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1 Introduction

Recent developments in quantum communication and computing [1{3] stim-

ulated an intensive search for physical systems that can be used for coherent

processing of quantum information. It is generally believed that quantum en-

tanglement of distinguishable quantum bits (qubits) is at the heart of quan-

tum information processing. Signi�cant e�orts have been directed towards

the design of elementary logic gates, which perform certain unitary processes

on pairs of qubits. These gates must be capable of generating speci�c, in

general entangled, superpositions of the two qubits and thus require a strong

qubit-qubit interaction. Using a sequence of single and two-bit operations,

an arbitrary quantum computation can be performed [2].

Over the past few years many systems have been identi�ed for potential

implementations of logic gates and several interesting experiments have been

performed. Proposals for strong qubit-qubit interaction involve e.g. the vi-

brational coupling of cooled trapped ions [4], near dipole-dipole or spin-spin

interactions such as in nuclear magnetic resonance [5], collisional interac-

tions of con�ned cooled atoms [6] or radiative interactions between atoms in

cavity QED [7]. The possibility of simple preparation and measurement of

qubit states as well as their relative insensitivity to a thermal environment

makes the latter schemes particularly interesting for quantum information

processing.

Most theoretical proposals on cavity-QED systems focus on fundamental

systems involving a small number of atoms and few photons. These sys-

tems are suÆciently simple to allow for a �rst-principle description. Their

experimental implementation is however quite challenging. For example, ex-

tremely high-Q micro-cavities are needed to preserve coherence during all

atom-photon interactions. Furthermore, single atoms have to be con�ned in-

side the cavities for a suÆciently long time. This requires developments of

novel cooling and trapping techniques, which is in itself a fascinating direction

of current research. Despite these technical obstacles, a remarkable progress

has been made in this area: quantum processors consisting of several coupled

qubits now appear to be feasible.
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On the other hand, some of the above diÆculties are related to the mi-

croscopic nature of the system and may be avoided if mesoscopic systems

are used. Proposals based on mesoscopic systems are also very attractive for

possible large-scale implementation in the (presumably distant) future. Here

collective (i.e. many-particle) excitations can be used as qubits, but it is in

general diÆcult to control the coupling between them.

Motivated by this we here consider an approach that combines elements

of cavity QED with mesoscopic systems. Speci�cally, we consider an N -atom

system coupled to a few-photon cavity �eld. We investigate the conditions

under which quantum entanglement can be created and manipulated in this

mesoscopic system. Although entanglement manipulation involves collective

rather than single-particle excitations, the system is still suÆciently simple

to allow for a �rst principle description.

The central feature of our approach is the ability to manipulate collective

excitations of light and matter by coherent control of the atom-�eld interac-

tion using atomic dark resonances [8]. The present work demonstrates that

the essential elements of QED-based quantum information processing can be

implemented and that some of them can be considerably improved in a meso-

scopic system. We show in particular that (i) quantum information contained

in polarization states of single photons can be stored in collective atomic ex-

citations; (ii) simple two-bit operations can be performed; (iii) entanglement

can easily be transfered and distributed among collective excitations of dis-

tant atomic ensembles.

2 Collective excitations as qubits

A convenient way of encoding quantum information in optics is via the anal-

ogy between spin-1/2 systems and polarization states of light waves. We

therefore begin by associating qubits with polarization states of single pho-

tons, and show that the states of these qubits can be mapped onto collective

excitations of ensembles of atoms. We are here interested in single-photon

excitations of cavity modes described by a superposition of right (j1+i) and
left (j1�i) circularly polarized components

j	ii = �ij1i;+i+ �ij1i;�i; (1)

with j�ij2+j�ij2 = 1. In the following we focus on the case that involves a pair

of such single-photons states, i.e. i = 1; 2. For simplicity let us assume that

the two photons occupy di�erent frequency bands and hence are associated

with di�erent cavity modes.

In order to manipulate quantum information stored in such qubits we

consider optical cavities �lled with N identical multilevel atoms. The fre-

quency of a particular pair of transitions is assumed to be close to resonance

frequencies of the cavity. The corresponding coupling strengths of the atoms
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to the two cavity modes â1+ and â1� are assumed to be equal and are de-

noted by g (see Fig.1a). In addition some time-dependent classical �elds with

Rabi-frequencies 
1�(t) couple the lower (meta-stable) states jc�1i of these
atoms to the excited states ja�1i as shown. The excited states decay with

(equal) decay rate 
 and all atoms are initially prepared in a certain hyper�ne

sub-level, i.e. in a pure state.
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Fig. 1. (a) Schematic of the system for storing photon qubits in collective atomic

excitations. (b) Quantum communication system based on photon trapping and

release.

The basic Hamiltonian of the cavity + atom system can be written in

terms of collective operators �̂aj ;b =
PN

i=1 �̂
i
aj ;b

and �̂aj;cj =
PN

i=1 �̂
i
aj ;cj

as

V̂ =
X
j

�hgâj�̂aj ;b + �h
j(t)�̂aj ;cj + h:c:; (2)

where j = 1�, and �̂i�� = j�iiih�j is the 
ip operator of the ith atom between

states j�i and j�i. Here and below we work in a frame rotating with the

optical frequencies.

Of special interest are certain superposition states of light and collec-

tive states of matter that do not interact with the optical �elds. These so-

called dark-states [8] correspond to elementary excitations of bosonic quasi-

particles, so-called dark-state polaritons [9]. They are de�ned by the following

canonical transformation

d̂j = cos �j âj � sin �j
1p
N
�̂bcj ; tan �j(t) = g

p
N=
j(t) (3)

In the limit of small excitation the operators d̂j and d̂
y

j ful�ll Bose commu-

tation relations. The d̂
y

j 's create a family of dark states which do not have

an excited-state component and are decoupled from both optical �elds:

jDji::; nj ; ki:::i = 1p
n!k!:::

�
d̂
y

j

�n�
d̂
y

i

�k
:::j0ijbi1:::jbiN ; (4)

V̂ jDji::; nj ; ki:::i = 0. These states are composed of cavity �eld states and

symmetric Dicke-like atomic states jcnj cki ::i containing n atoms in level jcji,
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k atoms in level jcii etc, and all others in the ground state jbi:

jbi � jbi1:::jbiN ; jcji �
NX
l=1

�1p
N
jbi1:::jcjil:::jbiN ; (5)

jc2j i �
NX

l6=m=1

1p
2N(N � 1)

jbi1:::jcjil:::jcjim::::jbiN ; etc: (6)

We here assumed that the number of atoms is much larger than the number

of photons in the light �eld.

The essence of the present approach is that a quantum bit stored in

photo states can be transfered to collective atomic excitations (and vice versa)

by adiabatic passage in dark-polariton states. Speci�cally single-mode dark

states (4) have the following asymptotic behavior in the two limiting cases:

jDj ; nji ! jnji jbi; when 
 � g
p
N; (7)

jDj ; nji ! j0i jcnj i; when 
 � g
p
N: (8)

It is most important that by varying the strength of the driving �eld 
(t),

the state of the combined atom+cavity system can be changed from cavity-

like (in which excitation is mostly of photon nature) to atom-like (in which

excitations are shared among the atoms). In the latter case the lifetime of

excitations will not be sensitive to cavity decay; it will be limited solely by the

decay of the meta-stable atomic states. In this process qubit states encoded in

the photon �eld are mapped onto symmetric collective excitations of atomic

ensembles. Since all dark states are orthogonal to each other, copying of all

states can proceed in parallel.

It is known that adiabatic following takes place in the stimulated Raman

process considered here, if the characteristic time scale T exceeds the ratio

of the optical decay rate 
 to the square of the characteristic Rabi-frequency.

For the present system this condition translates into g2N=
T � 1: One

recognizes that using a mesoscopic system with N � 1 considerably improves

the adibaticity condition as compared to the single-atom case.

3 Quantum entanglement of collective excitations

A pair of qubits stored in collective excitations can be entangled using a

number of di�erent processes. Here we consider the resonantly enhanced Kerr

e�ect [10] in combination with a cavity-QED setup to construct an elementary

logic gate. The resonantly enhanced Kerr interaction in a 4-level con�guration

is the basis for the so-called \photon blockade" in a cavity con�guration [11]

and results in extremely strong photon-photon interactions of pulses [12].

To implement a two-bit gate we consider a pair of photons resonant with

di�erent transitions of the same multi-state atom.We use a level con�guration

and optical �elds as indicated in Fig.2.
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Fig. 2. Schematic of the system for an entanglement operation in atomic Rb. Only

the coupling to the relevant transitions is shown.

In order to entangle qubit states the following sequence of operations can

be used. In the �rst step [13], the photon state j11i = �1j11+i + �1j11�i is
transfered to collective atomic states composed of jc1�i with the adiabatic

technique described above. This operation corresponds to:�
�1j11+i+ �1j11�i

�
jbi ! j01i

�
�1jc1+i+ �1jc1�i

�
: (9)

In the next step, the state of the second photon j12i is mapped onto the

di�erent atomic sub-levels jc2�i:�
�2j12+i+ �2j12�i

��
�1jc1+i+ �1jc1�i

�
�! j02i � (10)�

�1�2jc1+c2+i+ �1�2jc1+c2�i+ �1�2jc1�c2+i+ �1�2jc1�c2�i
�
:

We now want to generate a conditional phase shift on only one of the

collective states, say jc1�c2+i. For this we �rst apply a weak magnetic �eld

in such a way that the transition jc1�i ! jbi becomes close to the frequency

of some cavity mode (di�erent from the one used for trapping of the photon

j11i). Note that this mode also couples o�-resonantly (with detuning �) the

transition jc2+i ! je2;MF = 0i, where jei denotes the excited state. The

shift of the atomic energy levels will also result in undesired di�erent phase

shifts for the components of the collective atomic states. These phase shifts

can be compensated however (e.g. by reversing the direction of the �eld for

an appropriate time) and shall not be considered here.

By applying a classical �eld of appropriate frequency we can transfer one

component of the collective state jc1�i back into the photonic mode:

j0i jc1�c2+i ! j11�i jc2+i; j0i jc1�c2�i ! j11�i jc2�i: (11)

At this point the energies of the states j11�i jc2+i and j11�i jc2�i di�er in
a nontrivial way. Namely the state j11�i jc2+i exhibits an AC-Stark shift

Æ = g2=�, since it is coupled by the o�-resonant cavity mode containing one

photon. In order to avoid decoherence associated with two-photon absorption,
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� should exceed the optical decay rate 
. By simply letting the system evolve

for a time � a conditional phase � = Æ � is accumulated. By transferring the

photonic components j11�i back to the atoms and reversing the magnetic �eld

for a time appropriate to eliminate the single-bit phase shifts, the following

state is obtained:

�1�2jc1+c2+i+ �1�2jc1+c2�i+ ei��1�2jc1�c2+i+ �1�2jc1�c2�i: (12)

In the language of quantum information, this operation corresponds to a

universal logic gate (a so-called phase gate) [1]. It is clear that by selecting a

proper value of the conditional phase � and by performing independent single

bit rotations, arbitrary entangled states of two qubits can be generated. This

can be achieved however only if the system preserves coherence during the

characteristic time required to accumulate a large phase shift. Hence, in the

present approach g2�=� � 1 is required to achieve arbitrary entanglement of

collective states. Thus while transfer operations as discussed in the previous

section do not require a strong-coupling regime, two-bit operations still do.

4 E�ects of decoherence

In this section we discuss the e�ect of decoherence on the manipulation of

collective atomic excitations. In general, decoherence mechanisms depend on

the particular implementation. In order to be speci�c we consider an ensemble

of laser-cooled Rb atoms in a magneto-optic trap (MOT). The main sources

of decoherence and dissipation are then (i) spontaneous emission from the

excited states (with the rate 
), (ii) the �nite lifetimes of hyper�ne and

Zeeman coherences within the ground state (corresponding decay rate is 
g)

and, (iii) the photon decay of the optical cavity with rate 
c.

For the present problem dephasing of the collective states is of interest.

One �nds that the states corresponding to single collective excitations are

dephased at the same rate as the average coherences corresponding to indi-

vidual atoms. For instance

d

dt
hbj�jaii = d

dt

1p
N

NX
�=1

hbj�ja�i i = �
hbj�jaii: (13)

By the same argument, coherences between hyper�ne and Zeeman sub-levels

decay at a rate 
g. The states containing a single photon in a cavity mode

will decay with an additional rate 
c. In the following we assume that 
g is

small on the time scales of interest and can be neglected.

Both processes considered in the previous sections are a�ected by decoher-

ence, but in a di�erent way. In the case of quantum state transfer, decoherence

due to spontaneous emission can be avoided if the transfer time T is suÆ-

ciently long such that the adiabatic following condition is ful�lled. However,

in order to avoid decoherence due to cavity decay the transfer time T should
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be short compared to 
c. Hence, ideal quantum state transfer between cavity

mode and collective excitations is only possible if

g2N � 
c
: (14)

In the case of two-bit operations, spontaneous emission causes two-photon

absorption at a rate � g2=�2
. Here, two-photon absorption can be avoided

when the detuning � (see Fig.2) is suÆciently large � � 
. At the same

time, the entanglement generation should be fast compared to the cavity

decay �
c � 1. Hence, in order to accumulate a large conditional phase

without dissipation it is necessary that

g2 � 
c�� 
c
: (15)

The main conclusion of this section is that in principle increasing the

number of atoms does not make it harder to create quantum entanglement.

Other operations such as the reliable quantum state transfer between light

and matter become much easier. The reason for this behavior is that the

basic decoherence mechanisms are not enhanced as the number of atoms is

increased. At the same time the coupling of the cavity mode to the ground

state is enhanced by a factor
p
N .

We note that in practice decoherence mechanisms exist that do scale with

the number of atoms. For instance, o�-resonant scattering of the external

coherent �elds on the transition from the ground jbi to the excited states

jeii will result in dephasing of the collective states which is clearly enhanced:

~
 = N

2= ~�2. Here ~� is the (large) detuning of the coupling �eld from the

jbi ! jeii transition frequency. Therefore, in experiments extra care should

be taken to avoid these decoherence mechanisms.

5 Entanglement distribution

One of the most intriguing aspects of quantum information is the use of

entanglement as information resource for purposes such as super-dense infor-

mation transfer [14], quantum teleportation [15] and secure communication

[16]. In this section we show that the quantum state of collective atomic ex-

citations including possible entanglements can be transferred form a given

cavity system to other systems under much improved conditions as com-

pared to single-atom QED systems. The technique is based on the possibility

to map quantum correlations from traveling-wave light �elds to collective

atomic states and vice versa with nearly 100% eÆciency [17,18].

The basic mechanism is again the adiabatic procedure discussed in section

2 with the additional ingredient of a coupling to a continuum of free-space

modes. We will outline the basic features for a single traveling-wave quantum

�eld. In a suitable system, this operation can proceed in parallel for several

�eld components and the corresponding generalization is straightforward.



8 Lukin, et al

We consider a cavity with N identical multi-level atoms as before. In ad-

dition we include the coupling of the cavity mode to a 1-D continuum of

free-space modes with creation operators b
y

k described by the e�ective Hamil-

tonian V̂ = �h
P

k �â
yb̂k + h:c:; � being the coupling constant. We assume

that initially all atoms are in the ground state jbi and that there is no pho-

ton in the cavity. Thus the combined cavity-atom system is initially in the

dark-state jD; 0i (see eq.(4)). The initial state of the free �eld is taken to

be j	ini =
P

k �
1
k j1ki+

P
k;m �2k;mj1k1mi+ ::: . It is convenient to work with

correlation amplitudes, i.e. Fourier transforms of �
j
k:::l:

�j(t1:::tj) = h0jÊ(t1):::Ê(tj)j	i; (16)

where Ê(t) = L=(2�c)
R
d!k exp(i!kt)b̂k, and L is the quantization length.

E.g. �1 describes the envelope of a single-photon wave packet, �2 is the

coincidence amplitude etc. We now consider a broad class of pulsed �elds

that are characterized by a single common envelope function h(t) such that

�j(t1; t2; :::tj) = �j
p
j!h(t1)h(t2):::h(tj): (17)

Any pure state or mixture of such pulses can be described by a single-mode

density matrix �nm = ��n�m. The corresponding mode function is a super-

position of plane waves proportional to h(z=c) =
R
d!k �k e

i!kz=c.

Due to the interaction of the cavity mode with the environment, the dark

states of the cavity + atoms system are coupled to the continuum states.

When only single-photon pulses are involved the evolution equations of the

corresponding state amplitudes are [17]:

_D1(t) = i� cos �(t)
X
k

�k(t); (18)

_�k(t) = �i�k �k(t) + i� cos �(t)D(t): (19)

D1(t) denotes here the amplitude of the dark-state jD; 1i and �(t) � �1(t) is

de�ned in eq.(3). We proceed by formally integrating Eq.(19), substituting

the result into Eq.(18) and invoking a Markov approximation. Assuming that

no photons arrive to the cavity before t0 we �nd for the dark state amplitude

D1(t) = �i�1D(t) with

D(t) =

r

c

c

L

Z t

t0

d� cos �(�)h(�) � exp

�
�
c

2

Z t

�

d� 0 cos2 �(� 0)

�
: (20)

Here we have introduced the empty-cavity decay rate 
c = �2L=c. Substitut-

ing this result back into eq.(19) one �nds that the outgoing �eld is described

by the common envelope function hout(t) = h(t)�p
cL=cD(t).

In order to trap photons we require that the envelope of the outgoing

�eld and its �rst derivative vanish identically. I.e. hout(t) = _hout(t) = 0.

Di�erentiating the above relation for hout(t) yields

� d

dt
ln cos �(t) +

d

dt
lnh(t) =


c

2
cos2 �(t): (21)
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If 
(t) is chosen such that �(t) obeys this equation with the asymptotic

condition cos � ! 0 the output �eld remains zero and the incoming light

pulse is completely transferred to the atomic system.

The above condition corresponds to a quantum or dynamical impedance

matching [17]. The term on the r.h.s. of Eq.(21) is the e�ective cavity de-

cay rate reduced due to intracavity electromagnetically induced transparency

(EIT) [19]. The �rst term on the l.h.s. describes internal \losses" due to co-

herent Raman adiabatic passage and the second term is due to the time-

dependence of the input �eld. As in the case of classical impedance matching

[20], Eq. (21) re
ects the condition for complete destructive interference re-

sulting in a vanishing outgoing wave. Solving Eq.(21) yields

cos2 �(t) =
h2(t)


c
R t
�1

d�h2(�)
; (22)

which corresponds to D(t ! +1) ! 1. Hence, by suitable variation of the

classical driving �eld any single-photon pulse can be trapped ideally, if its

pulse length is longer than the bare-cavity decay time.

Generalizations of the above considerations to multi-photon states can

proceed along the same lines, but involve more tedious algebra. In particular,

for the two-photon states one �nds D2(t) = ��2D(t)2, and in general

Dk(t) = (�i)k�k d(t)k (23)

can be proved. Under conditions of quantum impedance matching Dk(t !
1) ! (�i)k�k for arbitrary k. Hence pulsed �elds in a generalized single

mode with arbitrary quantum state can be mapped onto the atomic ensemble.

Releasing the stored quantum state into a pulse of desired shape can be

accomplished in a straightforward way. A simple reversal of the time depen-

dence of the control �eld at a later time td leads to a perfect mirror-image of

the initial pulse. This can be veri�ed directly from Eqs. (20).

Before concluding we note that the quantum transfer protocol described

here is based solely on the adiabatic rotation of the dark state described in

Section 2. Hence, this operation can be nearly ideal whenever inequality (14)

is ful�lled [17]. Therefore, perfect quantum communication can be achieved

in the present system without invoking the strong coupling regime of cavity

QED.

6 Conclusions

In conclusion, we have shown that quantum information stored in collec-

tive excitations of an N -atom system and can be coherently processed using

cavity QED techniques. We showed that certain network operations such as

the transfer of excitation between atomic and photonic degrees of freedom

and entanglement distribution can be performed without invoking the strong
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coupling condition of cavity QED. However other operations, such as two-bit

rotations resulting in quantum entanglement still require a strong coupling.

Studies of possible ways to alleviate these requirements, and to avoid the

strong coupling regime altogether are currently under way. This includes,

for instance, resonant nonlinearities in a traveling wave geometry, so-called

photon-exchange interactions or cold collisions.
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