1. Methodology for Building CBR
Applications
Ralph Bergmann and Klaus-Dieter Althoff

1.1 Introduction

As the previous chapters of this book have shown, case-based reasoning is
a technology that has been successfully applied to a large range of different
tasks. Through all the different CBR projects, both basic research projects
as well as industrial development projects, lots of knowledge and experience
about how to build a CBR application has been collected. Today, there is
already an increasing number of successful companies developing industrial
CBR applications. In former days, these companies could develop their early
pioneering CBR applications in an ad-hoc manner. The highly-skilled CBR
expert of the company was able to manage these projects and to provide the
developers with the required expertise.

Today, the situation has changed. The market for CBR has started to in-
crease significantly. Therefore, these companies have to face the fact that the
market demands companies executing more and larger CBR projects than in
these early days. It is required that they develop software that fulfills current
quality standards. Consequently, contemporary IT companies can no longer
sustain inefficient or ineffectual CBR application development. What is re-
quired is a methodology for building CBR applications. Such a methodology
should make CBR application development a systematic engineering activ-
ity rather than an art known by a few experts (Shaw, 1990; Gibbs, 1994).
A methodology usually combines a number of methods into a philosophy
which addresses a number of phases of the software development life-cycle
(e.g. (Booch, 1994), chapter 1). It should give guidelines (recipes) about the
activities that need to be performed in order to successfully develop a certain
kind of product, that is, in our case, a CBR application.

The use of an appropriate methodology should provide significant quan-
tifiable benefits in terms of

— productivity, e.g., reduce the risk of wasted efforts,

— quality, e.g., inclusion of quality deliverables,

— communication, a reference for both formal and informal communication
between members of the development team, and

— will provide a solid base for management decision making, e.g., planning,
resource allocation, and monitoring.

2 1. BERGMANN et al.: Methodology for Building CBR Applications

Currently, there are several activities with the goal of establishing a
methodology for building case-based reasoning applications. Contributions
can be found in books on CBR (Kolodner, 1993; Wess, 1995) and in papers
collecting the experience of people who have successfully developed CBR
applications (Kitano and Shimazu, 1996; Lewis, 1995; Bartsch-Sporl, 1996;
Curet and Jackson, 1996); most valuable experience-based contributions arose
from projects where methodology development was explicitly included as a
project task, like INRECA! (Althoff et al., 1995b; Johnston et al., 1996) or
APPLICUS? (Bartsch-Spérl, 1996; Bartsch-Sporl, 1997).

In this chapter we present a new methodology for building case-based rea-
soning systems which is based on the Esprit projects INRECA and INRECA-
II 3, particularly on the experience gained by all of the project partners. While
the main objective of the INRECA project was the development of the core
CBR technology with methodology development being a minor issue, the
major focus of the INRECA-II project is the development of a methodology
for building and maintaining CBR applications in the area of diagnosis and
decision support (Bergmann et al., 1997a; Bergmann et al., 1998).

The approach presented in this chapter covers the two major aspects
that are important for CBR development to become an engineering activity.
First, it presents an analytic framework for describing and classifying CBR
systems and applications. This is necessary to structure the large spectrum of
different systems that have already been developed. Part IT of this book gives
a good impression of the variety of CBR applications ranging from analytic
tasks such as classification and diagnosis to synthetic tasks like design and
planning. Any application developer must first analyze a new application field
to decide which type of CBR approach is most appropriate. The analytic
framework described in section 1.2 supports this analysis task.

Second, the application developer must determine the specific develop-
ment steps she/he has to follow in order to come to a CBR system of the
desired kind. These development steps also depend very much on the par-
ticularities of the current client, like the existing organizational structure,
existing IT environment, etc. Section 1.3 describes an experience-based ap-
proach to systematically develop a process model of how a particular CBR
application should be built for a certain client. Finally, section 1.4 concludes
by stating future directions for about how the presented CBR methodology
for building and maintaining CBR applications should evolve.

! INRECA: Esprit Project P6322. Partners: Acknosoft (prime contractor, France),
TECINNO (Germany), Interactive Multimedia Systems (Ireland), University of
Kaiserslautern (Germany)

2 APPLICUS: Esprit Trial Application P20824. Partners: Acknosoft (prime con-
tractor, France), BSR Consulting (Germany), Sepro Robotique (France)

8 INRECA-II Esprit Project P22196. Information & Knowledge Reengineering for
Reasoning from Cases. Partners: Acknosoft (prime contractor, France), Daimler
Benz AG (Germany), TECINNO (Germany), Interactive Multimedia Systems
(Ireland), University of Kaiserslautern (Germany)

1.2 Analytic Framework for Developing CBR. Systems 3

1.2 Analytic Framework for Developing CBR Systems

4

A particular strength of CBR. over most other methods is its inherent com-
bination of problem solving with sustained learning through problem solving
experience. This is therefore a particularly important topic of study, and an
issue that has now become mature enough to be addressed in a more sys-
tematic way. To enable such an analysis of problem solving and learning,
in the following we describe first steps towards the development of an ana-
lytic framework for studying CBR methods. It provides an explicit ontology
of basic CBR task types, domain characterizations, and types of problem
solving and learning methods. Further, it incorporates within this framework
a methodology for combining a knowledge- level, top-down analysis with a
bottom-up, case-driven one. In this section, we present the underlying view
and the basic approach being taken, the main components of the framework
and accompanying methodology as well as some applications of the frame-
work (one application has been described in section ??.7). Examples of studies
recently done and how they relate to the framework have been described in
(Althoff and Aamodt, 1996). A detailed description can be found in (Althoff,
1996).

1.2.1 Introduction

Over the last few years substantial progress has been made within the field
of CBR. The problems we are facing have become more clearly identified,
research results have led to improved methods for case retrieval as well as
improved approaches to the harder problems of adaptation and learning (see,
e.g., the collection of papers in ICCBR-95: (Veloso and Aamodt, 1995)). In
the course of this development it has also become clear that a particular
strength of CBR over most other methods is its inherent combination of
problem solving with sustained learning through problem solving experience.
This is therefore a particularly important topic of study, and an issue that
has now become mature enough to be addressed in a more systematic way. To
enable such an analysis of problem solving and learning, a unified framework
for describing, analyzing, and comparing various types and aspects of CBR
methods is needed.

Integration of learning and problem solving may in general start out from
different goals, and be viewed from different perspectives. One example is
”concept formation” as a goal, and the formation and utilization of opera-
tionalization criteria related to the problem solving task, as the perspective.
Another example is ”improved performance” as a goal, and the improvement
of total problem solving speed - for computer and human together - as the
perspective. A third example is ”sustained learning”, i.e., continuous learning

* Parts of this section are adapted from (Althoff and Aamodt, 1996).

4 1. BERGMANN et al.: Methodology for Building CBR Applications

through problem solving experience, as a goal, and the impact of the appli-
cation problem task on the learning method as a perspective. Many more
examples may be given, and for each of them a particular area of overlap,
an ”intersection space” between machine learning (ML) and problem solving
(PS) methods can be identified. Within this space, dependencies and other
relations between specific ML and PS methods may be described and ana-
lyzed in a systematic way, provided we have a suitable means to structure
the space.

In the following we describe first steps towards the development of a
framework and a methodology which defines and makes use of such a struc-
ture. Since we are studying CBR methods, the natural focus is on the third
of the above goals: Sustained and (continuous) learning from each problem
solving experience as a natural part of a problem solver’s behavior. Within a
broader perspective of integrated learning and problem solving, it is also nat-
ural to start a study of learning as close as possible to the source of learning,
namely a concrete experience. Our work is related to some earlier sugges-
tions for analytic CBR frameworks, such as the similarity-focused framework
by Richter and Wess (Richter and Wess, 1991), Althofl’s analysis of systems
for technical diagnosis (Althoff, 1992), Aamodt’s comparison of knowledge-
intensive CBR methods (Aamodt, 1991), Armengol’s and Plaza’s analysis of
CBR system architectures (Armengol and Plaza, 1993), and the framework
for systems comparison and evaluation as described in (Auriol et al., 1994).
Our framework extends these previous suggestions in several respects. It pro-
vides an explicit ontology of basic CBR task types, domain characterizations,
and types of problem solving and learning methods. Further, it incorporates
within this framework a method- ology for combining a knowledge-level, top-
down analysis with a bottom-up, case-driven one. In this section, we present
the underlying view and the basic approach being taken, the main compo-
nents of the framework and accompanying methodology, and refer to some
applications of the framework carried out so far.

1.2.2 Basic Approach

Knowledge-Level Analysis. A potentially useful way to describe problem
solving and learning behavior is in terms of the goals to be achieved, the
tasks that need to be solved, the methods that will accomplish those tasks,
and the knowledge of the application domain that those methods need. A
description of a system along these lines is often referred to as a knowledge
level description, and more recent research in knowledge acquisition (Steels,
1990; Wielinga et al., 1993) has clearly demonstrated the usability of this
approach. The original knowledge-level idea has undergone some modifica-
tions over the years, from Newell’s highly intentional, purpose-oriented way
of describing a system (Newell, 1982), to a more structured and usable type
of description. An incorporation of the CBR perspective into knowledge-level
modeling is discussed in (Aamodt, 1995).

1.2 Analytic Framework for Developing CBR. Systems 5

Adopting a knowledge-level perspective to the analysis of integrated PS-
ML systems enables the description of methods and systems both from a
general (intentional) and case-specific (extension) perspective. A general de-
scription relates a method to descriptive terms and relationships within a
general model of descriptive concepts - i.e., an ontology of task types, domain
characteristics, and method types. Through a case-driven description, meth-
ods can be understood by relating them to already known methods within
already described/implemented systems (e.g., CBR is combined with rule-
and model-based reasoning in the same way as in CREEK (Aamodt, 1993); a
decision tree is generated as in INRECA (Manago et al.,); the similarity mea-
sure is adapted as in PATDEX (Wess, 1993); partial determination rules are
generated and used like the so- called ”shortcut rules” in MOLTKE (Althoff,
1992); etc.). After having developed/described a certain number of systems,
we will be able to select/instantiate a system description at the knowledge
level by a combined use of general and case-specific descriptors. What we are
aiming at is an effective combination of top- down and bottom-up analysis
and modeling methods, based on an integration of these two perspectives.

From an engineering point of view, this will enable a particular symbol-
level architecture to be chosen, and/or a chosen architecture to be instanti-
ated, based on a thorough understanding of the real world application task
and its domain characteristics. However, a knowledge-level description in it-
self will not provide a language detailed enough to describe or analyze system
designs, or to arrive at a symbol-level architecture specification. Our approach
therefore incorporates a focusing perspective and an analytic ”tool” to help
in the more detailed description that guides the architectural specification
based on a knowledge-level model.

Similarity as a Focusing Mechanism. The focus provided by this mecha-
nism leads to a view of - in principle - all CBR methods as operations related
to similarity, in one sense or another. That is, problem solving can be de-
scribed as a process of initial assessment of similarity (case retrieval) followed
by a more deliberate assessment of similarity (case adaptation), and learning
(case extraction, case indexing, and possibly updates of general knowledge)
can be described by relating it to later similarity assessment - i.e., to a prag-
matic learning goal. Along with (Richter and Wess, 1991) we view similarity
as an a posteriori criterion, and any attempt to assess similarity before a
retrieved case has been found useful will only result in a hypothesized sim-
ilarity assessment. Our retrieval methods should of course try to minimize
the difference between the hypothesized similarity measure and the actual
similarity determined after the attempt has been made to use the case. The
general domain knowledge can then be seen as a means to reduce this uncer-
tainty of the initial similarity assessment with respect to the final similarity
assessment made after having evaluated the success of the (possibly modified)
case in finding a solution to the input problem.

6 1. BERGMANN et al.: Methodology for Building CBR Applications

Tasks and Domain Characterizations. The types of application domains
we address cover a wide spectrum, ranging from strong-theory domains with
rather well-defined relationships between domain concepts (e.g., diagnosis of
purely technical systems), to weak-theory and open domains with uncertain
domain relationships (e.g., medical diagnosis). This is an important feature
of the framework, since we particularly want to relate characteristics of the
task (the what-to-do) and the knowledge on which per- formance of the task
is based, to the methods (how-to-do’s) that enable the problem solver to ac-
complish the task by use of the knowledge. The starting point is always the
real world setting in which the system is to operate. Medical diagnosis, for
example, in a real world setting, is far away from a pure classification task.
If a system shall cover the major tasks involved in practical diagnosis, it will
have to include planning tasks (e.g., setting up and continuously revising an
examination protocol), as well as prediction tasks (assessing the consequences
of a treatment). The next section outlines the core components of the frame-
work, with a focus on the knowledge-level description and analysis and the
combined top-down and bottom-up oriented methodology. The incorporation
of the similarity assessment mechanism is part of ongoing research.

1.2.3 Framework and Methodological Issues

Basic Framework Components. At the highest level of generality, a gen-
eral CBR cycle may be described by four tasks (Aamodt and Plaza, 1994):
Retrieve the most similar case or cases, reuse the information and knowledge
in that case to solve the problem, revise the proposed solution, and retain
the parts of this experience likely to be useful for future problem solving. See
chapter ??, particularly fig. ?7.2. Note that these tasks are internal reasoning
tasks, and different from the application problems tasks (diagnosis, planning,
etc.) referred to earlier. Each of the the four CBR tasks involves a number of
more specific sub-tasks. An initial description of a problem (top of the CBR
cycle) defines a new case. In the retrieve task this new case is used to find
a matching case from the collection of previous cases. The retrieved case is
combined with the input case - in the reuse task - into a solved case, i.e., a
proposed solution to the initial problem. The revise task tests this solution for
success, e.g. by applying it to the real-life environment or have it evaluated
by a teacher, and repaired if failed. This task is important for learning, since
the system needs a feedback of how successful its proposed solution actually
was. Retain is the main learning task, where useful experience is retained for
future reuse, by updating the case base and possibly also the general domain
knowledge. As indicated in the figure, general knowledge usually plays a role
in this cycle, by supporting the CBR processes. This support may range from
very weak to very strong, depending on the type of CBR method. By general
knowledge we mean general domain knowledge, as opposed to the specific
domain knowledge embodied by cases. For example, in diagnosing a patient
by retrieving and reusing the case of a previous patient, a model of anatomy

1.2 Analytic Framework for Developing CBR. Systems 7

together with causal relationships between pathological and other physiolog-
ical states may constitute the general knowledge used by a CBR system. A
set of rules may play the same role.

Knowledge-level analysis, as previously described, is a general approach
to systems analysis. It is therefore applicable to the analysis of application
tasks and domains - as manifested in the knowledge acquisition methodologies
referred to earlier - as well as internal reasoning tasks of a problem solver
and learner. In our framework we therefore take a ”task - method - domain
knowledge” approach both to the analysis of real-world application tasks,
and to the analysis of the CBR reasoning tasks themselves. The mapping
between the two is as follows: a method from the application analysis (how
to solve a technical diagnosis problem, or how to determine the next test to
be done) either decomposes an application task into subtasks, or it solves
the task directly. In both cases these methods set up tasks at the reasoning
level (problem solving and learning from experience). In the following, we
concentrate on the reasoning tasks.

The tasks from the CBR cycle are further decomposed in figure 1.1 5.
The tasks are printed in bold letters, while methods are written in plain text.
The links between task nodes (bold lines) are task decompositions, i.e., part-
of relations. The links between tasks and methods (stippled lines) identify
alternative methods applicable for solving a task. The top-level task is problem
solving and learning from experience and the method to accomplish the task is
a case- based reasoning method. This splits the top-level task into the four
major CBR tasks of the CBR cycle. Each of the four tasks is necessary in
order to perform the top-level task. The retrieve task is, in turn, partitioned
in the same manner (by a retrieval method) into the tasks identify features,
search (to find a set of past cases), initially match (the relevant descriptors
to past cases), and select (the most similar case). All task partitions in the
figure are considered complete, i.e., the set of subtasks of a task are intended
to be sufficient to accomplish the task, at this level of description. The figure
does not show any control structure over the subtasks. The actual control is
specified as part of the problem-solving method. The actual retrieval method,
for example (not explicitly indicated in the figure), specifies the sequence and
loop-backs for the subtasks of retrieve. A method specifies the algorithm that
identifies and controls the execution of subtasks, or solves the task directly,
while accessing and utilizing the domain knowledge needed to do this. The
methods shown in the figure are high level method classes, from which one
or more specific methods should be chosen. The method set as shown is
incomplete, i.e., one of the methods indicated may be sufficient to solve the
task, several methods may be combined, or there may be other methods that
have not been mentioned.

5 In chapter ?? the same CBR task-method decomposition has been used for the
purpose of detailing selected models of software knowledge reuse.

problem solving and
learning from experience

PR case-based reasoning
retrieve reuse revise retain
identify /\
extract
features co% :;ITJI:::\E repair N~
1c|u|' index =~
sea d ﬂtion' A \\\\\ \\ ~ - extract
collect initially / / 1\ || integrate N ~felevant

~ descriptors
N N

descriptors mo!ch selecl / \ \ .
/ | I \\ N N extract
interpret / / , / \ / \ copy | l | s:?‘e“o(’gi?r \ se,\f— | \ N solutions
problem 1t
folow | | I /| solfionf) Lo repair! aermine® 9><7r001 !
infer direct / | /o [evaluate, | N indexes \ lustifications
descriptors indexes / I, use copy modify in real ser- indexes \X' ,
search | calculatd setection saition | soiution yyong repair) extrac
b | similarity Icmeriu | method) metnod evaluate generalize solution
in | i
structure X elaporate | ode update indexes method
seorcr{ explan explanations modify seﬂézﬂld
ilari solution nowledge
general similarity refun
knowledge problem

Fig. 1.1. Task-method decomposition of CBR

The above structure provides the basis for the analytic framework. It
needs to be elaborated and described in more detail, characterizations of
domain knowledge types need to be added, and dependencies between the
various knowledge types need to be identified.

Methodology. As previously stated, the basic methodological approach is
to combine a top-down oriented analysis of application tasks, domain knowl-
edge descriptions, and methods with a bottom-up, case-driven method of
studying existing systems. The aim is to arrive at a coherent framework and
description language that specializes from the high-level analysis and gen-
eralizes from the example systems studied. The baseline of the approach is
as follows. We describe CBR systems as well as domains and application
tasks using two different kinds of criteria, namely criteria characterizing the
domain and task at hand (domain/task criteria) and criteria describing the
abilities and limitations of existing systems and system components (techni-
cal/ergonomic criteria). Examples for domain/task criteria are size ¢, theory
strength 7, openness &, change over time °, and complexity '° , while case and
knowledge representation, similarity assessment, validation, and data acquisi-
tion and maintenance exemplify important technical/ergonomic criteria. We

6 The size of a domain is characterized by the amount of different items represent-
ing the explicit knowledge.

" The theory strength of a domain depends on the degree of certainty of the in-
volved relationships.

8 The openness of a domain depends on its environmental dependencies.

 The change over time of a domain means that a domain is called static if there
are no expected changes and it is called dynamic if it is clear that changes will
appear in continuation.

10 The complexity of a domain means the amount of different taxonomic relations.

1.2 Analytic Framework for Developing CBR. Systems 9

analyze the underlying methods and domain/task characteristics by relating
domain /task criteria with technical/ergonomic criteria. Figure 1.2 gives an
example of how CBR systems can be labeled with domain criteria. Combining
such a description with a more general kind of analysis based on the subtask
structure of figure 1.1 was shown to be useful for evaluating the final Inreca
system (Althoff, 1996).

Domain Knowledge

Environmental

Dependency

Theory Strength

Weak Strong Large \Sm_allllj Open

Casey
Creek Patdex-1 Creek Patdex-1 Creek Patdex-1
Inreca Patdex-2 Inreca Patdex-2 Inreca Patdex-2
Protos Moltke Moltke Protos Protos Moltke

Fig. 1.2. An example of domain criteria related to existing systems(Casey: (Koton,
1989); Creek: (Aamodt, 1993); Inreca: (Althoff et al., 1998), see also chapter ?7;
Moltke: (Althoff, 1992; Althoff et al., 1990); Patdex-1: (Stadler and Wess, 1989;
Richter and Wess, 1991); Patdex-2: (Wess, 1990; Althoff and Wess, 1991); Protos:
(Bareiss, 1989))

From a software or knowledge engineering perspective, we try to arrive
at non-functional system properties as a systematic means for (CBR) sys-
tem development. Since we focus on CBR systems we can define more pre-
cise criteria than we could for software systems in general. Additionally, we
combine these system-oriented, more technical criteria with an analysis of
application domains in which we have experience. On the one hand, feed-
back from applications can be systematically transformed in an evaluation
based on domain and application task criteria. On the other hand, methods
extracted from CBR-related systems and tools can be labeled with the re-
sults of the application of such criteria. Again, the aim is to close the gap
between high level characterizations, on the one side, and concrete systems
on the other side. General knowledge level analysis and case-driven analysis
are merged in order to come up with application frameworks for particular

10 1. BERGMANN et al.: Methodology for Building CBR Applications

types of systems, based on a common terminology and a unified model. Here
technical/ergonomic criteria are combined with domain/task criteria. The in-
tended use of this framework both for analysis and development of integrated
problem solving and learning systems, can be described as providing answers
to the following questions related to the evaluation of AI research (Cohen,
1989):

— How is the CBR method to be evaluated an improvement, an alternative,
or a complement to other methods? Does it account for more situations, or
produce a wider variety of desired behavior, or is it more efficient in time
or space, or does it model human behavior in a more useful way/detail?

— What are the underlying architectural assumptions? Are all design deci-
sions justified? Does the method rely on other integrated methods? Does
it subsume other methods?

— What is the scope of the method? How extendible is it? Will it scale up?

— Why does the method work? Under which conditions would it not work?

— What is the relationship between the class of task, of which the current
task is an example, and the method used? Can this relationship be stated
clearly enough to support a claim that the method is general to the class
of task?

1.2.4 Applications of the Framework

Up to now there are a number of applications of the introduced framework.
The original application (within the Inreca Esprit project) was a comparison
of commercially available CBR tools (Althoff et al., 1995a). The underlying
goals for the Inreca project were achieving deeper insights for the develop-
ment of the final Inreca system, finding a reasonable and realistic combination
of research and application issues, and getting a more concrete estimation of
what can be expected from CBR technology in the near and the far future.
Based on this comparison the framework was extended and used for the eval-
uation of the final Inreca system (Althoff, 1996) consisting of a comparison
with commercial tools, a comparison with a number of CBR-related research
systems as well as an in-depth analysis of the system using the introduced
framework. The application of the framework to the validation of CBR sys-
tems has been described in (Althoff and Wilke, 1997). Parts of the framework
have been used for gathering information about existing CBR systems by
means of two structured questionnaires (Meissonnier, 1996) that have been
collected from CBR system developers from 14 countries (see also section ?2.7
for more details). An analysis of the collected information has been described
in (Bartsch-Sporl et al., 1997). Using the described framework enabled us to
formally describe the collected questionnaires as cases and to build a CBR
system for accessing the included information via similarity based retrieval
(Meissonnier, 1996). This will be made available via WWW (see section ?7?.7
for further details including the URL).

1.3 Building CBR Applications for Analytic Tasks 11

1.3 Building CBR Applications for Analytic Tasks

When building a CBR application that should be used in the daily practice
within an existing client organization a large variety of different kinds of
processes have to be considered:

— the process of project management (cost and resource assessment, time
schedules, project plans),

— the analysis and re-organization of the environment (e.g., a department)
in which the CBR system should be introduced, and of course,

— the process of technical product development and maintenance: particu-
larly tool selection, customer-specific software development and domain
modeling.

All these processes must be defined and tailored according to the needs
and circumstances of the current client. This is an activity that requires a
lot of practical experience. Although this experience is available in the minds
of experienced application developers, it is usually not collected and stored
systematically. This creates serious problems, e.g., in case of staff departures
or when the companies grow and new staff must be trained. The approach
presented here addresses this problem in the line of the experience-based con-
struction of software. It combines two recent approaches from software en-
gineering: the ezperience factory ((Basili et al., 1994); see also section ??.3)
and software process modeling ((Rombach and Verlage, 1995)) approach. The
approach to a CBR development methodology is itself very ” CBR-like”. In a
nutshell, it captures previous experience from CBR development and stores it
in a so-called experience base (a term from the experience factory approach).
The entities being stored in the experience base are software process models,
or fragments of it, such as processes (managerial, organizational, and tech-
nical), products being produced or consumed by the different processes, and
methods that can be executed to realize a process. Although this approach
is applicable to any kind of CBR development experience, the CBR appli-
cations covered so far are analytic tasks only. The current experience base
was built up by analyzing several successful industrial applications developed
by or in cooperation with the INRECA-II consortium partners (Acknosoft,
Daimler-Benz, Interactive Multimedia Systems, TECINNO, and University
of Kaiserslautern). Since at the date of printing this book, this project is
still on-going, further refinements of this approach are very likely and further
experience will be entered into the experience base.

1.3.1 Experience Factory

We now briefly introduce the experience factory idea ((Basili et al., 1994);
see also section ??.3). This approach is motivated by the observation that
any successful business requires a combination of technical and managerial

12 1. BERGMANN et al.: Methodology for Building CBR Applications

solutions which includes a well-defined set of product needs to satisfy the cus-
tomer, assist the developer in accomplishing those needs and create compe-
tencies for future business; a well-defined set of processes to accomplish what
needs to be accomplished, to control development, and to improve overall
business; a closed-loop process that supports learning and feedback. The key
technologies for supporting these requirements include: modeling, measure-
ment, the reuse of processes, products, and other forms of knowledge relevant
to the (software) business. An experience factory is a logical and/or physical
organization that supports project developments by analyzing and synthe-
sizing all kinds of experience, acting as a repository for such experience, and
supplying that experience to various projects on demand (see Figure 1.3).
An experience factory packages experience by building informal, formal, or
schematized models and measures of various software processes, products,
and other forms of knowledge via people, documents, and automated sup-
port. The main product of an experience factory is an experience base. The
content and the structure of an experience base varies based upon the kind
of experience clustered in the base. See chapter 77 of this book for a more
detailed discussion of the experience factory approach, the associated Qual-
ity Improvement Paradigm, related work from software engineering as well
as relationships to CBR.

Characterize, M broiect
Set Goals, U) o
Choose Process |« , pp
Experience
in Models
execution
S
Execute N
> Analyze
Process Lessons
Learned
Project Organization Experience Factory

Fig. 1.3. The Experience Factory Approach (Basili et al., 1994)

1.3 Building CBR Applications for Analytic Tasks 13

1.3.2 Software Process Modeling

Software process modeling is an approach that is highly important in the
context of the experience factory approach. Software process models describe
the engineering of a product, e.g., the software that has to be produced.
Unlike early approaches in software engineering, the software development
is not considered to follow a single fixed process model with a closed set of
predefined steps. A tailored process model particularly suited for the current
project must be developed in advance. Software process models include tech-
nical software engineering processes (like requirements engineering, design of
the system to be built, coding, etc.), managerial software engineering pro-
cesses (like management of product related documentation, project manage-
ment, quality assurance, etc.), and organizational processes (covering those
parts of the business process in which the software system will be embedded
and that need to be changed in order to make best use of the new software
system). From time to time, such a model must be refined or changed during
the execution of the project if the real world software development process
and the model do not match any longer. Several formalisms and languages
have been already developed for representing process models. One such lan-
guage currently being developed at the University of Kaiserslautern is called
MILOS (Dellen et al., 1997a). In MILOS, a process model is defined in terms
of processes, methods, products, goals, and resources (see Fig. 1.4). Within
our approach to software process modeling, we adopt the terminology and the
concepts from this language to formalize process models for developing CBR
applications. Other representation languages often contain similar concepts,
but use different terms.

Process
Goal
Input Output
Product Process Product
Methods Resources
Modified
Product

Fig. 1.4. Graphical notation for representing process models

14 1. BERGMANN et al.: Methodology for Building CBR Applications

Generic Processes. A process is a basic step that has to be carried out
in a software development project. Each process is defined as an instance of
a certain generic process. A generic process describes a class of processes by
defining the following properties:

— A particular goal of such a step specifies what has to be achieved.

— A set of different alternative methods that can be used to implement the
step. Such a method specifies one particular way of carrying out the pro-
cess, i.e., one way of how to reach the goal of the process.

— Input, output, and modified products that describe which products are re-
quired at the beginning, which products must be delivered at the end of
the step, and which products are changed during enactment.

— A set of resources (agents or tools) that are required to perform the step.
Here the necessary qualifications or specifications are defined that an agent
or a tool must have so that he can be assigned to the process.

Methods. Methods contain a detailed specification of a particular way
of reaching the goal of a process. A method can be either simple or com-
plex. While a simple method provides only a description of what to do to
reach the goal of the associated process, a complex method specifies a set
of subprocesses, a set of intermediate products (called by-products), and the
flow of products between the subprocesses. This allows the definition of very
flexible process models in a hierarchical manner, since very different process
refinements can be described by utilizing alternative subprocess models.

Generic Product. The main goal of processes is to create or modify
products. Products include the executable software system as well as the
documentation like design documents or user manuals. Products are mod-
eled by generic product descriptions, which declare certain properties that all
products of a certain kind must have. For example, a generic product can
be a domain definition in the CASUEL case representation language. Ad-
ditionally, a product can be decomposed into several subproducts, e.g. the
definition of attribute types, object classes, cases, and similarity measures.

Resources. Resources are entities necessary to perform the tasks. Re-
sources can be either agents or tools. Agents are models for humans or teams
(e.g. managers, domain experts, designers, or programmers), which can be
designated to perform a processes. The most relevant properties of agents
are their qualifications. Tools (e.g., a modeling tool, a CBR tool, or a GUI
builder) are used to support the enactment of a process and can be described
by a specification. Therefore, by using the required qualifications and speci-
fications defined in the generic process, it is possible to determine available
agents and tools which can be assigned to a certain process.

1.3 Building CBR Applications for Analytic Tasks 15

1.3.3 The Experience Base for Developing Analytic CBR
Applications

In our CBR methodology, software process models are used to represent the
CBR development experience that is stored in the experience base. Software
processes that must be represented can be either very abstract, i.e., they can
just represent some very coarse development steps such as: domain model
definition, similarity measure definition, case acquisition. But they can also
be very detailed and specific for a particular project, such as: analyze data
from Company X’s product database, select relevant product specification
parameters, etc. The software process modeling approach allows to construct
such a hierarchically organized set of process models. Abstract processes can
be described by complex methods which are themselves a set of more detailed
processes. We make use of this property to structure the experience base.

The experience base is organized on three levels of abstraction: a common
generic level at the top, a cookbook-level in the middle, and a specific project
level at the bottom (see Figure 1.5).

Common Generic Descriptions. At this level, processes, products,
and methods are collected that are common for a large spectrum of different
CBR applications. These descriptions are the basic building blocks of the
methodology. The documented processes usually appear during the develop-
ment of most CBR applications. The documented methods are very general
and widely applicable and give general guidance of how the respective pro-
cesses can be enacted. At this common level, processes are not necessarily
connected to a complete product flow that describes the development of a
complete CBR application. They can be isolated entities that can be com-
bined in the context of a particular application or application class.

Cookbook-Level: Experience Modules. At this level, processes, prod-
ucts, and methods are tailored for a particular class of applications (e.g., help
desk, technical maintenance, product catalog). For each application class, the
cookbook-level contains a so-called experience module. Such an ezxperience
module is a kind of recipe describing how an application of that kind should
be developed and/or maintained. Thereby, process modells contained in such
a module provide specific guidance for the development of a CBR application
of this application class. Usually, these items are more concrete versions of
items described at the common level. Unlike processes at the common level,
all processes which are relevant for an application class are connected and
build a product flow from which a specific project plan can be developed.

Specific Project Level. The specific project level describes experience
in the context of a single particular project that had already been carried
out in the past. It contains project specific information such as the particular
processes that were carried out, the effort that was spent for these processes,
the products that have been produced and methods that have been selected
to actually perform the processes and the people that had been involved in
executing the particular processes. It is a complete documentation of the

16 1. BERGMANN et al.: Methodology for Building CBR Applications

project which is today more and more required anyway to guarantee quality
standards required by industrial clients.

Experience Base

Common Generic Level

building development blocks, independent from
application class or specific CBR project

Software
Process Cookbook-Level: Experience Modules
combination of different blocks for a particular
Models application class, independent from a specific CBR project

Specific Project Level

specific for a particular CBR project

Fig. 1.5. Structure of the Experience Base

1.3.4 Documentation of the Experience Base

Processes, products, methods, agents, and tools being stored in the experi-
ence base are documented using a set of different types of sheets. A sheet
is a particular form that is designed to document one of the items. It con-
tains several predefined fields to be filled as well as links to other sheets. We
have developed four types of sheets (for products, processes, simple meth-
ods, and complex methods) for documenting generic processes that occur on
the top and the middle layer of the experience base and six types of sheets
(four sheets for products, processes, simple methods, and complex methods,
and two additional sheets for tool and agent descriptions) for documenting
specific processes for the specific project level of the experience base. Figure
1.6 shows the four generic description sheets. One kind of sheet is used to
describe generic processes. Generic process sheets contain references to the
respective input, output, and modified products of the process. Each product
is documented by a separate generic product description sheet. Each process
description sheet also contains links to one or several generic methods. A
generic method can either be a generic simple method (which is elementary
and does not contain any references to other description sheets) or it can
be a generic complex method. Such a generic complex method connects sev-
eral subprocesses (each of which is again documented as a separate generic
process description) which may exchange some by-products (documented as

1.3 Building CBR Applications for Analytic Tasks 17

separate generic product descriptions). Figure 1.7 gives an example of a sheet
that documents generic complex methods for defining similarity measures.

As part of the INRECA-II project, a particular methodology tool was
implemented by Interactive Multimedia Systems which supports the man-
agement of the experience base and the different modules it consists of (see
Fig. 1.8). It supports the filling of the different sheets, checks consistency, and
creates the required links. It exports the experience base as HTML network
in which each sheet becomes a separate HTML page that includes links to
the related pages. Therefore, it is possible to investigate the experience base
via intranet/internet using a standard Web browser.

Generic
Process

sub-process
applicable methods P

" - -
output, Generic Generic
modified Simple Complex
product

Method Method
by-product
Generic
Product

Fig. 1.6. Overview of generic description sheets

1.3.5 Current Experience at the Common Generic Level

A large number of processes are involved in a CBR project. As introduced, we
distinguish between the technical processes (getting the CBR system to work
in context), the organizational processes (ensuring that the relationships be-
tween the users of the system and their working environment are adapted
to take advantage of the power of the system), and the management of the
associated process of change (or the project). However, this distinction does
not imply that these different kinds of processes can be considered indepen-
dently. There is in fact a lot of interaction between them. Altogether, the
common generic level currently consists of a network of about 150 descrip-
tion sheets. Fig. 1.9 gives an overview of the processes and the products that
they exchange. Only the top-level processes and products are shown in this
figure. For most of these top-level processes, refinements have been defined
through subprocesses which are combined in the context of complex meth-
ods or subproducts. Here, we only give an overview of top-level processes we
have identified. At this top-level, the processes look very much like processes
that might occur in any IT project. While this is in fact true for some of the

18 1. BERGMANN et al.: Methodology for Building CBR Applications

Generic Complex M ethods Description Sheet

Project: Version: 1.0 Date: 07.04.97 Context: TP

Author: Armin Stahl

M ethod Name: similarity construction method

Product Flow Diagram:

Domain
description

similarity
characterisation

similarity
integration

similarity
description

similarity - similarity
characterisation gg:'n':';{ — defi nition
description description

Subprocesses
Name Generic Process
similarity characterisation similarity characterisation process
similarity definition similarity definition process
similarity integration similarity integration process
By-Products
Name Generic Product
similarity characterisation description similarity characterisation description document
similarity definition description similarity definition description document

Remarks: In the first subprocess the CBR consultant and the domain expert must characterise the similarity
measures for every simple attribute of the domain model. This means that they find out general properties of the,
similarity measures. In the second subprocess these properties are used to define the concrete similarity
measures. In the last step the similarity measures of al simple attributes must be combined to a complex
similarity measure for the domain model.

Fig. 1.7. Generic complex method description sheet for constructing similarity
measures

1.3 Building CBR Applications for Analytic Tasks 19

F. Inreca Methodology

5] |

Case Acquisition

General | Products | Methods, Tools | Agents, Propetties | Remarks |

Project INEW Package

Context: [TF

Date: |0311.971

IRa\ph Bergmann

Mame!

Process |CaseAcqmsnmn

Process
Goal

INRECA - Package Planner

Acquire Cases and Models based on exisiting data

= Help Desk Module

=@ Processes
B managerial

B Technical

@ Organisational @ Organisational
¥ Products ¥ Products

Simple Methods R Simple Methods

Complex Methods e Q Complex Methods

u Generic Level
, Product Catalog Search Module
, Technical Maintenance Module
B wark In Progress

1] 13|

SelEnt

Caricel

HElR)

Goal:

Create HTML | Wiew HTML

Status : Ediing Generic Fracess Shest Case Acquisition

11:19am 03111957 7

Fig. 1.8. INRECA-II methodology tool Image provided curtsey of IMS

20 1. BERGMANN et al.: Methodology for Building CBR Applications

processes or subprocesses (e.g. some of the managerial processes are standard
IT processes) most of them are described at the lower levels in a way that
is particularly tailored for CBR application development. In the following
we give a brief overview of all the top-level processes and there interactions,
before explaining them in some more detail.

A CBR project starts with a statement of a client’s problem. In the top-
level start-up process (managerial) a first vision document is created, which
preliminary defines the mission of the project. The following goal definition
process (managerial) is executed in strong interaction with the preliminary
organizational analysis process (organizational). The organizational problems
(that should be addressed by introducing the CBR, system) and the respective
problem owners are identified. Additionally, a basic goal checklist for the
project is created. Based on this goal check list and the general project vision,
a feasibility study (technical) should be carried out. Depending on the results
of this study, it must be decided whether

— to continue the project as planned,
— to revise the main project goals,
— to stop the project.

Thereafter, the identification of the high-level processes (managerial) leads
to a set of technical and organizational processes that should be addressed
within the project. The methodology experience module should be consulted
during this process since it gives valuable advice on the processes that are
relevant. Additionally, a detailed analysis of the organization (organizational
process) can be carried out in order to revise and refine the set of organi-
zational processes that should be addressed and to identify possible project
teams. Then, the project leader should plan and schedule the technical and
organizational processes (managerial) and produce an overall project plan.
Here, again the experience module should be consulted in order to build on
concrete experience from other, similar CBR projects. The resulting project
plan is then enacted and monitored during the technical process of software
development for case-based reasoning and the organizational development of
the environment into which the CBR system will be introduced. The result-
ing software implementation and the newly established responsibilities and
workflow in the organization will then be implemented and evaluated.

Typically, a CBR project requires several development cycles, each of
which results in a prototype application that is evaluated by the end-user.
The evaluation feedback states whether a new development cycle must be
considered or whether a satisfying solution is reached already. At this point,
the first living application being in real use has been reached. During the
lifetime of this application, some maintenance (technical process) will be
required during which the application will be modified.

Please note that a separate monitor & review process (managerial) is
introduced. This process controls the enactment of the software and orga-
nizational development. This process does not have a formal output. It also

1.3 Building CBR Applications for Analytic Tasks 21

uses the evaluation feedback from the implemented application to allow the
project leader to decide whether a new development cycle should be consid-
ered to further improve the current system or the organizational structure.

Managerial Processes. This subsection is primarily concerned with the
management of the process of development and implementation of the system
in its context, but it also touches the other two aspects where necessary given
that they are impossible to separate. Managing a CBR project (or any Al
project in general) differs from managing other IT projects to the extent
that the associated concepts of the CBR technology are mostly previously
unknown to the users. Therefore, there must be more than usual emphasis
on early awareness training, and user-participation in the successive iterations
of the prototyping process.

Top-Level Start-up

During the top-level start-up process, client and the top-management of
the consulting firm agree on a terms of reference, which specifies the problem
or opportunity to be addressed. During this process, the project leader is also
identified. This person should have the time and motivation to ensure that
the project is a success, and should also have some ownership of the project
results. The leader then helps to define the overall project vision stated in
the vision document in close interactive consultation with the client and the
consultant- firm’s management. It is also the duty of the leader to set up a
system for monitoring the implementation of the project.

Goal Definition

The first process after start-up is to define the project goal. The vision of
what life will be like when the project is completed has to be written down.
At this stage, it is appropriate to introduce a high-level abstract concept of
a ’case’, from which case-based reasoning can be developed, and to identify
what will be different about the people, their tasks, the technology and orga-
nization when the project is finished. This description should also elaborate
any associated or dependant goals, in a goal checklist. These goals should be
agreed amongst all participants in the project, and by anybody affected by
the outcomes of the project. When this has been done, it becomes possible to
define the high-level processes which support the performance of scheduled
technical and organizational tasks during the whole project.

Identification of High-Level Processes

Even though it is difficult to define precisely each project process in detail,
it is possible first to produce a lot of high-level processes that have to be
enacted in order to achieve the project goal. As described, the processes
can usefully be subdivided into technical and organizational categories. For
each process the project planner should check the resource requirements,
input- and output products and the dependencies between processes. The
determination of the relevant processes should be done based on existing
CBR building experience. For this purpose, the project leader should have
access to the experience base of CBR methodology (see section 1.3.8).

22

Client's
Problem
Statement

Top-level

Methodolgy
Experience
Packet

A,

Start-up

Vision
Document

Goal Definition

e

Feasibility Study

Goal
Checklist

-

Feasibility
Evaluation

dentifi of high- |,

Identified
Problem

level processes |

Organisational
Processes

Owners

Detailed Analysis of
the Organisation

Identified
Project
Teams

Plan and Schedule
Technical and

Organisational
Processes

Technical
Processes

Organisational
Development

1. BERGMANN et al.: Methodology for Building CBR Applications

Organisational
Problems

Preliminary
organisational
analysis

Methodolgy
Experience
Packet

New
Responsibilities
and Workflow

Maintenance

Project Plan i i
Software Monitor & Review
Development for Organisational
Case-Based and Software
Reasoning Development
l A
Final Integrated
CBR
Application
Application
» pl ation
and E Evaluation
g Feedback
Living
Application

Fig. 1.9. Interaction between top-level processes involved in a CBR project

1.3 Building CBR Applications for Analytic Tasks 23

Plan and Schedule Processes

During the detailed planning of the technical and organization processes, a
couple of important aspects must be considered by the project leader. She/he
must

— ensure that the immediate objectives of each project phase is embedded in
strategic objectives of the overall project.

— ensure that in the design of the system there is provision for the partici-
pative interactive re-design of the work-practices of those using it.

— ensure that when the developed system is implemented, there is timely
provision for the necessary level of training in its use by all who interact
with it.

— ensure that the implemented system is evaluated critically, with a view to
future improvements, identification of possible weaknesses etc., bearing in
mind that development is an ongoing process.

Monitoring and Review of Organizational and Software Devel-
opment

There is no difference in monitoring and reviewing the development pro-
cesses compared to the management of standard IT projects. The implemen-
tation of the project plan in the organizational and software development
processes must be monitored by the project leader. He must ensure, that
the important project milestones can be reached in time. He must control
the overall quality of the development process and of the deliverables. Based
on the feedback from the evaluation of the application he finally has to de-
cide whether a new organizational or technical development cycle should be
considered.

Technical Processes: Software Development. The technical processes
described in the subsection are general processes, i.e., such processes that we
expect to be a part of most CBR application development projects. A number
of the technical processes appear in usual software development projects, too.
An example is the GUI development process. Such processes can be handled
by standard methods. However, we emphasize on the CBR specific aspects.

Feasibility Study

The feasibility study consists of a cost/benefit analysis and should deliver
an estimation of the commercial success potential of the intended CBR appli-
cation. A simple mock-up of the intended application should be developed as
a means to further clarify the goals and the vision of the project as well as a
means to convince the customer to believe in the success of the project. Fig-
ure 1.10 gives a brief overview of the subprocesses involved in the feasibility
study.

Software Development for Case-Based Reasoning

This is the technical top-level process during which the CBR application
itself is developed. A CBR application development process in general is
a usual software development process with mostly standard ingredients on

24 1. BERGMANN et al.: Methodology for Building CBR Applications

Cost /Benefit Analysis

Application Mock-up Development
GUI Mock-up Development
Case-Base Mock-up Development
Retrieval Mock-up Development
Integration Mock-up Development

Fig. 1.10. Sub-Processes occuring in the Feasability Study Process

its top-level. This includes a large number of different subprocesses listed
hierarchically in Figure 1.11. Each of these processes is described in detail in
the experience base.

GUI Development
GUI Requirements Analysis
GUI Design
GUI Programming
GUI Manual Writing
GUI Acceptance Testing
CBR Engine Development
CBR Retrieval Requirements Analysis
CBR Engine Design
CBR Engine Implementation
CBR Engine Test
Case Base Development
Case Base Requirements Analysis
Descriptive Model Development
Similarity Development
Similarity Characterization
Similarity Definition
Similarity Integration
Case Acquisition
Develop Case Collection Forms
Collect Case Data
Evaluate Selected Good Cases
Case Entry into the Case Base
System Integration
Integration Requirements Analysis
Integration Design
Integration Implementation
Integration Test

Fig. 1.11. Sub-Processes occuring in the Software Development Process

Maintenance Process

The maintenance process relies heavily on the successful installation of
organizational structures that support this process. One important organiza-
tional aspect is the installation of a board of users and domain experts that
review the case data regularly and that decides what changes and updates to
perform. From the technical point of view it should be aspired that updates

1.3 Building CBR Applications for Analytic Tasks 25

of the system should be executed by an application administrator of the user
organization in order to ensure some independence from the consultancy com-
pany. The application should therefore provide means for easy updating of
the case base and simple modifications of the domain model. However, more
drastic changes of the system (e.g. restructuring of the domain model) should
only be performed by or in co- operation with a CBR consultant. Figure 1.12
gives an overview of the maintenance processes identified so far.

Change Selection
Model Maintenance
Case Base Maintenance
Application Update

Fig. 1.12. Sub-Processes occuring in Maintenance Process

Organizational Processes. In analyzing the existing organization’s struc-
ture and related procedures, there is a preliminary scoping of the environment
of the project. This includes a listing of the perceived problems and oppor-
tunities at the human and organizational levels.

Preliminary Organizational Analysis

In the preliminary organizational analysis process the first step is to iden-
tify the boundaries of the socio-technical system of which the perceived prob-
lems or opportunities are currently or potentially dealt with by introducing
a CBR system. Once this has been identified, it can be regarded as being a
'production’ unit embedded in a larger organization. We need to enact this
preliminary organizational analysis in strong interaction with the managerial
goal definition process. Bearing this in mind, we go on to analyze the pro-
cesses embedded in the socio-technical unit, and to assess the impact of the
technological change on the process management. This naturally leads to a
synthesis in which the processes are re-organized in the context of the new
technology.

Detailed Analysis of the Organization

The design of the CBR system will be the result of an iterative process
involving all the people in the existing organization who are involved with
the cases, the collective of stakeholders who own the material which will end
up in the case- file, and who are potential users of the results of the system.

It is useful, having identified the problems and/or opportunities, to set
up one or more working groups focused on them, to address the questions
a) how is this problem handled elsewhere and b) how does the present situ-
ation compare with other CBR applications? The group should consider the
processes, the people, the technologies and the structure within the socio-
technical unit which deals with the cases. In this way they can begin to tease
out the implications for the organization.

Organizational Development

26 1. BERGMANN et al.: Methodology for Building CBR Applications

The basic processes that must be addressed during the organizational
development are the

— adaptation of the structure of the organization, including

— the structuring of the maintenance process for the CBR application,
— the training of the maintenance personal, and

— the training of the users of the system.

1.3.6 Current Experience at the Cookbook Level

We draw on the cookbook metaphor in the following sense: like a cookbook
that contains a collection of recipes each of which leads to a particular dish,
the cookbook-level of the methodology contains a collection of experience
modules each of which combines selected generic processes in order to realize
a particular kind of CBR application. Till the end of the INRECA-II project,
we intend to have three modules for: Parametric Search in Product-Bases,
Complex Help Desk, and Technical Maintenance.

The most advanced module currently is the parametric search module.
The basic action is a search by a potential client, or a sales person in the
presence of a client, in a product-base or catalogue. Typically, the set of
all available products can be divided into several product categories each
of which might contain some 100s of products. Each product can be char-
acterized (or even exactly specified) by a set of parameters. Typically each
product might be characterized by some 10s of parameters. The client speci-
fies a need by specifying constraints on certain product parameters, and the
search comes up with something approximating to it. Such a service can be
provided for example on a CD-ROM or on the World-Wide-Web.

To summarize the catalogue search application class in the form of a
checklist, we can say that:

— a catalogue of products must exist, each of which can be characterized by
a number of qualitative (real or integer values) or quantitative parameters
(symbols).

— the list of products subdivides into a number of subsets (product cate-
gories), in each of which the products share a common structure of param-
eters.

— a sufficient number of products must exist to make the task of searching
for a product with a desired set of parametric values onerous.

— a group of potential users of the products must exist who are in a position
to specify the parametric profile of the product that they need, making use
of expert knowledge.

1.3.7 Current Experience at the Specific Level

At the specific project level, the experience from five projects from the indus-
trial INRECA-II partners is captured and stored in about 350 sheets. These

1.3 Building CBR Applications for Analytic Tasks 27

projects are documented using the software process modeling approach after
the projects were finished. These projects provide the basis for developing
experience modules at the cookbook-level through generalization.

1.3.8 Using and Maintaining the Experience Base

When a new CBR project is being planned, the relevant experience from
the experience base must be selected and reused. The experience modules
of the cookbook-level are particularly useful for building a new application
that directly falls into one of the covered application classes. We consider
the experience modules to be the most valuable knowledge of the method-
ology. Therefore, we suggest to start the ”retrieval” ! by investigating the
cookbook-level and only using the common generic level as fall-back. Fur-
thermore, it is important to maintain the experience base, i.e., to make sure
that new experience is entered if required. For using and maintaining the
experience base we propose the following procedure:

1. Identify whether the new application to be realized falls into an application
class that is covered by an experience module of the cookbook. If this is
the case then goto step 2a; else goto step 3.

2a. Analyze the generic processes, products, and methods that are proposed
for this application class.

2b. Select the most similar particular application from the specific project
level related to this module and analyze the specific description sheets in
the context of the current application.

2c. Develop a new project plan and workflow for the new application based
on the information selected in steps 2a and 2b. Goto step 4.

3. Develop a new project plan and workflow for the new application by select-
ing and combining some of the generic processes, products, and methods
from the common generic level; make these descriptions more concrete
and modify them if necessary.

4. Execute the project by enacting the project plan. Record the experience
during the enactment of this project.

5. Decide whether the new project contains new valuable information that
should be stored in the experience base. If this is the case, goto step 6,
else stop.

6. Document the project using the specific description sheets and enter them
into the specific project level of the experience base (supported by the
methodology tool).

7. If possible, create a new experience module by generalizing the particular
application (together with other similar applications) to an application
class and generalize the specific descriptions into generic descriptions.

1 Up to now, this retrieval is not supported by a tool, but through an index schema.
However, support for retrieval (e.g. a CBR approach) is considered important
for the future.

28 1. BERGMANN et al.: Methodology for Building CBR Applications

Add the new to the current cookbook (supported by the methodology
tool).

8. If new generic processes, methods, or products could be identified that
are of a more general interest, i.e., relevant for more than the application
class identified in step 7, then add them to the common generic level
(supported by the methodology tool).

1.4 Conclusion

In this chapter, we have presented a methodology for building CBR applica-
tions. First, this methodology consists of an analytic framework for describing
different kinds of CBR approaches. It provides an explicit ontology of basic
CBR task types, domain characterizations, and types of problem solving and
learning methods. Further, it incorporates within this framework a method-
ology for combining a knowledge-level, top-down analysis with a bottom-up,
case-driven one. Second, the presented methodology consists of a systematic
way to identify the main steps required to build a CBR application, based
on collected experience stored as CBR specific software process models. We
gave an overview of the main processes involved in building a CBR applica-
tion for an analytic task, including managerial, organizational, and technical
processes.
Up to now, this methodology is supported by two tools:

— A CBR system for retrieving descriptions of CBR approaches, CBR sys-
tems, and CBR applications. This retrieval system (implemented by the
Fraunhofer Institute for Experimental Software Engineering in cooperation
with TECINNO) is currently be made available via WWW (see section ??.7
for further details including the URL).

— The INRECA-II methodology tool (implemented by Interactive Multime-
dia Systems) which supports the management of the experience base and
the different modules it consists of (see Fig. 1.8). Thereby, this tool cur-
rently supports step 6 and partially the steps 7 and 8 from section 1.3.8.

The development of a methodology is an ongoing task which is not finished
yet. Future work should address the following two major points:

First, the scope the of the methodology must be enlarged as new kinds of
applications are being developed. That is, more kinds of analytic applications
must be covered, but in the long-term also synthetic applications should be
included. Therefore, the experience base must grow further. More specific
experience from successful CBR projects must be collected and generalized
into new experience modules (cookbook recipes). New processes at the generic
level must be identified.

Second, further tool support is required to make the methodology easier
to use. Based on our current experience with the methodology, tools are
necessary that also support steps 1 to 5 from section 1.3.8. Particularly, a

1.4 Conclusion 29

tool is required that allows to access process models from the experience base
more efficiently, either by a flexible navigation approach or by a retrieval
system (support of steps 1 to 2b). The application of case-based reasoning
to this retrieval task would certainly be a new challenging CBR application
itself.

Further, an integration with existing project planning and workflow man-
agement tools is desirable. This would allow to select certain processes from
the experience base and to combine and tailor them according to the current
application being developed (support of steps 2c to 4). A first case study
that shows the appropriateness of the flexible workflow management system
CoMoKit (Dellen et al., 1997b) for representing and enacting a process model
of a CBR application development project has been performed (Bergmann
et al., 1997b).

30 1. BERGMANN et al.: Methodology for Building CBR Applications

References

Aamodt, A. (1991). A Knowledge-Intensive, Integrated Approach to Problem
Solving and Sustained Learning. PhD thesis, University of Trondheim.

Aamodt, A. (1993). Explanation-driven cased based reasoning. In (Wess et al.,
1993), pages 274 — 288.

Aamodt, A. (1995). Knowledge acquisition and learning by experience the role
of case-specific knowledge. In Kodratoff and Tecuci, editors, Machine Learn-
ing and Knowledge Acquisition - Integrated Approaches, pages 197-245. Aca-
demic Press.

Aamodt, A. and Plaza, E. (1994). Case-based reasoning: foundational issues,
methodological variations, and system approaches. AI Communications,
7(1):39-59.

Althoff, K.-D. (1992). Eine fallbasierte Lernkomponente als integrierter Be-
standteil der MOLTKE- Werkbank zur Diagnose technischer Systeme. PhD the-
sis, Dept. of Computer Science, University of Kaiserslautern, Germany.

Althoff, K.-D. (1996). The inreca case study. Postdoctoral thesis, University of
Kaiserslautern.

Althoff, K.-D. and Aamodt, A. (1996). Zur Analyse fallbasierter Problemlse-
und Lernmethoden in Abhéngigkeit von Charakteristika gegebener Auf-
ganstellungen und Anwendungsdomaénen. Ktnstliche Intelligenz, Themenheft
Fallbasiertes Schlieflen, 10(1):10-15.

Althoff, K.-D., Auriol, E., Barletta, R., and Manago, M. (1995a). A Review of
Industrial Case-Based Reasoning Tools. Al Intelligence, Oxford.

Althoff, K.-D., Bergmann, R., Wess, S., M., M., Auriol, E., Larichev, O. 1., Bolo-
tov, A., Zhuravlev, Y. L., and Gurov, S. I. (1998). Integration of induction
and case-based reasoning for decision support tasks in medical domains: The
inreca approach. To appear in: AI in Medicine Journal.

Althoff, K.-D., Maurer, F., and Rehbold, R. (1990). Multiple Knowlegde Acquisi-
tion Strategies in MOLTKE. In Wielinga, B., Boose, J., Gaines, B., Schreiber,
G., and van Someren, M., editors, Proceedings of the 4th European Knowledge
Acquisition Workshop EKAW’90, Amsterdam. I0S.

Althoff, K.-D. and Wess, S. (1991). Case-Based Knowledge Acquisition, Learning
and Problem Solving for Diagnostic Real World Tasks. In Proceedings of the
5th European Knowledge Acquisition Workshop EKAW’91.

Althoff, K.-D., Wess, S., Weis, K.-H., Auriol, E., Bergmann, R., Holz, H., John-
ston, R., Manago, M., Meissonnier, A.and Priebisch, C., R., T., and W,
W. (1995b). An evaluation of the final integrated system. Technical report,
Esprit Project INRECA Deliverable D6.

Althoff, K.-D. and Wilke, W. (1997). Potential uses of case-based reasoning in
experienced based construction of software systems and business process sup-
port. In (Bergmann and Wilke, 1997), pages 31-38.

32

REFERENCES

Armengol, E. and Plaza, E. (1993). A Knowledge Level Model of Case-Based
Reasoning. In (Wess et al., 1993), pages 53 — 64.

Auriol, E., Althoff, K.-D., Wess, S., and Dittrich, S. (1994). Integrating induc-
tion and case-based reasoning: Methodological approach and first evaluations.
pages 18-32. AcknoSoft Press.

Bareiss, R. (1989). Ezemplar-Based Knowledge Acquisition: A unified Approach
to Concept Representation, Classification and Learning. Academic Press.
Bartsch-Spérl, B. (1996). How to introduce case-based reasoning in customer

support. Technical report, Esprit Project AppLiCcUS Deliverable D3.

Bartsch-Sporl, B. (1996). How to make CBR systems work in practice.
Informatik-Berichte, pages 36—42. Berlin.

Bartsch-Spoérl, B. (1997). How to introduce cbr applications in customer support.
In (Bergmann and Wilke, 1997).

Bartsch-Spérl, B., Althoff, K.-D., and Meissonnier, A. (1997). Reasoning about
case-based reasoning systems. In Mertens, P. and Voss, H., editors, 4th Ger-
man Conference on Ezpert Systems, pages 115-128, Sankt Augustin, Ger-
many. infix Verlag. Proceedings in Artificial Intelligence 6.

Basili, V. R., Caldiera, G., and Rombach, H. D. (1994). Experience factory. In
Marciniak, J. J., editor, Encyclopedia of Software Engineering, volume 1,
pages 469-476. John Wiley & Sons.

Bergmann, R., Breen, S., Goker, M., Manago, M., Schumacher, J., Stahl, A.,
Tartarin, E., Wess, S., and Wilke, W. (1998). The INRECA-II Methodology
for Building and Maintaining CBR Applications.

Bergmann, R. and Wilke, W., editors (1997). 5th German Workshop on CBR
— Foundations, Systems, and Applications —, Report LSA-97-01E, Kaiser-
slautern. University of Kaiserslautern.

Bergmann, R., Wilke, W., Althoff, K.-D., Johnston, R., and Breen, S. (1997a).
Ingredients for developing a case-based reasoning methodology. In (Bergmann
and Wilke, 1997), pages 49-58.

Bergmann, R., Wilke, W., and Schumacher, J. (1997b). Using software process
modeling for building a case-based reasoning methodology: Basic approach
and case study. Lecture Notes in Artificial Intelligence, 1266, pages 509-518.
Springer Verlag.

Booch, G. (1994). Object-Oriented Design with Applications. Ben-
jamin/Cummings.

Cohen, P. R. (1989). Evaluation and Case-Based Reasoning. In (Hammond,
1989), pages 168-172.

Curet, O. and Jackson, M. (1996). Towards a methodology for case-based sys-
tems. In Exzpert Systems 96: Proc. of the 16th annual workshop of the British
Computer Science Society.

Dellen, B., Maurer, F., and Jirgen Muench, M. V. (1997a). Enriching software
process support by knowledge-based techniques. Int. Journal of Software En-
gineering and Knowledge Engineering, 7(2):185-215.

Dellen, B., Pews, G., and Maurer, F. (1997b). Knowledge based techniques to
increase the flexibility of workflow management. Data & Knowledge Engi-
neering Journal.

Gibbs, W. W. (1994). Software’s chronic crisis. Scientific American, pages pp.
86-95.

Hammond, K. J., editor (1989). Proceedings: Case-Based Reasoning Workshop.
Morgan Kaufmann Publishers.

Johnston, R., Breen, S., and Manago, M. (1996). Methodology for developing
cbr applications. Technical report, Esprit Project INRECA Deliverable D30.

REFERENCES 33

Kitano, H. and Shimazu, H. (1996). The Experience-Sharing Architecture: A
Case Study in Corporate-Wide Case-Based Software Quality Control. In
Leake, D. B., editor, Case-Based Reasoning: Ezperiences, Lessons, and Future
Directions, chapter 13. AAATI Press/MIT Press, Menlo Park, CA /Cambridge,
MA.

Kolodner, J. L. (1993). Case-Based Reasoning. Morgan Kaufmann, San Mateo.

Koton, P. (1989). Evaluating Case-Based Problem Solving. In (Hammond, 1989),
pages 173-175.

Lewis, L. (1995). Managing computer networks: A case-based reasoning approach.
Artech House Publishers, London.

Manago, M., Althoff, K.-D., Auriol, E., Traphdner, R., Wess, S., Conruyt, N.,
and Maurer, F. Induction and reasoning from cases. pages 313-318.

Meissonnier, A. (1996). Ein fallbasiertes informationssystem fiir fallbasierte an-
wendungen und systeme auf der basis von inreca. Diploma thesis, University
of Kaiserslautern.

Newell, A. (1982). The knowledge level. Artificial Intelligence, 18:87-127.

Richter, M. M. and Wess, S. (1991). Similarity, uncertainty and case-based rea-
soning in PATDEX. In Boyer, R., editor, Automated Reasoning, pages 249—
265. Kluwer. Essays in Honour of Woody Bledsoe.

Rombach, H. D. and Verlage, M. (1995). Directions in software process research.
In Zelkowitz, M. V., editor, Advances in Computers, Vol. 41, pages 1-61.
Academic Press.

Shaw, M. (1990). Prospects for an engineering discipline of software. IEEE Soft-
ware 7, pages 15-24.

Stadler, M. and Wess, S. (1989). Patdex: Konzept und implementierung eines fall-
basierten, analogieorientierten inferenzmechanismus zur diagnose eines cnc-
bearbeitungszentrums. Project thesis, University of Kaiserslautern.

Steels, L. (1990). Components of expertise. AI Magazine, 11(2):29-49.

Veloso, M. M. and Aamodt, A., editors (1995). Case Based Reasoning Research
and Development: First International Conference, ICCBR-95. Number 1010
in Lecture Notes in Artificial Intelligence. Springer, Berlin.

Wess, S. (1990). Patdex/2: ein system zum adaptiven, fallfokussierenden ler-
nen in technischen diagnosesituationen. Diploma thesis, University of Kaiser-
slautern.

Wess, S. (1993). PATDEX — Ein Ansatz zur wissensbasierten und inkrementellen
Verbesserung von Ahnlichkeitsbewertungen in der fallbasierten Diagnostik.
In Puppe, F. and Guenter, editors, Proceedings XPS-93, Hamburg. Springer-
Verlag.

Wess, S. (1995). Fallbasiertes Problemldsen in wissensbasierten Systemen zur
Entscheidungsunterstitzung und Diagnostik. PhD thesis, Universitat Kaiser-
slautern. Available as DISKI 126, infix Verlag.

Wess, S., Althoff, K.-D., and Richter, M. M., editors (1993). Topics in Case-Based
Reasoning. Proc. of the First European Workshop on Case-Based Reasoning
(EWCBR-93), Lecture Notes in Artificial Intelligence, 837. Springer Verlag.

Wielinga, B. J., Van de Velde, W., Schreiber, G., and Akkermans, H. (1993). Sec-
ond generation expert systems. chapter Towards a unification of knowledge
modeling approaches, pages 299-335. Springer.

