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Abstract

The analyticity property of the one-dimensional complex Hamil-

tonian system H(x; p) = H1(x1; x2; p1; p2) + iH2(x1; x2; p1; p2) with

p = p1 + ix2, x = x1 + ip2 is exploited to obtain a new class of the

corresponding two-dimensional integrable Hamiltonian systems where

H1 acts as a new Hamiltonian and H2 is a second integral of motion.

Also a possible connection between H1 and H2 is sought in terms of

an auto-B�acklund transformation.

PACS: 02.90.+p; 03.20.+i

Keywords: Complex Hamiltonian systems; Integrable systems; PT {symmetry

�Corresponding author; e-mail address: korsch@physik.uni-kl.de

1



With a view to having a better theoretical understanding of several newly

discovered [1, 2] phenomena there has been [2]{[10] considerable interest in

recent years in the study of complex Hamiltonian systems in one space di-

mension described by the Hamiltonian H(x; p). For this purpose, several

methods of complexi�cation are used. One type of complexi�cation which

has been known [9] for a long time in the literature and now discussed in sev-

eral textbooks on quantum mechanics is in the form z = p+i!x, z� = p�i!x,

which is in particular well suited for the oscillator problem, as well as its gen-

eralized version [3, 4] by introducing two complex variables u = x=b + ip=c

and v = x=b � ip=c, where b and c are complex numbers. Note that in all

these cases the complexity arises mainly through the parameter space.

Recently, following the work of C. M. Bender and his coworkers [5, 6]

one-dimensional complex Hamiltonian systems have been studied rigorously

through the combined parity (P: x ! �x, p ! �p) and time reversal (T :

x ! x, p ! �p, i ! �i) operations. The corresponding quantum Hamil-

tonian, which now becomes non-hermitian, is found to yield real eigenvalues

for a certain parametric domain if the Hamiltonian is PT {symmetric. Here,

the complex Hamiltonian is typically introduced from the beginning, i.e.,

H(x; p) is complex even for real values of x and p. Boundary conditions

are formulated in complex x{space and hence the extension to a complex

classical phase space appears naturally.

In most cases, however, the system under study is originally a real valued

classical Hamiltonian H(x; p) function, de�ned for real x and p or, quantum

mechanically, a hermitian operator. An extension to complex (phase) space

is sometimes required for particular purposes. In a semiclassical analysis

such a treatment can account for classically forbidden processes [11]. In

other situations a complexi�cation can be used to describe resonances as

complex energy eigenvalues and eigenstates of the Hamiltonian both quantum

mechanically [2] by so-called complex scaling methods and semiclassically [12]

by Hamiltonian dynamics at complex energies.

In any case, an understanding of the classical dynamics in the complex-

i�ed phase space is essential also for the quantum dynamics. Here we will

con�ne ourselves to the classical system. Following [3, 4] we de�ne x and p

as

x = x1 + ip2 ; p = p1 + ix2 : (1)

Here the real phase plane (x; p) is replaced by a complex space (x1; x2; p1; p2)

with two additional degrees of freedom, namely x2 and p2. The PT {symmetry
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operations are

P : (x1; x2; p1; p2) �! (�x1;�x2;�p1;�p2)

T : (x1; x2; p1; p2) �! (x1; x2;�p1;�p2) ; i �! �i :
(2)

Clearly, the Hamiltonian H(x; p), after using (1), can be expressed as

H(x; p) = H1(x1; x2; p1; p2) + iH2(x1; x2; p1; p2) : (3)

Note that for a time independent HamiltonianH(x; p) is a constant of motion

and so are its real and imaginary parts H1 and H2 separately.

If H is an analytic function of the two complex variables x and p, then

H1 and H2 satisfy the two sets of Cauchy{Riemann equations

@H2

@p2
=

@H1

@x1
;

@H2

@x1
= �

@H1

@p2

@H2

@x2
=

@H1

@p1
;

@H2

@p1
= �

@H1

@x2
;

(4)

which imply a vanishing Poisson bracket

�
H1; H2

�
=

@H1

@x1

@H2

@p1
�

@H1

@p1

@H2

@x1
+

@H1

@x2

@H2

@p2
�

@H1

@x2

@H2

@p2
= 0 ; (5)

i.e. these constants of motion are in involution.

It is interesting to note here that this result can be derived in a di�erent

way: The complex equations of motion

_x =
@H

@p
; _p = �

@H

@x
(6)

are transformed into [3]

_x1 =
@H1

@p1
; _p1 = �

@H1

@x1

_x2 =
@H1

@p2
; _p2 = �

@H1

@x2

(7)

i.e., the Hamiltonian equations for a Hamiltonian H1(x1; x2; p1; p2) with two

degrees of freedom xj and canonical momenta pj . This motivates the nota-

tions p2, x2 as introduced in Eq. (1) for the imaginary parts. The equations

of motion (7) can be written in the compact form

_y = J ryH1(y) (8)
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with y = (x1; x2; p1; p2) and the symplectic unit matrix J =
�

0 I
�I 0

�
(I is the

two-dimensional unit matrix).

The two-dimensional system with Hamiltonian H1 is integrable [13], i.e.

there exist two independent integrals of motion, which are in involution,

namely H1 and H2. First, we see from the Cauchy{Riemann equations (4)

that _H2 = [H1; H2] = 0. Moreover, H1 and H2 are independent, i.e. the two

vector �elds

vj = J ryHj(y) ; j = 1; 2 (9)

are linearly independent.

Other conditions which H1 and H2 have to satisfy { as a by-product of

Eq. (4) { are [14]

@2Hj

@x2
1

+
@2Hj

@p2
2

= 0 ;
@2Hj

@x1@p1
+

@2Hj

@x2@p2
= 0

@2Hj

@x2
2

+
@2Hj

@p2
1

= 0 ;
@2Hj

@x1@x2
�

@2Hj

@p1@p2
= 0

(10)

for j = 1; 2 , i.e. H1 and H2 are bi-harmonic functions and solve the Laplace

equation �yHj = 0. As a consequence, they cannot have a minimum in

phase space.

After having this much understanding of the complex HamiltonianH(x; p)

the following remarks are in order:

1. It is well known [15] that there has been a scarcity of integrable

systems in two dimensions in the sense that a second invariant (beside the

Hamiltonian of the system) does not exist for almost all cases. Even if it exists

for some, often its construction becomes a diÆcult task. The above survey

concerning the complex Hamiltonian systems in one dimension gives a clue

to such a construction, at least for a certain class of exotic two-dimensional

Hamiltonian systems. (Exotic in the sense that they have yet to be identi�ed

with the Hamiltonian of a two-dimensional physical system).

As a matter of fact, if one identi�es the structure of H1 with the Hamilto-

nian of a given two-dimensional system, then in view of (5), one can say that

the second invariant for this system is H2. In Table 1 we provide a list of

such H1 and H2 corresponding to a given complex Hamiltonian H of Eq. (3)

and note that all the cases conform not only to condition (5) but also to

conditions (10). Most of the systems also satisfy the PT {symmetry, except

for case 8. However, our present prescription works for all those structures

which can be written in the form (3) using (1).
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2. The cases discussed above and listed in Table 1 just o�er some sort

of a consistency check for the mathematical setting through Eqs. (3) { (10).

Now the following question arises: Can we determine H2 (or, say, H1) if H1

(or, say, H2) is given along with the conditions (4)? The answer is yes. It is

not that for every H1 such a function H2 can be constructed (or vice versa).

In fact H1 has to satisfy the conditions (10), only then the construction of

H2 becomes possible.

It may be reminded that the Cauchy{Riemann conditions (4) along with

(10) o�er an example of an auto{B�acklund transformation. In that there ex-

ists [16] a de�nite prescription to determine H2 (the integral of motion) from

H1 (the Hamiltonian). The cases listed in Table 1 all follow this prescription.

Here, however, we present some more cases in which H2 is constructed from

H1 using the same prescription. As we have seen from the case 4 (cf. Table

1), the explicit dependence of H (or for that matter of H1 and H2) on t

does not disqualify the system for the above mentioned mathematical set-

ting. Therefore, we note that the couplings in the following examples can as

well be time dependent.

(i) Consider the two-dimensional Hamiltonian

H1 =
1

2

�
p2
1
+ p2

2

�
�

1

2

�
x2
1
+ x2

2

�
+ �

�
p1p2 + x1x2

�
+ 

�
x1p1 � x2p2

�
; (11)

which corresponds to a pair of inverted harmonic oscillators with (real) coup-

lings � and . One can verify that this H1 satis�es (10). The prescription of

a B�acklund transformation can be used to construct H2. For this purpose,

using H1 from (11), Eqs. (4) can be expressed as

@H2

@p2
= �x1 + �x2 + p1 ;

@H2

@x1
= �(p2 + �p1 � x2) (12)

@H2

@x2
= +p1 + �p2 + x1 ;

@H2

@p1
= �(�x2 + �x1 � p2) : (13)

Integration of these equations immediately yields the solution

H2 = (p1x2 � x1p2) + �(x2p2 � x1p1) + (p1p2 + x1x2) : (14)

Note the interchange of couplings in H2 compared to that in H1. Further, it

can be easily seen that this form ofH2 conforms to Eq. (10). As Eqs. (11) and
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(14) have to represent the real and imaginary parts of a complex Hamiltonian

H(x; p), then H(x; p) can be obtained easily in a very simple form as

H � H1 + iH2 =
1

2

�
p2 � x2

�
+ b�px ; (15)

where b� = �i� and the relations (1) along with x� = x1�ip2, p
� = p1�ix2

are used.

(ii) Now consider the Hamiltonian corresponding to the coupled oscillators

of equal mass m and imaginary frequency i! satisfying !2 = 1=m, namely

H1 =
!2

2

�
p2
1
+ p2

2
� x2

1
� x2

2

�
+ f

�
p1x2 � p2x1

�
(16)

(f real). As before in Example (i), H2 can be derived from Eqs. (4) by

integration to give

H2 = (1 + !2)(p1x2 � p2x1)�
f

2
(p2

1
+ p2

2
� x2

1
� x2

2
) : (17)

The corresponding complex H(x; p) can be obtained as

H � H1 + iH2 =
1

4

�
p2 � p�2 � x2 + x�2

�
�

i

2

�
f + i!2

��
p2 � x2

�
: (18)

The following two examples consist of very simple two-dimensional Hamil-

tonian structures. Note that the utility of these structures (or their variants)

has recently been emphasized by t'Hooft [17] and Blasone et al. [18, 19]

in the context of the so-called holographic principle and in the treatment of

quantum gravity as a dissipative and deterministic system. Although the

following two examples can be considered as the special cases of Example

(i), we would like to give here the relevant results to make the subsequent

discussion more e�ective.

(iii) Consider the two-dimensional Hamiltonian

H1 = �(p1p2 + x1x2) + �(p2x2 � p1x1) (19)

(�, � real), for which the H2{function can be derived as in Example (i) as

H2 = �(p2x2 � p1x1)� �(p1p2 + x1x2) ; (20)
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and the corresponding complex Hamiltonian is given by

H � H1 + iH2 = �bpx ; (21)

where b = � + i� is a complex constant.

(iv) Lastly, consider the simple two-dimensional Hamiltonian (a measure

of the angular momentum) used by t'Hooft [17] as

H1 = x2p1 � x1p2 ; (22)

for which

H2 =
1

2

�
x2
1
+ x2

2
� p2

1
� p2

2

�
(23)

can be obtained as before and the corresponding complex version H(x; p) is

H � H1 + iH2 = �
i

2

�
p2 � x2

�
: (24)

From the examples above one can make the following observations:

(a) From Examples (i) { (iii) it can be seen that the role of couplings in

H1 and H2 interchanges. For example, � and  in (11) become  and �� in

(14). Similarly, � and � in (19) become �� and � in (20).

(b) Angular momentum-type terms, namely (p1x2 � p2x1) in H1 (cf. Ex-

amples (ii) and (iv) ) transform into the form 1

2
(p2

1
+ p2

2
� x2

1
� x2

2
) in H2 or

vice versa (cf. Example (i) ).

(c) It may be emphasized that the PT {symmetry is not a prerequisite as

far as the constructions above are concerned. In fact, none of H1 and H2 in

the examples above (except H2 of Example (iv) ) is PT {symmetric, i.e. they

are not invariant under the transformation (x1; x2; p1; p2)! (�x1;�x2; p1; p2),

i! �i.

It may be mentioned that we could carry out the constructions above

using the prescription of the B�acklund transformation in the form of the

Cauchy{Riemann conditions, which basically are linear �rst-order partial

di�erential equations. This was possible for a very special class of `Hamil-

tonians' H1(x1; x2; p1; p2). Perhaps the use of other nontrivial forms of the

B�acklund transformation will provide a method to construct invariants for

more general cases.
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On the basis of the above analysis of the cases (cf. Table 1) and con-

structions (cf. Examples (i) { (iv) ) and also of our earlier studies [10] it may

be remarked that PT {symmetry is only a restricted way of complexifying

the one-dimensional Hamiltonian H(x; p). It is rather a special case of the

present formulation carried out using the transformation (1).

To summarize, we mention that using the transformation (1) we have

demonstrated the viability of the analyticity property of the one-dimensional

complex Hamiltonian H(x; p) with regard to the construction of the second

integral of motion for a certain class of two-dimensional Hamiltonian systems

which can be identi�ed with H1(x1; x2; p1; p2). This ensures the integrabil-

ity of this latter class, at least for autonomous systems. No doubt, most

of these constructions (cf. Table 1 and Examples (i) { (iv) ) turn out to be

non-conventional in the sense of physics but still some of them could be of

mathematical interest in di�erent branches of theoretical science including

biophysics.
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Table 1: Hamiltonian structures H = H1 + iH2 which conform to Eq. (5).

Hamiltonian H Real Part H1 Imaginary Part H2 Ref.

1: 1

2
p2 + 1

2
!2x2 1

2

�
p21 � x22 + !2x21 � !2p22

�
p1x2 + !2x1p2 [10]

2: p2 + x2 + ix p2
1
� x2

2
+ x2

1
� p2

2
� p2 2p1x2 + 2x1p2 + x1 [7]

3: p2 + Æ1(ix) + Æ2(ix)
2 p21 � x22 � Æ1p2 � Æ2(x

2

1 � p22) 2p1x2 + Æ1x1 � 2Æ2x1p2

+ Æ3(ix)
3

� Æ3p
3

2
+ 3Æ3x

2

1
p2 � Æ3x

3

1
+ 3Æ3x1p

2

2
[7]

4: 1

2
p2 + 1

2
!2(t)x2 1

2

�
p21 � x22 + !2(t)x21 � !2(t)p22

�
p1x2 + !2(t)x1p2 [10]

5: 1

2
p2 + 1

2
ax2 + 1

4
bx4 1

2

�
p21 � x22

�
+ 1

2
a(x21 � p22) p1x2 + ax1p2 + bx31p2

+ 1

4
b
�
x4
1
+ p4

2
� 6x2

1
p2
2

�
� bx1p

3

2
[3; 4]

6: p2 + ix3 + ix p21 � x22 + p32 � 3x21p2 � p2 2p1x2 + x31 � 3x1p
2

2 + x1 [5; 6]

7: p2 � (� cosh 2x� iM)2 p21�x22�
�2

2
(cos 4p2 cosh 4x1+1) 2p1x2 �

�2

2
sin 4p2 sinh4x1

+M2
� 2M� sin 2p2 sinh2x1 + 2M� cos 2p2 cosh 2x1 [8]

8: p2 + ix3 + x p2
1
� x2

2
+ p3

2
� 3x2

1
p2 + x1 2p1x2 + x3

1
� 3x1p

2

2
+ p2 [5]
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