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The e�ect of intracavity Electromagnetically Induced Transparency on the properties of optical

resonators and active laser devices is discussed theoretically. A pronounced frequency pulling and

cavity linewidth narrowing are predicted. The e�ect can be used to substantially reduce classical and

quantum phase noise of the beat-note of optical oscillators. Fundamental limits of this stabilization

mechanism are discussed as well as its potential application to high-resolution spectroscopy.

Electromagnetically Induced Transparency (EIT)2 is a dense-media analog of \dark resonances"3 which occur in
three-level � systems driven by coherent optical �elds. In recent years a number of potential applications of EIT
have been described. These include, in particular, enhancement of non-linear optical processes4, high-resolution
spectroscopy and optical magnetometry5;6.
In the present Letter we describe theoretically the e�ect of an intracavity induced transparency. When a dense

ensemble of coherently prepared � atoms is placed inside an optical resonator, the resonator response is drastically
modi�ed resulting in a frequency pulling7 and a substantial narrowing of spectral features. This e�ect can be used
for the frequency-di�erence stabilization of lasers8 or other two-mode light sources such as broadband parametric
oscillators. Here intracavity EIT results in locking of the beat-note to the resonance frequency of a two-photon
transition between metastable atomic levels and causes a substantial reduction of quantum and classical noise in the
beat signal. Possible applications include sensitive intracavity spectroscopy, novel frequency standards and optical
magnetometry.
The profound e�ects of intracavity EIT are due to the large dispersion close to the point of almost vanishing

absorption9 which can easily exceed the empty-cavity dispersion in the case of an optically thick �-medium. To
illustrate the locking and narrowing mechanism let us consider a ring cavity containing a cell of length l with a
linear dispersive medium. The medium response is characterized by the real (�0) and imaginary part (�00) of the
susceptibility, for which we assume �0 = �(� � �0) and constant �00 for frequencies � suÆciently close to some
resonance frequency �0. � and �00 are proportional to the atomic density N=V . The cavity response function, i.e.
the ratio of circulating to input intensity is given by10
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Here � = (ck=2)(l=L)� de�nes a frequency-locking or stabilization coeÆcient and �
c
is the resonance frequency of

the empty cavity. Similarly by expanding the cosine in Eq.(1) around �
r
one �nds that also the width of cavity

resonances �� is changed by the intracavity medium:
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where C is the empty cavity linewidth. The �rst factor describes an enhancement of the e�ective cavity + medium
width due to additional losses, while the second one describes the reduction due to the linear dispersion. In the case
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when EIT is established in an intracavity medium, the absorption can be negligible (�00 ! 0) whereas the dispersion
is large resulting in a substantial line narrowing.
To quantify this conclusion we consider the response of the typical � system (Fig.1a) driven by a strong laser

�eld of Rabi-frequency 
2 to the weak test �eld 
1. The corresponding linear susceptibility near the two-photon
resonance11 is:
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Here � = (3=4�2)(N�3=V ), �0 = �2 � !
b1b2

, �2 is the drive frequency, and !
b1b2

the frequency of the b1 ! b2
transition. In a situation typical for EIT, i.e. when the lower levels are metastable, 
0 can be very small and thus the
absorption can be made small (� � 1 ) even for a large density-length product in the atomic vapor cell. Under these
conditions, the phase shifts are large even for a very small detuning, resulting in a large stabilization coeÆcient. The
ultimate limit of stabilization can be obtained by imposing the condition that the residual absorption losses in the
cell should not exceed the empty-cavity losses. One �nds for the maximum stabilization coeÆcient
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2
0
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We note that for a long-lived ground-state coherence the ratio C=
0 can become very large. In this case the e�ective
resonance frequency of the cavity coincides with �2 �!

b1b2
and the cavity width can be reduced by several orders of

magnitude whereas the photon losses are practically una�ected. The above conclusion is illustrated in Fig.1b, where
the cavity transmission function is shown for di�erent atomic densities.
It is instructive to estimate the lower limit to the cavity linewidth. For a good cavity and the maximum stabilization

coeÆcient as per Eq.(5) we �nd �� ! 4
0; i.e. a linewidth which can be orders of magnitude smaller than both
empty-cavity linewidth and single-atom transparency window (width of �-resonance). In the strong �eld limit the
latter is power broadened and scales like 
2. Hence the e�ect of power-broadening on the combined cavity+atom
system is here completely eliminated in the high-density regime.
Let us now discuss the e�ect of the �-medium on the phase-di�erence noise of two optical modes independently

oscillating inside the cavity. A 3-level intracavity medium displaying EIT can be used to lock the beat-note to the
resonance frequency of the two-photon transition !

b1b2
. In particular, we will focus here on the spectral properties of

a two-mode laser. We emphasize, however, that the two-mode laser serves only as a generic example. Alternatively,
one can consider locking the beat-note of two independent single-mode lasers or of a broadband non-degenerate
parametric oscillator. The two-mode lasers considered here are especially convenient when frequency di�erences are
to be measured since the beat-note of the two modes can be intrinsically narrow provided that the optical paths
are similar. The evolution of the coherent amplitudes a1 and a2 of the oscillating (laser) �elds can be described by
stochastic c-number equations (n = 1; 2)
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Here A1;2 are the e�ective gain coeÆcients for the two modes, which have the generic structure A1;2 = �1;2 �
�1;2ja1;2j2 � ~�1;2ja2;1j2. The linear gain coeÆcients �

n
as well as the self-saturation and cross-saturation coeÆcients

�
n
and ~�

n
respectively depend on the speci�c laser model10. Their exact form is unimportant for the present

discussion as long as ~�1 ~�2 < �1�2. F
n
are noise operators associated with the gain processes. Their correlation

function is given by10: hF
n
(t)�F

n
(t0)i = CÆ(t � t0). g1;2 describe the coupling to the �-medium. �c

1;2
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�1;2 being the actual lasing frequencies of the two modes and �
c

1;2
are the corresponding eigenfrequencies of the empty

cavity. Absorption, dispersion and noise properties of the � atomic system are also described by a set of c-number
Langevin equations for the polarizations �

i

11. In the following we restrict ourselves to a symmetric con�guration
and assume equal gain, cavity losses, coupling constants etc.
The semiclassical behaviour of the laser modes can be studied by disregarding all noise contributions and eliminat-

ing the atomic variables. The laser equations (6) have a solution with equal amplitudes of the modes a1 = a2. In this
case of equal strength of both �elds we have close to the resonance: �0
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with 
 = 
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2, 
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� �1;2.
It is convenient to write the �eld equations in terms of square amplitudes (photon numbers) n1;2 and phases �1;2.

The steady-state solution of the laser phase equations immediately leads to the frequency pulling equation:
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with �� = �=2. For � � 1 the beat-note frequency is locked to !
b1b2

, i.e. to the �-resonance frequency. The additional
absorption in the cavity increases the e�ective decay rate for the laser modes by ��
0. This absorption is however
unimportant provided that inequality (5) is ful�lled.
Let us now turn to the phase-noise properties of the two-mode laser. The noise contribution due to the interaction

with the �-medium is negligible11. We model the e�ect of technical noise by a 
uctuation of the spacing between the
cavity resonance frequencies Æ!

c
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1
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2
. The last is assumed to obey a linear stochastic equation with a Markovian

noise force and a phenomenological damping rate 
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i characterizes the strength of technical 
uctuations. The stochastic equations can be solved by linearization

and the beat-note phase-noise spectrum can be calculated. In the low (
uctuation-) frequency regime (! � 
) we
�nd:
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The two terms in Eq.(8) represent the in
uence of technical 
uctuations and the beat-note phase di�usion of the
laser (Shawlow-Townes linewidth10) respectively. Thus, due to the intracavity medium the (Markovian) technical as
well as quantum 
uctuations are reduced by a factor 1=(1+��)2. Slow technical 
uctuations, such as temperature drifts
of the cavity resonances are reduced only by 1=(1+��) (see Eq.(7)). Note that for strong stabilization (�� = C=
0 � 1)
the phase-di�usion is proportional to 
2

0
instead of C2. Such a suppression of quantum phase noise in the laser beat-

note12 is a consequence of the cavity line narrowing e�ect described above.
We note here that in addition to the increased intracavity losses there exists another important limitation on the

maximal � value. It is due to the dynamical instabilities which often arise in di�erent stabilization schemes13. For
the present system the frequency pulling regime described above is stable as long as �� < 2
=
0 for a homogeneously
broadened system and �� < 2�

D
=
0 for a medium which is Doppler broadened (one photon Doppler width �

D
).

It is interesting to consider a particular example of the beat-note laser stabilization. A variety of the gas and
dye lasers as well as certain types of extended cavity diode lasers can operate on two modes (possibly of orthogonal
polarizations) with frequency separation on the order of a few GHz. In this case the frequency di�erence of the modes
can be locked to the transition between hyper�ne components of alkali atomic vapors. The natural linewidth of such
two-photon transitions can be made as low as 10� 100 Hz using bu�er-gas or wall-coating techniques. Taking the
empty cavity width � 107 Hz we �nd that atomic densities corresponding to the stabilization factor � > 105 can be
used without a�ecting the output power of the laser. This can be achieved in an alkali-vapor cell using transitions
of the D absorption lines at moderate atomic densities � 1012cm�3 and laser intensities above optical saturation.
Depending upon the initial degree of technical-noise correlation the resulting beat-note linewidths can be in or below
the mHz region.
The potentially interesting feature of the present approach is that it allows one to combine strong locking of two

laser modes and narrow linewidths with intense laser �elds. It has already been demonstrated6 that dispersive e�ects
in a dense coherent medium can be used to signi�cantly reduce power broadening of two-photon resonances and thus
can lead to a potentially attractive regime of laser spectroscopy where narrow resonances coexist with strong �elds.
An interferometric measurement in a dispersive medium typically leads to several narrow interferometric fringes. In
practice it is therefore often diÆcult to distinguish and determine the position of the central fringe. This is no longer
a problem if intracavity EIT is used, since in the regime of strong frequency pulling the beat-note automatically locks
to the two-photon resonance, whereas the e�ective width is equivalent to the width of the interferometric fringes.
These features make various applications of the presently proposed technique for improvement of atomic frequency
standards and optical magnetometers feasible.
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Fig. 1. a) A generic �-system for EIT. Frequencies of two �elds are close to the resonant frequencies of transitions a! b1

and a! b2 respectively. b1;2 are metastable states. b) Cavity response as a function of test �eld frequency for di�erent values

of atomic density. Dotted, dashed, and solid curves correspond to � = 0; 10; 100 respectively. Parameters are 
2 = 10
, r =

0.98, �c � �0 = 5
.
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