Br(p)Br(q)h(�p� q)�BBh(p; q) + h(p)h(q)h(�p� q)�hhh(p; q)

+�cr(p)cr(q)h(�p� q)��cch(p; q) + �rst�cr(p)cs(q)Bt(�p� q)��ccB(p; q)

)
;

�AAA��� (p; q) = ���i(p� q)�F
AAA +O3; FAAA = �1

2
g + rAAA;

�AAh�� (p; q) = ���F
AAh +O2; FAAh = 1

2
mg + rAAh;

�BBA� (p; q) = i(p� q)�F
BBA+O3; FBBA = �1

4
g + rBBA;

�hBA� (p; q) = i(p� q)�F
hBA
1 F hBA

1 = 1
2
g + rhBA1 ;

+i(p+ q)�r
hBA
2 +O3;

��ccA
� (p; q) = ip�F

�ccA
1 + iq�r

�ccA
2 +O3; F �ccA

1 = g + r�ccA1 ;

�BBh(p; q) = FBBh +O2; FBBh = 1
4
gM

2

m
+ rBBh;

�hhh(p; q) = F hhh +O2; F hhh = 1
4
gM

2

m
+ rhhh;

��cch(p; q) = F �cch +O2; F �cch = �1
2
�gm + r�cch;

��ccB(p; q) = F �ccB +O2; F �ccB = 1
2
�gm+ r�ccB:
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The 3-point functions AAB and BBB have no relevant local content.

4) Four-point functions: With parameters r and F de�ned as before

�4jrel =

Z
k

Z
p

Z
q

�
�abc�arsAb

�(k)A
c
�(p)A

r
�(q)A

s
�(�k � p � q)FAAAA

1

+Ar
�(k)A

r
�(p)A

s
�(q)A

s
�(�k � p � q)rAAAA2

+Aa
�(k)A

b
�(p)�c

r(q)cs(�k � p � q)(�ab�rsrAA�cc1 + �ar�bsrAA�cc2 )

+Aa
�(k)A

b
�(p)B

r(q)Bs(�k � p � q)(�ab�rsFAABB
1 + �ar�bsrAABB2 )

+Ba(k)Bb(p)�cr(q)cs(�k � p� q)(�ab�rsrBB�cc
1 + �ar�bsrBB�cc

2 )

+h(k)h(p)h(q)h(�k � p � q)F hhhh

+Br(k)Br(p)h(q)h(�k � p � q)FBBhh

+Br(k)Br(p)Bs(q)Bs(�k � p � q)FBBBB

+Ar
�(k)A

r
�(p)h(q)h(�k � p � q)FAAhh

+h(k)h(p)�cr(q)cr(�k � p � q)rhh�cc

+�ca(k)ca(p)�cr(q)cr(�k � p� q)r�cc�cc

+�rsth(k)Br(p)�cs(q)ct(�k � p� q)rhB�cc

�
;

FAAAA
1 = 1

4
g2 + rAAAA1 ; FAABB

1 = 1
8
g2 + rAABB1 ;

F hhhh = 1
32
g2
�
M
m

�2
+ rhhhh; FBBhh = 1

16
g2
�
M
m

�2
+ rBBhh;

FBBBB = 1
32
g2
�
M
m

�2
+ rBBBB; FAAhh = 1

8
g2 + rAAhh:

Hence, in total � involves 1 + 10 + 11 + 15 = 37 relevant parameters.

Appendix B

We also have to consider the vertex functions with operator insertions stemming from the

BRS-transforms. These insertions have mass dimension � 2.

Only the respective relevant part of the four vertex functions with insertions is listed:

�a�(p)jrel = �ip�c
a(�p)R1 + �arb

Z
q
Ar
�(q)c

b(�p � q)gR2;

�(p)jrel =

Z
q
Br(q)cr(�p� q)(�

1

2
gR3);
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�a(p)jrel = mca(�p)R4 +

Z
q
h(q)ca(�p� q)

1

2
gR5 + �arb

Z
q
Br(q)cb(�p� q)

1

2
gR6;

�!a(p)jrel = �ars
Z
q
cr(q)cs(�p� q)

1

2
gR7:

There appear 7 relevant parameters

Ri = 1 + ri; ri = O(�h); i = 1; :::; 7:

All other 2-point functions, and the higher ones, of course, are of irrelevant type.

Appendix C

Here we present the 53 conditions which result upon requiring that the functional �1, (83),

has a vanishing local part for (mass) dimensions smaller or equal to �ve

�1(A;h;B; �c; c)jdim�5

!

= 0:

Into most of these conditions also irrelevant contributions enter which are not given explicitly

but are simply indicated by "irr". To recognize the local origin, we keep the momentum

factors arising. The �-distribution emerging from the functional derivatives and forcing the

sum of the corresponding momenta to zero is not written. Relations explicitly rewritten for

L0 carry a zero in the numbering. In those, the irrelevant terms from (107,108) are the only

ones appearing and are written explicitly.

The STI for � are supposed to be written for the case � = 0, �0 � 1. Note that

they take di�erent form for �0 < 1 and �0 ! 1 only, if _� appears, which is the case

in Ib; IIb; IIIb; V; V IIb; V IIc; V IId; V IIIb; V IIIc . For the L
0-functional we write for the

loop level two-point functions �0 instead of � and �0, _�0 instead of �, _�.

Two �elds

I) �Aa
�(q)

�cr(k)�1j0

a) 0
!
= q�

n
�(m2 + �m2)R1 +

PAB(0)mR4 +m2 + 1
�

P�cc(0)
o
,

b) 0
!
= q2q�

n
� 1

�
(1+�long(0))R1+

1
�
(1+ _�

�cc
(0))� _�[�m2R1�

PAB(0)mR4�
1
�

P�cc(0)]+irr
o
.

II) �Ba(q)�cr(k)�1j0

a) 0
!
= m(�m2 +

PBB(0))R4 �m(�m2 +
P�cc(0)) + �(�1

2
g)R3,
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b) 0
!
= q2

n
�
PAB(0)R1+m(1+ _�

BB
(0))R4�m(1+ _�

�cc
(0))� _�m[��cc(0)��BB(0)R4]+irr

o
.

Three �elds

III) �Ar
�(p)

�As
�(q)

�ct(k)�1j0

a) 0
!
= (p�p��q�q�)

n
�2FAAAR1�

1
�
(F �ccA

1 �r�ccA2 )+
h
1
�
(1+ �long(0))�(1+ �trans(0))

i
gR2+irr

o
;

b) 0
!
= ( p2 � q2)���

n
2FAAAR1 + (1 + �trans(0))gR2 + _� �m2gR2 + irr

o
,

b0) 0
!
=( p2 � q2)���

n
2FAAA

0 R0
1 + (1 + �0;trans(0))gR

0
2 + _� �m2

0 gR
0
2 + 2 iAAB10 mR0

4

o
,

IV) �Ar
�(p)

�Bs(q)�ct(k)�1j0

a) 0
!
= p�

n
2FBBAmR4 +

1
2
g
PAB(0)R6 +

1
�
F �ccB �mr�ccA2 + irr

o
,

b) 0
!
= q�

n
g
PAB(0)R2 + 4FBBAmR4 +m(F �ccA

1 � r�ccA2 ) + irr
o
,

V) �Br(p)�Bs(q)�ct(k)�1j0

0
!
=(p2� q2)

�
2R1F

BBA+ (1 + _�
BB

(0))g
2
R6 � _�[mF �ccB��BB(0)g

2
R6] + irr

�
,

V 0) 0
!
=(p2�q2)

�
2R0

1F
BBA
0 + (1 + _�

BB

0 (0))g
2
R0

6 � _�[mF �ccB
0 � �BB

0 (0)g
2
R0

6]�m(i�ccB10 � i�ccB30 )

�
,

VI) �Ar
�(p)

�h(q)�ct(k)�1j0

a) 0
!
= p�

n
� 2R1F

AAh +mR4(F
hBA
1 � rhBA2 ) +

PAB(0)1
2
gR5 �

1
�
F �cch + irr

o
,

b) 0
!
= q�

n
�2R1F

AAh + 2mR4F
hBA
1 + irr

o
,

VII) �h(p)�Bs(q)�ct(k)�1j0

a) 0
!
= (M2 +

Phh(0))(�1
2
gR3) + 2mFBBhR4 +mF �cch + (�m2 +

PBB(0))1
2
gR5,

b) 0
!
= p2

n
F hBA
1 R1 � (1 + _�

hh
(0))1

2
gR3 � _�

Phh(0)1
2
gR3 + irr

o
,

b0) 0
!
= p2

n
F hBA
1 R0

1 � (1 + _�
hh

0 (0))1
2
gR0

3 � _�
Phh

0 (0)1
2
gR0

3 +
1
2
mi�cch30

o
,

c) 0
!
= q2

n
� F hBA

1 R1 + (1 + _�
BB

(0))1
2
gR5 + _�[mF �cch +

PBB(0)1
2
gR5] + irr

o
,

c0) 0
!
= q2

n
�F hBA

10 R0
1+(1+ _�

BB

0 (0))1
2
gR0

5+ _�[mF �cch
0 +

PBB
0 (0)1

2
gR0

5]+
1
2
m (2i�cch10 � i

�cch
30 )

o
,

d) 0
!
= k2

n
rhBA2 R1 + _� 2mFBBhR4 + irr

o
,

d0) 0
!
= k2

n
rhBA20 R0

1 + _� 2mFBBh
0 R0

4 +
1
2
m (2i�cch20 � i�cch30 )

o
,
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VIII) �ct(q)�cs(p)��cr(k)�1j0

a) 0
!
= 2mF �ccBR4 � (�m2 +

P�cc(0))gR7,

b) 0
!
= k2

n
F �ccA
1 R1 � r�ccA2 R1 � (1 + _�

�cc
(0))gR7 � _�

P�cc(0))gR7 + irr
o
,

b0) 0
!
= k2

n
F �ccA
10 R0

1 � r�ccA20 R
0
1 � (1 + _�

�cc

0 (0))gR
0
7 � _�

P�cc
0 (0))gR

0
7 +mR0

4(2i
�ccB
10 � i�ccB30 )

o
,

c) 0
!
= (p2 + q2)

n
r�ccA2 R1 + _�mF �ccBR4 + irr

o
.

c0) 0
!
= (p2 + q2)

n
r�ccA20 R

0
1 + _�mF �ccB

0 R0
4 +mR0

4 i
�ccB
20

o
.

Four �elds

IX) �h(p)�h(q)�B1(k)�c1(l)�1j0

0
!
= 6F hhh(�1

2
gR3) + 4FBBhhmR4 + 2FBBhgR5 + 2mrhh�cc + irr.

X) �B1(k)�B1(p)�B2(q)�c2(l)�1j0

0
!
= �FBBhgR3 + 8FBBBBmR4 +m

�
2rBB�cc

1 + rBB�cc
2

�
+ irr.

XI) �h(l)��c3(k)�c1(p)�c2(q)�1j0

0
!
= 2rhB�ccmR4 + F �ccBgR5 + F �cchgR7 + irr.

XII) �c2(k)��c2(l)�c1(p)�B1(q)�1j0

0
!
= F �cch(�1

2
gR3) + (2rBB�cc

1 � rBB�cc
2 )mR4 + F �ccB(1

2
gR6 � gR7) + 2mr�cc�cc + irr.

XIII)1 �A1�(k)�A2� (p)�B1(q)�c2(l)�1j0

0
!
= 2rAABB2 R4 + rAA�cc2 + irr.

XIII)2 �A1�(k)�A1� (p)�B2(q)�c2(l)�1j0

0
!
= �FAAhgR3 + 4FAABB

1 mR4 + 2mrAA�cc1 + irr.

XIV) �A1�(p)�A1�(q)�A2�(k)�c2(l)�1j0

a) 0
!
= 2��� l�

n
4(FAAAA

1 + rAAAA2 )R1 + 2FAAAgR2 +
1
�
rAA�cc1 + irr

o
,

b) 0
!
= ���(p� + q�)

n
2
�
rAA�cc1 + irr

o
,
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c) 0
!
= (���l� + ���l�)

n
�4FAAAA

1 R1 � 2FAAAgR2 + irr
o
,

d) 0
!
= (���p� + ���q�) f0 + irrg,

e) 0
!
= (���q� + ���p�)

n
� 1

�
rAA�cc2 + irr

o
.

XV)1 �B1(p)�B1(q)�A2�(k)�c2(l)�1j0

a) 0
!
= l�

n
4FAABB

1 R1 + 2FBBAgR6 + irr
o
,

b) 0
!
= k�

n
rBB�cc
1 + irr

o
,

XV)2 �B1(p)�B2(q)�A1�(k)�c2(l)�1j0

a) 0
!
= p�

n
�2rAABB2 R1 + 2FBBAgR2 + F hBA

1 gR3 + irr
o
,

b) 0
!
= q�

n
�2rAABB2 R1 � 2FBBAgR2 + 2FBBAgR6 + irr

o
,

c) 0
!
= k�

n
� 2rAABB2 R1 + F hBA

1
1
2
gR3 + rhBA2

1
2
gR3 + FBBAgR6 �

1
�
rBB�cc
2 + irr

o
,

XVI) �h(p)�A1�(k)�B2(q)�c3(l)�1j0

a) 0
!
= p�

n
F hBA
1 g(R6 �R2)� rhBA2 gR2 + irr

o
,

b) 0
!
= q�

n
F hBA
1 gR2 � rhBA2 gR2 + 2FBBAgR5 + irr

o
,

c) 0
!
= k�

n
F hBA
1

1
2
gR6 � rhBA2

1
2
gR6 + FBBAgR5 �

1
�
rhB�cc + irr

o
,

XVII) �h(p)�h(q)�A1�(k)�c1(l)�1j0

a) 0
!
= l�

n
4FAAhhR1 � F hBA

1 gR5 + irr
o
,

b) 0
!
= k�

n
rhBA2 gR5 +

2
�
rhh�cc + irr

o
.

XVIII) �A2�(k)�c2(p)�c1(q)��c1(l)�1j0

a) 0
!
= l�

n
F �ccA
1 g(R2 �R7) +

2
�
r�cc�cc + irr

o
,

b) 0
!
= p�

n
2rAA�cc1 R1 + r�ccA2 g(R2 �R7) +

2
�
r�cc�cc + irr

o
,

c) 0
!
= q�

n
� rAA�cc2 R1 � r�ccA2 gR7 +

2
�
r�cc�cc + irr

o
.

Five �elds

XIX) �h(p)�h(q)�h(k)�B1(l)�c1(l0)�1j0

0
!
= �2F hhhhR3 + F hhBBR5 + irr.
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XX) �h(p)�B1(q)�B1(k)�B2(l)�c2(l0)�1j0

0
!
= �FBBhhR3 + 2FBBBBR5 + irr.

XXI) �A1�(k)�A1� (p)�h(k)�B2(l)�c2(l0)�1j0

0
!
= �FAAhhR3 + FAABB

1 R5 + irr.

XXII) �A1�(k)�B1(p)�c1(l0)�A2� (q)�B3(l)�1j0

0
!
= rAABB2 (R6 � 2R2) + irr.

XXIII) �A1�(k)�B1(q)�A2�(p)�c2(l0)�h(l)�1j0

0
!
= rAABB2 R5 + irr.

XXIV) �A3�(k)�A3� (p)��c2(q)�c3(l)�c1(l0)�1j0

0
!
= rAA�cc2 R2 + rAA�cc1 R7 + irr.

XXV) �A3�(k)��c3(q)�A2�(p)�c3(l)�c1(l0)�1j0

0
!
= rAA�cc2 (3R2 �R7) + irr.

XXVI) �B1(p)�B1(q)��c1(k)�c2(l)�c3(l0)�1j0

0
!
= rBB�cc

2 (R6 �R7)� rBB�cc
1 R7 + irr.

XXVII) �B1(p)��c1(k)�B2(q)�c3(l)�c1(l0)�1j0

0
!
= �rhB�ccR3 + rBB�cc

2 (3R6 � 2R7) + irr.

XXVIII) �h(p)�h(q)��c1(k)�c2(l)�c3(l0)�1j0

0
!
= rhB�ccR5 + rhh�ccR7 + irr.

XXIX) �h(p)�B1(q)�c1(l)��c2(k)�c2(l0)�1j0

0
!
= 2rhh�ccR3 � 2rBB�cc

1 R5 + rBB�cc
2 R5 + rhB�cc(�R6 + 2R7) + irr.
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These 53 conditions are ful�lled in the (tree) order �h0 for � = 0 and �0 � 1. For �nite �0

we have also to take into account the tree order irrelevant contribution from (107, 108) to

the classical action.
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