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1. Introduction.

In our previous paper [1] (hereinafter referred to as paper I), relations called causal
Wick’s theorems were derived which express formal solutions to problems in classical
stochastic field theory (CFT) as differential operations. In this paper we further re-
express these solutions in the form of so-called causal diagram series. We discuss
some structural properties of these series, including how they depend on the nature
of the stochastic problem in question, or, more specifically, on the form of the stochastic
differential equation (SDE) describing this problem (on SDEs see [2]). This discussion
allows us then to approach the true goal of this paper: to learn how to sum a diagram
series by deriving a stochastic differential equation, such that its formal solution is
represented by this series. Solving this equation, numerically or analytically, is then by
construction equivalent to an (in principle exact) summation of the diagram series.

As is known from quantum field theory, a diagram series may be regarded as a
perturbative expansion of a path integral [3, 4]. Constructing an SDE related to this
series means that this integral is re-expressed as an average over random trajectories
(paths) generated by the SDE. This provides a method of calculating nontrivial path
integrals numerically [5, 6], or, if the SDE happens to be soluble, even analytically [7]. In
more detail this relation between diagram series, SDEs and path integrals was discussed
in the introduction to paper I.

This paper is structured as follows. In Section 2, we summarise some results of paper
[ and show that a formal solution to an SDE may be expressed as a causal diagram series.
In Section 3 diagram structures corresponding to certain types of problems of CFT are
presented (linear or nonlinear, regular or stochastic). Finally, in Section 4 we discuss
how to construct a SDE for a given causal diagram series.

2. Causal diagram series

2.1.  Classical stochastic scattering problem

In paper I, we considered an (in general, stochastic) differential equation for a c-number
field (r, t),

Ly(r,t) = s(r,1), (1)
where L is a certain differential operator and the (in general, random) source s may
depend on the field . Formally solving (1) yields an integral equation,

D, t) = / dt’ / dr'G(r, 1"t — t)s(r", ') + o (r, b), 2)
where G(r,r',t —t') is the retarded Green’s function of equation (1),

LG(r, 't =) =d(r—rYo(t—1t), G(rr't—t)=0t<t, (3)
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g being the in-field, Liy(r,t) = 0, and b = 1y before the source is on. For simplicity,
in this paper we confine ourselves to the case of a real field.

If the noise source s(r,t) is singular (e.g. contains white noise [2]), equations (1)
and (2) may be only symbolic. As a means of specifying stochastic calculus, one may
design a regularisation procedure when G or s (or both) are replaced by regularised, that
is, properly smoothed, functions; regularisations leading to Ito or Stratonovich calculus
were discussed in paper . For purposes of this paper, the exact regularisation procedure
is mostly irrelevant. Unless stated otherwise, we assume that equations (1) and (2) are
regularised in such a way that the source s and the Green’s function G' become infinitely
differentiable, while the causality condition (3) is maintained. This also means that the
integral equation (2) rather than the differential equation (1) is considered. It should be
stressed, however, that while the details of regularisation are irrelevant, its presence is
crucial: the causal Wick’s theorem found in paper I holds only for regularised equations.
This means that, unlike in QFT, the introduction of diagrams in CFT already requires
regularisation.

Using the causal Wick’s theorem, a formal solution to the regularised equation (2)
was obtained in paper I, which reads

(4)

o 0
8(0) = o (G o (Co) Slalw .,

0
We use a condensed notation in which, e.g., (¢ = [dx((x)y(z), where x = {r,t} and
[dx = [drdt, etc. The functional S(aly) characterises the source in its dependence
on the local (microscopic) field ¢ (r,?): S(afy) = €%, where 7| denotes statistical
averaging conditional on the local field . That is, regarded as a functional of «(r, ),
S(a|tp) is the characteristic functional of source averages conditioned on the local field.
It depends on v as a parameter. Similarly, ®(¢) = ®((|¢y) = e§—¢‘¢ is the characteristic
functional of the field averages, conditioned on the in-field. The dgpendence of ¥ on 1)y
corresponds to a macroscopic field-scattering problem.
The functional S(«|¢) may be conveniently written in terms of susceptibilities
™) (2q, - Ty @t -, ), which are coefficients in the series expressing cumulants
of the local source s(x) in terms of the powers of the local field ¢ (z):

Sald) =exp 3 —amymmyn, (5)

In!
o M0

where ax("Vy = [drds' o(x)x™) (2, 2')(2") etc. The susceptibilities obey the
causality condition,

X(m’”)(xl, e Ty Xy, xh) =0, max(t, - ) > max(ty, -, b)), (6)

i.e., the latest argument of a susceptibility is always an output one.
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2.2.  Diagrams for field averages.

We now show that the formal solution (4) to equations (1) or (2) may be expressed
as diagram series. To be specific, we consider the case of only (19, (1D = (1.2)
Y29 @D and (3?2 non-zero; these are exactly the susceptibilities shown explicitly
in equations (13), (14) in paper L. In section 4 we show that there indeed exists a
stochastic problem described by this set of susceptibilities. The converse is not true: an
arbitrary set of susceptibilities does not correspond to a stochastic problem. However,
for purposes of this section this is irrelevant. The exact question we are concerned with
is the relation between the generating expression (4) and the corresponding series, that
is, how analytical elements in (4) become graphical elements. Somewhat more physical
a discussion of how stochastic problems are related to diagram series may be found in
sections 3 and 4.

Graphically, the Green’s function G(x;z’) (cf equation (2)) and the in-field ()
will be denoted as lines,

G(x;a'") = { gcl—_fv }, (7)
w@={ =}, Q

—_—

and the argument of the characteristic functional (4), ¢(z), and the susceptibilities y (™™
will be denoted as vertices,

o ={ =), o)
gy o2, o

X(l’l)(aj;$’) _ { Ll }, (11)
x' -
. ......... z
X(1’2) (1', -'L',, 1'”) =3z ’ (12)
NEDIFR I Iy (13)
2,1 1o 1‘" ~~~~~~ o o
(o) = 8T b (14)
N ayala) =4 )
Ty = T2
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The curly brackets isolate diagrams visually when these are used as parts of the formulae.
The “time arrow” drawn below each diagram distinguishes graphically input and output
arguments of the lines and vertices: The argument of 1y(x) is regarded as a line output,
as is the “future” argument (i.e., x) in G(z;2'); the “past” argument (i.e., ') in G(z; 2')
is regarded as a line input. A generalised susceptibility, x"™™ (zy, -+, 22, -+, 7)),
is a quantity with n vertex inputs and m vertex outputs (marked by the dotted lines).
By definition, the argument of ((x) is a vertex input.

We now expand all exponents in the generating expression (4) in power series, and
consider a particular term in these series. It is easy to see that a(x) always occurs

convolved with a vertex output, while —— is always convolved with a line input. Since

da(zx)
gs((f,)) = §(z — 2'), differentiating by «’s leaves all vertex outputs pairwise convolved

with line inputs. No free vertex outputs or line inputs may remain; terms with unequal
number of these give zero. Similarly, derivatives Ws(m) leave vertex inputs convolved with
the line outputs of the propagators G(z;z'); surviving ¢’s become vy’s. As a result,
we find all vertex inputs pairwise convolved with line outputs, and wvice versa, and no
free arguments remain. Graphically, convolved input-output pairs will be denoted by

connecting respective ends of the lines to the vertices, e.g.,

{2} = [ dec@lo), (16)
)= [ dedd ()Gl a0 ), (17)

—_—

|
[%
{

/dxl oo dws C(21)C(22) G (21 23) G (wo; $4)X(2’1)(9E3, 245 75)Y0(25), (18)

—_—

/dxl cdwg (1) G 22) X1 (225 23, 24) G (235 75) G (wa; 26) X0 (25, 26). (19)

Expressions of such structure will be called causal diagrams. Note that the time arrow
applies to all elements in a diagram.

In general, a causal diagram is a product of the basic elements—Ilines and vertices,
where some line inputs and outputs are pairwise convolved with, respectively, vertex
outputs and inputs. A diagram containing free arguments will be called incomplete; (7—
15) are legitimate incomplete diagrams. A diagram without free arguments is complete;
examples of complete diagrams are (16-19).

Expanding (4) thus yields an expression for the functional ®({) as a sum of all
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complete causal diagrams which may be built out of the elements (7-15). The coefficients
with which diagrams occur in the series are equal to one over the order of the symmetry
group of the graph (symmetry coefficients) [3]. Incomplete diagrams occur e.g in
diagram expansions for the field averages. Formally, they are found by stripping the (
vertices from the complete diagrams. The simplest example of such a diagram is (8): it
contributes to ¢(r,¢) and is found by stripping the ¢ vertex from (16).

Note that by virtue of our assumption that the free Green’s function as well as the
source are infinitely differentiable, the diagrams introduced cannot contain ultraviolet
divergences. However, weaker assumptions may suffice, e.g. that all susceptibilities are
local and contain only the delta-function and its derivatives up to a given order, while GG
is infinitely differentiable. It is also clear that to make a particular diagram convergent G
has only to have a finite number of continuous derivatives. Whether this would suffice to
make any diagram convergent will be discussed in connection with particular problems.

It is worth noting that whereas in diagrams the “time flow” is from left to right,
in analytical expresssions, as a rule, time increases from right to left. For example, in
the diagram in (17) the ¢ vertex is on the right, whereas in the analytical expression
(G = [ dada'((2)G (z; 2")xH? (2') the natural position of the function ¢ (x) is on the
left. Thus objects are commonly in reverse order in diagrams and analytical notation.

2.3.  Connected diagrams and field cumulants.

A diagram that graphically consists of a number of separate subdiagrams without
common elements is called disconnected; otherwise, it is connected. A disconnected
diagram is a product of its connected components. In the above examples, all diagrams
are connected; however, the causal diagram series for the functional ®({) contains all
possible complete diagrams, connected as well as disconnected.

To get rid of disconnected diagrams, one should describe the field in terms of its

cumulants rather than averages. Formally, the field cumulants C™ n = 0,1,---, are
defined as,
= 1 n n
B(0) = e 3 O, (20)

where (CV) = [ dx ((x)C™")(x) etc. In particular,

U(x) = CV(x), (21)
Y(@)p(a’) = C¥(z,2") + CV(x)CW ("), (22)
V(@) (@) (a") = O (x, 2, 2") + CD(x,2")CD (") + CP (z, 2" CD (")

+ 0O MW (z) + ¢V (z)CM ("YW ("), (23)
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i.e., expression of a particular field average by the cumulants corresponds to summing
all its possible factorisations. Characterisation of the field statistics by cumulants is
more economical than characterisation by field averages. E.g., if ¢(z) is non-random,
CM(z) = y(z), and C™ = 0,n > 1; if ¢(z) is random and Gaussian, its cumulants
vanish for n > 2; whereas all field averages are non-zero even for non-random 1.

There exists a general theorem (Mayer’s first theorem) [3] stating that the diagram
expansion of the logarithm of ®({) contains only connected diagrams, so that

®(¢) = exp[conn®d(()], (24)

where conn®(() is given by diagram series where all disconnected diagrams are dropped
while connected ones retain their coefficients. Comparing this with the definition of the
field cumulants, we see that

o0

1
_ _ — o)
conn®(¢) =In®(() = ; n!c c\. (25)
Hence a diagram expansion for %C”C(”) contains all connected complete diagrams with
exactly n (-vertices (9), occurring with the coefficients they had in the series for ®(().
The expansion for C™ (zy,---,x,) contains all connected incomplete causal diagrams,
which do not contain ( vertices and have exactly n free line outputs.

3. Diagram structures corresponding to certain types of equations.

3.1.  Emission of given sources.

To start with, we consider the simplest possible stochastic problem of radiation of a
given random source, s(x) = so(z). For simplicity, we assume that it is Gaussian, and
described by the cumulants so(z) = ("% () and sq()so(2") — s0(z) s0(2") = x> (2, 2")
(conditioning on the full field is irrelevant for a given source). This problem is readily

solved:
U(a) = bo(a) + [ do'Glasa’)so ). (26)
For the field cumulants we have,
V(@) = (@) + [ Gl O) = { —F Lo {o— 1, (27)
x
CH(z,2") = /d:v"dx'"G(x;x")G(x';x"')X(Z’O) (2", ") = : (28)
2
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so that,

—_— —_—

In®(¢) = ¢CM + %eo@) ={ T *}+{_*}+ % . (29)

—_—

It is easy to see that these are indeed the three (and only three) connected complete
diagrams that can be built of the available graphical elements vy, G, ("9 and x>,
and that the symmetry coefficients are also correct. Hence expressions (27-29) are
exactly that one would find from the diagrammatic approach. Note, however, that
the logic of the diagrammatic solution is reversed: relation (29) is found summing all

legitimate complete connected diagrams, and relations (27-28) follow from it.

3.2.  Linear susceptibility.

Consider now an equation with a nonzero linear susceptibility, x(""(x;2') # 0. For
simplicity, we assume that the only other non-zero susceptibility is y?(z), i.e., we
consider radiation from a given nonrandom source into a linear medium. The following
considerations are nevertheless applicable in a general case of any set of nonzero

susceptibilities.
All connected diagrams containing only the vertices " (x;2') and ("% (z) are
chains,
me(Q) ={ T H{T T T T
A S S R B S & )
On their “past” end, the chains are terminated either by the vertex sy = y("%,
e (31)
{ ® —c> ® } _ CGX(I’I)GX(I’O)a (32)
{ ° > — * ® } _ CGX(1,1)GX(1,1)GX(1,0), (33)
or by the line )y,
{ T2} =, (34)
{ T} =™, (35)
{—— * = GGy, (36)
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The symmetry coefficients of the chains are all equal to one. Note that there exists
another class of connected diagrams, namely loops:

Ol Dl

—_— e e

They are however zero due to causality conditions and the regularisation of G or x(&V.

There are two possible ways that (1Y) can appear in a diagram: (i) between two
Gs, and (ii) between a 1y and G it is the former that is responsible for the infinite
number of chains. Consider the sum of chains

G’(x;x'):{:b“jﬂf}+{w’ - m}

+{w' — }+

— G(:L‘, x/) + /dx"dx"'G(x; l‘”)X(l’l)(l‘”; JJ”I)G(JTW; :U,) 4o (37)

It obeys an integral (Dyson) equation,
G'=G+GMa. (38)

Acting on it with the operator £, and using the fact that LG = Z (Z here is an identity
operator), we find

LG = (L "G =T (39)

Thus partial summation of the chains in diagrams corresponds to shifting the linear
susceptibility from the source to the free equation. Replacing G — G’ allows one to
drop all diagrams containing a x(»") vertex between two G lines. The y'D vertices
placed between s and G's are only found in the combination

Xz

v ={ = j+{——}. (40)

—_— _—

where the propagator is now G’. We see that Ly = 0 is equivalent to £'¢)j = 0. Hence
by redefining the graphical notation,

{ m__»g;f }: G (w: "), { _iv }: O (@), { ..ol }: 0, (41)

—_—

(and dropping the primes) we arrive at an equivalent problem where the linear
susceptibility is included into the operator £. From now on we always assume this
to be the case.

Note that instead of redefining the in-field, one could equally redefine the (%

(=) ) o

vertex,
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leaving 1y unchanged. Then 1)y is no longer a solution to the free equation, but, firstly,
when deriving diagrams using Eq. (4) this fact is irrelevant, and secondly, £y = 0 (and
hence L£'1)) = 0) will typically not hold with regularisation.

3.3. Nonlinear deterministic equations.

We now consider an equation with quadratic nonlinearity, y(""» # 0. We assume that
this equation is non-stochastic, y**) = y(®»1) = 0, and that Y = 0 (or is included in
the operator £). The available graphical elements hence are then 1y, G, x("? and x?);
with two exceptions, all connected diagrams that one can build using these elements are
trees branching into the past:

mo@Q)={ —*}+{—*}

—_— —_—

T3

—
——
———
+
——
®
[}
——
_I_
NN

—_—
\ — 7

(12) vertices, and branches

The futuremost vertex in the trees is (, branching occurs at x
are ultimately terminated by vy lines or (0 vertices. The series (43) contains all such
trees, each with a symmetry coefficient one over the order of the symmetry group of the

tree.

3.4. Stochastic differential equations.

Consider firstly a special case when (™" = 0 for n > 1 (note that this does not
correspond to any stochastic problem in the true meaning of the word). Connected
diagrams are then trees branching into the future:

1nq>(<):{—°}+{'—’}+% +% (44)

—_— —_—

B — —_
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. —_ J . —_— I J
\ —_—

It is clear that diagrams with arbitrary number of { vertices may be found in this series.
Hence, despite the fact that the local source conditioned on the full radiated field is
Gaussian, the radiated field itself is non-Gaussian: it has non-zero cumulants C'™ for
all n. The number of connected diagrams is infinite, yet the diagram series retains a
certain tameness; e.g., the number of diagrams contributing to each field cumulant, C'™,
is still finite.

The final (and crucial) step leading to truly nontrivial series is combining
nonlinearity and noise. Assume first that x(>?) = 0. Among the connected diagrams
produced by relation (4), we find all trees, both nonlinear (43) and stochastic (44); on
top of that, we find a totally new class of netlike diagrams with loops:

ln@(():Trees+%{ Q—' }%{_O—‘}

B — —_

. +1
4 2

B — —_

S (45)

—_—

The number of connected diagrams contributing to any field cumulant is now infinite.

Assume now that x> # 0. Since this vertex may be attributed to both nonlinearity
and noise (indeed, it contains two inputs and two outputs), diagrams with loops may
originate in combining this vertex with itself. This yields diagrams like

(46)

—_—

Note that whereas (44) and (45) alone do not correspond to any stochastic problem,
with the inclusion of nonzero x(>? there are some choices of the susceptibilities which
do represent stochastic processes in the true meaning of the word. We return to this
question in Section 4.
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3.5.  Regularisation of the equation and convergence of the diagrams

If produced by a regularised equation (2), the diagrams with loops do not contain
ultraviolet divergences. (Infrared divergences may still be present; however the physical
reason for these is well understood and we ignore them.) In a single-mode case,
regularisations are necessary to resolve uncertainties connected with the system’s self-
action at zero time delays (cf the discussion in paper I at the end of Section 2). For
example, the following diagrams describe how the noise emitted by the medium affects
its own emission producing a coherent signal and how the noise is processed by the
nonlinearity before taking part in its own creation, respectively.

4 W , W

: . (47)

\ B — J \ - J

(When drawing diagrams like (47) an additional specification of the graphical notation
is necessary. Namely, the input and output ends of the propagators are those pointing,
respectively, towards past and future. Or, which is the same, connected, respectively, to
the outputs and inputs of the vertices. Whether the output of a propagator is graphically
earlier or later than the input is irrelevant.)

If the system is non-Markovian, both diagrams in (47) may describe legitimate
physical processes due to multi-time correlations; these diagrams may then be
convergent. We shall consider the non-Markovian case elsewhere. If the system is
Markovian, i.e.,

t. ot

i ~d Sy S St — )5 — 1), (48)

e -y

both diagrams contain G(0) which is undefined if (1) is first order in time. In the
frequency domain, this produces a genuine ultraviolet divergence. However if G(t) is
replaced by Greg(t), as is in fact necessary in order to derive the causal Wick’s theorem
(cf paper I), there is no uncertainty any more: Greg(0) = 0 and the above diagrams
are zero. This is the case for any diagram where noise affects its own creation. Such
diagrams contain a closed causal loop of propagators starting and finishing at the same
vertex. They are all proportional to [G(0)]¥, where k is an integer, and disappear when
G(t) is replaced by Greg(t). (Again, this only applies in the Markovian case; these
diagrams do not necessarily disappear in non-Markovian systems.)

An important point is that regularisations are introduced in order to make
mathematical sense of the equation considered, not in order to make diagrams
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convergent. The latter is a “side effect” of the regularisation. Strictly speaking,
our approach is unable to produce divergent diagrams, because the derivation of the
diagrammatic solution to equation (2) is based on the causal Wick’s theorem of which
the proof is in turn based on regularisations (cf paper I). Only if we ignore this, i.e.,
make an intentional error, do we encounter divergences in the diagrams.

In a continuous-space case, additional singularities appear in the propagator
rendering more diagrams divergent. In principle, it is obvious that regularising the
propagator allows one to counteract these divergences since the more continuous
derivatives the regularised propagator has the faster its Fourier transform vanishes.
(This is exactly how the Pauli-Villars regularisation works in QFT [8].) The remaining
question is whether a given finite number of continuous derivatives would suffice to
remove divergences from an arbitrary diagram. This question will be considered in
another paper.

4. Converse problem: Constructing an SDE for a given causal diagram
series

Assume a diagram series is given (derived in a quantum problem, say). This series
appears as a causal one, i.e., is generated by an expression like (4), and the causality
conditions hold for all graphical elements. Formally, the generalised susceptibilities
™™ then provide one with a complete and unambiguous description of the equivalent
classical stochastic process. In practice, however, it would be more convenient to deal
with an explicit SDE, written in terms of noise sources which are independent of the
field. This leads us into the converse problem of the causal diagram techniques: how to
write explicitly an SDE corresponding to a given causal diagram series.

With no stochasticity present, the relation between a causal diagram series and the
corresponding DE is straightforward: a diagram series with only single-output vertices,
x™) | solves the equation

CESS % / day -~ dog M (w520, w) () (). (49)

n=1

Basically, any SDE should look identical to this equation, with the only difference that
(some of) the susceptibilities are random. It is clear that

®(¢) = Po (), (50)

where ®(() is the diagram series solving (49) regarded as an SDE, ®(() is the series

solving (49) as a non-stochastic equation, and the upper bar here denotes averaging over
the random susceptibilities in (49). The key to the converse problem is in the relation
between ®q(¢) and ®(().
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Consider, to begin with, an example of a given random source. The SDE is then
Lip(x) = so(z). (51)

For simplicity, we assume that sy is Gaussian with zero average, so(x) = 0 and
so(2)so(2') = X®(x,2'). Then, (implying sp = (")

Po(Q)=exp{ *__*}, ®(Q)=exp (52)

1
., 9

On the other hand, expanding ®(¢) in a diagram series and performing the averaging
as required by (50) in each of the diagrams separately, we find:

o _1 1| &&—=o 1
Q=1 b ) —
o—o
]_ o—o
tod e——e b

1
=140+ +0+ 2 -T.o o (53)

—_—
—_—

We see that the graphical operation reflecting sq becoming random and Gaussian is a
pairwise merging of the x(?) vertices into x(*% vertices; diagrams with an odd number
of the (19 vertices become zero. Note that whereas the merging of the vertices itself
reflects stochasticity, the fact that it is pairwise is clearly due to the Gaussian statistics:
if s, were non-Gaussian, then non-zero (™9 vertices would each result from merging

(1,0)

of m x vertices.

Consider now an SDE with a multiplicative noise,
(@) = [ da'x D w2 ypa!) + '), (54)

where x(1'V)(z; 2') is random and s'(z) contains non-stochastic terms (it may also contain
other noise sources provided they are not correlated with x(1Y). For simplicity, we again
assume that (") (z;2") is Gaussian and (1D (x;2') = 0, so that it is specified by the
average x('D (xy; 7)) x(1D (x9; 4). The diagram series for equation (54) can be found by
averaging those for an equation with a linear susceptibility ™! (z; ). This is readily
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done directly in the generating expression (4):

®(¢) = exp (5‘; 55 ) exp{ "7 Jexp (Cv) S (alv)]

a=0,¢=¢0

AN /

5 6 1 N
= exp <5w dor ) b 4 //x\\ exp (C¥) S (Oz|w)‘

—_—

a=0y=1p’ (55)

where S’ (ar|1)) contains vertices originating in s’(x), and the following graphical notation
is used,

{1} =), (56)
{ £} =at, (57)
{777 b= ax™Dy, (58)
= ey, (59)
where
XD (w1, 5) = XD (s e D s ) + XD s e D). (60)

Hence the graphical representation of the linear susceptibility becoming random is pairs
of the (V) vertices merging into the x(*?) vertices, e.g.,

—_—

%{_.—.}%i | (61)

This is just the Hubbard-Stratonovich transformation used in path-integral approaches
in QFT [3].

Similarly, if a certain pair of susceptibilities (1%

) and 'Y, say) become random
and correlated (assuming Gaussian), then averaging ®, we get,

®(C) = exp 0 5 exp ({ : }+{ _:__ }) exp (C¥) S (a|1/))‘a:
oY 5

N\ /
B 5 6 1| &~ 1] 1| _&””
- (wG(sa) P 5 { S~ } AN AR S~

07¢:¢0

—_—

X exXp (CQ/)) S’ (OZW}) |a=0,¢=¢07 (62)
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where
{ o —— } — O‘X(I’O)a (63)
{ (:\ } = 220 (64)
{ e } _ a2y, (63)
and
2O (21, 25) = X0 (1) xD (23), (66)
X(Q’l)(xh To; x') = X(l’l)(m; x’)X(l’O) (372) + X(l’l)(%; $')X(1’0) (Il)v (67)

see (59) and (60) as well. We see that whereas randomness results in self-mergings
(x4 B0 5 20 and D 4 (LD — v(22)) " correlations manifest themselves as
cross-mergings (Y1 4 (M1 — (1),

Another example is

5 6 __ 1] Seee
®(¢) = exp (@G£> exp { .-_> } + 2 e exp (C¥) 5" (a]t) Ja=0.p=v
5§ 6 1 g 1 A\ 1] N
_ 0 40 1) &« LD Bt 3¢ L x
_exp((wGéa)exp 2{ \}+48 // N —|—4 RN
x exp (C¥) S (a|v)) |a=0,p=yo> (68)
where
T b = axM Iy (69)
\
\\\ //
SIS = o @Iy, (70)
/
and
XY (@, wo; o, 2, ) = S X2 (wyy o, ah) XD (wg; 2, 7y),  (T1)
perm

where > ..., denotes summation over all different terms obtained by (separate)
permutations of the input and output arguments, cf (60). The rest of the notation
was introduced above.
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This way, if we take equation (49), derive a diagram series for it, and then assume
that the susceptibilities x(""™ are random, the new series is found from the initial series
by merging certain vertices in the diagrams. Hence in order to recover the initial non-
stochastic equation, the merged vertices should be factorised into the products of the
initial vertices. Formally, this means solving functional equations like (60) or (66-67),
with given stochastic vertices, in order to find statistics of the susceptibilities in (49).
This is the well-known problem of moments in probability theory.

It is obvious that there exist causal diagram series that do not correspond to
any SDE in the true meaning of the word. E.g., x®*9(z;2') = —é(z — 2') would
require so(x)so(z') = —d(x — z’); this is certainly impossible in probability theory.
We therefore have to adopt the concept of pseudo-probability [5] and consider pseudo-
stochastic differential equations (PSDE) as well as stochastic ones. (This is anyway
inevitable in quantum stochastics since the measure in Feynman path integrals is as a
rule nonpositive.) Even with this generalisation, it is not clear if the converse problem
has a general solution consistent with the causality conditions for the susceptibilities.

However, this clearly is the case for an important class of problems, namely,
local Markovian problems. In terms of the susceptibilities, this means that they
are nonzero only if all their arguments (both input and output) coincide. E.g., let
X2 (21, 293 2, 1) = X (21 — )6 (29— 2h)5 (21 —25), where y is a real constant, positive
or negative. Then, the converse problem is solved by x("'V(z;2') = Mﬁ(@")&(x — '),
where for x > 0 n(z) is a standardised Gaussian d-correlated noise source, n(z)n(z') =
d(z — 2'); whereas for y < 0 n(x) is a standardised Gaussian d-correlated pseudo-
stochastic source, n(x)n(z') = —6(x —2'). Note that one can find an alternative solution
using factorisation (68). This shows that a solution to a converse problem is in general
NnoN-uUNIQUE.

Another class of series that lead to pseudo-stochastic equations are those with non-
Gaussian vertices. As we have seen from the above examples, Gaussian noise sources
always produce noise vertices with two outputs; such vertices are naturally termed
Gaussian. Non-Gaussian vertices are those with three outputs or more; they correspond
to higher-order noises [2, 5]. If a series contains a finite number of non-Gaussian vertices,
it can only be interpreted in terms of a pseudo-SDE. Examples of such noises and
corresponding series will be considered elsewhere.

5. Conclusion

We have shown that there exist simple rules which relate a certain class of diagram
series (causal diagram series) to stochastic differential equations. This provides a tool
for calculating causal diagram series non-perturbatively, e.g. by numerical simulations.
Furthermore, it demonstrates that despite the apparent incompatiblity of - and c-
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number techniques there exists a profound mathematical similarity between the classical
stochastic and quantum field theories. For bosons this similarity can in fact be expanded
to a formal identity. This will be the subject of future papers [6] (see also [7]).
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