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Abstract

Given a railway network together with information on the population and their

use of the railway infrastructure, we are considering the e�ects of introducing new

train stops in the existing railway network. One e�ect concerns the accessibility of

the railway infrastructure to the population, measured in how far people live from

their nearest train stop. The second e�ect we study is the change in travel time for

the railway customers that is induced by new train stops. Based on these two models,

we introduce two combinatorial optimization problems and give NP-hardness results

for them. We suggest an algorithmic approach for the model based on travel time

and give �rst experimental results.

1 Introduction

The motivation for the problems studied in this paper is to increase the attractiveness of

train travel in an existing railway network for local traÆc, for example to sports and leisure

activities or for the daily commuter trip to work, in not too costly a manner. So assume we

are given an existing railway network as well as information on people (potentially) using

this network. A relatively cheap way of increasing the attractiveness of train travel is then

to open up new train stops along the already existing railway lines, where a new train stop

is meant to be a small stop that is cheap to build, and that will typically be served only

by the local commuter trains.

We will consider two e�ects of such new train stops. The �rst one concerns the acces-

sibility of the railway network: Assuming that living closer to a train stop increases the
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attractiveness of the railway network (and ultimately increases the tendency to use a train

instead of other means of transport), we study the problem of locating (few) new train

stops so that (many) people live within a short distance from a train stop. This accessibil-

ity model will be speci�ed more precisely in Section 2, and a corresponding optimization

problem will be shown to be NP-complete.

The second e�ect of new train stops we will study concerns the travel time for the

customers already using the railway network. On the one hand, passengers sitting in a

train that now stops at the newly opened train stops are slowed down by the additional

stops. On the other hand, customers living closer to a newly opened train stop than to any

previously existing train stop need less time to reach their closest train stop. Summing

up each of these two contrary e�ects over all railway customers and subtracting the sums,

we obtain a measurement for the e�ect in overall travel time that a set of new train

stops is having for the existing railway customers. Section 3 will specify this travel time

model and also give an NP-completeness result for the corresponding optimization problem.

Section 4 will suggest an algorithmic approach for this optimization problem based on a

genetic algorithm, and Section 5 will give experimental results for a preliminary data set

describing the railway network of the Deutsche Bahn AG in Germany.

Notice that there are many e�ects of new train stops that we are not considering here,

such as the cost of building and running new stops, or the change in demand that new

stops may incur by attracting new customers or by turning old customers away.

2 The Accessibility Model

Let P denote the set of coordinate points, each of them representing a settlement, and let

L be the set of feasible points along the tracks of the railway company. We assume that

the set of tracks is piecewise linear, i.e. it is given as the union of a �nite number of line

segments Si 2 IR2, i = 1; : : : ; L:

L = fx 2 IR2 : x 2 Si for some i = 1; : : : ; Lg:

A solution X to the problem is given by a set of points in the plane, representing the

stops that should be installed. X is feasible, if X � L, i.e., each x 2 X satis�es x 2 L.

To evaluate a feasible solutionX, we are interested in how many settlements are covered

by X. A settlement p 2 P is covered by a point x 2 L, if

l2(p; x) � r;

where l2 refers to the Euclidean distance (or any other norm), and r is some given radius.

A settlement p is covered by a set X � L if

l2(p; x) � r for some x 2 X:

For a set X we de�ne

cover(X) := fp 2 P : l2(p;X) � rg;
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where l2(p;X) := minx2X l2(x; p) for jXj � 1 and l2(p; ;) :=1. Figures 1 and 2 illustrate

how di�erent sets of train stops cover di�erent sets of settlements, using a radius of r =

2 km.

Furthermore, we are interested in the number of new stops: We would like to cover as

many settlements with as few stops as possible. This goal leads to the de�nition of the

following optimization problem, which unfortunately is NP-complete:

De�nition 1 (Covering Along Lines) Given a set P of integer-coordinate points in the

plane, a connected set L which is given as the union of a �nite number of line segments in

the plane, and positive integers d and K < jPj, can the points of P be covered by at most

K discs of diameter d, all with center points in L?

Theorem 1 Covering Along Lines is NP-complete.

Proof: We reduce Geometric Covering by Discs to the above problem. Geometric Covering

by Discs has been shown to be NP-complete [Joh82] and can be stated as follows: Given

a set P of integer-coordinate points in the plane and positive integers d and K < jPj, can

the points of P be covered by at most K discs of diameter d?

Given an instance of Geometric Covering by Discs, use the same set P of points and

the same numbers d and K and de�ne the set L as follows to construct an instance of

Covering Along Lines: For each unordered pair of points p1 and p2 from P, (i) add the

points forming the line segment between p1 and p2 to L and (ii) add the points forming a

suÆciently large piece of the bisector of p1 and p2 to L.

Claim: P can be covered by at most K discs of diameter d, if and only if P can be

covered by at most K discs of diameter d which all have their center points in L.

To see this, �rst assume that P can be covered by some collection C, consisting of at

most K discs of diameter d. Then, for each disc c 2 C:

� If c contains no points of P, then disregard c.

� If c contains only one point p of P, then replace c by the disc with center point p

(p is in L, since all line segments from p to any other point are in L) and diameter d.

� If c contains a set of points A of P with jAj � 2 (i.e., c contains more than one point

of P), then replace c by a disc with center point q and diameter d, where q is the

center point of the smallest enclosing circle of A.

Since c covers A, the diameter of the smallest enclosing circle is smaller or equal to d,

and hence the disc with radius d and center point q also covers A. Note that �nding

q is a well-known problem of location theory and can be done in linear time [Meg83].

Moreover it is known that q always lies on at least one bisector of points in A [EH72],

such that q satis�es q 2 L.

Together, P can be covered by at most K discs of diameter d, all with center points in L.

The other direction is immediate.

QED
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3 The Travel Time Model

Some more notation is needed to state the travel time model. We suppose that L is given

as a network G = (V;E) embedded in the plane. Note that all the already existing train

stops are contained in V . For a point x 2 L let e(x) 2 E denote the edge of G on which

x is located. Furthermore, for each edge e the number of customers traveling along e is

denoted by we. Then for a set X of new stops,

td(X) =
X
x2X

s � we(x)

gives the amount of additional travel time for the customers, which is caused by the

additional stopping activities of the trains. (We assume that a constant time delay s

is caused by any additional stop of a train.)

On the other hand, some of the customers will save travel time, since a new train stop

may reduce the distance to their closest train stop and hence the time they need to get on

a train. In our model, the reduction of the distance for a point p 2 P is calculated by

l2(p; S)� l2(p; S [X);

where S � V denotes the set of already existing train stops, and l2(p; Y ) is the closest

Euclidean distance from p to any point in Y as it has been used in the accessibility model

before.

To transform the possible reduction of distance into an amount of saved access time we

introduce a piecewise linear function in two variables g : IR�IR! IR, assigning an amount

of saved time to each reduction of the distance, given as a pair consisting of old and new

distance of a settlement from the nearest train stop. For example, g can be de�ned as

g(x; y) := (x� y)=5;

assuming an average speed of 5 km/h, or as

g(x; y) =

8><
>:

x�y

4
if x � 1 (customer walks)

x�y

7
if 1 < x � 5 (customer uses a bike)

x�y

20
if 5 < x (customer uses a bus or a car)

Note that this de�nition would assume that the customer stays with the means of transport

used for distance x.

Denoting for each p 2 P the number of customers from the corresponding settlement

by vp, the positive e�ect to the travel time through saved access time can be calculated by

ta(X) =
X
p2P

vp � g(l2(p; S); l2(p; S [X)):

The travel time model can now be summarized:

max ta(X)� td(X)
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such that

x 2 L for all x 2 X:

Note that we neglect the change in train riding time that is caused by starting or ending

the trip at a di�erent train stop, assuming that these gains and losses in train riding time

roughly even out.

We can now de�ne the corresponding problem Saved Travel Time and show its NP-

completeness:

De�nition 2 (Saved Travel Time) Given a set P of integer-coordinate points in the

plane, each of them with a nonnegative weight vp, an embedded network G = (V;E) in the

plane, each of its arcs with a nonnegative weight we, a subset S � V , a positive number s

and a real number K, and given a piecewise linear function in two variables g : IR�IR! IR,

is there a set of points X on the edges of G such that

f(X) :=
X
p2P

vp � g(l2(p; S); l2(p; S [X))�
X
x2X

s � we(x) � K?

Theorem 2 Saved Travel Time is NP-complete.

Proof: We reduce Covering Along Lines to Saved Travel Time. Given an instance of

Covering Along Lines with P, L, d and K < jPj as in De�nition 1, construct a network

G = (V;E) out of the line segments in L in the natural way (i.e. with V being the

intersection points of the line segments and with E being the parts of the line segments

obtained by subdividing them with their intersection points), use the same set of points P,

and de�ne

r := d=2;

S := ;;

vp := M for all p 2 P with M > jPj;

we := 1 for all e 2 E; and

s := 1:

Furthermore, de�ne

g(x; y) :=

(
1 if y � r

0 otherwise

With these de�nitions, we get that

f(X) = M � jcover(X)j � jXj

where the cover is de�ned with respect to the set P.

Claim: There exists a solution X to Saved Travel Time with f(X) �M jPj �K if and

only if there exists a solution to Covering Along Lines with no more than K discs.
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To see this, assume �rst that X is a solution to Saved Travel Time with f(X) �

M jPj �K. Then cover(X) = P, for otherwise jcover(X)j � jPj � 1 and hence

f(X) = M � jcover(X)j � jXj

� M � jcover(X)j

� M jPj �M

< M jPj � jPj

< M jPj �K

� f(X);

a contradiction. Furthermore, cover(X) = P implies jXj � K.

For the other direction, let X be a solution to Covering Along Lines with cover(X) = P

and jXj � K. Hence,

f(X) = M � jcover(X)j � jXj

= M jPj � jXj

� M jPj �K:

QED

4 Algorithmic Approach

We propose to use a set of discrete candidates for new train stops, and to then employ a

genetic algorithm [Ree95] for the maximization problem Saved Travel Time. Consider a

simple set of candidates as illustrated on the left side of Fig. 2: Place four evenly spaced

candidates on each line segment of the railroad network, and place a candidate at each

end of such a line segment that is not an existing train stop. Clearly, if one of these

candidates, c, does not by itself yield a positive saved travel time, then the saved travel

time of a set X of new train stops containing c does not decrease if we drop c from X. So

such a candidate c is never useful for a solution X, and we reduce the set of candidates

by dropping every candidate c for which td(fcg) > ta(fcg). See the right side of Fig. 2

for an illustration. With this reduced set of candidates C for the travel time model, the

natural application of a genetic algorithm works with bit vectors of length jCj where each

bit stands for exactly one candidate. So 11. . . 1 describes the whole set C, 00. . . 0 describes

the empty set, and every other bit vector of length jCj describes a set of new train stops

consisting of some members of C.

To generate a starting population of i individuals for a genetic algorithm, we either use

a �xed probability p to determine for each of the i � jCj bits whether they are set to 1, or,

for each bit b, we �rst determine a number pb 2 f0:001; 0:002; : : : ; 0:999g randomly, and

then use pb as the probability to determine whether b is set to 1.
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In order to generate the next generation from a given population, we divide the given

population in half, where one half contains the individuals with the highest saved travel

time. Then among these \better" individuals, we repeatedly choose two di�erent individ-

uals at random to \mate" them. We mate two individuals by �rst randomly choosing a

crossover point j 2 f1; 2; : : : ; jCj � 1g and by then applying the crossover by swapping the

tails consisting of jCj � j bits. For example, if two individuals 101100100 and 110110010

with jCj = 9 are mated with crossover point j = 4, then the two resulting individuals are

101110010 and 110100100. Finally, we 
ip some of the bits of the new individuals with a

very low probability pm (\mutation"). So the next generation consists of the better half of

the old generation, plus the results of mating individuals from this better half with each

other as just described.

5 Application and Experimental Results

We applied the genetic algorithm described in Section 4 to a preliminary set of input data

describing the situation in Germany. There are 6 900 existing stops with polygonal edges

consisting of 8 700 line segments, and there are 30 600 settlements with their population

and their estimated number of railway customers. This status quo is depicted for a small

excerpt in Southern Germany on the left side of Fig. 1. The set of candidates used for

the genetic algorithm consists of 6 700 potential new stops. The raw set of candidates

and the reduced set of candidates are illustrated in Fig. 2. Assuming a time delay s

of 2 minutes per additional stop and the function g(x; y) := (x � y)=5 to describe the

gain in access time when the distance to the nearest train stop changes from x to y km,

we started the genetic algorithm with this set of candidates and with �xed probabilities

p 2 f0:25; 0:5; 0:75g three times each for a population size of 20. The probability pm for

mutation of bits after crossover was set to 0.0001. After 100 generations each, we let

the resulting population with the highest saved travel time so far evolve for another 900

generations. The development of this population over the course of its 1000 generations

is shown in Fig. 3. For comparison, we started the genetic algorithm with varying initial

probabilities pb for each bit b of each individual with population size 100, and it turned out

that the genetic algorithm �nds the right \density" of the solutions very quickly, i.e. we

actually do not need to �rst determine a good probability p for the creation of the starting

population: While the starting population with varying initial probabilities pb contained

individuals with almost no candidates as well as individuals with almost all of the 6 700

candidates, the di�erence between the lowest and the highest number of candidates in the

individuals of the 10th generation had already shrunk to less than 1 000, and after 100

generations this di�erence was a mere 22.

The solution with the highest saved travel time found so far by our genetic approach

is illustrated on the right side of Fig. 1. It shows several candidates from the right side of

Fig. 2 actually becoming new stops, and in this excerpt, the placement of new train stops

looks reasonable and the development of this solution as depicted in Fig. 3 is promising.

But when inspecting this solution more closely in other parts of Germany, we noticed that
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Figure 1: Left:The situation with the existing train stops. Right: The solution found after

1000 generations as shown in Figure 3. Black circles depict existing train stops, shaded

circles depict new train stops, and shaded squares depict covered settlements.

Figure 2: Left:The raw set of candidates. Right: The reduced set of candidates.
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Figure 3: The development of the objective function saved travel time over 1000 generations

with population size 20.

there are in some parts unrealistically many new stops in the solution. It turns out that

such e�ects are caused by inaccuracies in the input data: For example, unrealistically low

numbers of customers traveling along edges make placing new stops along these edges too

\cheap", resulting in too many new train stops.

These and other problems mean that the solutions found by the genetic algorithm are

not to be taken as �nal suggestions for placing new train stops in order to save travel time,

and the amounts of saved travel time indicated on the vertical axis of Fig. 3 have to be

read with caution. Rather, we have presented an algorithmic approach, that, if current

problems with the input data are overcome, can yield useful results for the placement of

new train stops when the goal is to maximize the saved travel time.

6 Conclusion

Studying the e�ects of introducing new train stops in existing railway networks, we have

considered two models, one based on the closeness of the train stops to the population,
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and the other based on maximizing the overall saved travel time by all customers. For

both models, we have shown the NP-hardness of a naturally arising optimization problem.

For the travel time model, we have applied a genetic algorithm and we have shown that

it can yield useful solutions despite the NP-hardness results. For the �rst model, however,

an algorithmic approach still needs to be developed and applied. Here, the goal would

be to �nd pareto-optimal solutions for the bicriterial problem with objective functions the

percentage of population covered by a set of new stops (to be maximized) and the number

of new stops (to be minimized).

Furthermore, for both models, a re�nement of the e�ects under consideration is also

desirable: Instead of a settlement being either covered or not depending on its distance

from a train stop being at most or more than a given radius r, one could consider a

settlement being partially covered with the percentage of its covering depending in some

more re�ned way on its distance from a train stop. Similarly, a more realistic function for

converting a decrease in distance from a train stop into an amount of saved access time

than simply assuming an average speed of 5 km/h is needed.

Finally, other e�ects of new train stops not considered in our two models include build-

ing and operating costs. And it would be of interest to consider a dynamic model where a

change in the numbers of customers due to new train stops is also taken into account.
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