Darstellung von silyl-substituierten homo- und heterobimetallischen Cp^R-Cobalt- und Eisen-Mehrkernclustern mit "nackten" P_n-Liganden sowie deren Vergleich mit der alkylierten Spezies

Vom Fachbereich Chemie der Universität Kaiserslautern zur Verleihung des akademischen Grades "Doktor der Naturwissenschaften" genehmigte Dissertation (D386)

> vorgelegt von Dipl.-Chem. Frank Fuchs aus Bisterschied

Betreuer der Arbeit: Prof. Dr. O. J. Scherer Tag der wissenschaftlichen Aussprache: 18.09.2001

Kaiserslautern 2001

Dekan :

Prof. Dr. Dr. D. Schrenk

Prüfungskommission :

Vorsitzender :	Prof. Dr. HG. Kuball
1. Berichterstatter :	Prof. Dr. H. Sitzmann
2. Berichterstatter :	Prof. Dr. F. Preuss

Die vorliegende Arbeit entstand in der Zeit von Oktober 1999 bis Juni 2001 im Fachbereich Chemie der Universität Kaiserslautern.

Herrn Prof. Dr. O. J. Scherer danke ich sehr herzlich für die Freiheiten bei der Gestaltung dieses Themas, seine Begeisterungsfähigkeit, seine Diskussionsbereitschaft und seine Unterstützung.

Ebenso gilt mein Dank Herrn Prof. Dr. H. Sitzmann für die spontane bereitwillige Übernahme der Aufgaben des 1. Berichterstatters, sowie für seine stetige Diskussions- und Hilfsbereitschaft.

Diese Arbeit widme ich meiner verstorbenen Mutter Melitta Fuchs Zwei Dinge sind unendlich: Das Universum und die menschliche Dummheit, aber bei dem Universum bin ich mir noch nicht ganz sicher.

- Albert Einstein -

Vorwort

Beim Benennen der verwendeten Cyclopentadienyl-Liganden wurden bald die Grenzen der aus der Literatur zur Verfügung stehenden anerkannten Abkürzungen erreicht. Deshalb wird in dieser Arbeit für jeden Trimethylsilyl-Substituenten jeweils ein horizontaler Strich (`) dem Cp-Symbol angehängt. Daraus ergeben sich folgende silyl-substituierte Cp^R-Liganden:

Cp	(Trimethylsilyl)cyclopentadienyl
Cp ⁼	1,3-Bis-(trimethylsilyl)cyclopentadienyl
Cp [≡]	1,3,4-Tris-(trimethylsilyl)cyclopentadienyl

Gemischt-substituierte Cyclopentadienyl-Liganden erhalten pro Tms-Gruppe einen horizontalen (^{$^{\circ}$}) und pro *tert*.-Butyl-Gruppe einen vertikalen Strich (^{$^{\circ}$}). Daraus ergeben sich folgende gemischt substituierte Cp^R-Liganden:

Der besseren Übersichtlichkeit wegen erhalten Komplexe, die mit verschiedenen Liganden existieren, sofern sie nicht schon in der Einleitung benannt wurden, zu ihrer jeweiligen Nummerierung einen für diesen Ligand typischen Buchstaben. Daraus ergibt sich folgende Nomenklatur:

Cp ^R -Ligand	Buchstabe	Cp ^R -Ligand	Buchstabe
Cp ⁻ ′	a	Cp´	f
Cp ⁼ ′	b	Cp´´	g
Cp ⁻	с	Cp´´´	h
Cp ⁼	d	Cp*	i
Cp [≡]	e	Cp*′	j
		⁴ Cp	k

Abkürzungsverzeichnis

amu	Atomare Masseneinheiten
Ср	Cyclopentadienyl
Cp ⁻	(Trimethylsilyl)cyclopentadienyl
Cp ⁼	1,3-Bis-(trimethylsilyl)cyclopentadienyl
Cp [≡]	1,3,4-Tris-(trimethylsilyl)cyclopentadienyl
Cp ⁻ ′	1-(Tertbutyl)-3-(trimethylsilyl)cyclopentadienyl
Cp ⁼ ′	1-(Tertbutyl)-3,4-bis-(trimethylsilyl)cyclopentadienyl
Cp*	Pentamethylcyclopentadienyl
Cp′	(Tertbutyl)cyclopentadienyl
Cp´´	1,3-Di-(tertbutyl)cyclopentadienyl
Cp´´´	1,3,4-Tri-(tertbutyl)cyclopentadienyl
Cp ^R	Cyclopentadienyl-Derivat
$C_5Me_4Et = Cp*'$	Tetramethylethylcyclopentadienyl
C ₅ Ph ₅	Pentaphenylcyclopentadienyl
⁴ Cp	Tetraisopropylcyclopentadienyl
Et	Ethyl
S	Singulett
d	Dublett
dd	Doppeldublett
t	Triplett
q	Quartett
m	Multiplett
M _{ber.}	Berechnete Molmasse
Me	Methylrest
NMR	Nuclear magnetic resonance
Ph	Phenyl
RT	Raumtemperatur
GEP	Gerüstelektronenpaar
Tms	(Trimethyl)silyl
triphos	1,1,1-Tris(diphenylphosphinomethyl)ethan
VE	Valenzelektronen

Verbindungsverzeichnis

1a	HCp ⁻ ′	
1b	HCp ⁼ ′	
2a	$[Cp^{-\prime} Co(CO)_2]$	
2b	$[Cp^{=\prime} Co(CO)_2]$	
3 a	$[{Cp^{-'} Fe(CO)_2}_2]$	
3 b	$[{Cp^{='} Fe(CO)_2}_2]$	
4 a	$[Cp^{-}Fe(\eta^{5}-P_{5})]$	RSA
4 c	$[Cp^{-}Fe(\eta^{5}-P_{5})]$	RSA
4d	$[Cp^{=}Fe(\eta^{5}-P_{5})]$	RSA
5d	$[{Cp}^{=}Fe}(\eta^{5}-P_{5}){FeCp}]PF_{6}$	
6c	$[{Cp^{-}Co}_{3}(\mu_{3}-P)_{2}]$	
6d	$[{Cp^{=}Co}_{3}(\mu_{3}-P)_{2}]$	RSA
7c	$[\{Cp^-Co\}_4P_4]$	RSA
7d	$[\{Cp^{=}Co\}_4P_4]$	RSA
8	$[{Cp*Fe} {Cp=Co}_2P_4P]$	
9	$[{Cp*Fe}_2(\mu_3-\eta^{4:4:1:1}-P_4){Cp=Co}]$	
10b	$[{Cp^{=}Co}_{2}(P_{2})_{2}]$	
11	Unbekannt	
12a	[Cp ^{-'} ₂ Fe]	
1 3 a	$[{Cp^{-}Fe}_{2}(\mu-\eta^{4:4}-P_{4})]$	
13c	$[{Cp}Fe_2(\mu-\eta^{4:4}-P_4)]$	
13d	$[{Cp}^{=}Fe}_{2}(\mu-\eta^{4:4}-P_{4})]$	RSA
14	$[{Cp^{=}Fe}_{2}(\mu_{3}-\eta^{4:4:1:1}-P_{4}){Cp^{=}Co}]$	RSA
15	$[{Cp}^{=}Fe}_{2}{Cp}^{=}Co}_{2}P_{4}]$	RSA
16	$[{Cp}^{-}Fe}_{4}(P_{2})_{2}]$	RSA
17	[{Cp ⁻ Co} ₄ (P=O) ₄]	RSA
18d	[{Cp ⁼ Co} ₄ (P=O) ₂ P ₂]	RSA
19	$[{Cp^{-}Co}_{4}(PCH_{3})P_{3}]I$	

INHALTSVERZEICHNIS

I. EINLEITUNG	1
1. KURZE EINFÜHRUNG IN DIE COBALT-PHOSPHOR-CHEMIE	1
2. CYCLOPENTADIENYLCYCLOPENTAPHOSPHAEISEN(II)-KOMPLEXE ALS PHOSPHORQUELL	Е 2
3. [{Cp ^R Fe(CO) ₂ } ₂] als Edukt für neue Eisen-Phosphor-Komplexe	3
4. Additionen an unsubstituierte Phosphor-Liganden	4
4.1 Oxidationsreaktionen mit Elementen der 6. Hauptgruppe	4
4.2 Methylierung von unsubstituierten Phosphor-Liganden	5
5. SILYLIERTE CYCLOPENTADIENYL-LIGANDEN	5
II. PROBLEMSTELLUNG	7
III. EIGENE ERGEBNISSE	8
1. DARSTELLUNG GEMISCHT SUBSTITUIERTER CYCLOPENTADIENE	8
1.1 tertButyl-(trimethylsilyl)cyclopentadien (1a)	8
1.2 Darstellung von 2-(tertButyl)-5,5-bis(trimethylsilyl)-2,4-cyclopentadien (1b)	9
1.3 ¹ H-NMR-spektroskopische Daten	.10
2. VERBINDUNGEN DES TYPS $[CP^{R}CO(CO)_{2}]$ (2) $(CP^{R}=CP^{-\prime}, CP^{=\prime})$.11
2.1 ¹ H-NMR-spektroskopische Daten	.12
2.2 IR-spektroskopische Daten	.13
2.3 Massenspektrometrische Daten	.13
3. Synthese von Carbonylen des Typs [$\{CP^RFe(CO)_2\}_2$] (3)	.14
3.1 Darstellung von [{ $Cp^{-}Fe(CO)_{2}$] (3a) und [{ $Cp^{-}Fe(CO)_{2}$] (3b)	.14
3.2 Spektroskopische Daten von [{ $Cp^{-} Fe(CO)_{2}$ }] (3a) und [{ $Cp^{-} Fe(CO)_{2}$ }] (3b)	15
3.3 Massenspektrometrische Daten	.17
4. Synthese von silyl-substituierten (Cyclopentadienyl)-	
(PENTAPHOSPHOLYL)EISEN(II)-KOMPLEXEN	.18
4.1 Spektroskopische Daten	.19
4.2 Röntgenstrukturanalysen	.22
4.3 Orientierender Versuch zur Darstellung von [{ $Cp^{=}Fe$ }($\eta^{5:5}$ - P_{5}){ $FeCp$ }] PF_{6} (5d)	31
5. Cothermolyse von $[Cp^*Fe(\eta^5-P_5)]$ (VII) mit $[Cp^RCo(CO)_2]$ (2) in siedendem	
DEKALIN	.33
5.1 Charakterisierung von $[{Cp^{R}Co}_{3}(\mu_{3}-P)_{2}]$ (6) $(Cp^{R} = Cp^{=}, Cp^{-})$.34
5.2 Charakterisierung von [{ $Cp^{R}Co$ } ₄ P_{4}] (\mathcal{T}) ($Cp^{R} = Cp^{=}, Cp^{-}$)	.41

5.3 Charakterisierung von [{ Cp^*Fe }{ $Cp^=Co$ } ₂ P_4P] (8) und [{ Cp^*Fe } ₂ (μ_3 - $\eta^{4:4:1:1}$ -	-
P_4 { Cp^-Co }] (9)	51
5.4 Orientierender Versuch zur Cothermolyse von $[Cp*Fe(\eta^5-P_5)]$ (VII) mit	
$[Cp^{=}Co(CO)_{2}](\mathbf{2b})$	53
6. Cothermolyse von $[Cp^{=}Fe(\eta^{5}-P_{5})]$ (4D) mit $[Cp^{=}Co(CO)_{2}]$ (2D) in siedendem	
DEKALIN	57
6.1 Charakterisierung von [{ $Cp^{=}Fe$ } ₂ (μ - $\eta^{4:4}$ - P_4)] (13d)	60
6.2 Charakterisierung von [{ $Cp^{=}Fe$ } ₂ (μ_3 - $\eta^{4:4:1:1}$ - P_4){ $Cp^{=}Co$ }] (14)	66
6.3 Charakterisierung von [$\{Cp^{=}Fe\}_{2}\{Cp^{=}Co\}_{2}P_{4}$] (15)	74
6.4 Orientierende Versuche	80
7. Cothermolyse von $[CP^{R_1}Fe(\eta^5-P_5)]$ (4) und $[\{CP^{R_2}Fe(CO)_2\}_2]$ (3)	86
$7.1 \ Cp^{RI} = Cp^{R2} \dots$	86
$7.2 \ Cp^{RI} \neq Cp^{R2}$	88
7.3 Die Reihe $Cp^* \rightarrow Cp^- \rightarrow Cp^-$	92
8. EINSATZ VON [{ $CP^{=}CO$ } ₄ P ₁₀] (V) ALS NEUE PHOSPHORQUELLE	93
8.1 Cothermolyse von [{ $Cp^{=}Co$ } ₄ P_{10}] (V) mit [$Cp^{=}Co(CO)_{2}$] (2d)	93
8.2 Cothermolyse von [{ $Cp^{=}Co$ } ₄ P_{10}] (V) mit [{ $Cp^{=}Fe(CO)_{2}$ } ₂] (3d)	94
8.3 Charakterisierung von [$\{Cp^{=}Fe\}_{4}(P_{2})_{2}$] (16)	95
8.4 Vergleich der Komplexe vom Typ [$\{Cp^{=}Co\}_{4-n}\{Cp^{=}Fe\}_{n}P_{4}$]	100
9. Reaktionsverhalten der Komplexe vom Typ [$\{CP^RCO\}_4P_4$] (7)	
$(\mathbf{C}\mathbf{P}^{\mathbf{R}} = \mathbf{C}\mathbf{P}^{-}, \mathbf{C}\mathbf{P}^{=})$	103
9.1 Reaktionsverhalten gegenüber molekularem Sauerstoff	103
9.2 Methylierung von [{ $Cp^{-}Co$ } ₄ P_4] (7 c)	113
IV. EXPERIMENTELLER TEIL	118
1. ANALYSEMETHODEN	118
2. Ausgangsverbindungen	119
3. Versuchsbeschreibungen	120
3.1 Darstellung von (tertButyl)-(trimethylsilyl)- und (tertButyl)bis-(trimetylsilyl	!)-
cyclopentadien	120
3.2 Synthese von $[Cp^{R}Co(CO)_{2}]$ $(Cp^{R} = Cp^{-2}, Cp^{-2})$	121
3.3 Synthese von $[{Cp^{R}Fe(CO)_{2}}] (3) (Cp^{R} = Cp^{-2}, Cp^{-2})$	123
3.4 Synthese von $[Cp^{R}Fe(\eta^{5}-P_{5})]$ $(Cp^{R}=Cp^{-2}, Cp^{-1}, Cp^{-1})$	124
3.5 Darstellung von [{ $Cp^{=}Fe$ }($\eta^{5:5}$ - P_{5}){ $FeCp$ }] $PF_{6}(\mathbf{5d})$	125

3.6 Cothermolyse von $[Cp^*Fe(\eta^5 - P_5)]$ (VII) mit $[Cp^=Co(CO)_2]$ (2d)125
3.7 Thermolyse von $[Cp*Fe(\eta^5-P_5)]$ (VI) mit $[Cp^-Co(CO)_2]$ (2 c)
3.8 Cothermolyse von $[Cp*Fe(\eta^5-P_5)]$ (VII) mit $[Cp^{-1}Co(CO)_2]$ (2b)
3.9 Cothermolyse von $[Cp^{=}Fe(\eta^{5}-P_{5})]$ (4d) mit $[Cp^{=}Co(CO)_{2}]$ (2d) in siedendem
Dekalin
3.10 Cothermolyse von $[Cp^{-}Fe(\eta^{5}-P_{5})]$ (4a) mit $[Cp^{-}Co(CO)_{2}]$ (2d) in siedendem
Dekalin
3.11 Cothermolyse von $[Cp^{-}Fe(\eta^{5}-P_{5})]$ (4c) mit $[Cp^{-}Co(CO)_{2}]$ (2c) in siedendem
Dekalin
3.12 Cothermolyse von $[Cp^{R_1}Fe(\eta^5 - P_5)]$ (4) mit $[\{Cp^{R_2}Fe(CO)_2\}_2]$ (2) in siedendem
Xylol
3.13 Cothermolyse von [{ $Cp^{=}Co$ } ₄ P_{10}] (V) mit [$Cp^{=}Co(CO)_2$] (2d) in siedendem
Dekalin
3.14 Cothermolyse von $[{Cp^{=}Co}_{4}P_{10}]$ (V) mit $[{Cp^{=}Fe(CO)_{2}}_{2}]$ (3d) in siedendem
Dekalin
3.15 Reaktion von [{ $Cp^{R}Co$ } ₄ P_{4}] (\mathcal{T}) ($Cp^{R} = Cp^{-}$, $Cp^{=}$) mit Luftsauerstoff
3.16 Umsetzung von [{ $Cp^{-}Co$ } ₄ P_4] (7 c) mit Iodmethan
V. ZUSAMMENFASSUNG137
VI. LITERATUR143
VII. ANHANG148
1. Anhang A
2. Anhang B

I. Einleitung

1. Kurze Einführung in die Cobalt-Phosphor-Chemie

Durch den Einsatz von Cyclopentadienyl-Derivaten als stabilisierende Liganden eröffnete sich eine kaum überschaubare Vielfalt an neuartigen Metallkomplexen mit unsubstituierten Phosphor-Liganden^[1-3]. Einer der ersten Komplexe dieser Klasse wurde von *Dahl et al.*^[4] durch die Umsetzung von weißem Phosphor mit Cyclopentadienylcobaltdicarbonyl (**I**) dargestellt.

 $[{CpCo}_4P_4]$ (II) besitzt ein verzerrtes Cubangerüst der allgemeinen Zusammensetzung $[{L_nM}_4P_4]$. Dieser Strukturtyp konnte auch mit anderen Übergangsmetallen wie z.B. Nickel und Eisen^[5,6] realisiert werden. Ebenso gelang die Darstellung verzerrt kubischer Komplexe der Zusammensetzung $[{L_nM}_3P_5]^{[7]}$, $[{L_nM}_3P_4P]^{[5-7]}$ und $[{L_nM}_2P_6]^{[8]}$.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Im Arbeitskreis von *Prof. Dr. O. J. Scherer* besteht seit Mitte der achtziger Jahre ein reges Interesse an der Umsetzung von substituierten Cyclopentadienylcobaltdicarbonylen mit weißem Phosphor zur Erweiterung der Vielfalt an Cobalt-Komplexen mit unsubstituierten Phosphor-Liganden. So konnten neben [{Cp^RCo}₂(μ , $\eta^{2:2}$ -P₂)₂] (Cp^R = Cp*, Cp^{'''}, Cp^{''}, C₅Me₄Et, C₅Ph₅, Cp⁼) auch die Komplexe **III**, **IV** und **V** dargestellt werden^[9-13].

2. Cyclopentadienylcyclopentaphosphaeisen(II)-Komplexe als Phosphorquelle

Aufbauend auf dem von *King et al.* erstmals synthetisierten $[{Cp*Fe(CO)_2}_2]^{[14,15]}(VI)$ durch die Umsetzung von Eisenpentacarbonyl mit HCp* wurde $[Cp*Fe(\eta^5-P_5)]$ (VII) von *T*. *Brück*^[16] mittels Cothermolyse von VI mit weißem Phosphor in Xylol dargestellt. Alternativ zu weißem Phosphor kann VII in Reaktionen als "Phosphorlieferant" genutzt werden.

 Cp^{R} -substituierte Cyclopentaphosphoreisen(II)-Komplexe können mittlerweile mit einer Vielzahl unterschiedlicher Substituenten ($Cp^{R} = Cp', Cp'', Cp''', {}^{4}Cp, Cp*, Cp*', Cp^{5Bz}$) dargestellt werden^[16-20]. Das Reaktionsverhalten von **VII** war bereits Gegenstand zahlreicher Untersuchungen und kann in drei Gruppen unterteilt werden: Reaktionen unter Erhalt^[21,22], Öffnung^[22] und Abbau^[22,23,24] des P₅-Ringes. Als besonders interessant erwiesen sich die von *S. Weigel*^[25,26] durchgeführte Cothermolyse von Mono- und Di-(*tert.*-butyl)cyclopentadienylcobaltdicarbonyl mit Verbindung **VII**, die eine Palette mehrkerniger Cobalt-Phosphor-Komplexe (**VIII-XI**) ergaben.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

3. [{Cp^RFe(CO)₂}₂] als Edukt für neue Eisen-Phosphor-Komplexe

Durch Kurzzeitthermolyse und Bestrahlungsreaktionen verschiedener $[{Cp^RFe(CO)_2}_2]$ mit weißem Phosphor konnten zahlreiche neue Eisen-Phosphor-Komplexe synthetisiert und charakterisiert werden^[17-19,26,27]. In diesem Zusammenhang erwähnenswert sind die Untersuchungen von *G. Kemény* (**A**) und *T. Hilt* (**B**), die durch Cothermolyse mit weißem

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Phosphor neben den entsprechenden substituierten Pentaphosphaferrocenen auch die Komplexe **XII** und **XIII** synthetisieren konnten^[18,19,27,28].

4. Additionen an unsubstituierte Phosphor-Liganden

4.1 Oxidationsreaktionen mit Elementen der 6. Hauptgruppe

Bereits seit Mitte des neunzehnten Jahrhunderts sind Moleküle mit PX-Einheit (X = O, S, Se) in der organischen Chemie bekannt^[30]. Auch in der metallorganischen Chemie besteht ein reges Interesse an der Stabilisierung dieser Liganden^[25,29,31-35]. So gelang *S. Weigel*^[25] die Synthese einiger Übergangsmetallkomplexe mit verschiedenen PX-Liganden, darunter die zweifach bis vierfach oxidierten Komplexe vom Typ [{Cp^RCo}₄(P=X)_{4-n}P_n] (Cp^R = Cp', Cp''; X = O, S, Se, Te).

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

4.2 Methylierung von unsubstituierten Phosphor-Liganden

Die ersten Methylierungen auf dem Gebiet der phosphororganischen Chemie fanden bereits Mitte des vorletzten Jahrhunderts statt^[30,36]. Bisher konnten jedoch nur *Stoppioni et al.*^[37] einen η^3 -gebundenen, unsubstituierten *cyclo*-P₃-Ring in der Koordinationssphäre eines Metalls methylieren. Dies gelang durch die Reaktion der neutralen [(triphos)M(η^3 -P₃)]-Komplexe **XIVa-c** (M= Co, Rh, Ir) mit Trimethyloxoniumtetrafluoroborat bzw. Trifluormethyl-sulfonsäuremethylester. Als Produkt entstanden die ionischen Komplexe **XVa-c** mit η^3 -gebundenem (CH₃)P₃-Ring.

5. Silylierte Cyclopentadienyl-Liganden

Neben den bisher erwähnten alkylierten Cp-Liganden existieren seit den sechziger Jahren silylierte Cp-Liganden^[38,39]. In der metallorganischen Chemie gibt es bereits Untersuchungen darüber, wie sich Größe und elektronischer Einfluß verschieden substituierter Cp-Liganden auf das Resultat einer Reaktion auswirken können^[40]. Jedoch kann nach unserem Kenntnisstand noch keine verlässliche Aussage über die Auswirkungen der beiden unterschiedlichen Gruppen *tert*-Butyl bzw. Trimethylsilyl als Substituent am Cp-Ring in verschiedenen Komplextypen gemacht werden.

So unterscheidet sich das Produktbild bei der Cothermolyse von $[Cp^{R}Co(CO)_{2}]$ $(Cp^{R} = Cp^{-}, Cp^{-})$ mit weißem Phosphor^[13,41] von denen der bereits in *Kapitel 1.1* erwähnten

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil	0		C

II. Problemstellung

Im Rahmen dieser Arbeit sollte das Reaktionsverhalten der Pentaphosphaferrocene $[Cp^{R}Fe(\eta^{5}-P_{5})]$ ($Cp^{R}= Cp^{*}$, Cp^{-} , $Cp^{=}$, $Cp^{-'}$) gegenüber den monomeren Cyclopentadienylcobalt-dicarbonyl-Verbindungen des Typs $[Cp^{R}Co(CO)_{2}]$ ($Cp^{R}=Cp^{-}$, $Cp^{='}$, $Cp^{-'}$), sowie den dimeren Cyclopentadienyleisen-dicarbonyl-Verbindungen des Typs $[{Cp^{R}Fe(CO)_{2}}_{2}]$ ($Cp^{R}=Cp^{-}$, $Cp^{=}$, $Cp^{-'}$) untersucht werden. Ziel war die Herstellung homound heterometallischer Komplexe mit verschiedenen Koordinationsvarianten unsubstituierter Phosphor-Liganden. Weiterhin sollten die Produkte dieser Reaktionen, wenn möglich, mit den analogen Cp^{R} -substituierten Komplexen ($Cp^{R}=Cp'$, Cp'', Cp''') vergleichend diskutiert werden. Die sowohl alkyl- als auch silyl-substituierten Cyclopentadienyl-Liganden dienten zum Komplettieren der Versuchsreihen.

Ein weiteres Ziel war die Suche nach geeigneten Metall-Phosphor-Komplexen, die als Phosphorquellen fungieren könnten. Als Testreaktionen wurden Umsetzungen dieser Komplexe mit silyl-substituierten Cyclopentadienyl-Eisen- und -Cobalt-Carbonylen gewählt.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

III. Eigene Ergebnisse

1. Darstellung gemischt substituierter Cyclopentadiene

Da ein wesentlicher Bestandteil dieser Arbeit der Vergleich der silylierten mit der alkylierten Spezies darstellt, wurden in die Untersuchungen gemischt substituierte Cp^R-Liganden mit einbezogen.

1.1 tert.-Butyl-(trimethylsilyl)cyclopentadien (1a)

Das gemischt substituierte Cyclopentadien **1a** lässt sich leicht aus 1,1-Dimethylfulven mit Methyllithium und Chlortrimethylsilan in guten Ausbeuten generieren^[42a]. Die Wege **A** und **B** repräsentieren weitere Zugangsmöglichkeiten.

Weg A: Frisch gecracktes Cyclopentadien wird zu einer CH₃CH₂MgBr-Suspension hinzugefügt. Die nachfolgende Umsetzung mit *tert.*-Butylchlorid führt zum *tert.*-Butylcyclopentadien (**1f**). Dieser Fünfring wird durch Destillation isoliert und in einem weiteren Syntheseschritt mit äquimolaren Mengen an Butyllithium versetzt. Das resultierende Lithiumsalz reagiert mit Chlortrimethylsilan zum gewünschten Produkt **1a**.

Abbildung 1.1	Darstellung der Verbindung 1a
---------------	--------------------------------------

Weg B: Im ersten Syntheseschritt wird der silyl-substituierte Cp-Ring dargestellt und alkyliert. Die Ausbeute dieses Weges beträgt jedoch nur ein Drittel von Weg **A**.

Wie im Bis-(trimethylsilyl)cyclopentadien HCp⁼ (**1d**) liegt auch hier im wesentlichen ein Gleichgewicht zwischen der 1,1- und der 1,3-substituierten Form vor (siehe *Abbildung 1.2*). Während bei der zweifach silyl-substituierten Spezies die 1,1-Position im freien und die 1,3-

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Position im komplexierten Liganden bevorzugt wird^[38], wird bei HCp⁻⁻(**1a**) sowohl im freien als auch im komplexierten Zustand die 1,3- Substitution beobachtet ^[42a]. Dieses Ergebnis erstaunt nicht, da die Tms-Gruppe wesentlich leichter den 1,2- bzw. 1,3-Shift durchführen kann als die *tert*.-Butyl-Gruppe. Die durch einen prototropen Shift resultierenden Isomere haben im Protonenspektrum eine verschwindend geringe Intensität. Bei der Komplexierung dieses Liganden bieten sich dem Metall zwei gleichwertige aber unterschiedliche Koordinationsseiten an, was zur Bildung von Sterioisomeren führt. Die Benennung dieser in den resultierenden Verbindungen erfolgt nach *K. Schlögel*^[43].

1.2 Darstellung von 2-(tert.-Butyl)-5,5-bis(trimethylsilyl)-2,4-cyclopentadien (1b)

Dieser Ligand wurde bereits 1989 von *J. Okuda* auf anderem Wege synthetisiert^[42b]. Als Edukt für die Synthese von $HCp^{='}$ (**1b**) dient in dieser Arbeit $HCp^{-'}$ (**1a**). Wie bereits in der Literatur beschrieben ist, kann NMR-spektroskopisch nur das 2-(*tert.*-Butyl)-5,5-bis(trimethylsilyl)-2,4-cyclopentadien nachgewiesen werden^[42b,44]. Jedoch konnte *J. Okuda* **1b** zur Darstellung von $[Cp^{='}Fe(CO)_2Br]$, $[Cp^{='}_2Fe]$ und $[Cp^{='}_2Co]PF_6$ nutzen^[42b]. Daraus folgerte er ein Gleichgewicht mit dem CH-aciden 1,2,4-Isomer (siehe *Abbildung 1.3*).


```
Abbildung 1.3 Synthese und Isomerengleichgewicht von HCp^{=} (1b)
```

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

1.3 ¹H-NMR-spektroskopische Daten

Die ermittelten NMR-spektroskopischen Daten stimmen gut mit denen in der Literatur^[42a] überein und werden vollständigkeitshalber in Tabelle 1.1 wiedergegeben. Abbildung 1.4 weist auf die zugehörigen Positionen der H-Atome in den verschiedenen Isomeren hin.

Tabelle 1.1	¹ H-NMR-Daten von HCp ²	Tabelle 1.1 ${}^{1}H$ -NMR-Daten von $HCp^{-}(1a)$ und $HCp^{-}(1b)$ in $C_{6}D_{6}$ bei RT						
	i							
Proton	HCp ⁻ ' (1a)	Proton	HCp ⁼ ' (1b)					
	δ [ppm]		δ [ppm]					
H ^a	- 0.03 (s, 9H)	H ^a	- 0.09 (s, 18H)					
H^b	1.29 (s, 9H)	H^{b}	1.18 (s, 9H)					
H ^c	3.21 (s, 1H)	H ^c	6.04 (s, 1H)					
H^{d}	6.14 (s, 1H)	H^{d}	$6.43 (d, J_{HH} = 4.1 Hz, 1H)$					
H ^e	6.49 (s, 1H)	H ^e	6.73 (d, J _{HH} = 4.1 Hz, 1H)					
H^{f}	6.72 (s, 1H)							
H ^g	0.23 (s, 9H)							
H^{h}	1.26 (s, 9H)							
H^{i}	6.21 (s, 2H)							
H^{j}	6.29 (s, 2H)							

Abbildung 1.4 Protonensignalzuordnung in den Verbindungen 1a und 1b.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

2. Verbindungen des Typs $[Cp^{R}Co(CO)_{2}]$ (2) $(Cp^{R}=Cp^{-1}, Cp^{-1})$

1970 konnten *E. W. Abel*^[45] und *M. D. Rausch*^[46] unabhängig voneinander den monosilylierten Komplex [Cp⁻Co(CO)₂] (**2c**) herstellen. Erst knapp dreißig Jahre später wurde dann auch [Cp⁼Co(CO)₂] (**2d**) von *T. Völmecke*^[13] synthetisiert. Beide Cobalt-Carbonyle sind Gegenstand der Untersuchungen in den folgenden Kapiteln.

Die Darstellung von $[Cp^{-'}Co(CO)_2]$ (**2a**) erfolgt analog der von $[Cp^{-}Co(CO)_2]^{[13]}$ durch die Cothermolyse des zweikernigen Cobalt-Carbonyls $[Co_2(CO)_8]$ mit $HCp^{-'}(1a)$ in Gegenwart von 1,3-Cyclohexadien. Das Produktgemisch wird anschließend säulenchromatographisch an neutralem Aluminiumoxid (Aktivitätsstufe II) mit Hexan getrennt. Aufgrund des unsymmetrisch substituierten $Cp^{-'}$ -Liganden entsteht ein Racemat. Die beiden Enantiomere wurden nicht voneinander getrennt und konnten mit den verwendeten Untersuchungsmethoden nicht unterschieden werden.

Abbildung 2.1 Synthese von $[Cp^{-}Co(CO)_2]$ (2a)

Nach dem Entfernen des Lösungsmittels verbleibt ein rot-braunes Öl. Wie bei dem zweifach silylierten Komplex wird auch hier nur das 1,3-Addukt erwartet und die in *Abbildung 2.1* angegebene Strukturen angenommen. Im Gegensatz zu Verbindung $[Cp^{-}Co(CO)_2]$ (**2d**) wird augenscheinlich unter CO-Abspaltung das grüne Dimer $[{Cp^{-'}Co(CO)}_2]$ gebildet, welches im IR-Spektrum eine charakteristische Bande bei 1711 cm⁻¹ in Dichlormethan aufweist. Diese unerwünschte Zersetzungsreaktion kann durch Lagerung bei 0°C fast gänzlich unterbunden werden.

Die Darstellung von $[Cp^{='}Co(CO)_2]$ (**2b**) gestaltet sich problematischer. So können auf diesem Syntheseweg nur geringe Mengen des Carbonyls gewonnen werden. Nach der säulenchromatographischen Aufarbeitung verbleibt ein nicht trennbares Gemisch an $HCp^{='}$ (**1b**) und $[Cp^{='}Co(CO)_2]$ (**2b**). Verbindung **2b** ist ein braunes Öl. Auch hier wird die Bildung der für dimere Cobalt-Carbonyle charakteristischen grünen Farbe bei der Aufbewahrung bei

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Raumtemperatur beobachtet. IR-spektroskopisch kann im typischen Bereich für verbrückende CO-Liganden eine Bande bei 1712 cm⁻¹ detektiert werden. Diese Nebenreaktion kann trotz Kühlung bis -28°C nicht unterdrückt werden.

Abbildung 2.2	Synthese von $[Cp^{=}Co(CO)_{2}]$ (2b)
---------------	--

2.1¹H-NMR-spektroskopische Daten

In der nachfolgenden Tabelle werden die beiden Komplexe **2a** und **2b** mit den silylierten Analoga verglichen.

Tabelle 2.1	Vergleich der	¹ H-NMR-Daten	in	$C_6 D_6$	bei	Raumtemperatur	der
	Komplexe 2a, b,	d und e					

[Cp Co(CO) ₂] (2a)	$[Cp^{=}Co(CO)_{2}] (2d)^{[13]}$	$[Cp='Co(CO)_2] (2b)$	$[\mathrm{Cp}^{\equiv}\mathrm{Co}(\mathrm{CO})_2] (\mathbf{2e})^{[13]}$
0.20 (s, 9H)	0.20 (s, 18H)	0.27 (s, 18)	0.17 (s, 9H)
1.10 (s, 9H)		0.96 (s, 9H)	0.29 (s, 18H)
4.46 (s,1H)	4.77 (s, 1H)		
4.75 (s, 2H)	4.78(s, 1H)	4.72 (s, 2H)	4.97 (s, 2H)

Verbindungen 2a und 2d ähneln sich sehr. Das 2-H Ringproton wird merklich durch den formalen Ersatz einer *tert.*-Butyl-Gruppe um 0.31 ppm zu tieferem Feld verschoben. Trotz

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

unterschiedlicher Nachbarschaft der 4-H und 5-H Atome bei **2a** erscheint nur ein verbreitertes Signal für diese Ringprotonen bei 4.75 ppm.

Auch bei **2b** machen sich die unterschiedlichen induktiven Effekte der beiden Substituenten bemerkbar. Die Tms-Substituenten in Position 3 und 4 haben mit $\delta = 0.27$ ppm nahezu die gleiche chemische Verschiebung wie im Cp⁼-substituierten Analogon **2e**. Die *tert.*-Butyl-Gruppe erscheint erwartungsgemäß bei tieferem Feld. Wie bei **2a** treten die Ringprotonen bei etwas höherem Feld in Resonanz als im silylierten Analogon.

2.2 IR-spektroskopische Daten

Tabelle 2.2	Vergleich der IR-spektroskopischen Daten der Komplexe 2 a, b, d und e
	in CH ₂ Cl ₂

[Cp Co(CO) ₂] (2a)	$[Cp^{=}Co(CO)_2] (2d)$	[Cp ⁼ 'Co(CO) ₂] (2b)	$[Cp^{\equiv}Co(CO)_2] (2e)$
2015 cm ⁻¹	2018 cm^{-1}	2013 cm ⁻¹	2016 cm^{-1}
1952 cm ⁻¹	1954 cm^{-1}	1949 cm ⁻¹	1954 cm ⁻¹

Der Einfluss der unterschiedlichen Cp^R-Liganden fällt erwartungsgemäß gering aus. Die CO-Gruppen erscheinen im IR-Spektrum im Erwartungsbereich für terminale CO-Liganden.

2.3 Massenspektrometrische Daten

Von $[Cp^{-r}Co(CO)_2]$ (2b) konnte kein verwertbares CI- oder EI-Massenspektrum erhalten werden. Bei $[Cp^{-r}Co(CO)_2]$ (2a) erscheint bei m/z = 307.5 amu der Molekülionenpeak. Des weiteren kann bei m/z = 279.5 amu das Fragment $[Cp^{-r}Co(CO)]^+$ detektiert werden. Die Abspaltung des zweiten CO-Liganden kann im erhaltenen Massenspektrum nicht nachgewiesen werden.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil	_		_

3. Synthese von Carbonylen des Typs [{Cp^RFe(CO)₂}₂] (**3**)

Eisen-Carbonyle des Typs $[{Cp^{R}Fe(CO)_{2}}_{2}]$ waren bereits Gegenstand zahlreicher Untersuchungen zur Darstellung von Clustern mit "nackten" Phosphor-Liganden^[17-19,26,27]. Jedoch beschränkten sich diese Untersuchungen auf alkyl-substituierte Cp^R-Liganden in der Koordinationssphäre des Eisens.

 $[{Cp^{-}Fe(CO)_2}_2]$ (**3c**) wurde bereits 1971 von *E. W. Abel* synthetisiert^[47]. Erst 1992 folgte $[{Cp^{-}Fe(CO)_2}_2]$ (**3d**)^[48]. Beide Metallcarbonyle kamen jedoch nach unserem Kenntnisstand in der Darstellung von Komplexen mit "nackten" Phosphor-Liganden nicht zum Einsatz.

3.1 Darstellung von $[{Cp^{-}Fe(CO)_{2}}_{2}] (3a)$ und $[{Cp^{-}Fe(CO)_{2}}_{2}] (3b)$

Die Herstellung erfolgt analog zur Synthese von $[{Cp*Fe(CO)_2}_2]$ (VI)^[49]. HCp^{-'} (1a) wird in zwei Stufen mit Fe(CO)₅ in Xylol umgesetzt. Wie bereits bei den silylierten Dimeren vom Typ $[{Cp^RFe(CO)_2}_2]$ (Cp^R = Cp⁻, Cp⁼) erhöht sich die Löslichkeit stark im Vergleich zu der rein alkylierten Form. So ist die in der Literatur^[49] beschriebene zweitägige Extraktion bei der Aufarbeitung des Carbonyls **3a** und **3b** bereits nach wenigen Stunden beendet.

Abbildung 3.1	Allgemeine Synthese von [$\{Cp^{R}Fe(CO)_{2}\}_{2}$] (3)
---------------	---

[{Cp⁻Fe(CO)₂}₂] (**3a**) ist ein rot-brauner Feststoff, der kurzzeitig ohne sichtbaren Zerfall an Luft handhabbar ist. Unter Inertgasatmosphäre kann er bei Raumtemperatur monatelang gelagert werden. **3a** löst sich sehr gut in polaren und gut in unpolaren Lösungsmitteln. Bei der Bildung der zweikernigen Verbindung müssen Diasteriomere mit den Konfigurationen (pR,pR), (pS,pS), (pR,pS) und (pS,pR) diskutiert werden.

 $[{Cp^{=}Fe(CO)_2}_2]$ (**3b**) kann nur in geringen Mengen isoliert werden. Jedoch enthalten diese Chargen noch Spuren einer unbekannten paramagnetischen Verbindung, was zu einer extremen Verbreiterung der ¹H-NMR-Signale führt. Hierbei könnte es sich möglicherweise um das monomere $[Cp^{=}Fe(CO)_2]$ handeln. Bisher gelang die Separation nicht. Verbindung

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

3b ist ein schwarz-brauner Feststoff, der ohne sichtbaren Zerfall mehrere Wochen unter Inertgas gelagert werden kann. Der vergleichbare Komplex [$\{Cp^{\prime\prime\prime}Fe(CO)_2\}_2$] (**3g**) lässt sich in einer analogen Reaktion nicht generieren, da auf diesem Weg der Cp^{$\prime\prime\prime$}-Ligand zur Abspaltung von Isobuten neigt^[18]. Jedoch kann **3g** über [Cp^{$\prime\prime\prime$}FeBr(CO)₂] mit Kalium oder Cobaltocen generiert werden^[18].

3.2 Spektroskopische Daten von $[{Cp^{-}Fe(CO)_2}_2] (3a)$ und $[{Cp^{-}Fe(CO)_2}_2] (3b)$

In den nachfolgenden Tabellen werden die ¹H-NMR und IR-spektroskopischen Daten der Verbindungen **3a**, **b**, **d**, **g** und **h** gegenübergestellt. Als Lösungsmittel wurden Deuterobenzol (NMR) und Dichlormethan (IR) verwendet.

Die verschiedenen Cp^{R} -Liganden beeinflussen erwartungsgemäß die Wellenzahl der Carbonylbanden. Sowohl die terminalen (>1850 cm⁻¹) als auch die verbrückenden (<1850 cm⁻¹) CO-Liganden erscheinen in den typischen Bereichen.

Tabelle 3.1	Vergleich der spektroskopischen Daten der Verbindungen 3a , d und g .			
	Lösungsmittel: C_6D_6 (NMR), CH_2Cl_2 (IR)			

	$[{Cp''Fe(CO)_2}_2] (3g)^{[50]}$	[{Cp ^{-'} Fe(CO) ₂ } ₂] (3a)	$[{Cp}^{=}Fe(CO)_{2}_{2}] (\mathbf{3d})^{[48]}$
Η		0.47 (s, 18H)	0.20 (s, 36H)
$(\delta[ppm])$	1.37 (s, 36H)	1.41 (s, 18H)	
	3.65 (s, 4H)	3.93 (s, 4H)	4.43 (s, 4H)
	4.91 (s, 2H)	5.08 (s, 2H)	5.03 (s, 2H)
IR	2040 (st)	1987 (st)	1992 (st, Toluol)
(cm^{-1})	1942 (st)	1945 (st)	1937 (st, Toluol)
	1764 (st)	1767 (st)	1776 (st, Toluol)

Das Auftreten von zwei intensiven CO-Banden im terminalen Bereich weist auf das Vorliegen unterschiedlicher räumlicher Anordnungen der Substituenten hin. So kann für die Verbindungen der durch *F. A. Cotton*^[51] aufgeklärte "Scrambling-Prozess" angenommen werden, der den Wechsel der CO-Liganden von cis- zur trans-Stellung und den Übergang aus der verbrückenden in die terminale Koordination beschreibt. In *Abbildung 3.2* wird diese

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Isomerie schematisch dargestellt. Während zwei Banden mit geringen Unterschieden detektiert werden, differieren die Wellenzahlen der letzten Bande doch stark. Dies bringt den sterischen Aufwand der Liganden zum Ausdruck, wodurch der "Scrambling-Prozess" beeinflusst wird.

Abbildung 3.2 Cis/trans-Isomerie von $[{Cp}^{R}Fe(CO)_{2}]$ (3)

Im ¹H-NMR bewirkt die formale stufenweise Substitution einer *tert*.-Butyl-Gruppe des Cp^{''}-Liganden durch eine Tms-Gruppe eine Verschiebung der Ringprotonensignale zu tieferem Feld. Dies ist auf den entschirmenden Effekt der Tms-Gruppe zurückzuführen. Besonders stark wirkt sich dieser Effekt auf die 4-H und 5-H Atome aus. So ändert sich die Verschiebung von $\delta = 3.65$ ppm bei Verbindung **3g** über $\delta = 3.93$ ppm bei **3a** zu $\delta = 4.43$ ppm in Verbindung **3d** um fast 0.8 ppm. Wie bei [Cp^{-'}Co(CO)₂] (**2a**) unterscheiden sich auch bei [{Cp^{-'}Fe(CO)₂}₂] (**3a**) die Ringprotonen 4-H und 5-H ¹H-NMR-spektroskopisch nicht.

Tabelle 3.2	Vergleich der spektroskopischen Daten der Verbindungen 3b und 3h
	Lösungsmittel: C_6D_6 (NMR), CH_2Cl_2 (IR)

	[{Cp ⁼ 'Fe(CO) ₂ } ₂] (3b)	$[{Cp'''Fe(CO)_2}_2] (\mathbf{3h})^{[18]}$
$^{1}\mathrm{H}$	-0.12 (s, br, 36H)	1.40 (s, 36H)
δ[ppm]	1.05 (s, br, 18 H)	1.41 (s, 18H)
	6.14 (s, br, 4H)	4.84 (s, 4H)
IR	1986 (st)	
$[cm^{-1}]$	1945 (st)	1933 (st)
	1772 (st)	1764 (st)

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Auch bei der sterisch aufwändiger substituierten Verbindung **3b** kann im Gegensatz zu **3h** der sogenannte "Scrambling-Prozess" mittels IR-Spektroskopie beobachtet werden. Der dynamische Prozess wird trotz sterisch vergleichbarem Ausmaß im Gegensatz zum Cp^{'''}-Derivat nicht behindert. Dies könnte ein Hinweis auf die Beweglichkeit der Tms-Substituenten sein.

Wie bereits über $[{Cp^{-}Fe(CO)_2}_2]$ (**3a**) berichtet wurde, führt auch hier die formale Substitution der *tert.*-Butyl-Gruppen zu einem signifikanten Tieffeldshift der Ringprotonen. Jedoch bewirken die zwei Tms-Substituenten ebenfalls eine Hochfeldverschiebung der *tert.*-Butyl-Protonen. Dies konnte bei **3a** nicht beobachtet werden.

3.3 Massenspektrometrische Daten

Von [{ $Cp^{-}Fe(CO)_2$ }_2] (**3b**) konnte kein verwertbares CI- oder EI-Massenspektrum erhalten werden. Bei [{ $Cp^{-}Fe(CO)_2$ }_2] (**3a**) erscheint im CI-Spektrum bei m/z = 609.3 amu der Molekülionenpeak. Des weiteren kann bei m/z = 304.3 amu das Fragment [$Cp^{-}Fe(CO)_2$]⁺ bzw. [{ $Cp^{-}Fe(CO)_2$ }_2]²⁺ mit einer relativen Intensität von 51.5 % detektiert werden.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

4. Synthese von silyl-substituierten (Cyclopentadienyl)-(pentaphospholyl)eisen(II)-Komplexen

Das Potential von $[Cp^*Fe(\eta^5-P_5)]$ (VII) und $[Cp^*Fe(\eta^5-P_5)]$ (5j) als Phosphorquelle in verschiedenen thermischen sowie photochemischen Reaktionen zur Darstellung "nackter" Phosphor-Liganden wurde bereits eingehend untersucht^[1,2,21-26]. Jedoch wurde bis dato auf den Einsatz anderer $[Cp^RFe(\eta^5-P_5)]$ (4) verzichtet, obwohl eine Vielzahl alkyl-substituierter Komplexe dieses Typs existieren. Ein allgemeiner Zugangsweg zu Pentaphosphaferrocenen ist die Cothermolyse der zweikernigen Eisen-Carbonyl-Komplexe 3 mit einem Überschuss an weißem Phosphor in Dekalin^[52].

Abbildung 4.1 Synthese der Pentaphosphaferrocene 4a, b und d

Nach dem Entfernen des Lösungsmittels im Ölpumpenvakuum verbleibt ein brauner Rückstand, der säulenchromatographisch an Kieselgel (Aktivitätsstufe II) aufgearbeitet wird. In einer grünen Fraktion kann der Komplextyp $[Cp^{R}Fe(\eta^{5}-P_{5})]$ (4) mit Petrolether eluiert werden. Wie es bereits für alkyl-substituierte Pentaphosphaferrocene beschrieben wurde^[16,53], zersetzen sich auch die silylierten Komplexe bei der Trennung auf Aluminiumoxid.

Nach dem Entfernen des Lösungsmittels fällt ein grüner Feststoff an, der in feinen, miteinander vernetzten Nadeln auskristallisiert. Er ist an Luft handhabbar und ohne sichtbaren Zerfall mehrere Tage lagerfähig. Unter Inertgas können selbst nach Monaten keine

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Zerfallsprodukte nachgewiesen werden. Die Komplexe lösen sich alle gut in polaren und unpolaren Lösungsmitteln. Zur Röntgenstrukturanalyse taugliche Einkristalle konnten durch Abdiffusion des Lösungsmittels bei Raumtemperatur aus einer Hexan- bzw. Pentanlösung von $[Cp^{-}Fe(\eta^{5}-P_{5})]$ (4c) und $[Cp^{-}Fe(\eta^{5}-P_{5})]$ (4d) bzw. $[Cp^{-}Fe(\eta^{5}-P_{5})]$ (4a) erhalten werden. Für 4c muss ein Enantiomerenpaar diskutiert werden.

4.1 Spektroskopische Daten

4.1.1 ³¹P-NMR-Daten

Wie *Tabelle 4.1* zu entnehmen ist, treten die drei Pentaphosphaferrocene im ³¹P-NMR-Spektrum als Singulett im erwarteten Bereich in Resonanz. Eine Ausnahme bildet jedoch $[Cp^{-}Fe(\eta^{5}-P_{5})]$ (**4c**) mit zwei Signalsätzen (siehe hierzu *Kapitel 4.1.2*). Im Gegensatz zu $[Cp'Fe(\eta^{5}-P_{5})]$ (**4g**) und $[Cp'Fe(\eta^{5}-P_{5})]$ (**4f**) lassen sich die entsprechenden silylierten Verbindungen **4a**, **c** und **d** in höheren Ausbeuten synthetisieren und eignen sich deshalb auch für Folgereaktionen.

Tabelle 4.1 $^{31}P-NMI$ $[Cp^{R}Fe($			R-Verschiebungen η^5 -P $_5$)] (4)	in C_6D_6 und Aus	beuten verschiedener
	[Cp ^R Fe(Cp ^l	$[\eta^5 - P_5)]$	³¹ P-NMR [ppm]	max. Ausbeute [%]	Literatur
	Cp´		168.6	/	[17]
	Cp´´		169.0	10	[54]
	Cp´´´		165.6	84.3	[55]
	⁴ Cp		161.2	52.9	[55]
	Cp*		153.0	85	[52]
	Cp*'		152.8	75	[52]
	Cp ^{5Bz}		161.9	5	[16]
	Ср-́		167.4	52.5	
	Cp ⁼		168.9	80.9	
	Cp ⁻		169.6 / 168.9	28.7	

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

4.1.2 Das Phänomen [Cp⁻Fe(η^5 -P₅)] (4c)

Erstaunlicherweise zeigt das ³¹P-NMR-Spektrum von Verbindung **4c** zwei Signale bei $\delta = 169.6$ ppm und $\delta = 168.9$ ppm im Verhältnis 4 : 1. Ebenso werden im Protonenresonanzspektrum zwei unterschiedliche Sätze von Liganden detektiert, wie aus folgender Tabelle zu ersehen ist.

Tabelle 4.2	NMR-spektroskopische Daten von $[Cp^{-}Fe(\eta^{5}-P_{5})]$ (4c) in $C_{6}D_{6}$
-------------	--

	Satz 1	Satz 2
Verhältnis	4	1
¹ H-NMR (δ [ppm])	0.35 (s, 9H)	0.24 (s, 9H)
	4.12 (s, 2H)	3.65 (s, 2H)
	4.33 (s, 2H)	3.86 (s, 2H)
³¹ P-NMR (δ [ppm])	169.6	168.9

So liegt die Vermutung nahe, aufgrund der geringen Unterschiede der beiden Signale in der chemischen Verschiebung im ³¹P-NMR-Spektrum, dass es sich hierbei um ein Rotamerengemisch handelt. Die Durchführung temperaturabhängiger Resonanzspektroskopie im Bereich von 5°C bis 70°C sollte Aufschluss bringen. Es konnten aber keine dynamischen Prozesse beobachtet werden. Die Differenz der beiden Signale beträgt immer nahezu 0.7 ppm im ³¹P-NMR-Spektrum (siehe *Tabelle 4.3*).

Tabelle 4.3	Temperaturabhängige ³¹ P-NMR-Daten von	$[Cp^{-}Fe(\eta^{5}-P_{5})]$ (4c) in $C_{6}D_{6}$
-------------	---	---

Temperatur	r [°C]	5	10	20	30	50	70
³¹ P-NMR	Satz 1	169.2	169.3	169.6	169.8	170.3	171.0
(δ [ppm])	Satz 2	168.5	168.6	168.9	169.1	169.6	170.2
Differer	nz [ppm]	0.7	0.7	0.7	0.7	0.7	0.8

Die massenspektrometrischen Daten geben keinen Aufschluss auf das Vorhandensein von Strukturen höherer Aggregation (siehe *Kapitel 4.1.4*), da keine Massen größer als der Molekülionenpeak gefunden werden können.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

An **4c** konnte eine Röntgenstrukturanalyse durchgeführt werden, jedoch kann auch anhand dieser Daten der zweite Signalsatz (siehe *Kapitel 4.2.1*) nicht erklärt werden. Eine Verunreinigung mit $[Cp^{=}Fe(\eta^{5}-P_{5})]$ (**4d**) ist gänzlich auszuschließen.

Aufgrund der vorliegenden Daten kann kein schlüssiger Strukturvorschlag (Isomer?) gemacht werden.

4.1.3 ¹H-NMR-Daten von $[Cp^{-}Fe(\eta^{5}-P_{5})]$ (4a) und $[Cp^{-}Fe(\eta^{5}-P_{5})]$ (4d)

Tabelle 4.4	Vergleich	der	¹ H-NMR-Daten	von	4a,	d	und	g	in	$C_6 D_6$	bei
	Raumtemp	eratur	~								

$[Cp''Fe(\eta^{5}-P_{5})] (4g)^{[53]}$	$[Cp^{-}Fe(\eta^{5}-P_{5})]$ (4a)	$[Cp^{=}Fe(\eta^{5}-P_{5})]$ (4d)
δ [ppm]	δ [ppm]	δ [ppm]
	0.27 (s, 9H)	0.18 (s, 18H)
1.00 (s, 18H)	1.05 (s, 9H)	
3.6 (m, 3H)	3.75 (s, 2H)	3.91 (s, 2H)
	3.82 (s, 1H)	3.95 (s, 1H)

Wie bereits bei den zweikernigen Eisen-Carbonylen führt die formale Substitution der *tert.*-Butyl-Gruppe im Cp''-Liganden zu einer Verschiebung der Ringprotonensignale zu tieferem Feld. Ebenso wird beobachtet, dass bei **4a** die Einführung eines Tms-Substituenten die Aufsplittung des Ringprotonensignals im Vergleich zu **4g** bewirkt.

4.1.4 Massenspektrometrische Daten von $[Cp^{R}Fe(\eta^{5}-P_{5})]$ (4)

In der *Tabelle* 4.5 sind die charakteristischen Defragmentierungen der EImassenspektrometrischen Untersuchungen der einzelnen Verbindungen aufgelistet. Das P_5^+ -Fragment kann nicht detektiert werden. Im Spektrum von $[Cp^=Fe(\eta^5-P_5)]$ (**4d**) und $[Cp^-Fe(\eta^5-P_5)]$ (**4a**) wird die Abspaltung eines Tms-Substituenten gefunden. Während im EI-Spektrum von **4d** auch das Defragmentierungsmuster von $[Cp^-Fe(\eta^5-P_5)]$ (**4c**) zu erkennen ist, tritt das entsprechende bei **4a** nicht auf.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Tabelle 4.5	Massenspektrometrischen Daten von $[Cp^{R}Fe(\eta^{5}-P_{5})]$ (4)

Fragment	$[Cp^{-}Fe(\eta^{5}-P_{5})]$ (4a)		$[Cp^{-}Fe(\eta^{5}-P_{5})] (4c)$		$[Cp^{=}Fe(\eta^{5}-P_{5})] (\mathbf{4d})$	
	m/z	rel.	m/z	rel.	m/z	rel.
	[amu]	Intensität	[amu]	Intensität	[amu]	Intensität
Molekülionenpeak	403.8	100	347.8	100	419.3	100
$\left[Cp^{R}Fe(\eta^{5}-P_{5})\right]^{+}-(tms)^{*}$	330.5	9.9	/	/	346.4	14.4
$[Cp^{R}-Fe-P_{3}]^{+}$	341.9	85.5	285.5	59.1	357.3	56.2

*Abspaltung eines Tms-Substituenten am Cp-Ring

4.2 Röntgenstrukturanalysen

Von den Verbindungen **4a**, **4c** und **4d** konnten zur Strukturanalyse taugliche Einkristalle erhalten werden.

Alle drei Verbindungen haben wie das isoelektronische Ferrocen eine Sandwich-Struktur mit einem P₅- und einem Cp^R-Deck. Zusätzlich kann die Struktur als *nido*-Cluster mit n+2 = 8 GEPs beschrieben werden. Den Grundkörper bildet eine durch Eisen und den P₅-Ring aufgespannte pentagonale Pyramide.

Tabelle 4.6Elektronenzahl nach den Elektronenzählregeln von Wade und Ming	os ^[57]
---	--------------------

Fragment/Atom	nach Mingos	nach Wade
$1 x \{Cp^{R}Fe\}$	1 x 13 VE = 13 VE	$1 \ge 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = $
5 x P	5 x 5 VE = 25 VE	5 x 3 GE = 15 GE
Σ	38 VE	$16 \text{ GE} \equiv 8 \text{ GEPs}$

4.2.1 Röntgenstrukturanalyse von $[Cp^{-}Fe(\eta^{5}-P_{5})]$ (4c)

Auch das Ergebnis der Röntgenstrukturanalyse konnte das Auftreten zweier Signalsätze bei der NMR-spektroskopischen Untersuchung nicht erklären. Die Elementarzelle des Einkristalls enthält vier unabhängige Moleküle, deren Orientierungen nahezu parallel sind, bezogen auf

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

die Molekülachse Zentrum (Cp^R) -Eisen-Zentrum (P_5) . Das äußere Molekül **D** bildet eine Ausnahme. *Abbildung 4.2* zeigt die Orientierung in der Elementarzelle.

Abbildung 4.2 Elementarzelle von $[Cp^{-}Fe(\eta^{5}-P_{5})]$ (4c)

Die vier Moleküle unterscheiden sich in ihren strukturellen Daten nur unwesentlich. Der einzige Unterschied bildet die Orientierung der Fünfringe zueinander. In der Elementarzelle weist der P₅-Ring von Moleküle **A** in die entgegengesetzte Richtung. *Tabelle 4.7* gibt einen Überblick über die Abwickelung der Ebenen aus der parallelen Anordnung, die durch den Cpbzw. P₅-Ring aufgespannt werden. Der gemittelte Torsionswinkel gibt die Abweichung aus der ekliptischen Konformation an.

Tabelle 4.7	Abwinkelungen und Torsionswinkel der Moleküle A bis D
-------------	---

	Molekül A	Molekül B	Molekül C	Molekül D
Abwinkelung [°]	2.7	2.5	2.3	2.6
Torsionswinkel [°]	5.2	0.7	7.1	3.6

Vergleicht man die Daten in Anbetracht der Elementarzelle, dann liefert Molekül **D** die besten Ergebnisse, da die Konformation der Moleküle **A** bis **C** stark durch die enge Ordnung

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

beeinflusst wird. Die folgenden Daten und Struktur von Molekül **D** werden stellvertretend für alle vier unabhängigen Moleküle aufgeführt. Detaillierte Angaben sind dem Anhang **A.1** zu entnehmen.

Abbildung 4.3	Röntgenstruktur von $[Cp^{-}Fe(\eta^{5}-P_{5})]$ (4c)
---------------	--

Abbildung 4.4Pentagonal-pyramidales Schweratomgerüst und Ringkonformation

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Tabelle 4.8	Ausgewählte	Tabelle 4.9	Ausgewählte
	Bindungslängen		Bindungswinkel
Bindung	Bindungslängen	Bindung	Bindungswinkel
	[Å]		[°]
Fe-P1	2.3645(12)	P5-P1-P2	107.83(8)
Fe-P2	2.3472(13)	P1-P2-P3	108.67(8)
Fe-P3	2.3674(13)	P2-P3-P4	107.55(8)
Fe-P4	2.3667(13)	P3-P4-P5	108.11 (8)
Fe-P5	2.3583(13)	P4-P5-P1	107.83(8)
P1-P2	2.094(2)	(P ₅) _{Zent.} -Fe-Cp	Zent. 178.0
P2-P3	2.097(2)		
P3-P4	2.103(2)		
P4-P5	2.108(2)		
P5-P1	2.094(2)		
Fe-Cp ⁻ _{Zent.}	1.704		
Fe-(P ₅) _{Zent.}	1.549		

Tabelle 4.10

Ausgewählte Ebenen und Ebenenschnittwinkel von 4c

Ebene	Atome	Abweichung aus der besten Ebene [Å]		Ebenen	Winkel [°]
E1	P1-P2-P3-P4-P5	0.007		E1/E2	2.6
E2	C11-C12-C13-C14-C15	0.004			

Die P-P-Abstände weisen mit 2.1 Å Mehrfachbindungscharakter auf. Wie bereits bei dem ersten strukturanalytisch erfassten Pentaphosphaferrocen von *T. Brück*^[53] ist der Abstand zur *cyclo*-P₅ Ebene geringer als zum Cp^R-Ligand. Die beiden Ebenen sind nahezu parallel, jedoch bewirkt der Substituent eine Störung des Systems. Besonders auffällig sind die etwas kürzeren Fe-P2 bzw. Fe-P5-Abstände. Diese beiden Atome liegen in der unmittelbaren Nachbarschaft von P1, welches sich direkt unter dem Tms-Substituenten befindet. Auf der

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			
anderen Seite drückt der Tms-Substituent den Cp-Ring vom P₅-Deck weg, was sich in einer um 0.04 Å verlängerten Fe-C1-Bindung wiederspiegelt. Alle anderen Fe-C-Bindungen haben eine Länge von 2.08 Å. Die Winkel im P₅-Ring haben eine Winkelsumme von 539.99°.

4.2.2 Röntgenstrukturanalysen von $[Cp^-Fe(\eta^5-P_5)]$ (4a) und $[Cp^=Fe(\eta^5-P_5)]$ (4d)

Abbildung 4.5 zeigt die Ergebnisse der Röntgenstrukturanalysen mit Benennung der zentralen Baueinheiten. Detaillierte Angaben können dem Anhang **A.2** und **A.3** entnommen werden. Die Elementarzelle von **4a** ist zentrosymmetrisch und enthält beide Enantiomere. Stellvertretend wird das pR-Enantiomer^[43] wiedergegeben.

Abbildung 4.5	<i>Röntgenstruktur von</i> $[Cp^{-}Fe(\eta^{5}-P_{5})]$ (4 <i>a</i>) und $[Cp^{-}Fe(\eta^{5}-P_{5})]$ (4 <i>d</i>)
---------------	--

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Tabelle 4.11	Ausgewählte					
	Bindungslä	ngen				
Bindung	Bindungs	längen [Å]				
	4a	4d				
Fe-P1	2.3675(15)	2.3667(9)				
Fe-P2	2.3527(14)	2.3563(9)				
Fe-P3	2.3766(16)	2.3752(9)				
Fe-P4	2.3697(13)	2.3746(9)				
Fe-P5	2.3728(13)	2.3744(9)				
P1-P2	2.115(3)	2.133(2)				
P2-P3	2.102(3)	2.109(2)				
P3-P4	2.082(2)	2.0730(16)				
P4-P5	2.064(2)	2.0708(15)				
P5-P1	2.099(3)	2.0973(18)				
D						
Fe-Cp ^K _{Zent.}	1.711	1.712				
$Fe-(P_5)_{Zent.}$	1.561	1.561				

Bindung	Bindungswinkel [°]			
	4a	4d		
P5-P1-P2	107.73(10)	108.24(6)		
P1-P2-P3	107.07(9)	107.57(6)		
P2-P3-P4	108.16(10)	106.78(6)		
P3-P4-P5	108.80(9)	108.32(6)		
P4-P5-P1	108.20(9)	109.07(6)		
(P ₅) _{Zent.} -Fe-Cp ⁻ _{Zent.}	177.6	177.2		

Ausgewählte

Bindungswinkel

Tabelle 4.13

Ausgewählte Ebenen und Ebenenschnittwinkel von 4a und 4d

Ebene	Atome	Abweichung aus der besten Ebene [Å]		Ebenen	Winł	xel [°]
		4 a	4d		4 a	4d
E1	P1-P2-P3-P4-P5	0.0113	0.0076	E1/E2	2.8	2.3
E2	C11-C12-C13-C14-C15	0.0057	0.0045			

Während $[Cp^{=}Fe(\eta^{5}-P_{5})]$ (4d) vorwiegend in verwachsenen Nadeln auskristallisiert, entstehen bei 4a kleine quaderförmige Einkristalle.

Die Kristallstrukturen weisen **4a** und **4d** als Derivate des von *T. Brück* charakterisierten Pentaphosphaferrocens [Cp*'Fe(η^5 -P₅)] (**4j**)^[16] aus. Verbindung **4d** ist bezüglich des P₅-

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Tabelle 4.12

Ringes rotationsfehlgeordnet. Aufgrund der ekliptischen Konformation von 4a wird auch diese für 4d berücksichtigt (siehe Abbildung 4.5). Die Tabellen 4.11 bis 4.13 geben einige ausgewählte Strukturparameter der beiden Verbindungen $[Cp^{-}Fe(\eta^{5}-P_{5})]$ (4a) und $[Cp^{-}Fe(\eta^{5}-P_{5})]$ (4d) vergleichend wieder. Der Unterschied zwischen den beiden Pentaphosphaferrocenen fällt erwartungsgemäß gering aus. Die Winkelsummen der planaren Cyclo-P₅-Einheiten betragen 539,96° (4a) und 539.98° (4d). Die Abstände im P₅-Ring bei 4d sind etwas aufgeweitet. Dies zeigt sich insbesondere in der um 0.02 Å geringfügig längeren P1-P2-Bindung. Die durchschnittlichen P-P-Abstände liegen mit 2.09 Å eindeutig unterhalb des P-P-Einfachbindungsabstandes von 2.21 Å im weißen Phosphor und weisen somit Mehrfachbindungscharakter auf. Die maximale Abweichung aus der P₅-Ebene fällt bei 4a etwas größer aus. Mit 2.36 bis 2.37 Å befinden sich die Fe-P-Abstände eindeutig im bindenden Bereich. Die beiden Geraden durch je einen Ringcentroiden und den Eisenkern schneiden sich in einem Winkel von 177.6° (4a) und 177.2° (4d). Die Störung einer tert.-Butyl-Gruppe fällt augenscheinlich etwas schwächer aus, da die Abwinkelung in 4a geringer ist. In beiden Verbindungen haben die zwei Fünfringe nahezu ekliptische Konformation, mit einem jeweiligen gemittelten Torsionswinkel von $\gamma = 3.0^{\circ}$ (4a) und $\gamma = 1.7^{\circ}$ (4d).

Welchen Einfluss hat der *tert*.-Butyl-Substituent auf die Struktur von $[Cp^-Fe(\eta^5-P_5)]$ (**4a**) im Vergleich zu $[Cp^-Fe(\eta^5-P_5)]$ (**4d**)?

Einerseits hat der Tms-Substituent aufgrund seiner längeren Si-C-Bindung einen größeren räumlichen Anspruch. Andererseits sollte der Tms-Substituent aufgrund dieser längeren Bindung beweglicher sein und eine kleinere Rigidität als der *tert*.-Butyl-Substituent besitzen. In *Abbildung 4.6* wird dieser räumliche Anspruch der beiden verschiedenen Substituenten zum besseren Verständnis vereinfacht als Kegel dargestellt.

Abbildung 4.6Theoretische Aufspannung eines Kegels der tert.-Butyl- bzw. Tms-Gruppe

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Die Grundfläche des Kegels bildet ein Kreis, dessen Zentrum der Schwerpunkt (+) des durch die CH₃-Gruppen aufgespannten Dreiecks bildet. Als Radius wird der mittlere Abstand der Kohlenstoffatome der CH₃-Gruppen zum Schwerpunkt (+). Die Spitze des Kegels ist das C_{Ring} -Atom. Somit ergibt sich als Höhe die Entfernung des Ringatoms zum Schwerpunkt (+). Jeder ermittelte Abstand wird um den theoretischen Wert^[61] einer kovalenten C-H-Bindung (1.14 Å) korrigiert, um die Auswirkungen der H-Atome in diesem stark vereinfachten Modell zu berücksichtigen. *Tabelle 4.14* gibt die berechneten Werte für die beiden Kegel wieder.

Tabelle 4.14	Sabelle 4.14 Bestimmte und berechnete Daten der erzeugten Kegel						
Substituent		tertButyl-	Trimethylsilyl-				
Radius [Å]		2.633	2.880				
Grundfläche [Å ²]		21.777	26.058				
Höhe [Å]		3.260	3.545				
Mantelfläche [Å ²]		iche $[Å^2]$ 34.663					
Volumen [Å ³]		23.664	30.001				
Volumenverhältnis	~	4	5				
Kegelwinkel [°]		77.9	78.2				
4							

Die Kegelwinkel differieren nur unwesentlich. Vergleicht man die Volumina der beiden Kegel miteinander, so ist das Volumen der Tms-Gruppe um etwa ein Viertel größer. Dies spiegelt sich auch im Fe-C3 bzw. Fe-P3 Abständen in 4a wieder. Diese sind im Vergleich zu den anderen aufgrund des Tms-Substituenten etwas aufgeweitet. Auch die Fe-C1 bzw. Fe-P1 Bindungen sind etwas länger als die jeweiligen verbleibenden drei, jedoch mit etwa 0.01 Å jeweils kleiner als Fe-C3 bzw. Fe-P3. Beide Substituenten sind mit 9.2° aus der von Cp-Ring aufgespannten Ebene, vom cyclo-P5-Ring weg, abgewinkelt. Nun lässt sich zumindest für diese Struktur zeigen, dass der sterische Einfluss des etwas größeren Tms-Substituenten minimal anders ausfällt als beim tert.-Butyl-Substituenten. Aufgrund der berechneten Volumina wären größere Differenzen zu erwarten gewesen. Die beiden Sandwichdecks sind 2.8° mit geringfügig stärker zueinander geneigt als im zweifach silvlierten Pentaphosphaferrocen 4d. Die Symmetrie wird durch den kleineren tert.-Butyl-Substituenten stärker gestört. Die verlängerten P-P-Abstände lassen sich durch die größere Entfernung der Methylgruppen im Tms-Substituenten vom Ringsystem erklären.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

4.2.3 Vergleich der strukturellen Daten mit bekannten Pentaphosphaferrocenen

Wie bereits in der Einleitung erwähnt, können Pentaphosphaferrocene mit einer Vielzahl von Liganden dargestellt werden. Jedoch gelang es nur $[Cp^{R}Fe(\eta^{5}-P_{5})]$ (4) $(Cp^{R} = Cp^{*'}, Cp^{'''}, {}^{4}Cp)$ strukturanalytisch zu charakterisieren. Die *Tabelle 4.15* gibt die für den Vergleich wesentlichen Daten wieder.

Die Fe-P- und P-P-Abstände unterscheiden sich nur geringfügig. Jedoch kann in der Entfernung der Fünfringe zueinander eine leichte Tendenz festgestellt werden. Die Methylgruppen der Alkyl-Substituenten befinden sich näher am Ringsystem und verursachen dadurch einen größeren Deckabstand (~ 3.29 Å). Die Methylgruppen der Tms-Substituenten haben einen größeren Abstand vom Ringsystem aufgrund der längeren Si-C-Bindung und erlauben eine geringe Annäherung der beiden Fünfringe um ~ 0.02 Å bis ~ 0.03 Å. Im Cp*'- substituierten Derivat haben die Methyl- bzw. Ethylgruppen einen vergleichbar kleinen sterischen Aufwand. Hier ist der Abstand der beiden Decks mit 3.24 Å am geringsten.

Tabelle 4.15	Vergleich der strukturellen Daten der Verbindungen 4a , c , d , h , j und k
	des Typs $[Cp^{R}Fe(\eta^{5}-P_{5})]$. Alle Abstände und Winkel sind gemittelte Werte

Bindung	Cp ⁻	Cp	Cp ⁼	Cp´´´	⁴ Cp	Cp*′
[Å]	(4 c)	(4a)	(4d)	(4h)	(4 k)	(4 j)
P-P	2.10	2.09	2.11	2.08	2.11	2.09
Fe-P	2.37	2.37	2.37	2.38	2.35	2.35
Fe-P _{5(Zent.)}	1.56	1.56	1.56	1.57	1.58	1.53
$Fe\text{-}Cp^{R}_{(Zent.)}$	1.70	1.71	1.71	1.72	1.72	1.71
Winkel [°]						
$\Sigma(P_5)$	539.99	539.96	539.98	539.90	539.99	539.90
$(P_5)/Cp^R$	2.6	2.8	2.3	2.0	1.7	0.3
Torsion [*]	3.6	3.0	1.7	15	8.7	21

*Verdrehung der beiden Fünfringe aus der ekliptischen Konformation

Auffällig erweisen sich die Torsionswinkel der einzelnen Verbindungen. Bereits *T. Hilt* mutmaßte, dass bei steigendem sterischen Anspruch der Substituenten am Cp-Ring die ekliptische Konformation angestrebt wird^[18,19]. Das von *T. Brück* charakterisierte $[Cp^*Fe(\eta^5-P_5)]^{[16]}$ kristallisiert in der gestaffelten Konformation. Mit sterisch aufwändigeren

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Alkyl-Substituenten wird in die ekliptische Stellung gedrängt. Eine fast exakte ekliptische Stellung konnte mit $Cp^{=}$ realisiert werden. Entscheidend scheint die Peripherie der Substituenten. Der Einfluss der Methylgruppen der Tms-Substituenten auf die *cyclo*-P₅ Einheit reicht aus, um die ekliptische Konformation im Kristall zu bevorzugen. Diese Betrachtungen können natürlich nur für dieses einfache Molekül in Anspruch genommen werden, da komplexere Gebilde mit mehreren Cp^{R} -Metallfragmenten sich gegenseitig

beeinflussen.

Α. Schneider konnte durch Umsetzung der dimeren Eisenverbindung $[(CH_3)_2Si\{(\eta^5-C_5(CH_3)_4)(CO)(\mu-CO)Fe\}_2]$ mit weißem Phosphor den Bis-*cyclo*-P₅-Komplex $[(CH_3)_2Si\{(\eta^5-C_5(CH_3)_4)Fe(\eta^5-P_5)\}_2]^{[57]}$ generieren. Der bei diesem Molekül beobachtete Si-C_{Ring}-Abstand von 1.90 Å ist aber aufgrund der Brückenfunktion der Si(CH₃)₂-Gruppe um 0.03 Å gestreckt im Vergleich zu den hier in den Komplexen 4a, c und d gefundenen Daten. So kann unter Berücksichtigung der in diesem Kapitel diskutierten Fakten angenommen werden, dass der Einfluss der Si(CH₃)₂-Gruppe gering ausfällt, da die beiden Methyl-Gruppen wegen der tetraedrischen Umgebung am Si-Atom, vom P5-Ring weg weisen und somit ein großer Wert für die Torsion aus der ekliptischen Konformation erwartet wird. Dies wird durch den aus den gespeicherten Daten nachträglich ermittelten mittleren Torsionswinkel von 28.7° bestätigt. Die beiden Fünfringe stehen demnach in gestaffelter Konformation.

4.3 Orientierender Versuch zur Darstellung von [{ $Cp^{=}Fe$ }($\eta^{5:5}$ - P_{5}){FeCp}] PF_{6} (5d)

Die von *M. I. Rubinskaya* entwickelte Aufstockungsreaktion von Decamethylferrocen zum kationischen Tripeldecker konnte erfolgreich von *T. Brück* auf die Pentaphosphaferrocen-Chemie übertragen werden^[53,58]. Diese Reaktion lässt sich auch auf $[Cp^{=}Fe(\eta^{5}-P_{5})]$ (4d) anwenden. Bestrahlt man eine hellgrüne Lösung von 4d in Dichlormethan in Anwesenheit äquimolarer Mengen des Ferroceniumsalzes $[{CpFe}(\eta^{6}-C_{6}H_{6})]^{+}PF_{6}^{-}$ mit einer 150 W-Wolfram-Glühlampe 6h lang, so schlägt die Farbe nach braun um. Das Produktgemisch enthält nicht umgesetztes Edukt, welches durch mehrmaliges Waschen mit Petrolether vollständig entfernt werden kann. *Tabelle 4.16* gibt die spektroskopischen Daten wieder.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Tabelle 4.16	Vergleich der NMR-Daten von $[{Cp^{=}Fe}(\eta^{5:5}-P_5){FeCp}]PF_6$ (gemessen
	in Aceton- d_6 (5d) bzw. in Dichlormethan- d_2 (5h und 5i)

	[{Cp ^R Fe}(η ^{5:5} -P ₅){FeCp}]PF ₆			
Cp ^R	$Cp^{=}(5d)$	Cp ^{···[18]} (5h)	Cp* ^[53] (5i)	
$^{1}\mathrm{H}$	0.36 (s, 18H)		1.11 (s, 15H)	
$(\delta[ppm])$	3.52 (s, 5H)	Keine	3.48 (s, 5H)	
	3.66 (s, 2H)	Angaben		
	3.79 (s, 1H)			
³¹ P	- 0. 6 (s, 5P)	- 15.5 (s, 5P)	0.8 (s, 5P)	
$(\delta[ppm])$	-138.2 (spt, 1P)	-144 (spt, 1P)	-141.6 (spt, 1P)	
	$(^{1}J_{PF} = 710 \text{ Hz})$	$(^{1}J_{PF} = 710 \text{ Hz})$	$(^{1}J_{PF} = 710 \text{ Hz})$	

Zur Untermauerung der NMR-spektroskopischen Daten kann bei m/z = 541 amu im EI-Massenspektrum das Signal für $[{Cp^{=}Fe}(\eta^{5:5}-P_5){FeCp}]^+$ detektiert werden. Des weiteren können die erwarteten Fragmente $[{Cp^{=}Fe}(\eta^{5}-P_5)]^+$ (m/z = 420 amu) und $[{CpFe}(\eta^{5}-P_5)]^+$ (m/z = 276 amu) zugeordnet werden. Jedoch gelang bisher die analysenreine Darstellung des Komplexes nicht. Aufgrund der erhaltenen Daten kann die Reaktion in Analogie zu den Ergebnissen von *T. Hilt*^[18] und *T. Brück*^[53] formuliert werden (siehe *Abbildung 4.7*). Der kationische 30VE-Komplex besitzt eine Tripeldecker-Struktur, wobei die zwei äußeren Decks durch die Cp-Liganden und das Mitteldeck durch ein *cyclo*-P₅-Fragment aufgespannt werden.

Abbildung 4.7Synthese des kationischen Tripeldeckerkomplexes 5d

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

5. Cothermolyse von $[Cp*Fe(\eta^5-P_5)]$ (VII) mit $[Cp^RCo(CO)_2]$ (2) in siedendem Dekalin

Erhitzt man ein Gemisch aus $[Cp*Fe(\eta^5-P_5)]$ (VII) und $[Cp^RCo(CO)_2]$ (2) $(Cp^R = Cp^-, Cp^-)$ in Dekalin auf 190° C, so wird die anfangs orange-braune Lösung bereits nach wenigen Minuten schwarz-braun. IR-spektroskopisch kann die Intensitätsabnahme der für $[Cp^=Co(CO)_2]$ bzw. $[Cp^-Co(CO)_2]$ charakteristischen Carbonylbanden verfolgt werden, wobei keine neuen IR-Banden auftreten. Die Reaktion wird abgebrochen, nachdem diese Banden verschwunden sind.

Abbildung 5.1	Umsetzung von $[Cp^*Fe(\eta^5-P_5)]$ (VII) mit $[Cp^RCo(CO)_2]$ (2)
---------------	---

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Durch die anschließende säulenchromatographische Aufarbeitung an basischem Aluminiumoxid (Aktivitätsstufe II) mit Petrolether als Eluens kann eine violette Fraktion von $[{Cp}^{R}Co}_{3}(\mu_{3}-P)_{2}]$ (6) erhalten werden. Die zweite Verbindung $[{Cp}^{R}Co}_{4}P_{4}]$ (7) kann nur zum Teil mit Petrolether als grüne Fraktion eluiert werden. Bei Erhöhung der Polarität wird mit einem Petrolether/Toluol-Gemisch (20:1) eine Mischfraktion aus $[{Cp}^{R}Co}_{4}P_{4}]$ (7) und den bisher nicht vollständig charakterisierten Komplexen $[{Cp}^{*}Fe}_{2}(\mu_{3}-\eta^{4:4:1:1}-P_{4}){Cp}^{-}Co}]$ (9) erhalten. Die Separation dieser Komplexe aus den jeweiligen Mischfraktionen gelang bisher nicht.

5.1 Charakterisierung von $[{Cp^{R}Co}_{3}(\mu_{3}-P)_{2}]$ (6) $(Cp^{R} = Cp^{-}, Cp^{-})$

5.1.1 Eigenschaften von $[{Cp}^{R}Co]_{3}(\mu_{3}-P)_{2}]$ (6)

Nach dem Entfernen des Lösungsmittels aus der ersten Säulenfraktion fallen die Komplexe $[{Cp^{-}Co}_{3}(\mu_{3}-P)_{2}]$ (**6c**) und $[{Cp^{-}Co}_{3}(\mu_{3}-P)_{2}]$ (**6d**) als violettes Pulver an. Sie sind sowohl in unpolaren (z.B. Pentan, Hexan) als auch in polaren (z.B. THF, CH₂Cl₂) und aromatischen (z.B. Toluol, Deuterobenzol) Lösungsmitteln sehr gut löslich. Bereits geringe Mengen der Komplexe führen selbst bei hohen Verdünnungen zu intensiv violetten Lösungen. In Substanz sind sie kurzzeitig an Luft handhabbar und unter Inertgasatmosphäre mehrere Wochen ohne Zerfall lagerfähig.

Zur Röntgenstrukturanalyse taugliche Einkristalle konnten durch Abdiffusion des Lösungsmittels bei Raumtemperatur aus einer Hexanlösung von $[{Cp=Co}_3(\mu_3-P)_2]$ (6d) erhalten werden.

5.1.2 ¹H-NMR-spektroskopische Daten

Die ¹H-NMR-Spektren von $[{Cp^{=}Co}_{3}(\mu_{3}-P)_{2}]$ (6d) und $[{Cp^{-}Co}_{3}(\mu_{3}-P)_{2}]$ (6c) in Deuterobenzol bei Raumtemperatur weisen nur einen Signalsatz für die drei Cp^R-Liganden in jeweils symmetrischer Umgebung auf, so dass 3 Singuletts im Integralverhältnis 1:2:18 für Cp⁼ bzw. im Verhältnis 2:2:9 für Cp⁻ auftreten.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Komplex	δ [ppm]	δ [ppm]	δ [ppm]
$[{Cp^{-}Co}_{3}(\mu_{3}-P)_{2}]$ (6c)	0.45 (s, 27 H)	4.72 (s, 6H)	4.81 (s, 6H)
$[{Cp^{=}Co}_{3}(\mu_{3}-P)_{2}]$ (6d)	0.52 (s, 54H)	4.27 (s, 3H)	4.43 (s, 6H)

Die Signale der Tms-Gruppen treten bei höchstem Feld in Resonanz. Sie unterscheiden sich in beiden Verbindungen nur geringfügig. In **6d** entschirmen die zwei Tms-Substituenten die Ringprotonen stärker. Die Signale sind im Vergleich zu **6c** um bis zu 0.45 ppm zu höherem Feld verschoben.

Da die drei Cp^R-Fragmente in beiden Komplexen chemisch und magnetisch äquivalent sind, müssen die Grundgerüste zumindest in Lösung eine dreizählige Drehachse senkrecht zur Ebene der Metallfragmente besitzen.

5.1.3 ³¹P-NMR-spektroskopische Daten

Tabelle 5.1

Im ³¹P-NMR-Spektrum erscheint ein Singulett bei $\delta = 1061.4$ ppm bzw. $\delta = 1077.4$ ppm für die Komplexe **6c** bzw. **6d**. So kann bereits aus den ³¹P-NMR- und ¹H-NMR- spektroskopischen Untersuchungen auf eine hochsymmetrische Struktur geschlossen werden. Da beide Phosphoratome magnetisch und chemisch äquivalent sind, muss das Molekül zusätzlich in Lösung eine Spiegelebene senkrecht zur dreizähligen Molekülachse besitzen.

Besonders auffällig ist die extreme Tieffeldverschiebung des Phosphor-Signals im NMR-Spektrum. Die Ursache hierfür liegt in der Bindung zu drei 14 VE-Metallfragmenten. Diese verursachen eine drastische Entschirmung des μ_3 -Phosphorliganden. Hierbei kann auf die Untersuchungen von *Vollhard et al.*^[59]verwiesen werden. Bei seinem zu **6c** und **6d** isolobalen Biscarbincluster der allgemeinen Zusammensetzung [{Cp^RCo}₃(μ_3 -CR)₂] (R = H, Alkyl, Aryl) tritt das Protonensignal der Methin-Gruppe für R = H bei sehr tiefem Feld in Resonanz (δ = 18.37 ppm).

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

¹*H*-*NMR*-*Daten von* **6***c* und **6***d* in C_6D_6 bei Raumtemperatur

Abbildung 5.2 zeigt das Ergebnis der Röntgenstrukturanalyse. Das Schweratomgerüst wird in Abbildung 5.3 hervorgehoben. Ausgewählte Strukturparameter werden in den *Tabellen 5.2* bis 5.4 aufgezeigt. Detaillierte Angaben zur Strukturlösung, Atomlageparameter und Temperaturfaktoren befinden sich im Anhang **A.4**.

Abbildung 5.2 Struktur von $[{Cp^{=}Co}_{3}(\mu_{3}-P)_{2}]$ (6d)

Abbildung 5.3Schweratomgerüst von 6d aus verschiedenen Blickwinkeln	
---	--

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Tabelle 5.2	Ausgewählte		
	Bindungslängen		
D' 1	D: 1 1"		
Bindung	Bindungslängen		
	[Å]		
Co1-Co2	2.5082(6)		
Co1-Co3	2.5130(4)		
Co2-Co3	2.5109(4)		
Co1-P1	2.1590(6)		
Co2-P1	2.1597(6)		
Co3-P1	2.1575(6)		
Co1-P2	2.1569(6)		
Co2-P2	2.1561(6)		
Co3-P2	2.1575(6)		
Co-Cp ⁼ Zent.	1.71		
P1 P2	3.20		

Tabelle 5.3	Ausgewählte
	Bindungswinkel

Bindung	Bindungswinkel
	[°]
Co1-Co2-Co3	60.092(10)
Co2-Co1-Co3	60.006(10)
Co2-Co3-Co1	59.902(10)
P1-X1-P2	179.9

X1 = Mittelpunkt des Co1-Co2-Co3-Dreirings

Tabelle	5.4
---------	-----

Ausgewählte Ebenen und Ebenenschnittwinkel von 6d

Ebene	Atome	Abweichung aus der besten Ebene [Å]	Ebenen	Winkel [°]
E1	Co1-Co2-Co3	/	E1/E2	90.0
E2	C11-C12-C13-C14-C15	0.0067	E1/E3	89.6
E3	C21-C22-C23-C24-C25	0.0070	E1/E4	89.4
E4	C31-C32-C33-C34-C35	0.0061		

Die Verbindung **6d** besitzt ein Co_3P_2 -Schweratomgerüst mit trigonal-bipyramidaler Struktur (siehe *Abbildung 5.3*). Die drei 14 VE-{Cp⁼Co}-Fragmente sind zu einem gleichseitigen Dreieck verknüpft. Alle Co-Co-Bindungen besitzen somit die gleiche Länge (2.51 Å). Dies spiegelt sich auch in den Bindungswinkeln wieder, deren maximale Abweichung vom idealen

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Dreieckswinkel (60°) 0.1° beträgt. Die beiden Phosphoratome liegen ober- und unterhalb dieser Dreiecksfläche in axialer Position. Projiziert man die Phosphoratome auf die trigonale Fläche, so fällt die Projektion mit dem Flächenmittelpunkt **X1** der Cobalt-Dreiecksfläche zusammen. Dies bedeutet, dass die Atome P1 und P2 mit dem Punkt **X1** auf einer Geraden liegen. Mit 2.16 Å sind alle Co-P-Bindungen gleich lang. So werden die Ergebnisse aus den NMR-spektroskopischen Untersuchungen bestätigt.

Auch in der Peripherie setzt sich die Symmetrie fort. Alle Abstände zwischen den Co-Atomen und dem Zentrum des dazu gehörigen Cp⁼-Liganden betragen 1.71 Å. Die Liganden stehen nahezu senkrecht zu der Co1-Co2-Co3-Ebene. Die Tms-Substituenten liegen jeweils oberund unterhalb der von den Cobaltatomen aufgespannten Ebene.

Berechnet man die Anzahl der Elektronen des Gerüstes nach *Wade*^[57a] bzw. nach *Mingos*^[57b] (siehe *Tabelle 5.5*) so ergeben sich 6 Gerüstelektronenpaare bzw. 52 Valenzelektronen. Dies entspricht der idealen Zahl eines fünf atomigen *closo*-Clusters mit trigonal-bipyramidaler Gerüststruktur.

Tabelle 5.5	Elektronenzahl von 6d nach den Elektronenzählregeln von Wade bzw.
	Mingos ^[57]

Fragment/Atom	nach Mingos	nach Wade
$3 x \{Cp^{=}Co\}$	3 x 14 VE = 42 VE	$3 \ge 2 = 6 = 6 = 6 = 6 = 6 = 6 = 6 = 6 = 6 =$
2 x (µ ₃ -P)	2 x 5 VE = 10 VE	2 x 3 GE = 6 GE
Σ	52 VE	12 GE = 6 GEP's

5.1.5 Vergleich von [{ $Cp^{=}Co$ }₃(μ_{3} -P)₂] (6d) mit [{Cp''Co}₃(μ_{3} -P)₂] (VIIIb)

Wie bereits in der Einleitung erwähnt, konnte *S. Weigel*^[25] die Verbindung $[{Cp''Co}_3(\mu_3-P)_2]$ (**VIIIb**) darstellen. Sie besitzt wie Komplex **6d** eine trigonal-bipyramidale Struktur. Die beiden Komplexe unterscheiden sich nur durch ihre Cp^R-Liganden. Strukturell ähneln sich der Cp⁼- und der Cp''-Ligand. Jedoch sind die Trimethylsilyl-Substituenten räumlich ausgedehnter als die *tert*.-Butyl-Substituenten. So sind die Si-C-Bindungen mit 1.84 Å bis 1.87 Å durchschnittlich um 0.32 Å länger als die vergleichbaren C-C-Bindungen. Aus diesem Grund sind die Tms-Substituenten nicht so starr fixiert wie *tert*.-Butyl-Substituenten. Die längere Si-C-Bindung ist wesentlich beweglicher^[60]. Ebenso unterscheidet sich der

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

elektronische Einfluß der beiden Substituenten. Während nach Pauling ein Kohlenstoffatom eine Elektronegativität von 2.5 besitzt, ist das vergleichbare Siliciumatom mit einem EN-Wert von 1.9 elektropositiver^[61]. So beeinflussen die Tms-Substituenten durch andere induktive und hyperkonjugative Effekte die Eigenschaften des Cyclopentadienyl-Ringes. Vergleicht man die NMR-spektroskopischen Daten der beiden Verbindungen miteinander (siehe Tabelle 5.6), so wird deutlich, dass die Ringprotonen im Cp⁼-Ring bei tieferem Feld als die vergleichbaren Cp''-Ringprotonen in Resonanz treten. Weiterhin erkennt man beim Cp⁻-Liganden zwei Signale im Integralverhältnis 2:1 für die verschiedenen Ringprotonen, Cp''-Liganden während beim von VIIIb die Ringprotonen aufgrund einer Signalverbreiterung verschiebungsäquivalent sind.

Tabelle 5.6	Vergleich der spektroskopischen Daten von $[{Cp^{=}Co}_{3}(\mu_{3}-P)_{2}]$ (6d) und
	$[{Cp ~ Co}_{3}(\mu_{3}-P)_{2}] (VIIIb)$

	[{Cp ⁼ Co} ₃	$(\mu_3 - P)_2] (6d)$	$[{Cp''Co}_{3}(\mu_{3}-P)_{2}] (VIIIb)^{[25]}$		
Kern	δ [ppm] Multiplizität		δ [ppm]	Multiplizität	
$^{1}\mathrm{H}$	0.52	s, 54H	1.47	s, 54H	
	4.27	s, 3H	4.05	s, br, 9H	
	4.43	s, 6H			
³¹ P	1077.4	1077.4 s		S	

Die Protonen der Tms-Gruppe treten erwartungsgemäß bei höherem Feld in Resonanz als die der *tert.*-Butyl-Gruppe.

Auch die Signale der Phosphoratome sind im ³¹P-NMR-Spektrum von [$\{Cp^{=}Co\}_{3}(\mu_{3}-P)_{2}$] (**6d**) etwas zu tieferem Feld verschoben. Ursache hierfür könnte möglicherweise die höhere Symmetrie des Komplexes sein. Obwohl sich die beiden Komplexe strukturell ähneln, gibt es aufgrund der unterschiedlichen Cp^R-Liganden überraschende Differenzen. *Tabelle 5.7* gibt einen kurzen Überblick.

Bei Komplex **6d** spannen die drei Co-Atome ein gleichseitiges Dreieck auf. Die Bindungslängen und -winkel sind gleich. In Komplex **VIIIb** jedoch bilden die drei Co-Atome ein gleichschenkliges Dreieck.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Tabelle 5.7	Vergleich	der	Bindungswinkel	und	Bindungslängen	von
	[{Cp ⁼ Co} ₃ (μ	3-P)2] (6d) und [{Cp´´Co}3($(\mu_3 - P)_2]$	(VIIIb)	

	$[{Cp^{=}Co}_{3}(\mu_{3}-P)_{2}]$ (6d)	$[{Cp``Co}_3(\mu_3-P)_2] (VIIIb)$		
Bindung	Bindungslängen [Å]	Bindungslängen [Å]		
Со-Со	2.51	2.51 (2x) / 2.57		
Co-P	2.16	2.16 / 2.17 (2x)		
P-P	3.20	3.19		
Co-Cp ^R _{Zent.}	1.71	1.72 (2x) /1.77		
	Bindungswinkel [°]	Bindungswinkel [°]		
Co-Co-Co	60	61.8 / 59.1 (2x)		
P-X1-P	179.9	178.2		

So können die drei Co-Atome in Komplex **VIIIb** in zwei Co' und ein Co'' unterteilt werden. Während die Co'-Co'-Bindungslängen mit denen von Komplex **6d** übereinstimmen, sind die Co'-Co''-Bindungen etwas länger. Die Symmetrieerhöhung des Dreirings hat zur Folge, dass die Phosphorliganden genau über dem Mittelpunkt des Co-Dreirings liegen. In [{Cp''Co}₃(μ_3 -P)₂] (**VIIIb**) schließen die beiden Phosphoratome und der Dreiringsmittelpunkt **X1** einen Winkel von 178.2° ein.

Da die Tms-Substituenten beweglicher als die vergleichbar starren *tert.*-Butyl-Substituenten sind, könnte die leichtere Drehbarkeit der Substituenten des silylierten Liganden das gegenseitige Annähern der Cp⁼-Liganden ermöglichen, während dies bei den Cp''-Liganden aufgrund der Starrheit nicht möglich ist.

Zusammenfassend kann festgestellt werden, dass das Schweratomgerüst der silvlierten Verbindung **6d** der D_{3h} -Symmetrie näher kommt als dies bei der alkyl-substituierten Verbindung **VIIIb** der Fall ist.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

5.2 Charakterisierung von [{ $Cp^{R}Co$ }₄ P_{4}] (7) ($Cp^{R} = Cp^{=}, Cp^{-}$)

5.2.1 Eigenschaften von [{Cp^RCo}₄P₄] (7)

Nach dem Entfernen des Lösungsmittels aus der zweiten Säulenfraktion bleibt ein grüner Rückstand an [$\{Cp^{R}Co\}_{4}P_{4}$] (7). Dieser ist gut in unpolaren (Petrolether, Hexan) und sehr gut in polaren (THF) und aromatischen (Toluol) Lösungsmitteln löslich. [$\{Cp^{R}Co\}_{4}P_{4}$] (7) kann unter Inertgas im festen Zustand mehrere Wochen und in Lösung mehrere Tage ohne erkennbaren Zerfall aufbewahrt werden. Zur Röntgenstrukturanalyse taugliche Einkristalle konnten sowohl von [$\{Cp^{-}Co\}_{4}P_{4}$] (7d) als auch von [$\{Cp^{-}Co\}_{4}P_{4}$] (7c) durch Abdiffusion des Lösungsmittels aus einer Hexanlösung bei Raumtemperatur erhalten werden.

5.2.2 ¹H-NMR-spektroskopische Daten

Im ¹H-NMR-Spektrum von [$\{Cp^{R}Co\}_{4}P_{4}$] (**7c** und **7d**) in C₆D₆ bei Raumtemperatur erzeugen die vier Cp^R-Liganden nur einen Signalsatz mit einem Integrationsverhältnis von 1:2:18 bzw. 2:2:9, d.h. alle Cp⁼- bzw. Cp⁻-Liganden sind chemisch und magnetisch äquivalent.

|--|

Komplex	δ [ppm]	δ [ppm]	δ [ppm]
$[{Cp^{-}Co}_{4}P_{4}]$ (7c)	0.31 (s, 36 H)	5.02 (s, 8H)	5.37 (s, 8H)
$[\{Cp^{=}Co\}_4P_4](\mathbf{7d})$	0.39 (s, 72H)	5.07 (s, 4H)	5.76 (s, 8H)

5.2.3 ³¹P-NMR-spektroskopische Daten

Die vier Phosphoratome erzeugen jeweils nur ein Singulett bei $\delta = 507.2 \text{ ppm } (\mathbf{7d}) \text{ bzw.}$ $\delta = 496 \text{ ppm } (\mathbf{7c})$. Im Vergleich zu [{Cp^RCo}₃(μ_3 -P)₂] (**6**) ist das Signal um fast 600 ppm zu höherem Feld verschoben. [{Cp⁻Co}₄P₄] (**7c**) konnte bereits von *T. Völmecke*^[13] durch Cothermolyse von [Cp⁻Co(CO)₂] mit weißem Phosphor dargestellt werden. Jedoch gelang es bis dato nicht, eine Röntgenstrukturanalyse von diesem Komplex anzufertigen.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

5.2.4 Röntgenstrukturanalyse von [{Cp⁼Co}₄P₄] (7d)

Abbildung 5.4 zeigt das Ergebnis der Röntgenstrukturanalyse von $[{Cp^{=}Co}_{4}P_{4}]$ (7d). Ausgewählte Strukturparameter sind den folgenden Tabellen zu entnehmen. Detailliertere Angaben befinden sich im Anhang A.5.

Abbildung 5.4

Struktur von $[{Cp^{=}Co}_{4}P_{4}]$ (7d)

Abbildung 5.5 Schweratomgerüst von 7d aus verschiedenen Blickwinkeln

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Tabelle 5.9	Ausgewählte Bindungslängen	7	Tabelle 5.10	Ausgewählte Bindungswinkel
Bindung	Bindungslängen	I F	Bindung	Bindungswinkel
	[Å]			[°]
Co1-Co2	2.5019(5)		P1-Co1-P2a	73.47(3)
Co1 Co2a	3.581		P1-Co1-Co2	57.04(2)
Co2 Co1a	3.581		P2a-Co1-P2	64.01(4)
			P2-Co1-Co2	54.93(2)
Co1-P1	2.2034(8)		P2-Co2-P1a	73.51(3)
Co1-P2	2.2607(9)		P2-Co2-Co1	56.97(2)
Co1-P2a	2.2683(9)		P1a-Co2-P1	64.21(3)
Co2-P1	2.2619(9)		P2-Co2-Co1	54.82(2)
Co2-P1a	2.2630(9)		Co1-P1-Co2a	106.59(3)
Co2-P2	2.2070(8)		Co2-P1-P1a	57.92(3)
			Co1-P1-Co2	68.14(2)
Co-Cp ⁼ _{Zent.}	1.77		Co2a-P1-P1a	57.88(3)
P1-P1a	2.4047(15)		Co1a-P2-Co2	106.28(3)
P1 P2a	2.6751(10)		Cola-P2-P2a	57.84(4)
P2-P2a	2.4004(16)		Co2-P2-Co1	68.10(2)
P2 P1a	2.6751(10)		Co1-P2-P2a	58.15(3)
P1P2	3.581			1

Tabelle 5.11	Ausgewählte Ebenen und Ebenenschnittwinkel von 7d
--------------	--

Ebene	Atome	Abweichung aus der Ebenen		Winkel [°]	
		besten Ebene [Å]			
E1	Co1-P2a-Co2a-P1	0.0282		E1/E2	0.1
E2	Co2-P2-Co1a-P1a	0.0282		E1/E3	70.4
E3	Co1-Co2-P2	/		E1/E4(E5,E6)	96.2
E4	P1-P1a-Co2	/		E1/E7	70.5

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

- 43 -

Ebene	Atome	Abweichung aus der besten Ebene [Å]	Ebenen	Winkel [°]
E5	P2a-P2-Co1a	/	E2/E3	109.7
E6	Co1-P2-P2a	/	E2/E4	109.6
E7	Co1-P1-Co2	/	E2/E5(E6,E7)	83.9

Die Schweratome bilden in Verbindung **7d** ein verzerrt tetragonales Grundgerüst. Die vier Atome P1-Co1-P2a-Co2a liegen nahezu in einer Ebene (**E1**). Dies gilt ebenso für die Atome Co2-P1a-Co1a-P2 (**E2**). Die beiden Ebenen **E1** und **E2** sind parallel zueinander (*Abbildung* 5.5). Die Atome in **E1** bzw. **E2** bilden einen Vierring mit nahezu gleicher Trapezform (*Abbildung* 5.5). Es fällt auf, dass die Co-P-Abstände innerhalb der Ebene **E1** bzw. **E2** mit 2.20 Å und 2.27 Å merklich variieren. Der Komplex besitzt keine perfekt tetragonale antiprismatische Struktur. Dies wird deutlich, wenn man die Bindungswinkel in den seitlichen Dreiecksflächen vergleicht. Wären die beiden Ebenen um 45° gegeneinander verdreht, so müssten die Dreiringe ein nahezu gleichschenkliges Dreieck bilden, d.h. zwei Bindungswinkel müssten übereinstimmen. Wie aus *Tabelle 5.11* hervorgeht, differieren die Winkel stellenweise um mehr als 10°.

Die P-P-Abstände können in zwei Gruppen unterteilt werden. So betragen die bindenden Abstände 2.40 Å. Die Abstände der Phosphoratome in den Ebenen **E1** bzw. **E2** befinden sich mit 2.67 Å, wie bereits *S. Weigel*^[25] diskutierte, an den Grenzen zum bindenden Bereich. Mit 2.50 Å bzw. 3.58 Å liegen die Co-Co-Abstände eindeutig im bindenden bzw. nichtbindenden Bereich.

5.2.5 Röntgenstrukturanalyse von [{Cp⁻Co}₄P₄] (7c)

Abbildung 5.6 zeigt das Ergebnis der Röntgenstrukturanalyse von $[{Cp^{-}Co}_4P_4]$ (7c). Ausgewählte Strukturparameter sind den folgenden Tabellen zu entnehmen. Detaillierte Angaben befinden sich im Anhang A.6.

Die Gerüststruktur nimmt, wie das aus der Einleitung bekannte $[{CpCo}_4P_4]$ (**II**)^[4], eine Zwischenstufe zwischen Kubus und Dreiecksdodekaeder ein.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Abbildung 5.6	Struktur von [{ $Cp^{-}Co$ } ₄ P_4] (7 c)
---------------	--

Abbildung 5.7Schweratomgerüst von 7c aus verschiedenen Perspektiven.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Tabelle 5.12Ausgewählte Bindungslängen

Bindung	Bindungslängen
	[Å]
Co1-Co3	2.5093(6)
Co2-Co4	2.5089(7)
Co1 Co4	3.636
Co2 Co3	3.637
Co1-P1	2.2075(9)
Co1-P3	2.2221(9)
Co1-P4	2.2529(9)
Co2-P1	2.2589(9)
Co2-P2	2.2066(9)
Co2-P4	2.2208(9)
Co3-P1	2.2196(10)
Co3-P2	2.2586(9)
Co3-P3	2.2097(10)
Co4-P2	2.2219(10)
Co4-P3	2.2552(9)
Co4-P4	2.2078(10)
P1-P2	2.5656(13)
P3-P4	2.5655(12)
P2-P3	2.5598(12)
P1-P4	2.5625(12)

Bindung	Bindungslängen
	[Å]
Co1-Cp ⁻ _{Zent.}	1.740
Co2-Cp ⁻ _{Zent.}	1.741
Co3-Cp ⁻ _{Zent.}	1.741
Co4-Cp ⁻ _{Zent.}	1.741

Tabelle 5.13	Ausgewählte
	Bindungswinkel

Bindung	Bindungswinkel
	[°]
P1-Co1-P4	71.65(6)
Co1-P4-Co2	106.79(7)
P4-Co2-P1	71.44(6)
Co2-P1-Co1	107.77(7)
P2-Co3-P3	71.14(6)
Co3-P3-Co4	107.69(7)
P3-Co4-P2	71.09(6)
Co4-P2-Co3	107.67(7)

Tabelle 5.14

Ausgewählte Ebenen und Ebenenschnittwinkel von 7c

Ebene	Atome	Abweichung aus der besten Ebene [Å]	Ebenen	Winkel [°]
E1	Co1-P4-Co4-P3	0.1077	E1/E2	0.3
E2	Co2-P2-Co3-P1	0.1086	E3/E4	13.5

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Ebene	Atome	Abweichung aus der besten Ebene [Å]
F3	Co1-P3-P4	
E4	Co4-P3-P4	/
E5	Co3-P2-P1	/
E6	Co2-P1-P2	/
E7	P1-Co1-Co3	/
E8	P3-Co1-Co3	/
E9	P2-Co2-Co4	/
E10	P4-Co2-Co4	/

Ebenen	Winkel [°]
E5/E6	13.5
E7/E8	118.0
E9/E10	118.0

Die Struktur lässt sich von einem Kubus ableiten, dessen Ecken alternierend von Cobalt- und Phosphoratomen besetzt sind. Die Verzerrung kommt durch die Verknüpfung zweier auf der Würfelseite gegenüberliegender Cobalt-Fragmente zustande. Die beiden Co₂P₂-Vierringe definieren die Ebenen E1 und E2. Diese sind um 13.5° (E3/E4) bzw. 13.6° (E5/E6) aus der planaren Anordnung abgewinkelt. Die P-P-Abstände liegen mit einem Durchschnittswert von 2.564 Å in einem Bereich, in dem bindende Wechselwirkungen nicht ausgeschlossen werden können^[68]. Unter anderem kann die Struktur auch als Verknüpfung zweier PCo₂P-Butterfly-Einheiten mit einen Butterfly-Winkel von jeweils 118° beschrieben werden. Auffällig ist die Anordnung der Tms-Substituenten, die in Richtung eines Phosphor-Liganden weisen. Mit einer durchschnittlichen Si-P Entfernung von 3.89 Å liegt der Abstand nicht außerhalb der Summe der Van-der-Waals-Radien (4.00 Å) von Si (2.10 Å) und P (1.90 Å)^[76]. Orientiert man die Struktur anhand der beiden Ebenen E1 und E2, so weist jeweils ein Tms-Substituent in die Richtung eines P-Liganden der aus der gleichen Ebene wie das {Cp⁻Co}-Fragment entstammt und zu einem P-Liganden aus der gegenüberliegenden Ebene (Abbildung 5.6). Die Öffnung der Co-Co-Bindungen würde zum verzerrten Kubus und die Knüpfung von zwei bzw. vier P-P-Bindungen zum tetragonalen Antiprisma bzw. Dreiecksdodekaeder führen.

5.2.6 Vergleich der Komplexe [$\{Cp^{R}Co\}_{4}P_{4}$] ($Cp^{R} = Cp^{-}, Cp^{=}, Cp', Cp''$)

Die NMR-spektroskopischen Daten der Verbindungen unterscheiden sich nicht wesentlich voneinander. Bedingt durch den Einsatz von silylierten Cp-Liganden werden die NMR-Signale wie erwartet zu tieferem Feld verschoben. *Tabelle 5.15* bietet einen Überblick.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

	[{Cp ⁼ Co} ₄ P ₄]		$[{Cp''Co}_4P_4]^{[25]}$		[{Cp ⁻ Co} ₄ P ₄]		$[{Cp'Co}_4P_4]^{[25]}$	
	(7	d)	(IXb)		(7c)		(IXa)	
Kern	δ [p	pm]	δ [p	pm]	δ [ppm]		δ [ppm]	
¹ H	0.39	s, 72H	1.47	s, 72H	0.31	(s, 36H)	1.27	(s, 36H)
	5.07	s, 4H	4.16	s, 4H	5.02	(s, 8H)	4.95	(s, 8H)
	5.76	s, 8H	5.47	s, 8H	5.37 (s, 8H)		5.03	(s, 8H)
³¹ P	507.2 (s)		472.	.5 (s)	496.0 (s)		483.9 (s)	

Bei den zu betrachtenden Komplexen liegen zwei Strukturtypen vor. Die Komplexe **7d** und **IXb** können durch ein verzerrtes tetragonales Antiprisma beschrieben werden. Der Strukturtyp der anderen beiden Komplexe **7c** und **IXa** ist zwischen Dreiecksdodekaeder und verzerrtem Kubus anzusiedeln (siehe *Abbildung 5.8*).

So scheint der Einsatz sterisch aufwendiger Cp^{R} -Liganden die Struktur vom Dreiecksdodekaeder hin zum tetragonalen Antiprisma durch die Abstoßung der Liganden in der Peripherie zu verschieben. In einem strukturellem Vergleich der Komplexe sollte in der Reihe der Liganden $Cp' \rightarrow Cp^{-} \rightarrow Cp'' \rightarrow Cp^{=}$ eine Tendenz ermittelbar sein.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Vergleich der NMR-spektroskopischen Daten

Tabelle 5.15

Tabelle 5.16	Vergleich der Bindungslängen und Winkel zwischen den besten Ebenen
	von $[{Cp^{-}Co}_{4}P_{4}]$ (7c) und $[{Cp^{-}Co}_{4}P_{4}]$ (IXa)

	$[{Cp^{-}Co}_{4}P_{4}](7c)$	$[{Cp'Co}_4P_4] (IXa)^{[25]}$
Bindung	mittlere Bindungslängen [Å]	mittlere Bindungslängen [Å]
Co-Co	2.51	2.52
Co-P _{Co-P-Vierring}	2.24	2.23
Co-P	2.22	2.21
PP-Vierring	2.57	2.57
Р…Р	2.56	2.57
Co-Cp ^R _{Zent.}	1.74	1.78
Ebenen	Winkel [°]	Winkel [°]
E1/E2	0.3	0.3
Butterflywinkel E1	13.5	13.5*
Butterflywinkel E2	13.6	13.3*
E7/E8	118	118.1
E9/E10	118	118.3

nachträglich ermittelt

Die Definition der Ebenen kann *Kapitel 5.2.5* entnommen werden. Durch den räumlich aufwendigeren Liganden in **7c** werden die Co-P-Abstände etwas verkürzt und der P…P-Abstand verkleinert. Die Struktur verschiebt sich also im Vergleich zu [{Cp'Co}₄P₄] (**IXa**) in Richtung tetragonales Antiprisma, da durch die Knüpfung zweier P-P-Bindungen die tetragonal-antiprismatische Struktur erzielt wird. Jedoch liegt die Entfernung rund 0.1 Å außerhalb der längsten bisher beobachten P-P-Bindung mit 2.46 Å im *Ginsberg*-Komplex [{(PPh₃)₂ClRh}(η^2 -P₄)]^[62].

Vergleich von $[{Cp^{=}Co}_{4}P_{4}] (7d)$ und $[{Cp^{\prime\prime}Co}_{4}P_{4}] (IXb)$

Obwohl sich die beiden Komplexe strukturell ähneln, gibt es aufgrund der unterschiedlichen Cp-Liganden merkliche Differenzen. So unterscheidet sich Komplex **7d** im wesentlichen von Verbindung **IXb** durch das Vorhandensein eines C₂-Drehachse. [$\{Cp''Co\}_4P_4$] (**IXb**) besitzt

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Vergleich von $[{Cp}^{-}Co]_4P_4]$ (7c) und $[{Cp}^{-}Co]_4P_4]$ (IXa)

kein Symmetrieelement. *Tabelle 5.17* gibt einen Überblick über die strukturellen Daten der beiden Verbindungen.

Tabelle 5.17	Vergleich der Bindungslängen, Bindungswinkel und Winkel zwischen den
	besten Ebenen von $[{Cp^{=}Co}_{4}P_{4}]$ (7d) und $[{Cp^{\sim}Co}_{4}P_{4}]$ (IXb)

	$[{Cp^{=}Co}_{4}P_{4}]$ (7d)	[{Cp''Co} ₄ P ₄] (IXb)
Bindung	Bindungslängen [Å]	Bindungslängen [Å]
Co1-Co2	2.50	2.51 / 2.52
Co-P	2.20 /2.26	2.20-2.28
P-P	2.40	2.39
P P	2.68	2.68
Co-Cp ^R _{Zent.}	1.77	1.77
	Bindungswinkel [°]	Bindungswinkel [°]
Co1-P1-Co2a	106.6	106.9 /106.6
P1-Co1-P2a	73.4	73.4 / 73.1
Ebenen	Winkel [°]	Winkel [°]
E1/E2	0.1	0.2
Max. Abweichung El	0.0282	0.1096

Die Definitionen der Ebenen sind dem *Kapitel 5.2.4* zu entnehmen. In beiden Komplexen verlaufen die Ebenen **E1** und **E2** parallel zueinander. Die Bindungsabstände zwischen den Schweratomen sind nahezu gleich. Die Bindungswinkel der beiden Verbindungen unterscheiden sich nur unwesentlich. In **7d** gleichen sich aufgrund der C₂-Achse die beiden Ebenen **E1** und **E2**. Die Abweichung aus den besten Ebenen ist bei **IXb** für **E1** und **E2** etwa vier mal größer als in **7d**. Der strukturelle Unterschied der beiden Verbindungen ist nur geringfügig, jedoch liegt **7d** näher am Ideal eines tetragonalen Antiprismas.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

5.3 Charakterisierung von [{ Cp^*Fe }{ $Cp^=Co$ }₂ P_4P] (**8**) und [{ Cp^*Fe }₂($\mu_3-\eta^{4:4:1:1}-P_4$){ Cp^-Co }] (**9**)

Beide Komplexe können nicht isoliert werden, jedoch gelingt es, durch den Vergleich mit der von *S. Weigel*^[25] durchgeführten analogen Reaktion mit $[Cp''Co(CO)_2]$ (**2g**) anhand der spektroskopischen Daten eine Identifizierung vorzunehmen. *Tabelle 5.18* gibt die NMR-spektroskopischen Daten der Verbindungen **8** und **9** mit den dazugehörigen Cp''-substituierten Analoga wieder.

Tabelle 5.18	Vergleich der NMR-Daten von 8 und 9 mit den alkylierten Analoga
	$[{Cp*Fe}{Cp``Co}_2P_4P] (X) und [{Cp*Fe}_2(\mu_3-\eta^{4:4:1:1}-P_4){Cp`Co}] (XI)$

	$[{Cp*Fe} {Cp^{R}Co}_{2}P_{4}P]$			[{Cp*	Fe} ₂ (μ_3 - $\eta^{4:}$	$^{4:1:1}$ -P ₄){Cr	o ^R Co}]	
Cp ^R	Cp⁼	(8)	$Cp^{\prime\prime}(\mathbf{X})^{[25]}$		Cp ⁻ (9)		Cp'(2	XI) ^[25]
Kern	δ [pŗ	om]	δ[p	pm]	δ [ppm] δ [ppm]		pm]	
¹ H	5.51	s, 2H	5.11	s, 2H	·			
	5.43	s, 2H	4.87	s, 2H	Die ¹ H-NMR-spektroskopischen Daten			en Daten
	5.25	s, 2H	4.61	s, 2H	von 9 konnten nicht ermittelt werden.			werden.
			1.77	s, 18H	Deshalb wird auf die Angabe dieser			e dieser
	1.67	s, 15H	1.31	s, 15H	Daten bei XI verzichtet.			t.
	0.17	s, 36H	1.23	s, 18H				
³¹ P	603	m	562	s, 1P	935	d, 2 P	938	d, 2 P
	498	d	467	d, 1P	568	d, 2 P	567	d, 2 P
	365	m	354	d, 2P				
	-199	m	-208	m, 1P				

Beim Vergleich der ³¹P-NMR-Spektren der Verbindungen vom Typ [{Cp*Fe} {Cp^RCo}₂P₄P] wird deutlich, dass es sich bei **8** um den mit Cp⁼-Liganden substituierten analogen Komplex handeln könnte. Gemäß dem Trend von [{Cp⁼Co}₄P₄] (**7d**) im Vergleich zu [{Cp''Co}₄P₄] (**IXb**) bewirken die silylierten Cp-Liganden einen Tieffeldshift. Sie tragen demnach zur Entschirmung der Phosphor-Liganden bei. Die unterschiedlichen Multiplizitäten können auf den strukturellen Einfluss der Cp⁼-Liganden zurückgeführt werden, die eine Änderung der Geometrie verursachen. Die Phosphor-Liganden treten stärker in Wechselwirkung miteinander und die Anzahl der Kopplungen steigt. Während bei [{Cp*Fe} {Cp''Co}₂P₄P] ein

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

einzelner Phosphor-Ligand ohne Kopplungsmuster detektiert werden kann, zeigen bei Verbindung **8** alle Phosphoratome P-P-Koppungen. So unterscheiden sich beispielsweise auch die kubischen Komplexe [$\{Cp^*Fe\} \{Cp^{\prime\prime}Co\}_2P_4P$] (**X**)^[25] und [$\{Cp^*Fe\} \{Cp^{\prime\prime}Ta\}_2P_4P$]^[63] bei ähnlicher Struktur durch die Aufspaltung der Signale im ³¹P-NMR-Spektrum.

Einen weiteren Hinweis auf die geänderte Geometrie geben die ¹H-NMR-Daten. Aufgrund der Stellung der Cp''-Ringe zum Schweratomgerüst treten die Protonen der beiden tert.-Butyl-Substituenten bei unterschiedlichen Frequenzen in Resonanz. Im Komplex 8 hingegen erscheint nur ein Signal, d.h. die Protonen der beiden Tms-Substituenten sind magnetisch und chemisch äquivalent. Besonders auffällig ist die relativ hohe Verschiebung der Cp*-Protonen um 0.36 ppm zu tieferem Feld. In Analogie zu [{Cp*Fe}{Cp'Co}₂P₄P] wird für $[{Cp*Fe} {Cp=Co}_2P_4P]$ (8) eine vergleichbare Struktur vorgeschlagen (siehe Abbildung 5.9). Beim Daten Tripeldeckerkomplexes 9 Vergleich der des mit denen von $[{Cp*Fe}_2(\mu_3-\eta^{4:4:1:1}-P_4){Cp'Co}]^{[25]}$ erkennt man ähnliche Verschiebungen. Aufgrund der gleichen Synthesebedingungen und der markanten ³¹P-NMR Ergebnisse wird die Zusammensetzung [{Cp*Fe}₂($\mu_3-\eta^{4:4:1:1}-P_4$){ Cp^-Co }] vorgeschlagen. Es wird angenommen, dass dieser Komplex ebenfalls eine Tripeldecker-Struktur mit einem {Cp⁻Co}P₄-Fünfring-Mitteldeck besitzt (siehe Abbildung 5.9).

Abbildung 5.9	Strukturvorschlag für $[{Cp*Fe}{Cp^{=}Co}_2P_4P]$ (8) und $[{Cp*Fe}_2(\mu_3 - \mu_3 - \mu_3)]$
	$\eta^{4:4:1:1}-P_4$ (Cp ⁻ Co}] (9)

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

5.4 Orientierender Versuch zur Cothermolyse von $[Cp^*Fe(\eta^5-P_5)]$ (VII) mit $[Cp^{=}Co(CO)_2]$ (2b)

Erhitzt man ein Gemisch aus $[Cp*Fe(\eta^5-P_5)]$ (**VII**) und $[Cp^{='}Co(CO)_2]$ (**2b**) in Dekalin auf 190° C, so wird die anfangs orange-braune Lösung bereits nach wenigen Minuten schwarzbraun. IR-spektroskopisch kann die Intensitätsabnahme der für $[Cp^{='}Co(CO)_2]$ charakteristischen Carbonylbanden verfolgt werden, wobei keine neuen IR-Banden auftreten. Die Reaktion wird beendet, nachdem die Eduktbanden verschwunden sind.

Abbildung 5.10 Cothermolyse von $[Cp^*Fe(\eta^5 - P_5)]$ (**VII**) und $[Cp^*Co(CO)_2]$ (**2b**)

Durch die anschließende säulenchromatographische Aufarbeitung an basischem Aluminiumoxid (Aktivitätsstufe II) mit Petrolether als Eluens kann eine violette Fraktion, bestehend aus $[{Cp^{='}Co}_2(P_2)_2]$ (**10b**), eluiert werden. Durch Erhöhung der Polarität des Eluens kann mit einem Petrolether/Toluol Gemisch (20:1) eine grüne Fraktion der bisher nicht identifizierbaren Verbindung **11** erhalten werden.

5.4.1 Charakterisierung von $[{Cp=Co}_2(P_2)_2] (10b)$

Entfernt man das Lösungsmittel der ersten Säulenfraktion, verbleibt ein dunkel-violetter Feststoff. Er ist mäßig gut in unpolaren Lösungsmitteln (Petrolether) und gut in polaren Lösungsmitteln (Dichlormethan) löslich. Die Verbindung ist relativ stabil und kann wochenlang unter Inertgas gelagert werden, wobei nur geringe Zersetzungserscheinungen zu beobachten sind.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

5.4.2 NMR-spektroskopische Daten von [{Cp⁼'Co}₂(P₂)₂] (10b)

Für die beiden $Cp^{='}$ -Liganden wird nur ein Signalsatz detektiert mit einem erwarteten Verhältnis von 18:9:2. *Tabelle 5.19* gibt die Daten im Vergleich zum $Cp^{''}$ - (**10h**) und $Cp^{=}$ -(**10e**) Derivat wieder. [{ $Cp^{''}Co$ }₂(P₂)₂] (**10h**) konnte von *S. Weigel*^[25] durch die analoge Reaktion mit [$Cp^{''}Co(CO)_2$] (**2h**) dargestellt werden. Verbindung **10h** wurde allerdings bereits Mitte der neunziger Jahre von *G. Berg* synthetisiert^[64,65]. *T. Völmecke* generierte **10e** durch Cothermolyse von [$Cp^{=}Co(CO)_2$] (**2e**) mit weißem Phosphor^[13].

Tabelle 5.19NMR-spektroskopische Daten von 10b, e und h			ł	
Kern	[{C]	$p'''Co_{2}(P_{2})_{2}^{[64]}$	$[{Cp^{-'Co}}_{2}(P_{2})_{2}]$	$[\{Cp^{\equiv}Co\}_2(P_2)_2]^{[13]}$
δ [ppm]		(10h)	(10b)	(10e)
¹ H		1.43 (s, 36H)	0.60 (s, 36H)	0.51 (s, 36H)
		1.54 (s, 18h)	1.35 (s, 18h)	0.52 (s, 18h)
		4.45 (s, 4H)	4.62 (s, 4H)	4.80 (s, 4H)
³¹ P		-46.9 (s)	-44 (s)	-34.8 (s)

Wie erwartet erscheint das Signal der Phosphoratome im ³¹P-NMR-Spektrum von **10b** in dem Bereich zwischen $\delta = -47$ ppm und $\delta = -35$ ppm. Die Ringprotonen sind im Vergleich zum Cp^{'''}-Derivat **10h** zu tieferem Feld verschoben. Sie treten aber bei höherem Feld in Resonanz als im silylierten Komplex **10e**. Wie bereits beim Edukt [Cp^{='}Co(CO)₂] (**2b**) beobachtet wurde, erfahren die Protonensignale der *tert*.-Butyl-Gruppe aufgrund der beiden Tms-Substituenten einen Hochfeldshift um 0.2 ppm.

5.4.3 Massenspektrometrische Daten von [$\{Cp^{=}C_{0}\}_{2}(P_{2})_{2}$] (10b)

Im 25 eV EI-Massenspektrum kann bei m/z = 770.9 amu der Molekülionenpeak mit einer relativen Intensität von 23.9 % detektiert werden. Den Basispeak bildet mit m/z = 739.7 amu das $[{Cp^{='}Co}_2(P_2)P]^+$ -Ion. Des weiteren kann bei m/z = 708.8 amu das $[{Cp^{='}Co}_2(P_2)]^+$ -Ion mit einer relativen Intensität von 30.5 % beobachtet werden.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

5.4.4 Diskussion der unbekannten Verbindung 11

Nach dem Entfernen des Lösungsmittels der zweiten Säulenfraktion verbleibt ein grüner Feststoff. Dieser verfärbt sich nach wenigen Stunden in einer Argonatmosphäre braun. Auch bei -70° C kann diese Zersetzung nicht unterdrückt werden. Bisher gelang von diesem Komplex nur die NMR-spektroskopische Untersuchung.

Tabelle 5.20	NMR-spektroskopische Daten der unbekannten Verbindung 11
--------------	--

³¹ P-NMR (δ [ppm])	¹ H-NMR (δ[ppm])
562 (s)	4.60 (s, 2H)
466.5 (d) (${}^{1}J_{PP} = 110 \text{ Hz}$)	1.31 (s, 9H)
352.4 (d) (${}^{1}J_{PP} = 110 \text{ Hz}$)	0.33 (s, 9H)
-209 (m)	

Im ¹H-NMR-Spektrum erkennt man nur einen Signalsatz für die Liganden. Dies spricht für ein symmetrisches Molekül oder die Anwesenheit nur eines {Cp⁼′Co}-Fragments. {Cp*Fe}-Fragmente können ausgeschlossen werden, da im ¹H-NMR kein Hinweis auf die Methyl-Gruppen des Cp*-Liganden zu finden ist.

Die ³¹P-NMR-Daten weisen auf eine komplexe Verbindung hin. Die gefunden Signale bei höchstem und tiefstem Feld differieren um ca. 770 ppm. Es werden vier unterschiedliche Phosphoratome detektiert, wobei drei davon miteinander koppeln und das vierte bei tiefstem Feld keine PP-Kopplungen aufweist. Der ermittelte Kopplungswert von 110 Hz spricht für eine ¹J_{PP}-Kopplung. Die Differenz der chemischen Verschiebung der Atome kann nur durch Bindung an eine unterschiedliche Anzahl von Metall-Fragmenten erreicht werden. So scheint das Phosphoratom ohne Kopplungsmuster aufgrund der Resonanz bei tiefstem Feld an eine größere Zahl von Metall-Fragmenten gebunden zu sein. Die Ermittlung der Integrationsverhältnisse konnte aufgrund eines hohen Signal/Basisrauschen-Verhältnisses nicht durchgeführt werden.

Ein Vergleich mit bekannten Komplexen des Typs $[{Cp^RCo}_mP_n] (Cp^R = Cp^{\prime\prime}, Cp^{-\prime\prime}, Cp^{-}, Cp^{-})$ ergibt keine übereinstimmenden Daten. Es muss sich also um einen neuen Komplextyp handeln. Auch könnte eine durch den neuen Liganden geänderte Symmetrie des Moleküls zu einer starken Verschiebung der NMR-Signale führen. Die massenspektrometrischen Daten

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil	e		U

liefern ebenfalls keine Hinweise auf die Konstitution der Verbindung, da die Molmasse außerhalb des messbaren Bereiches liegt (Softwareproblem des Massenspektrometer). Der Vergleich mit der von *S. Weigel* durchgeführten analogen Reaktion bietet auch keine weiteren Hinweise^[25]. Außer [{Cp^{'''}Co}₂(P₂)₂] (**10h**) konnten keine weiteren Verbindungen eindeutig charakterisiert werden. Jedoch fand er für einen weiteren Komplex im ³¹P-NMR-Spektrum Signale bei $\delta = 691.7$ ppm (d, ¹J_{PP} = 356 Hz) und $\delta = -279.7$ ppm (t, ¹J_{PP} = 356 Hz). Diese Werte unterscheiden sich stark von denen, die für Verbindung **11** ermittelt wurden. Daraus ist zu folgern, dass es sich um einen anderen Komplextyp handelt. Ein fundierter Strukturvorschlag kann aufgrund fehlender analytischer Daten an dieser Stelle nicht gemacht werden.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

6. Cothermolyse von $[Cp^{=}Fe(\eta^{5}-P_{5})]$ (4d) mit $[Cp^{=}Co(CO)_{2}]$ (2d) in siedendem Dekalin

Erhitzt man ein Gemisch aus $[Cp^{=}Fe(\eta^{5}-P_{5})]$ (**4d**) und $[Cp^{=}Co(CO)_{2}]$ (**2d**) in Dekalin auf 190 °C, so wird die anfangs orange-braune Lösung bereits nach wenigen Minuten schwarzbraun. IR-spektroskopisch kann die Intensitätsabnahme der für $[Cp^{=}Co(CO)_{2}]$ charakteristischen Carbonylbanden verfolgt werden, wobei keine neuen IR-Banden auftreten. Die Reaktion wird abgebrochen, nachdem die Eduktbanden verschwunden sind.

Abbildung 6.1	<i>Umsetzung von</i> $[Cp^{=}Fe(\eta^{5}-P_{5})]$ (4 <i>d</i>) <i>und</i> $[Cp^{=}Co(CO)_{2}]$ (2 <i>d</i>)
---------------	---

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			_

Das Eduktverhältnis von 1 zu 2.7 ($[Cp^{=}Fe(\eta^{5}-P_{5})]$ (**4d**) zu $[Cp^{=}Co(CO)_{2}]$ (**2d**)) entspricht dem der entsprechenden Reaktion des Cp*-Pentaphosphaferrocens in *Kapitel 5*. Die anschließende säulenchromatographische Aufarbeitung erweist sich als sehr schwierig. Trotz Verwendung verschiedener Säulenmaterialien können bei der ersten chromatographischen Trennung von den einzelnen Komponenten des Produktbildes nur Mischfraktionen erhalten werden. Nach mehrmaliger säulenchromatographischer Aufarbeitung der einzelnen Mischfraktionen an neutralem Aluminiumoxid mit Petrolether als Eluens werden zum Teil reine Fraktionen mit geringen Mengen der betreffenden Substanz erhalten. Eine Angabe der Ausbeuten ist allerdings nicht möglich.

Hauptbestandteile der ersten Mischfraktion sind das violette $[{Cp^{=}Co}_{3}(\mu_{3}-P)_{2}]$ (6d) und das grüne $[{Cp^{=}Co}_{4}P_{4}]$ (7d). Die Verbindungen wurden bereits in der Cothermolyse von $[Cp^{*}Fe(\eta^{5}-P_{5})]$ (VII) mit $[Cp^{=}Co(CO)_{2}]$ (2d) dargestellt und charakterisiert (siehe *Kapitel 5.1* und 5.2).

Die letzten drei Verbindungen können in der analogen Reaktion mit $[Cp^*Fe(\eta^5-P_5)]$ (VII) als Edukt nicht nachgewiesen werden (siehe *Kapitel 5*). In einer braunen Fraktion kann ein Gemisch aus $[{Cp^{=}Co}_4P_4]$ (7d), $[{Cp^{=}Fe}_2(\mu_3-\eta^{4:4:1:1}-P_4){Cp^{=}Co}]$ (14) und $[{Cp^{=}Fe}_2{Cp^{=}Co}_2P_4]$ (15) mit Petrolether eluiert werden. Eine Auftrennung gelang auch nach mehrfachen Trennversuchen nicht.

In einer grünen Fraktion kann ebenfalls mit Petrolether ein Gemisch aus $[{Cp}^{=}Fe}_{2}{Cp}^{=}Co}_{2}P_{4}]$ (15) und $[{Cp}^{=}Co}_{4}P_{10}]$ (V) erhalten werden. Verbindung V konnte bereits von *T. Völmecke* durch die Cothermolyse von $[Cp}^{=}Co(CO)_{2}]$ (2d) mit einem Überschuss an weißem Phosphor selektiv synthetisiert werden^[13].

Auf der Suche nach einer Lösung für das Trennproblem wurde das Experiment mit variierten Eduktverhältnissen wiederholt. Ändert man das Verhältnis von $[Cp^{=}Fe(\eta^{5}-P_{5})]$ (**4d**) zu $[Cp^{=}Co(CO)_{2}]$ (**2d**) auf 1 zu 1.7, so vereinfacht sich das Produktbild durch Wegfall der störenden, bekannten Komplexe. *Abbildung 6.2* zeigt das veränderte Produktbild. Die Isolation der einzelnen Komponenten gelingt, jedoch nur unter Ausbeuteverlusten, da auch hier eine mehrfache säulenchromatographische Aufarbeitung erforderlich ist. Im Falle von $[\{Cp^{=}Fe\}_{2}\{Cp^{=}Co\}_{2}P_{4}]$ (**15**) reichen die isolierten Mengen nur für die Charakterisierung des Komplexes aus. Eine Angabe der Ausbeute ist nicht möglich.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Abbildung 6.2	Umsetzung	von	$[Cp^{=}Fe(\eta^{5}-P_{5})]$	(4 <i>d</i>)	mit	$[Cp^{=}Co(CO)_2]$	(2 <i>d</i>)	im
	Verhältnis 1	zu 1.	7					

Die Erniedrigung der Cobalt-Carbonyl-Konzentration führt zur Bildung von heterometallischen P_n -Komplexen mit höheren {Cp=Fe}-Fragment-Anteilen. Es gibt keinen Hinweis über den Verbleib des überschüssigen Cobalts.

Bei der säulenchromatographischen Aufarbeitung an neutralem Aluminiumoxid kann zuerst mit Petrolether eine gelbe Fraktion des Ferrocens $[Cp_2^{=}Fe]$ (**12d**) eluiert werden. Verbindung **12d** wurde bereits von *J. Okuda* dargestellt^[59] und strukturanalytisch charakterisiert. Die erhaltenen NMR-spektroskopischen und massenspektrometrischen Werte stimmen gut mit der Literatur überein^[59]. Dieser Komplex wird daher nicht weiter diskutiert.

Mit Petrolether kann in einer weiteren gelb-grünen Fraktion der neue Komplex $[{Cp^{=}Fe}_{2}(\mu-\eta^{4:4}-P_{4})]$ (13d) eluiert werden. In der dritten, braunen Fraktion trennt man mit

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Petrolether den Komplex $[{Cp^{=}Fe}_{2}(\mu_{3}-\eta^{4:4:1:1}-P_{4}){Cp^{=}Co}]$ (14) ab. In einer weiteren braunen Fraktion kann anschließend mit Petrolether ein Gemisch aus $[{Cp^{=}Fe}_{2}(\mu_{3}-\eta^{4:4:1:1}-P_{4}){Cp^{=}Co}]$ (14) und $[{Cp^{=}Fe}_{2}{Cp^{=}Co}_{2}P_{4}]$ (15) erhalten werden. Aus diesem Gemisch werden durch fünf aufeinanderfolgende säulenchromatographische Trennvorgänge an neutralem Aluminiumoxid einige Milligramm $[{Cp^{=}Fe}_{2}{Cp^{=}Co}_{2}P_{4}]$ (15) isoliert.

6.1 Charakterisierung von [{ $Cp^{=}Fe$ }₂(μ - $\eta^{4:4}$ - P_4)] (**13d**)

Nach dem Entfernen des Lösungsmittels aus der zweiten Säulenfraktion fällt der Komplex **13d** als gelb-grünes Pulver an. Er ist sowohl in unpolaren (z.B. Pentan, Hexan) als auch in polaren (z.B. THF, CH₂Cl₂) und aromatischen (z.B. Toluol, Deuterobenzol) Lösungsmitteln gut löslich. Im festen Zustand kann die Verbindung unter Inertgasatmosphäre mehrere Wochen ohne Zerfallserscheinungen gelagert werden.

Zur Röntgenstrukturanalyse taugliche Einkristalle konnten durch Abdiffusion des Lösungsmittels bei 0 °C aus einer Pentanlösung erhalten werden.

6.1.1 NMR-spektroskopische Daten

Im ¹H-NMR-Spektrum von $[{Cp^{=}Fe}_{2}(\mu-\eta^{4:4}-P_{4})]$ (**13d**) in Deuterobenzol bei Raumtemperatur erscheint nur ein Signalsatz für die beiden Cp⁼-Liganden. Die Signale weisen das erwartete Integralverhältnis von 18:2:1 auf. Im ³¹P-NMR-Spektrum von **13d** wird für die vier Phosphoratome nur ein verbreitertes Singulett bei $\delta = 102$ ppm detektiert.

In *Tabelle 6.1* werden die spektroskopischen Daten mit bereits bekannten Komplexen des Typs [{ $Cp^{R}Fe$ }₂(μ - $\eta^{4:4}$ - P_{4})] verglichen. Besonderes Augenmerk liegt hierbei auf dem Cp''-Derivat (**13g**), welches von *Schwarz* in unserer Arbeitsgruppe durch die schrittweise Decarbonylierung von [{ $Cp''(CO)_{2}Fe$ }₂(μ - $\eta^{1:1}$ - P_{4})]^[17] dargestellt wurde.

Wie bereits in den vorherigen Kapiteln beschrieben, treten die Ringprotonen im silvlierten Komplex bei tieferem Feld in Resonanz. Die Protonen der Tms-Gruppen erscheinen erwartungsgemäß mit $\delta = 0.30$ ppm bei höherem Feld als die Protonen der *tert.*-Butyl-Gruppen. Auch die Verschiebung der ³¹P-NMR-Signale zu tieferem Feld reiht sich in die bisherigen Beobachtungen bei den Komplexen in den vorherigen Kapiteln ein. Es bleibt

Tabelle 6.1Vergleich der NM		MR-spektroskopischen Daten von 13d , g und h			
Kern	$[{Cp}^{=}Fe}_{2}(\mu-\eta^{4:4}-P_{4})]$	$[{Cp''Fe}_2(\mu-\eta^{4:4}-P_4)]$	$[{Cp'''Fe}_2(\mu-\eta^{4:4}-P_4)]$		
δ [ppm]	(13d)	$(13g)^{[17]}$	$(13h)^{[18]}$		
³¹ P	102 (s, 4P)	83 (s, 4P)	91 (s, 4P)		
¹ H	4.4 (s, 4H)	4.38 (s, 4H)	4.31 (s, 4H)		
	4.17 (s, 3H)	3.93 (s, 2H)	1.35 (s, 36H)		
	0.30 (s, 36H)	1.17 (s, 36H)	1.28 (s, 18H)		

6.1.2 Massenspektrometrische Daten von [$\{Cp^{=}Fe\}_{2}(\mu-\eta^{4:4}-P_{4})$] (13d)

ſ

Von Verbindung **13d** konnte im 25 eV EI-Massenspektrum bei m/z = 652.9 amu der Molekülionenpeak detektiert werden. Dieser unterscheidet sich vom theoretischen Wert von m/z = 653.9 amu, kann aber aufgrund des geforderten Isotopenmusters zugeordnet werden. Des weiteren detektiert man bei m/z = 122.9 amu das Fragment $[P_4]^+$.

6.1.3 Röntgenstrukturanalyse von [{Cp⁼Fe}₂(μ - η ^{4:4}-P₄)] (13d)

Abbildung 6.3 zeigt das Ergebnis der Röntgenstrukturanalyse von **13d** mit Benennung der Schweratome. In Abbildung 6.4 wird die *pseudo*-Tripeldeckerstruktur des Komplexes hervorgehoben. Das Mitteldeck wird durch die P₄-Kette aufgespannt. Es handelt sich nur um einen *pseudo*-Tripeldecker, da das Mitteldeck nicht geschlossen ist und die einzelnen Ringe mit ~ 9.5° zueinander geneigt sind. Abbildung 6.4 gibt ebenso die Ringkonformationen wieder. Ausgewählte Strukturparameter werden in den *Tabellen 6.2* bis 6.4 aufgezeigt. Detaillierte Angaben zur Strukturlösung, Atomlageparametern und Temperaturfaktoren befinden sich im Anhang **A.7**.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Abbildung 6.3Struktur von 13d mit Benennung der Schweratome

Abbildung 6.4Pseudo-Tripeldecker-Struktur und Ringkonformation von 13d

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Tabelle 6.2	Ausgewählte
	Bindungslängen
Bindung	Bindungslängen
0	[Å]
Fe1-P1	2.2562(11)
Fe1-P2	2.3233(10)
Fe1-P3	2.3133(10)
Fe1-P4	2.2619(9)
Fe2-P1	2.2696(10)
Fe2-P2	2.3040(10)
Fe2-P3	2.3250(11)
Fe2-P4	2.2477(9)
P1-P2	2.0854(16)
P2-P3	2.4344(17)
P3-P4	2.0804(15)
P4…P1	4.081
Fe-Fe	2.6027(6)
Fe1-Cp ⁼ _{Zent.}	1.731
Fe2-Cp ⁼ _{Zent.}	1.727

Tabelle 6.3	Ausgewählte
	Bindungswinkel

Bindung	Bindungswinkel
	[°]
P1-P2-P3	105.64(5)
P2-P3-P4	105.08(5)
Fe1-P1-Fe2	70.21(3)
Fe1-P2-Fe2	68.45(3)
Fe1-P3-Fe2	68.27(3)
Fe1-P4-Fe2	70.50(3)

Ausgewählte Ebenen und Ebenenschnittwinkel von 13d

Ebene	Atome	Abweichung aus der		Ebenen	Winkel [°]
		besten Ebene [Å]			
E1	P1-P2-P3-P4	0.0101		E1/E2	9.4
E2	C11-C12-C13-C14-C15	0.0019		E1/E3	9.6
E3	C21-C22-C23-C24-C25	0.0080		E2/E3	18.7

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil	_		-

Das Grundgerüst von Verbindung **13d** bildet eine P₄-Kette, die von zwei 13 VE {Cp⁼Fe}-Fragmenten überkappt ist. Daraus resultiert eine pentagonale Bipyramide, bei der eine Ecke fehlt. Dies entspricht einem *nido*-Polyeder mit n+2 = 8 GEPs^[57]. Verbindung **13d** besitzt jedoch nur n+1 = 7 GEPs. Die Struktur kann vielmehr als Verknüpfung zweier Fe₂P₂-Tetraeder beschrieben werden, die sich eine gemeinsame Fe-Fe-Kante teilen. Die Cp⁼-Liganden und das Mitteldeck stehen nahezu ekliptisch zueinander. Je ein Substituent weist in Richtung der geöffneten Seite des P₄-Mitteldecks.

Die beobachteten Bindungsabstände korrelieren mit der Annahme, dass die P₄-Kette als zum *cis*-Butadien isolobales Fragment als *s-cis*-Tetraphosphabutadienyl-Einheit beschrieben werden kann. So liegen zwei Bindungen mit 2.08 Å unterhalb der mit 2.09 Å ermittelten durchschnittlichen P-P-Abstände im P₅-Ring von $[Cp^{=}Fe(\eta^{5}-P_{5})]$ (**4d**). Diese Bindungen haben eindeutig Mehrfachbindungscharakter. Der Abstand zwischen den P2- und P3-Atomen ist mit 2.43 Å stark aufgeweitet und liegt nur 0.03 Å unterhalb der längsten gesicherten P-P-Bindung im *Ginsberg*-Komplex^[62]. Der eindeutig nichtbindende Abstand zwischen P1 und P4 beträgt 3.61 Å. Die Winkel weichen im Mitteldeck mit 105.1° bzw. 105.6° von dem für Fünfringe erwarteten Winkel von 108° ab. Die überkappenden {Cp⁼Fe}-Fragmente sind in Richtung der geöffneten Ringseite verschoben. Dadurch resultieren mit etwa 2.31 Å zwei lange und mit etwa 2.25 Å zwei kürzere Fe-P-Bindungen.

Abbildung 6.5Ausschnitt aus der Ringfluktuation von 13d

Aufgrund der strukturellen Daten scheint es verwunderlich, dass im ³¹P-NMR-Spektrum nur ein Phosphorsignal erscheint. Dieser Eigenschaft ging bereits *Dahl* auf den Grund, der mit $[{Cp*Fe}_2(\mu-\eta^{4:4}-P_4)]$ (**13i**) den ersten Vertreter dieses Komplextyps darstellte^[66]. Er vermutete eine Bindungsfluktuation oder Rotation bei Raumtemperatur, wodurch die Phosphoratome chemisch äquivalent werden (siehe *Abbildung 6.5*). Dieser Eigenschaft wird durch eine Signalverbreiterung Rechnung getragen. *A. Schwarz* aus unserem Arbeitskreis konnte im Cp''-Derivat diese Ringrotation einfrieren und NMR-spektroskopisch dokumentieren^[17]. Das ³¹P-NMR-Spektrum von [{Cp''Fe}_2(\mu-\eta^{4:4}-P_4)] (**13g**) weist bei

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

185 °K zwei Dubletts bei δ = 302.5 ppm und δ = -143.2 ppm (¹J_{PP} = 180 Hz) auf. Die Erhöhung der Temperatur auf 370 °K führt zu einem Signal mit kleinerer Halbwertsbreite.

6.1.4 Vergleich verschiedener [{ $Cp^{R}Fe$ }₂(μ - $\eta^{4:4}$ - P_{4})]-Komplexe (13) ($Cp^{R} = Cp^{=}$, $Cp^{\prime\prime}$, $Cp^{\prime\prime\prime}$)

Bereits im 31 P-NMR-Spektrum kann der typische Einfluss der silyl-substituierten Cp^R-Liganden entdeckt werden. In *Tabelle 6.5* werden strukturelle Daten der drei Komplexe miteinander verglichen.

Tabelle 6.5

Vergleich der strukturellen Daten von [$\{Cp^RFe\}_2(\mu-\eta^{4:4}-P_4)$] (13)

-			-
Bindungslängen	$[\{Cp^{=}Fe\}_{2}(\mu \textbf{-}\eta^{4:4}\textbf{-}P_{4})]$	$[{Cp''Fe}_2(\mu-\eta^{4:4}-P_4)]$	$[{Cp'''Fe}_2(\mu-\eta^{4:4}-P_4)]$
[Å]	(13d)	(13g) ^[17]	(13h) ^[18]
P-P	2.09	2.09	2.09
P2-P3	2.43	2.39	2.37
PP	3.61	3.57	3.55
Fe-P	2.28	2.30	2.30
Fe-Fe	2.61	2.62	2.64
Mittlere Winkel			
[°]			
P1-P2-P3	105.6	106.4	106.5
P2-P3-P4	105.1	106.5	106.5
E1/E2	9.1	11.1	12.3
E1/E3	9.6	11.4	13.2
E2/E3	18.7	22.1	25.5

Die Phosphoratome von [{ $Cp^{=}Fe$ }₂(μ - $\eta^{4:4}$ - P_4)] (**13d**) treten mit δ = 102 ppm im Vergleich zu dem Cp^{'''}- (δ = 91 ppm) bzw. Cp^{''}-Derivat (δ = 83 ppm) bei tiefstem Feld in Resonanz. Auch die typische Tieffeldverschiebung der Ringprotonen im ¹H-NMR-Spektrum kann detektiert werden.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

- 66 -

Analoga. In **13d** werden die Fe-P- und die Fe-Fe-Bindungen geringfügig verkürzt. Die größten Differenzen treten im P₄-Mitteldeck auf. Die P-P-Bindungen mit Mehrfachbindungscharakter unterscheiden sich nicht, jedoch ist die P2-P3-Bindung um 0.05 Å bzw. 0.07 Å gegenüber **13g** bzw. **13h** aufgeweitet. Auch der nichtbindende P^{...}P-Abstand ist um 0.04 Å bzw. 0.06 Å größer. Dies zeigt sich ebenfalls in den PPP-Bindungswinkeln, welche sich um bis zu 1.4° unterscheiden. Die Cp⁼-Ringe sind in **13d** mit 18.7° nicht so stark gegeneinander geneigt wie in den beiden anderen Komplexen (22.1° bzw. 25.5°).

13h ist im Vergleich zu 13g sterisch aufwändiger substituiert und die Decks haben eine stärkere Abwinkelung zueinander. Der im Vergleich zu *tert.*-Butyl- räumlich größere Tms-Substituent bewirkt in 13d genau das Gegenteil. Hier scheint die Beweglichkeit des Substituenten eine entscheidende Rolle zu spielen. Die Decks in 13d haben die geringste Abweichung aus der parallelen Anordnung.

6.2 Charakterisierung von [{ $Cp^{=}Fe$ }₂(μ_{3} - $\eta^{4:4:1:1}$ - P_{4}){ $Cp^{=}Co$ }] (**14**)

Nach dem Entfernen des Lösungsmittels aus der dritten Säulenfraktion fällt der Komplex **14** als grün-braunes Pulver an. Er ist sowohl in unpolaren (z.B. Pentan, Hexan) als auch in polaren (z.B. THF, CH₂Cl₂) und aromatischen (z.B. Toluol, Deuterobenzol) Lösungsmitteln gut löslich. Im festen Zustand kann die Verbindung unter Inertgasatmosphäre einige Wochen ohne Zerfallserscheinungen gelagert werden. Danach nimmt die Löslichkeit stark ab, was auf einen Zerfall hindeutet. Zur Röntgenstrukturanalyse taugliche Einkristalle konnten durch Abdiffusion des Lösungsmittels aus einer Hexanlösung erhalten werden.

6.2.1 NMR-spektroskopische Daten

Im ¹H-NMR-Spektrum von $[{Cp^{=}Fe}_{2}(\mu_{3}-\eta^{4:4:1:1}-P_{4}){Cp^{=}Co}]$ (14) in Deuterobenzol bei Raumtemperatur erscheint ein Signalsatz für die zwei Cp⁼-Liganden am Eisenatom. Die Protonen des Cp⁼-Liganden am Cobaltatom treten bei tieferem Feld in Resonanz. Die Signalsätze weisen ein Verhältnis von 2:1 auf und zeigen die typischen Signalintensitäten und ein Integralverhältnis von 18:2:1. *Tabelle 6.6* bietet einen Überblick und den Vergleich mit

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

den NMR-spektroskopischen Daten von [$\{Cp^*Fe\}_2(\mu_3-\eta^{4:4:1:1}-P_4)\{Cp'Co\}$] (XI) und $[\{Cp^*Fe\}_2(\mu_3-\eta^{4:4:1:1}-P_4)\{Cp^-Co\}] (8).$

NMR-Daten von den Verbindungen 14, XI und 8.

	-							
	[{Cp ^R	$[\{Cp^{R1}Fe\}_{2}(\mu_{3}-\eta^{4:4:1:1}-P_{4})\{Cp^{R2}Co\}]$						
Kern		$Cp^{R1} = Cp^*$	$Cp^{R1} = Cp^*$					
	$\mathbf{C}\mathbf{p}^{\mathbf{R}1} = \mathbf{C}\mathbf{p}^{\mathbf{R}2} = \mathbf{C}\mathbf{p}^{=}$	$Cp^{R2} = Cp'$	$Cp^{R2} = Cp^{-}$					
	(14)	$(\mathbf{XI})^{[25]}$	(8)					
³¹ P	501 (dd, 2P)	938 (d,2P)	935 (d,2P)					
δ [ppm]	$({}^{1}J_{P-P}=214 \text{ Hz}, {}^{2}J_{P-P}=107 \text{ Hz})$	(¹ J _{P-P} =120 Hz)	$(^{1}J_{P-P}=120 \text{ Hz})$					
	-37 (dd, 2P)	567 (d,2P)	568 (d,2P)					
	$({}^{1}J_{P-P}=214 \text{ Hz}, {}^{2}J_{P-P}=107 \text{ Hz})$	(¹ J _{P-P} =120 Hz)	(¹ J _{P-P} =120 Hz)					
¹ H	5.18 (s, 2H) [*]	5.50 (s, 2H)						
δ[ppm]	4.87 (s, 1H) [*]	4.48 (s, 2H)	unhaltannt					
	3.32 (s, 4H) ^{**}	1.69 (s, 9H)	undekannt					
	3.18 (s, 2H) ^{**}	1.52 (s, 30H)						
	0.46 (s, 36H) ^{**}							
	0.33 (s, 18H) [*]							

*Cp⁼-Ligand am Cobalt **Cp⁼-Ligand am Eisen

XI konnte S. Weigel, wie in der Einleitung beschrieben, durch Cothermolyse von $[Cp*Fe(\eta^5-P_5)]$ (VII) mit $[Cp'Co(CO)_2]$ (Ia) in Dekalin generieren^[25]. Das Cp''-Analogon ist auf diesem Weg nicht zugänglich und nach unserem Kenntnisstand unbekannt. Um die Reihe der bekannten Komplexe dieses Typs zu komplettieren, sind auch die ³¹P-NMR-Daten der unvollständig charakterisierten Verbindung 8 aufgeführt. Zwei Differenzen zeichnen sich im ³¹P-NMR-Spektrum ab (siehe *Abbildung* 6.6):

Die formale Substitution der Cp*- bzw. Cp'-Liganden durch Cp⁼ am Eisen und am Cobalt führt zu einer starken Verschiebung der Phosphorsiganale zu höherem Feld. Die beiden Phosphoratome, die sowohl an Eisen als auch an Cobalt gebunden sind, treten erwartungsgemäß mit $\delta = 501$ ppm bei tieferem Feld in Resonanz als die beiden anderen Atome bei $\delta = -37$ ppm. Als zweite Neuerung erhält man kein AX-Spinsystem, sondern ein

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

- 67 -

AA'XX'-Spinsystem, wodurch die Signale als Doppeldubletts erscheinen, mit Kopplungsfrequenzen von 214 Hz und 107 Hz. Die neu ermittelte ${}^{1}J_{PP}$ -Koppung ist mit 214 Hz um 94 Hz größer als in Komplex **XI**^[25]. Diese große Kopplungsfrequenz unterstreicht den Mehrfachbindungscharakter der P2-P3-Bindung. Die unterschiedliche Spinmultiplizität verursacht der unsymmetrisch substituierte Cp⁼-Ligand. Die Rotation der Ringe scheint durch die aufwändigen Substituenten gehindert zu sein.

Abbildung 6.6 ${}^{31}P$ -NMR-Spektrum von $[{Cp^{=}Fe}_{2}(\mu_{3}-\eta^{4:4:1:1}-P_{4}){Cp^{=}Co}]$ (14)

6.2.2 Massenspektrometrische Daten von [{Cp=Fe}_2(\mu_3-\eta^{4:4:1:1}-P_4){Cp=Co}] (14)

Von Verbindung **14** konnte im 70 eV EI-Massenspektrum bei m/z = 921.1 amu der Molekülionenpeak detektiert werden. *Tabelle 6.7* gibt einen Überblick über weitere Ionen, die im Massenspektrum gefunden wurden.

Tabelle 6.7	Massenspektrometrische Daten von [{ $Cp^{=}Fe$ } ₂ (μ_3 - $\eta^{4:4:1:1}$ - P_4){ $Cp^{=}Co$ }] (14)
-------------	--

Fragment	m/z [amu]	rel. Intensität [%]
$[\{Cp^{=}Fe\}_{2}(\mu_{3}-\eta^{4:4:1:1}-P_{4})\{Cp^{=}Co\}]^{+}$	921.1	100
$[\{Cp^{=}Fe\}_{2}(\mu-\eta^{4:4}-P_{4})]^{+}$	654.1	0.9
$[{Cp^{=}Fe}_{2}(P_{2})]^{+}$	594.5	5.38

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

6.2.3 Röntgenstrukturanalyse

Durch Abdiffusion des Lösungsmittels aus einer Hexanlösung von $[{Cp^{=}Fe}_{2}(\mu_{3}-\eta^{4:4:1:1}-P_{4}){Cp^{=}Co}]$ (14) konnten zur Röntgenstrukturanalyse taugliche Einkristalle erhalten werden. *Abbildung 6.7* zeigt die Struktur mit Benennung der Schweratome. Detaillierte Angaben können Anhang A.8 entnommen werden.

Abbildung 6.7 Röntgenstruktur von Verbindung 14

P3 P2 P4 Co Fe1 Co

Abbildung 6.8		Pentagonal-bipyramidales Schweratomgerüst und darstellung ohne Substituenten von Cluster 14				Tripeldecker-
	Einleitung Problemstellung	Eigene Ergebnisse	Experimenteller Teil	Zusammenfassung	Literatur	Anhang

Tabelle 6.8	Ausgewählte			
	Bindungslängen			
Bindung	Bindungslängen			
	[Å]			
Fe1-P1	2.3376(6)			
Fe1-P2	2.3640(7)			
Fe1-P3	2.3807(7)			
Fe1-P4	2.3631(7)			
Fe2-P1	2.3544(7)			
Fe2-P2	2.3641(7)			
Fe2-P3	2.3804(7)			
Fe2-P4	2.3615(6)			
Co1-P1	2.1555(6)			
Co1-P4	2.1489(7)			
P1-P2	2.2030(9)			
P2-P3	2.1185(9)			
P3-P4	2.2017(9)			
Fe1-Co1	2.6379(5)			
Fe2-Co1	2.6009(5)			
Fe1··Fe2	3.12			
Fe1-Cp ⁼ _{Zent.}	1.719			
Fe2-Cp ⁼ _{Zent.}	1.711			
Col-Cp ⁼ _{Zent.}	1.712			

Tabelle 6.9	Ausgewählte		
	Bindungswinkel		

Bindungswinkel
[°]
105.00(3)
104.62(4)
116.03(3)
116.48(3)
97.83(3)
171.1

X=Zentrum des CoP₄-Fünfrings

Tabelle 6.10

Ausgewählte Ebenen und Ebenenschnittwinkel von 14

Ebene	Atome	Abweichung aus der besten Ebene [Å]	Ebenen	Winkel [°]
E1	P1-P2-P3-P4-Co1	0.0104	E1/E2	2.3
E2	C11-C12-C13-C14-C15	0.0048	E1/E3	2.1

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Ebene	Atome	Abweichung aus der besten Ebene [Å]	Ebenen	Winkel [°]
E3	C21-C22-C23-C24-C25	0.0054	E2/E3	4.3
E4	C31-C32-C33-C34-C35	0.0052	E1/E4	85

Es bieten sich zwei Modelle an, um diese Verbindung zu beschreiben. Nach dem ersten Modell spannen die Schweratome eine pentagonale Bipyramide auf. Dazu wird ein $\{Cp^{-}Co\}P_{4}$ -Fünfring von zwei 13 VE $\{Cp^{-}Fe\}$ -Fragmenten η^{5} -artig überkappt. So ergeben sich nach $Wade^{[57]}$ für diesen Komplex n+1 = 8 GEPs, was einem *closo*-Polyeder entspricht 6.8). Der (Abbildung $\{Cp^{=}Co\}P_{4}$ -Fünfring enthält zwei Co-P-Bindungen mit ~ 2.15 Å, zwei lange (ca. 2.20 Å) und eine kurze P-P-Bindung (2.12 Å). Der Fünfring ist somit in Richtung des {Cp⁼Co}-Fragments gestreckt. Dies spiegelt sich auch in den Bindungswinkeln wieder. Mit einer Winkelsumme von 539.96° fällt die Abweichung vom Optimum von 540° sehr gering aus, jedoch sind die Bindungswinkel Co1-P1-P2 bzw. Co1-P4-P3 mit ca. 116° stark gestreckt und der Winkel am Co1-Atom mit 98° stark gestaucht im Vergleich zum Winkel von 108° im gleichseitigen Fünfring. Der Abstand zwischen P2 und P3 liegt mit 2.12 Å im Bereich des für $[Cp=Fe(\eta^5-P_5)]$ (4d) ermittelten P-P-Abstandes von 2.09 Å und weist Mehrfachbindungscharakter auf. Die anderen Abstände liegen im typischen Bereich für P-P- bzw. Co-P-Einfachbindungen. Somit kann der Fünfring als Cobaltatetraphosphacyclopenten beschrieben werden. Auch die Abstände zu den überkappenden 13 VE {Cp⁼Fe}-Fragmenten lassen sich in drei Gruppen einteilen. Diese spiegeln die Geometrie des Fünfrings wieder und liegen eindeutig im Einfachbindungsbereich. Der Cp⁻-Ligand am Co-Atom steht mit 85.5° nahezu senkrecht zum {Cp⁼Co}P₄-Fünfring. Die Abweichung vom idealen Wert von 90° wird wahrscheinlich durch die sterische Wechselwirkung der Tms-Substituenten verursacht. So wird auch eine eingeschränkte Rotation in gelöstem Zustand erwartet, was die Signalaufspaltung im ³¹P-NMR-Spektrum erklärt.

Das zweite Modell beschreibt den Komplex **14** als Tripeldecker mit zwei $Cp^{=}$ -Decks und einem { $Cp^{=}Co$ }P₄-Mitteldeck, bei dem die zwei äußeren Decks mit 2.3° bzw. 2.1° nur geringfügig von der parallelen Anordnung zum Mitteldeck abweichen. Die Deck-Deck-Abstände betragen 3.29 Å bzw. 3.27 Å und sind somit etwas größer als der mit 3.20 Å von *T*. *Brück* ermittelte durchschnittliche Deck-Deck-Abstand in seinem kationischen Tripeldecker [{ $Cp^{*}Fe$ }($\eta^{5:5}$ -P₅){FeCp}]PF₆^[53]. Der Fe-Fe-Abstand von 3.12 Å wird vermutlich durch die Wechselwirkung der Fe-Zentren mit dem Mitteldeck bestimmt und sagt nichts über eine Fe-

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Fe-Wechselwirkung aus. *Abbildung 6.9* gibt die Konformation der Decks zueinander wieder. Die Cp⁼-Liganden mit ihren Tms-Substituenten stehen nahezu deckungsgleich. Die leichte Verdrillung wird wahrscheinlich durch sterische Wechselwirkungen der Tms-Substituenten verursacht, obwohl die beiden Cp⁼-Decks weit voneinander entfernt sind. Das Mitteldeck steht hierzu in gestaffelter Konformation. Die Ringspitze am Co-Atom weist in die entgegengesetzte Richtung als die Tms-Substituenten. Dies verwundert nicht, da dadurch dem räumlichen Anspruch des Cp⁼-Liganden am Co-Atom Rechnung getragen wird.

Abbildung 6.9Konformation der drei Decks des Tripeldeckers 14

6.2.4 Strukturvergleich von 14 und XI

Vergleicht man die strukturellen Daten der beiden Komplexe vom Typ $[{Cp^{R1}Fe}_2(\mu_3-\eta^{4:4:1:1}-P_4){Cp^{R2}Co}]$ miteinander, so findet man signifikante Unterschiede. Das Schweratomgerüst wird durch die unterschiedlichen Liganden wenig beeinflusst. Abbildung 6.10 zeigt einige strukturelle Daten des Mitteldecks von $[{Cp}^{=}Fe]_2(\mu_3-\eta^{4:4:1:1}-\mu_3-\eta^{4:4:1}-\mu_3-\eta^{4$ P_4 {Cp⁼Co}] (14) und [{Cp*Fe}_2(\mu_3-\eta^{4:4:1:1}-P_4){Cp'Co}] (XI). In Verbindung 14 sind die P-P-Einfachbindungen im Vergleich zu XI etwas aufgeweitet und die P2-P3-Bindung etwas verkürzt. Der Ring ist somit in die Länge gezogen. Auch die Fe-P-Abstände unterscheiden sich nur unwesentlich. Die Schweratomgerüste der beiden Verbindungen im Kristall differieren demnach kaum. Deutliche Unterschiede können in der Geometrie der Liganden gefunden werden. Tabelle 6.11 gibt die wichtigsten Daten vergleichend wieder.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Abbildung 6.10	(CoP ₄)-Mitteldeck	von	<i>14</i> .	Die	Werte	in	den	Klammern	geben	die
	Abstände im analog	gen K	Comp	lex X	[^[25] wie	der	•			

Die Definition der Ebenen kann *Kapitel 6.2.3* entnommen werden. In Verbindung **XI** sind die Decks **E1/E2** bzw. **E1/E3** mit 8.5° bzw. 8.8° zueinander geneigt. Durch die Einführung der silyl-substituierten Liganden werden die Decks in eine nahezu parallele Anordnung geschoben. Diese geänderte Symmetrie könnte ein möglicher Auslöser für den Shift der Phosphorsignale zu höherem Feld im ³¹P-NMR-Spektrum sein, im Vergleich von **14** zu **XI**. Ebenso muss eine eingeschränkte Rotation der Cp⁼-Ringe aufgrund sterischer Wechselwirkungen der Tms-Substituenten ins Auge gefasst werden. Die Überprüfung der Dynamik durch ein NMR-Experiment konnte im Rahmen dieser Arbeit nicht mehr durchgeführt werden.

Tabelle 6.11Unterschiede in der Tripeldecker			struktur von 14 und XI	
Winkel [°]	$[\{Cp^{=}Fe\}_{2}(\mu_{3}\text{-}\eta^{4:4:1:1}\text{-}P_{4})\{Cp^{=}Co\}]\ (14)$		$[{Cp*Fe}_2(\mu_3-\eta^{4:4:1:1}-P_4){Cp'Co}](XI)$	
E1/E2		2.3	8.5	
E1/E3	2.1		8.8	
E2/E3	4.3		17.3	

Der Komplex [{Cp*Fe}₂($\mu_3-\eta^{4:4:1:1}-P_4$){Cp''Co}] konnte bisher nicht dargestellt werden. Jedoch auch mit aufwändigeren Substituenten lässt sich dieser Komplextyp generieren. Dass die $Cp^=$ -Liganden sich gegenseitig beeinflussen, ist am Winkel zwischen dem Mitteldeck (E1)

85.5

89.9

E1/E3

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

und dem Cp⁼-Liganden am Co-Atom (**E4**) ersichtlich. In Verbindung **XI** stehen die beiden Ebenen orthogonal zueinander. In [{Cp⁼Fe}₂(μ_3 - $\eta^{4:4:1:1}$ -P₄){Cp⁼Co}] (**14**) wird der Fünfring um 4.5° aus der orthogonalen Ausrichtung gedrückt.

6.3 Charakterisierung von $[{Cp^{=}Fe}_{2}{Cp^{=}Co}_{2}P_{4}]$ (15)

Nach dem Entfernen des Lösungsmittels aus der vierten Säulenfraktion verbleibt ein Gemisch aus $[{Cp=Fe}_2(\mu_3-\eta^{4:4:1:1}-P_4){Cp=Co}]$ (14) und $[{Cp=Fe}_2{Cp=Co}_2P_4]$ (15) als brauner Feststoff. Nach fünfmaliger säulenchromatographischer Aufarbeitung an neutralem Aluminiumoxid (Aktivitätsstufe II) können wenige Milligramm des Komplexes 15 isoliert werden. Er ist in allen gängigen Lösungsmitteln gut löslich. Im festen Zustand kann die Verbindung unter Inertgasatmosphäre einige Wochen ohne sichtbare Zersetzungserscheinungen gelagert werden. Jedoch nimmt dabei die Löslichkeit in unpolaren Solventen ab. Zur Röntgenstrukturanalyse taugliche Einkristalle konnten durch Abdiffusion des Lösungsmittels aus einer Hexanlösung erhalten werden.

6.3.1 ¹H-NMR-spektroskopische Daten von Verbindung 15

Tabelle 6.12 gibt die ¹H-NMR-spektroskopischen Daten der beiden unterschiedlichen Cp⁼-Liganden wieder. Die Datensätze haben ein Verhältnis von 1:1 zueinander mit einem typischen Integralverhältnis von 18:2:1.

Tabelle 6.12	¹ H-NMR-Daten von Verbindt	ung 15		
¹ H-NMR (δ [ppm])		Multiplizität		
	4.63	s, 4H		
	4.42	s, 2H		
	4.22	s, 2H		
	3.91	s, 4H		
0.62		s, 72 H		
	0.49	s, 72 H		

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Diese beiden Signalsätze entstehen aufgrund der Bindung des Cp⁼-Liganden zu den unterschiedlichen Metallen Eisen und Cobalt. Die Zuordnung der einzelnen Protonensignale zu den Cp⁼-Metallfragmenten ist jedoch nicht möglich. In Komplex **14**, der einzigen weiteren Verbindung mit beiden Metallfragmenten, treten die Protonen der {Cp⁼Co}-Einheit bei tieferem Feld in Resonanz. Dies kann aber nicht ohne weiteres auf diesen Komplex übertragen werden, da Geometrie und Bindungsverhältnisse unterschiedlich sind.

6.3.2 Diskussion der ³¹P-NMR-spektroskopischen Daten

Die vier Phosphoratome sind chemisch und magnetisch nicht äquivalent. Im ³¹P-NMR-Spektrum wird ein AA'XX'-Spinsystem gefunden (siehe *Abbildung 6.11*), analog zu $[\{Cp^{=}Fe\}_{2}(\mu_{3}-\eta^{4:4:1:1}-P_{4})\{Cp^{=}Co\}]$ (14). Es fällt auf, dass die P-Atome in Verbindung 15 im Vergleich zu den homometallischen Komplexen $[\{Cp^{=}Co\}_{4}P_{4}]$ (7d) und $[\{CpFe\}_{4}(P_{2})_{2}]$ (XII) bei viel höherem Feld in Resonanz treten. *Tabelle 6.13* gibt eine Übersicht der NMR-Daten, im Vergleich zu den Komplexen 7d und XII wieder. Wie schon in *Kapitel 6.2* anhand $[\{Cp^{=}Fe\}_{2}(\mu_{3}-\eta^{4:4:1:1}-P_{4})\{Cp^{=}Co\}]$ (14) diskutiert wurde, führen dort die geänderte Geometrie und der Einsatz von $Cp^{=}$ -Liganden zu einer Signalverschiebung um mehr als 500 ppm zu höherem Feld im Vergleich zum alkyl-substituierten Derivat. Auch eine gesicherte Zuordnung der Signale im ³¹P-NMR-Spektrum kann nicht gemacht werden. Aufgrund des Kopplungsmusters wird folgende Zuordnung vorgeschlagen.

Tabelle 6.13	Vergleich der ³¹ P-NMR-Daten in δ [ppm] von 15, 7d und XII		
[{Cp ⁼ Co} ₄ P	4] (7d)	$[{Cp}^{=}Fe{}_{2}{Cp}^{=}Co{}_{2}P_{4}] (15)$	$[{CpFe}_4(P_2)_2] (XII)^{[27]}$
507 (s, 4P)		197.39 (dd, 1P)	881 (s, 4P)
		$({}^{1}J_{XA} = 135 \text{ Hz}, {}^{1}J_{XX} = 76 \text{ Hz})$	
		194.56 (dd, 1P)	
		$({}^{1}J_{XA} = 135 \text{ Hz}, {}^{1}J_{XX} = 76 \text{ Hz})$	
		-125.15 (d, 1P)	
		$(^{1}J_{AX} = 135 \text{ Hz})$	

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Froebnisse	Teil			

-126.19 (d, 1P)

 $(^{1}J_{AX} = 135 \text{ Hz})$

Abbildung 6.11 ${}^{31}P$ -NMR-Spektrum von $[{Cp^{=}Fe}_{2}{Cp^{=}Co}_{2}P_{4}]$ (15)

Die Phosphoratome im {Cp⁼Fe}₂P₂-Butterfly (P_A) treten als Dublett bei δ = -126.19 ppm und δ = -125.15 ppm mit einer jeweiligen Kopplungsfrequenz von 135 Hz in Resonanz. Die Phosphoratome des {Cp⁼Co}₂P₂-Vierrings (P_X) erscheinen als Doppeldublett bei δ = 194.56 ppm und δ = 197.39 ppm. Neben der Kopplung zu den P_A-Atomen mit der Frequenz 135 Hz kann auch eine Kopplung zwischen dem P_X und dem P_{X'}-Atom mit 76 Hz detektiert werden. Dagegen sprechen jedoch die ³¹P-NMR-Daten der beiden homometallischen Komplexe [{Cp⁼Co}₄P₄] (**7d**) und [{Cp⁼Fe}₄(P₂)₂] (**XII**). Die P-Atome im Eisen-Komplex treten bei tieferem Feld in Resonanz als im Cobalt-Komplex. In Verbindung **15** wird aufgrund der gefundenen Kopplungen eine entgegengesetzte Zuordung vorgeschlagen. In einem einfachen NMR-Experiment sollten durch Temperaturerhöhung die Signale zu zwei Dubletts zusammenfallen. Dieses konnte aber im Rahmen dieser Arbeit nicht mehr durchgeführt werden.

6.3.3 Massenspektrometrische Daten

Der Molekülionenpeak kann im 35 eV EI-Massenspektrum bei m/z = 1191.2 amu nicht gefunden werden. Den Basispeak bildet das $[{Cp=Fe}_2{Cp=Co}P_2]^+$ Kation bei m/z = 859.7 amu. *Tabelle 6.14* gibt einen Überblick über weitere gefundene Fragmente.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Tabelle 6.14	Fragmente im 35 eV EI-Massenspektrum von 15				
Fragment		m/z [amu]	rel. Intensität [%]		
$[{Cp}Fe]_2{Cp}Cc$	$P_{4}]^{+}$	920.4	3.8		
$[{Cp^{=}Fe}_{2}{Cp^{=}Co}P_{2}]^{+}$		859.7	100		
$[{Cp}^{=}Fe}_{2}{Cp}^{=}Co}P]^{+}$		829.0	13.4		
$[\{Cp^{=}Fe\}_{2}P_{4}]^{+}$		656.8	14.1		
$\left[\left\{Cp^{=}Fe\right\}_{2}P_{3}\right]^{+}$		625.8	6.9		

6.3.4 Röntgenstrukturanalyse von $[{Cp^{=}Fe}_{2}{Cp^{=}Co}_{2}P_{4}]$ (15)

Von **15** konnten zur Röntgenstrukturanalyse taugliche Einkristalle erhalten werden. *Abbildung 6.12* zeigt das Ergebnis dieser Untersuchung mit Benennung der Schweratome. Detaillierte Angaben können dem Anhang **A.9** entnommen werden.

Tabelle 6.12	<i>Röntgenstrukturanalyse von</i> $[{Cp^{=}Fe}_{2}{Cp^{=}Co}_{2}P_{4}]$ (15)
--------------	--

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Rindung	Bindungslängen	Bindung	Bindungslängen
Dinuung	[Å]	Dinuung	[Å]
Fe1-P1	2.2433(11)	Fe1-Co1	2.5985(8)
Fe1-P2	2.3200(10)	Fe2-Co2	2.5924(6)
Fe1-P4	2.2038(11)	Fe1-Fe2	2.7964(8)
Fe2-P1	2.2049(10)	Fe1-Cp ⁼ _{Zent.}	1.786
Fe2-P3	2.3153(11)	Fe2-Cp ⁼ _{Zent.}	1.767
Fe2-P4	2.2482(12)	Co1-Cp ⁼ _{Zent.}	1.763
		$\text{Co2-Cp}^{=}_{\text{Zent.}}$	1.772
Co1-P2	2.2035(11)	Bindung	Bindungswinkel
Co1-P3	2.2783(11)		[°]
Co1-P4	2.2270(11)	P1-Fe1-P4	100.79(4)
Co2-P1	2.2248(10)	Fe1-P4-Fe2	100.59(4)
Co2-P2	2.2764(12)	P4-Fe2-P1	100.59(4)
Co2-P3	2.2078(10)	Fe2-P1-Fe1	77.90(3)
		P3-Co2-P2	72.09(4)
P1-P2	2.3819(14)	Co2-P2-Co1	108.00(4)
P3-P4	2.3781(13)	P2-Co1-P3	72.13(4)
P2…P3	2.6390(12)	Co1-P3-Co2	107.78(4)

Tabelle 6.16

Ausgewählte Ebenen und Ebenenschnittwinkel von 15

Ebene	Atome	Abweichung aus der
		besten Ebene [Å]
E1	Fe1-P1-P4-Fe2	0.1233
E2	Co1-Co2-P2-P3	0.0044
E3	Fe1-P1-Fe2	/
E4	Fe1-P4-Fe2	/
E5	Co2-P2-P3	/
E6	Co1-P2-P3	/

Ebenen	Winkel [°]
E1/E2	0.6
E3/E4	16.4
E5/E6	0.6

		_	_	i i
C-1 D2	2,2702(11)		F 0 1	

Tabelle 6.15Ausgewählte Bindungslängen und Bindungswinkel	
---	--

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Die Struktur von 15 kann zwischen Dreiecksdodekaeder und tetragonalem Antiprisma eingeordnet werden. Es sind Elemente beider Strukturtypen zu erkennen. Ein planarer $\{Cp^{-}Co\}_{2}P_{2}$ -Vierring (E2) ist mit einem leicht gewinkelten $\{Cp^{-}Fe\}_{2}P_{2}$ -Butterfly (E1) verknüpft. Die beiden Vierringe sind gegeneinander verdreht, aber nahezu parallel. So kann 15 als verzerrtes Deiecksdodekaeder beschrieben werden, mit fehlender P2-P3-Bindung und einem planarem $\{Cp^{-}Co\}_{2}P_{2}$ -Vierring (E2). Ebenso ähnelt das Schweratomgerüst einem verzerrten tetragonalen Antiprisma, bei dem durch die Fe1-Fe2-Bindung ein Fläche Butterfly-Struktur besitzt. Der {Cp⁼Co}₂P₂-Vierring ist planar mit zwei unterschiedlichen Bindungswinkeln von ~ 72° und ~ 108°. Der Abstand zwischen den Phosphoratomen in dieser Ebene beträgt 2.639 Å und bindende Wechselwirkungen können nicht vollkommen ausgeschlossen werden. G. Bertrand diskutierte in einer "1e2c"-Bindung ein P-P-Abstand von 2.634 Å $^{[68]}$. Zumindest in Lösung können aufgrund einer gefundenen $J_{XX^{\prime}}\mbox{-}Kopplung$ von 76 Hz bindende Wechselwirkungen vermutet werden. Die Co-P-Abstände in diesem Vierring können in zwei Gruppen mit 2.28 Å und 2.20 Å eingeteilt werden. Dies führt zu einer Verzerrung des Vierrings. Der $\{Cp^{-}Fe\}_2P_2$ -Butterfly hat einen Winkel von 163.6°. Auch hier existieren mit 2.20 Å und 2.24 Å zwei unterschiedliche Fe-P-Abstände. Der Fe-Fe-Abstand ist mit 2.80 Å recht lang, liegt aber im Bereich für Fe-Fe-Einfachbindungen.

Abbildung 6.13DSD-Umlagerung Dreiecksdodekaeder

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Beide Vierringe sind durch lange Fe-Co- mit 2.59 bis 2.60 Å, durch durchschnittliche Fe-P bzw. P-P- mit 2.31 bis 2.32 Å bzw. 2.38 Å und durch kurze Co-P-Bindungen mit 2.22 Å miteinander verknüpft. Die beiden Ebenen **E1** und **E2** sind mit 0.6° gegeneinander geneigt und somit nahezu parallel. Die Struktur ähnelt stärker dem tetragonalen Antiprisma als dem Dreiecksdodekaeder. Auf der Suche nach Strukturaquivalenten wird man in der Chemie der Borane und Carboborane fündig. Dort wird ein Mechanismus diskutiert, der die Umorientierung und Isomerisierung des Dreiecksdodekaeders beschreibt^[69].

Dieser sogenannte "diamond-square-diamond" oder kurz DSD-Mechanismus wurde erstmals von *Libscomb* beschrieben^[69] und erklärt unter anderem die Umorientierung des Borans $B_8H_8^{2-}$, welches im Kristall als Dreiecksdodekaeder vorliegt, in Lösung aber als quadratisches Antiprisma oder zweispitziges trigonales Prisma.

Anhand der *Abbildung 6.13* soll der DSD-Mechanismus kurz beschrieben werden. Die Bindung zwischen 5 und 3 wird gespalten, die Entfernung wächst und der 1-3-7-5-Vierring wird planar. Jetzt können sich 1 und 7 annähern und eine Bindung knüpfen. Dies konnte strukturanalytisch und NMR-spektroskopisch an $C_2B_6H_8$ nachgewiesen werden^[67].

Vergleicht man die "open-square-face"-Form mit der Struktur von $[{Cp^{=}Fe}_{2}{Cp^{=}Co}_{2}P_{4}]$ (15), so entdeckt man Parallelen. Auch 15 besitzt eine planare Fläche, bei der die Bindung zwischen dem P3- und P2-Atom im Kristall nicht eindeutig gefunden wird. Es gibt keine Hinweise auf eine DSD-Umlagerung der Verbindung 15 und diese kann alleine aufgrund der sterisch aufwendigen Cp⁼-Liganden ausgeschlossen werden.

6.4 Orientierende Versuche

6.4.1 Cothermolyse von $[Cp^{-}Fe(\eta^{5}-P_{5})]$ (4a) mit $[Cp^{-}Co(CO)_{2}]$ (2a)

Erhitzt man ein Gemisch aus $[Cp^-Fe(\eta^5-P_5)]$ (4a) und $[Cp^-Co(CO)_2]$ (2a) im Verhältnis 1 : 1.7 in Dekalin auf 190 °C, so wird die anfangs orange-braune Lösung bereits nach wenigen Minuten schwarz-braun. IR-spektroskopisch kann die Intensitätsabnahme der für $[Cp^-Co(CO)_2]$ charakteristischen Carbonylbanden verfolgt werden, wobei keine neuen IR-Banden auftreten. Die Reaktion wird abgebrochen, nachdem die Eduktbanden verschwunden sind.

Aus zeitlichen Gründen konnten die einzelnen Verbindungen nicht vollständig charakterisiert werden. Anhand ihrer NMR-spektroskopischen Daten wird aber eine Zuordnung getroffen.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Deshalb wird auch darauf verzichtet, die einzelnen Verbindungen zu nummerieren. Diese Reaktion ist nur aus Gründen der Vollständigkeit hier aufgeführt.

Das Produktspektrum gleicht dem Ergebnis bei der Reaktion von $[Cp^{=}Fe(\eta^{5}-P_{5})]$ (**4d**) mit $[Cp^{=}Co(CO)_{2}]$ (**2d**), aber mit dem Eduktverhältnis von 1 : 2.7 (siehe *Kapitel 6*). *Abbildung* 6.14 zeigt das Produktbild dieser Reaktion.

Abbildung 6.14 Cothermolyse von $[Cp^{-}Fe(\eta^{5}-P_{5})]$ (4a) und $[Cp^{-}Co(CO)_{2}]$ (2a)

Tabelle 6.17 gibt einen kurzen Überblick über die ³¹P-NMR-spektroskopischen Daten und die Zuordnung zu den analogen $Cp^{=}$ -Derivaten. Die $Cp^{-'}$ -substituierten Verbindungen erscheinen wie bei bisherigen Beobachtungen bei etwas höherem Feld.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Es erstaunt nicht, dass die formale Substitution einer Tms-Gruppe keinen entscheidenden Einfluss auf das Produktbild der Reaktion hat.

Besonders zu beachten bei diesem unsymmetrischen Liganden ist die Bildung von Racematen bzw. Diastereomeren. Die Phosphor-Liganden in den Komplexen [$\{Cp^{-'}Co\}_3(\mu_3-P)_2$] und [$\{Cp^{-'}Co\}_4P_4$] treten wie die $Cp^{=}$ -Analoga als Singulett im erwarteten Bereich in Resonanz. In diesen Fällen können die Diastereomere nicht unterschieden werden.

Bei den anderen Clustern [{Cp⁻'Fe}₂(μ_3 - $\eta^{4:4:1:1}$ -P₄){Cp⁻'Co}] und [{Cp⁻'Fe}₂{Cp⁻'Co}₂P₄] erscheinen die Signale bei erwarteten Feld, jedoch mit veränderten Spinmultiplizitäten. Dies kann man auf den Einfluss des unsymmetrisch substituierten Cp⁻'-Liganden zurückzuführen, da bereits bei den Cp⁼-Derivaten **14** und **15** die eingeschränkte Rotation der Cp-Liganden angesprochen wurde. Diese Einschränkung der Rotation sollte zu unterscheidbaren Diasteriomeren führen. Besonders deutlich wird der Einfluss des Cp⁻'-Liganden bei [{Cp⁻'Co}₄P₁₀]. Während bei Verbindung V fünf unterschiedliche Signale mit definierten Multiplizitäten gefunden werden können, verschwimmen die Signale bei diesem Komplex zu drei Multipletts.

Tabelle 6.17	Vergleich	der	³¹ P-NMR-Daten	gemessen	in	Deuterobenzol	bei
	Raumtempe	$(\delta[ppm])$					

D			E (a R a			
[{Cp ^k Co	$_{3}(\mu_{3}-P)_{2}]$	[{Cp ^r C	Co_4P_4	$[\{Cp^{*}Co\}_{4}P_{10}]$		
$Cp^{R} = Cp^{=}$	$Cp^{R} = Cp^{-\prime}$	$Cp^{R} = Cp^{=}$ $Cp^{R} = Cp^{-\prime}$		$Cp^{R} = Cp^{=}$	$Cp^{R} = Cp^{-\prime}$	
(6d)		(7d)		$(\mathbf{V})^{[13]}$		
1077.4 (s)	1068 (s)	507.2 (s)	494 (s)	269.6 (m)	266.8 (m)	
$[{Cp^{R}Fe}_{2}(\mu_{3}-\eta^{4})]$	$^{4:1:1}-P_4)\{Cp^RCo\}]$	$[{Cp^{R}Fe}_{2}]$	$Cp^{R}Co\}_{2}P_{4}]$	74.4 (pdd)	60.4 (m)	
$Cp^{R} = Cp^{=}$	$Cp^{R} = Cp^{-\prime}$	$Cp^{R} = Cp^{=}$	$Cp^{R} = Cp^{-\prime}$	70.7 (pdd)		
(14)		(15)		-137.2 (m)	-143.2 (m)	
501 (dd)	488 (m)	197.39 (dd)	193 (m)	-139.6 (m)		
-37 (dd)	-40 (m)	194.56 (dd)	186 (m)			
		-125.15 (d)	-129 (m)			
		-126.19 (d)				

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

6.4.2 Cothermolyse von $[Cp^{-}Fe(\eta^{5}-P_{5})]$ (4c) mit $[Cp^{-}Co(CO)_{2}]$ (2c)

Ein Gemisch aus $[Cp^-Fe(\eta^5-P_5)]$ (4c) und $[Cp^-Co(CO)_2]$ (2c) in Dekalin wird zum Sieden erhitzt. Die Reaktion wird abgebrochen, wenn IR-spektroskopisch die CO-Banden des Eduktes nicht mehr nachgewiesen werden können. Hauptprodukt ist das bereits bekannte $[{Cp^-Co}_4P_4]$ (7c).

Abbildung 6.16	³¹ <i>P</i> - <i>NMR</i> - <i>Produktspektrum bei der Cothermolyse von</i> $[Cp^{-}Fe(\eta^{5}-P_{5})]$ (4c)
	$mit \left[Cp^{-}Co(CO)_{2} \right] (2c)$

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Im Produktspektrum haben die Phosphoratome dieses Komplexes bei $\delta = 498$ ppm das intensivste Signal. Die anderen Komplexe entstehen nur in geringen Mengen und können nicht isoliert und charakterisiert werden. *Abbildung 6.16* zeigt das ³¹P-NMR-Produktspektrum dieser Reaktion. Das Edukt bei $\delta = 168$ ppm bzw. $\delta = 169$ ppm ist vollständig verschwunden. Die Signalen bei $\delta = 1021$ (s), 860 (d), 600 (s) und 511 (d) konnten keiner bekannten Verbindungen zugeordnet werden.

6.4.3 Mechanistische Überlegungen

Die Komplexe $[{Cp^{=}Fe}_{2}(\mu-\eta^{4:4}-P_{4})]$ (13d), $[{Cp^{=}Fe}_{2}(\mu_{3}-\eta^{4:4:1:1}-P_{4}){Cp^{=}Co}]$ (14) und $[{Cp^{=}Fe}_{2}{Cp^{=}Co}_{2}P_{4}]$ (15) haben ein gemeinsames Merkmal. Alle besitzen eine mehr oder minder intakte ${Cp^{=}Fe}_{2}P_{4}$ -Einheit. In *Abbildung 6.17* wird diese Einheit bei den verschiedenen Schweratomgerüsten von 13d, 14 und 15 hervorgehoben.

Abbildung 6.17	Schweratomgerüste	der	Komplexe	$[{Cp^{=}Fe}_{2}(\mu - \eta^{4:4}P_{4})]$	(A),
	$[{Cp^{=}Fe}_{2}(\mu_{3}-\eta^{4:4:1:1}-$	P_4){ Cp^2	⁼ Co}] (B) und	$[{Cp^{=}Fe}_{2}{Cp^{=}Co}_{2}P_{4}]$	(C)

So kann Struktur **B** formal aus **A** durch Addition eines {Cp⁼Co}-Fragmentes hervorgehen. **C** entsteht formal durch Addition von zwei {Cp⁼Co}-Fragmenten an **A**. Dies konnte aber experimentell nicht nachgewiesen werden. So werden in der Umsetzung von $[{Cp⁼Fe}_2(\mu-\eta^{4:4}-P_4)]$ (**13d**) mit [Cp⁼Co(CO)₂] (**2d**) in Dekalin im ³¹P-NMR-Produktspektrum die beiden Komplexe [{Cp⁼Fe}_2(\mu_3-\eta^{4:4:1:1}-P_4){Cp⁼Co}] (**14**) und [{Cp⁼Fe}_2(Cp⁼Co}_2P_4] (**15**) nicht detektiert.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Abbildung 6.18	Cothermolyse von $[{Cp^{=}Fe}_{2}(\mu_{3}-\eta^{4:4:1:1}-P_{4})]$ (13d) mit $[Cp^{=}Co(CO)_{2}]$
	(2d)

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

7. Cothermolyse von $[Cp^{R_1}Fe(\eta^5-P_5)]$ (4) und $[\{Cp^{R_2}Fe(CO)_2\}_2]$ (3)

7.1 $Cp^{R1} = Cp^{R2}$

Erstaunlicherweise konnte in der Reaktion von $[Cp^{-}Fe(\eta^{5}-P_{5})]$ (4d) mit $[Cp^{-}Co(CO)_{2}]$ (2d) der homometallische Cluster $[\{Cp^{-}Fe\}_{2}(\mu-\eta^{4:4}-P_{4})]$ (13d) generiert werden, obwohl das Cobalt-Carbonyl bzw. das $\{Cp^{-}Co\}$ -Fragment das reaktive Reagenz darstellt. Da der zu 13d entsprechende Cp*-substituierte Komplex durch eine analoge Reaktion nicht zugänglich ist, liegt die Vermutung nahe, dass 13d bei der thermischen Zersetzung des silyl-substituierten Pentaphosphaferrocens 4d entsteht. Jedoch konnten bei der ³¹P-NMR-spektroskopisch untersuchten Thermolyse von $[Cp^{-}Fe(\eta^{5}-P_{5})]$ (4d) außer dem kleiner werdenden Signal des Eduktes keine weiteren Phosphorsignale detektiert werden. Durch die Cothermolyse von $[Cp^{-}Fe(\eta^{5}-P_{5})]$ (4d) und $[\{Cp^{-}Fe(CO)_{2}\}_{2}]$ (3d) in Xylol lässt sich neben $[Cp^{-}_{2}Fe]$ (12d), auch der Komplex 13d generieren. Hauptbestandteil des Produktgemisches bleibt jedoch nicht umgesetztes 4d.

Abbildung 7.1 Cothermolyse von $[Cp^{R}Fe(\eta^{5}-P_{5})]$ (4) und $[\{Cp^{R}Fe(CO)_{2}\}_{2}]$ (3)

Diese Reaktion lässt sich auf Cp^{*}, Cp⁻ und Cp^{-'} übertragen. Die Reaktionszeiten verkürzen sich in der Reihe Cp^{*} \rightarrow Cp⁼ \rightarrow Cp^{-'} \rightarrow Cp⁻. So steigt auch in dieser Reihe der Anteil an [Cp^R₂Fe] (siehe *Tabelle 7.1*). Die sterisch weniger aufwendig substituierten Zweikernkomplexe [{Cp^RFe(CO)₂}₂] bilden beim Erhitzen direkt das Ferrocen, ohne mit dem

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Pentaphosphaferrocen zu interagieren. Dementsprechend sinkt die Ausbeute an $[{Cp^RFe}_2(\mu-\eta^{4:4}-P_4)]$ (13) (siehe *Tabelle 7.1*). Der Cp*-Ligand jedoch bildet eine Ausnahme. Bei diesem Liganden verbleiben trotz der langen Reaktionsdauer große Mengen an nicht umgesetzten Pentaphosphaferrocen. Dies spricht für eine sehr hohe Stabilität des Eduktes.

Tabelle 7.1	Ausbeutenübersicht [a.) bezogen auf $[Cp^{R}Fe(\eta^{5}-P_{5})]$ (4); b.) bezogen auf
	$[{Cp^{R}Fe(CO)_{2}}_{2}]$ (3)] und die Reaktionsdauern

Cp ^R	$[Cp^{R}_{2}Fe]$ (12)	$[Cp^{R}Fe(\eta^{5}-P_{5})] (4)$	$[{Cp^{R}Fe}_{2}(\mu-\eta^{4:4}P_{4})]$ (13)	Reaktions-
	[%] ([mg]=(mmol])	[%] ([mg]=(mmol])	[%] ([mg]=(mmol])	zeit [min]
Cp ⁻ ′	b.) 66.8 (87 = 0.196)	a.) 56.0 (132 = 0.326)	a.) 5.5 (25 = 0.040)	12
			b.) 13.6	
Cp ⁻	b.) 90.2 (87 = 0.417)	a.) 87.3 (281 = 0.803)	a.) 1.4 (8 = 0.016)	10
			b.) 3.5	
Cp ⁼	b.) 52.1 (53 = 0.138)	a.) 52.7 (116 = 0.279)	a.) 10.0 (43 = 0.066)	25
			b.) 24.9	
Cp*	b.) 13.5 (80 = 0.161)	a.) 92.7 (766 = 2.213)	a.) 3.8 (58 = 0.115)	55
			b.) 9.6	

T. Hilt und *T. Brück* konnten die Cp^{$\prime\prime$}- bzw. Cp*-substituierte Derivate von Komplex **13d** darstellen. Dabei gelang es ihnen durch Reaktion der Komplexe **13** mit weißem Phosphor, wieder das Pentaphosphaferrocen zu generieren^[18,53].

Entscheidend für die Synthese von $[{Cp^{R}Fe}_{2}(\mu-\eta^{4:4}-P_{4})]$ (13) aus dem entsprechenden $[Cp^{R}Fe(\eta^{5}-P_{5})]$ (4) scheint eine reaktive Spezies zu sein, die ein Phosphoratom aus dem *cyclo*-P₅-Ring löst. Es bleibt jedoch noch zu klären, ob das zweite $\{Cp^{R}Fe\}$ -Fragment aus dem Carbonyl-Edukt oder aus einem zweiten Pentaphosphaferrocen stammt. Dies kann festgestellt werden, indem man unterschiedliche Liganden bei den beiden Edukten verwendet. *Tabelle 7.2* gibt einen Überblick über die NMR-spektroskopischen Daten der Komplexe vom Typ $[{Cp^{R}Fe}_{2}(\mu-\eta^{4:4}-P_{4})]$ (13). Das Cp*-Derivat konnte bereits von *G. Schwarz* synthetisiert werden^[17]. Die erhaltenen Ferrocene sind alle bis auf $[Cp^{-'}{}_{2}Fe]$ (12a) bekannt. Deshalb wird an dieser Stelle auf die Literatur verwiesen^[59,47,43]. Zur Charakterisierung des Diastereomeren-Gemisches von 12a stehen nur die ¹H-NMR-spektroskopischen Daten (siehe *Tabelle 7.3*) zur Verfügung. Aufgrund der Analogie zur Reaktion mit dem Cp⁼-Derivate kann für 12a eine

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Sandwichstruktur angenommen werden. Bei **12a** macht sich die unterschiedliche Nachbarschaft der 3-H und 4-H Atome bemerkbar. Dies konnte in bisherigen Komplexen nicht beobachtet werden.

Tabelle 7.2	<i>NMR-spektroskopische Daten von</i> [{ $Cp^{R}Fe$ } ₂ (μ - $\eta^{4:4}$ - P_{4})] (13) in $C_{6}D_{6}$
-------------	--

δ [ppm]	$[\{Cp^{R}Fe\}_{2}(\mu-\eta^{4:4}-P_{4})] (13)$				
Kern	$Cp^{R} = Cp^{-\prime} (13a)$	$Cp^{R} = Cp^{-}(13c)$	$Cp^{R} = Cp^{=} (\mathbf{13d})$	$Cp^{R} = Cp^{*} (13i)$	
³¹ P	98 (s, br)	96 (s, br)	102 (s)	119 (s)	
¹ H	4.45 (s, 4H)		4.40 (s, 4H)	1.69 (s, 30H)	
	4.13 (s, 2H)	Keine	4.17 (s, 2H)		
	1.25 (s, 18H)	Angabe	0.30 (s, 36H)		
	0.45 (s, 18H)				

Tabelle 7.3	¹ <i>H-NMR-spektroskopische Daten von</i> $[Cp^{-2}Fe]$ (12a) in C_6D_6 bei RT
-------------	--

¹ H-NMR (δ [ppm])					
$[Cp^{-'}{}_{2}Fe]$ (12a)	0.39 (s, 18H)	1.36 (s, 18H)	4.10 (s, 2H)	4.16 (s, 2H)	4.29 (s, 2H)

$7.2 \ Cp^{R1} \neq Cp^{R2}$

Variiert man die Cp^R-Liganden, so ist entscheidend, welcher Cp^R-Ligand an das Pentaphosphaferrocen **4** und welcher an das Eisen-Carbonyl **3** bindet. So ergeben Reaktionen, bei denen sich der "stärkere" Ligand an der Phosphorquelle befindet, ein anderes Produktbild als beim umgekehrten Fall. Die Versuchsreihe ist nicht vollständig, aber sie genügt, um die unterschiedlich stabilisierenden Wirkungen der Liganden in diesen Komplexen zu belegen. Leider konnte nur ein Teil der entstehenden Produkte charakterisiert werden. Der Vergleich der Produktspektren soll zumindest zeigen, welchen Einfluss die verschiedenen Liganden in dieser homometallischen Reaktion haben.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

7.2.1 Cothermolyse von $[Cp^{=}Fe(\eta^{5}-P_{5})]$ (4d) mit $[{Cp^{*}Fe(CO)_{2}}_{2}]$ (VI) in Xylol

Erhitzt man ein Gemisch aus $[Cp^{=}Fe(\eta^{5}-P_{5})]$ (4d) und $[\{Cp^{*}Fe(CO)_{2}\}_{2}]$ (VI) im Verhältnis von 2 : 1 auf 140 °C, so können bereits nach 25 Minuten die CO-Banden des Edukts IRspektroskopisch nicht mehr nachgewiesen werden. Bei der säulenchromatographischen Aufarbeitung an Kieselgel (Aktivitätsstufe II) können mit Petrolether vier Fraktionen eluiert werden. Das Produktbild zeigt drei erstaunliche Ergebnisse (siehe *Abbildung 7.2*).

- Der Komplex [{Cp^RFe}₂(μ-η^{4:4}-P₄)] (13) entsteht nur mit dem Cp⁼-Liganden. Daraus folgt, dass das zweite {Cp⁼Fe}-Fragment aus einem zweiten Pentaphosphaferrocen stammen muss. Ein gemischter Komplex mit der Zusammensetzung [{Cp⁼Fe}(μ-η^{4:4}-P₄){FeCp*}] kann NMR-spektroskopisch nicht gefunden werden.
- Nach der Aufarbeitung wird nur das Tetrakis(trimethylsilyl)ferrocen (12d) nachgewiesen.
 Die denkbaren Verbindungen [Cp⁼FeCp*] und [Cp*₂Fe] entstehen nicht.
- 3. Es findet eine Ringübertragungsreaktion statt. Das Hauptprodukt dieser Reaktion ist das Pentaphosphaferrocen [Cp*Fe(η^5 -P₅)] (VII). Es kann vom Wandern des *cyclo*-P₅-Ringes aus der Koordinationssphäre eines {Cp⁼Fe}-Fragmentes zu einem {Cp*Fe}-Fragment ausgegangen werden. Demnach stabilisiert der Cp*-Ligand den Komplex besser. Cyclo-P₅-Ringübertragungsreaktionen gelangen bereits *B. Rink* von $[Cp*Fe(\eta^5-P_5)]$ (VII) auf {Cp*Os}-Fragment^[70]. ein {Cp*Ru}bzw. Dazu waren iedoch hohe Thermolysetemperaturen (bis 250 °C) und lange Reaktionszeiten (bis 22 h) notwendig^[70]. Als Zwischenstufe bei der Ringübertragung kann ein paramagnetischer Tripeldecker-Komplex diskutiert werden, jedoch ohne experimentellen Beweis^[70].

Abbildung 7.2 Umsetzung von $[Cp^{=}Fe(\eta^{5}-P_{5})]$ (4d) mit $[\{Cp^{*}Fe(CO)_{2}\}_{2}]$ (VI)

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

7.2.2 Cothermolyse von $[Cp*Fe(\eta^5-P_5)]$ (VII) mit $[{Cp}Fe(CO)_2]_2$ (3d)

Befindet sich nun der Cp*-Ligand bereits am Pentaphosphaferrocen, so können anhand der Reaktionsdauer erste Vermutungen angestellt werden. Erst nach 80 min sind die CO-Banden von $[{Cp=Fe(CO)_2}_2]$ (3d) im IR-Spektrum verschwunden.

Die säulenchromatographische Auftrennung an Kieselgel gelingt nicht. In einer gelben Fraktion kann ein nicht trennbares Gemisch aus den drei Ferrocen $[Cp*_2Fe]$, $[Cp=_2Fe]$ und [Cp*FeCp=] mit Petrolether eluiert werden. *Abbildung* 7.3 zeigt das ³¹P-NMR-Produktspektrum mit der Zuordnung des bekannten Signals.

Im Produktspektrum kann kein Pentaphosphaferrocen um $\delta = 160$ ppm gefunden werden. Jedoch entsteht bei $\delta = 102$ ppm das Signal von [{Cp⁼Fe}₂(μ - $\eta^{4:4}$ -P₄)] (**13d**). Zwischen $\delta = 370$ ppm und $\delta = 450$ ppm werden eine Reihe von Signalen mit unterschiedlicher Multiplizität gefunden. Jedoch konnte deren Ursprung bis zur Fertigstellung dieser Arbeit nicht geklärt werden.

Auch hier kann das zu $[{Cp^{=}Fe}_{2}(\mu-\eta^{4:4}-P_{4})]$ (13d) entsprechende Cp*-Derviat nicht nachgewiesen werden. Nimmt man den in *Kapitel 7.2.1* vermuteten Reaktionsablauf an, so sollte als Intermediat der Komplex $[Cp^{=}Fe(\eta^{5}-P_{5})]$ (4d) entstanden sein. Dies konnte aber experimentell nicht bestätigt werden.

Abbildung 7.3	³¹ P-NMR-Produktspektrum der Cothermolyse von $[Cp^*Fe(\eta^5-P_5)]$ (VII)
	$mit [{Cp^{=}Fe(CO)_{2}}_{2}] (3d)$

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Zusatz: Wird die Cothermolyse bei 190 °C in Dekalin durchgeführt, so ist die Reaktion bereits nach 20 Minuten beendet. Hauptbestandteil des Produktgemisches ist nicht umgesetztes [Cp*Fe(η^5 -P₅)] (**VII**). ³¹P-NMR-spektroskopisch (Lösungsmittel = C₆D₆) können die Komplexe [{Cp⁼Fe}₂(μ - $\eta^{4:4}$ -P₄)] (**13d**), [{Cp*Fe}₂(μ - $\eta^{4:4}$ -P₄)] (δ = 119 ppm) und [{Cp⁼Fe}(μ - $\eta^{4:4}$ -P₄){ FeCp* }] (δ = 111 ppm) nachgewiesen werden. Dies zeigt zumindest bei erhöhter Temperatur, dass das zweite {Cp^RFe}-Fragment bei der Entstehung von [{Cp^RFe}₂(μ - $\eta^{4:4}$ -P₄)] aus beiden Edukten stammen kann.

7.2.3 Cothermolyse von $[Cp^{R}Fe(\eta^{5}-P_{5})]$ (4) mit $[\{Cp^{R}Fe(CO)_{2}\}_{2}]$ (3) $(Cp^{R} = Cp^{=}, Cp^{-})$ in Xylol

Befindet sich der Cp⁼-Ligand am Carbonyl, ist die Reaktion nach 20 Minuten beendet. Im Produktgemisch können keine Pentaphosphaferrocene detektiert werden. Es findet demnach keine Ringübertragungsreaktion statt.

Abbildung 7.4	³¹ <i>P-NMR-Produktspektrum bei der Reaktion von</i> $[Cp^{RI}Fe(\eta^5-P_5)]$ (4) mit
	$[\{Cp^{R^2}Fe(CO)_2\}_2] (3) [Cp^{R^1} = Cp^{-}, Cp^{R^2} = Cp^{-} (\mathbf{B}); Cp^{R^1} = Cp^{-},$
	Cp = Cp (A)

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Es entsteht der Komplex [{ $Cp^{=}Fe$ }₂(μ - $\eta^{4:4}$ -P₄)] (**13d**), aber das analoge Cp⁻-Derivat konnte nicht detektiert werden. Des weiteren bilden sich eine oder mehrere Verbindungen, deren Phosphoratome im vergleichbaren Bereich und mit ähnlichen Multiplizitäten im ³¹P-NMR-Spektrum erscheinen wie bei der Reaktion von [Cp*Fe(η^{5} -P₅)] (**VII**) mit [{ $Cp^{=}Fe(CO)_{2}$ }₂] (**3d**). Es könnte sich hierbei um analoge Komplexe mit unterschiedlichen Liganden handeln. *Abbildung 7.4* zeigt das Spektrum des Produktgemisches.

Befindet sich der Cp⁼-Ligand am Pentaphosphaferrocen, ist die Reaktion nach 12 Minuten beendet. Hauptprodukt der Reaktion ist das Ferrocen $[Cp^-_2Fe] (\mathbf{12c})^{[47]}$. Der größte Teil des $[\{Cp^-Fe(CO)_2\}_2]$ (**3c**) reagiert direkt zum Ferrocen, ohne mit der Phosphorquelle zu interagieren. Weiterhin wird neben nicht umgesetztem $[Cp^-Fe(\eta^5-P_5)]$ (**4d**) auch der Komplex $[\{Cp^-Fe\}_2(\mu-\eta^{4:4}-P_4)]$ (**13d**) gefunden. Dies bekräftigt wieder die Annahme, dass beide $\{Cp^RFe\}$ -Fragmente aus dem Pentaphosphaferrocen stammen. Die anderen Signale konnten nicht zugeordnet werden. *Abbildung 7.4* gibt das ³¹P-NMR-Produktspektrum wieder.

7.3 Die Reihe $Cp^* \rightarrow Cp^- \rightarrow Cp^-$

Wie bereits vermutet, kristallisieren sich zwei Unterschiede bei den vorherigen Reaktionen heraus. Befindet sich der "stärkere" Ligand am Pentaphosphaferrocen, so sind die Hauptprodukte der Reaktion Ferrocen und nicht umgesetztes Pentaphosphaferrocen. Das Ferrocen wird fast ausschließlich mit dem "schwächeren" Liganden gebildet.

Befindet sich der "schwächere" Ligand am Pentaphosphaferrocen, so kann in der Reaktion von [$\{Cp^*Fe(CO)_2\}_2$] (**VI**) mit [$Cp^{=}Fe(\eta^5 \cdot P_5)$] (**4d**) die Übertragung des *cyclo*-P₅-Ringes detektiert werden. Bei der Umsetzung von [$\{Cp^{=}Fe(CO)_2\}_2$] (**3d**) mit [$Cp^*Fe(\eta^5 \cdot P_5)$] (**VII**) kann im Produktgemisch kein Pentaphosphaferrocen detektiert werden. Auch hier entstehen Ferrocene bevorzugt mit dem "schwächeren" Liganden. Zusätzlich werden eine Reihe von Signalen von unbekannten Verbindungen detektiert.

Der Komplex $[{Cp^{=}Fe}_{2}(\mu-\eta^{4:4}-P_{4})]$ (13d) konnte bei allen Cothermolysen in Xylol nachgewiesen werden. Als Intermediat kann die Entstehung von $[Cp^{=}Fe(\eta^{5}-P_{5})]$ (4d), sofern es nicht schon als Edukt vorlag, diskutiert werden, jedoch fehlt hierzu jeglicher experimentelle Beweis.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

8. Einsatz von [{Cp⁼Co}₄P₁₀] (V) als neue Phosphorquelle

Neben der in *Kapitel 6* besprochenen Reaktion kann Komplex V durch die Cothermolyse von $[Cp^{=}Co(CO)_2]$ (2d) und weißem Phosphor selektiv synthetisiert werden^[13]. Durch die Umsetzung mit den beiden Carbonylen $[Cp^{=}Co(CO)_2]$ (2d) und $[\{Cp^{=}Fe(CO)_2\}_2]$ (3d) wurden die Reaktivität und die Einsatzmöglichkeit als Phosphorquelle getestet.

8.1 Cothermolyse von $[{Cp^{=}Co}_{4}P_{10}]$ (V) mit $[Cp^{=}Co(CO)_{2}]$ (2d)

Erhitzt man eine Gemisch aus $[{Cp=Co}_4P_{10}]$ (**V**) und $[Cp=Co(CO)_2]$ (**2d**) in Dekalin, so ändert sich die Farbe langsam von rot-braun nach dunkelgrün. IR-spektroskopisch kann die Abnahme der beiden terminalen CO-Banden des Edukts beobachtet werden. Gleichzeitig wird im verbrückenden Bereich eine neue Bande gebildet. Wird die Reaktion beendet, nachdem das Edukt IR-spektroskopisch nicht mehr nachgewiesen wird, kann im Produktgemisch mittels ³¹P-NMR-Spektroskopie nur $[{Cp=Co}_4P_{10}]$ (**V**) detektiert werden.

Abbildung 8.1 Cothermolyse von $[{Cp^{=}Co}_{4}P_{10}]$ (V) mit $[Cp^{=}Co(CO)_{2}]$ (2d)

Verlängert man aber die Reaktionsdauer auf 18 h, bis IR-spektroskopisch keine CO-Liganden mehr gefunden werden können, so werden die Verbindungen $[{Cp^{=}Co}_{3}(\mu_{3}-P)_{2}]$ (6d) und $[{Cp^{=}Co}_{4}P_{4}]$ (7d) gebildet. Beide Komplexe konnten bereits durch die Cothermolyse von

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

 $[Cp*Fe(\eta^5-P_5)]$ (VII) mit $[Cp=Co(CO)_2]$ (2d) generiert werden und werden analog getrennt werden (siehe *Kapitel 5*). Diese Reaktion eignet sich, die beiden Komplexe 6d und 7d in größeren Mengen herzustellen.

8.2 Cothermolyse von $[{Cp^{=}Co}_{4}P_{10}]$ (V) mit $[{Cp^{=}Fe(CO)_{2}}_{2}]$ (3d)

Erhitzt man ein Gemisch aus $[{Cp=Co}_4P_{10}]$ (**V**) und $[{Cp=Fe(CO)_2}_2]$ (**3d**) in Dekalin auf 190° C, so färbt sich die Lösung von grün nach braun. IR-spektroskopisch kann die Abnahme der CO-Banden verfolgt werden. Die Reaktion wird beendet, wenn diese verschwunden sind. Durch die anschließende säulenchromatographische Aufarbeitung an neutralem Aluminiumoxid (Aktivitätsstufe II) können vier Fraktionen mit Petrolether eluiert werden.

Abbildung 8.2 Cothermolyse von $[{Cp^{=}Co}_{4}P_{10}]$ (V) mit $[{Cp^{=}Fe(CO)_{2}}_{2}]$ (3d)

Neben den bereits aus vorherigen Kapiteln bekannten Komplexen $[Cp_2^Fe]$ (12d), $[{Cp_{P}^Fe}_2(\mu_3-\eta^{4:4:1:1}-P_4){Cp_Co}]$ (14) und $[{Cp_{P}^Fe}_2{Cp_Co}_2P_4]$ (15) entsteht auch der

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Cluster $[{Cp^{-}Fe}_{4}(P_{2})_{2}]$ (16). Auch hier kann Komplex 15 nur als Mischfraktion mit Verbindung 14 erhalten werden. Die Trennung erweist sich als ebenso aufwändig und schwierig, wie bereits in *Kapitel 6* beschrieben.

8.3 Charakterisierung von $[{Cp^{=}Fe}_{4}(P_{2})_{2}]$ (16)

Nach dem Entfernen des Lösungsmittels aus der letzten Säulenfraktion verbleibt ein brauner Feststoff. Dieser ist sowohl in unpolaren (z.B. Pentan, Hexan), als auch in polaren (z.B. THF, CH₂Cl₂) und aromatischen (z.B. Toluol, Deuterobenzol) Lösungsmitteln gut löslich. Im festen Zustand kann die Verbindung unter Inertgasatmosphäre mehrere Monate ohne Zerfallserscheinungen gelagert werden.

Zur Röntgenstrukturanalyse taugliche Einkristalle konnten durch Abdiffusion des Lösungsmittels aus einer Hexanlösung erhalten werden.

8.3.1 NMR-spektroskopische Daten von 16

Im ³¹P-NMR-Spektrum, aufgenommen in Deuterobenzol, kann für die vier Phosphoratome nur ein Signal bei $\delta = 881$ ppm detektiert werden. In Lösung sind die vier Atome chemisch und magnetisch äquivalent. Auch im ¹H-NMR-Spektrum kann für die vier Cp⁼-Liganden nur ein Signalsatz gefunden werden, allerdings mit einem Integralverhältnis von 6 : 1. Die *Tabelle* 8.1 gibt eine Übersicht der NMR-Daten im Vergleich zu [{CpFe}₄(P₂)₂] (**XII**). Das Cp''-Derivat ist nach unserem Kenntnisstand unbekannt.

Tabelle 8.1	<i>NMR-Daten von</i> $[{Cp^{=}Fe}_{4}(P_{2})_{2}]$ (16)
-------------	--

Kern	$[{Cp}^{-}Fe_{4}(P_{2})_{2}]$ (16)	$[{CpFe}_4(P_2)_2] (XII)^{[28]}$
³¹ P (δ [ppm])	881 (s)	848 (s)
$^{1}\mathrm{H}\left(\delta\left[\text{ppm}\right]\right)$	0.54 (s, br, 72H)	
	3.91 (s, br, 12H)	4.29 (s, 20H)

Die Phosphor-Liganden von **16** treten im Vergleich zu **XII** bei tieferem Feld in Resonanz. Das Ergebnis reiht sich in die bisherigen Beobachtungen ein. Im ¹H-NMR-Spektrum kann nur

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

ein breites Signal für die drei Ringprotonen gefunden werden. Dies ist jedoch nicht ungewöhnlich. Bereits im Pentaphosphaferrocen $[Cp^{=}Fe(\eta^{5}-P_{5})]$ (**4d**) beträgt die Differenz der unterschiedlichen Ringprotonen nur 0.04 ppm (*siehe Kapitel 4.1.3*).

Zu $[{Cp}^{=}Fe]_4(P_2)_2]$ (16) existieren keine verwertbaren massenspektrometrische Daten.

8.3.2 Röntgenstrukturanalyse von [{Cp⁼Fe}₄(P₂)₂] (16)

Zur Röntgenstrukturanalyse taugliche Einkristalle konnten durch Abdiffusion des Lösungsmittels aus einer Hexanlösung erhalten werden. *Abbildung 8.3* zeigt die Struktur mit Benennung der Schweratome. Detaillierte Angaben befinden sich in Anhang **A.10**. Der Komplex besitzt, wie der von *Kemény* entdeckte Cluster [{CpFe}₄(P₂)₂] (**XII**), eine Dreiecksdodekaeder-Struktur^[27]. Die {CpFe}-Fragmente besetzen die Ecken mit der Konnektivität fünf und die Phosphor-Liganden die Positionen mit der Konnektivität vier. In der klassischen Mathematik werden Dreiecksdodekaeder durch vier unterschiedliche Kantenlängen und zwei Winkel beschrieben. Das Verhältnis der Kanten zueinander sowie die Werte für die Winkel sind mathematisch nicht fest gelegt. Als Maß zur Beschreibung eines Dreiecksdodekaeders kann ebenfalls die Asphärizität (*As*) herangezogen werden. Sie definiert sich aus:

$$As = \left\{ \frac{R_{\max} - R_{\min}}{\frac{R_{\max} + R_{\min}}{2}} \right\} * 100$$

 R_{min} und R_{max} sind der minimale bzw. maximale Abstand der Ecken (hier: Gerüstatome) zum Polyedermittelpunkt. Gefordert für einen "idealen" asphärischen Körper wird ein Wert von *As* = 31.5%^[71a]. Ferner lässt sich die Qualität dieses Dreiecksdodekaeders auch durch die Planarität zweier Ebenen und deren Schnittwinkel, die im Falle von **16** durch die Atome Fe1-P1-Fe4-P4 (**E1**) und Fe2-P2-Fe3-P3 (**E2**) aufgespannt werden, beschreiben (siehe *Abbildung* 8.4)^[71b].

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Abbildung 8.3 Röntgenstruktur von 16 mit Benennung der Schweratome

Abbildung 8.4Schweratomgerüst von 16 mit den Ebenen E1 und E2

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			
Bindung	Bindungslängen				
---------	----------------				
	[Å]				
Fe1-P1	2.1916(11)				
Fe1-P2	2.2804(12)				
Fe1-P3	2.2680(11)				
Fe2-P1	2.2783(12)				
Fe2-P2	2.1983(11)				
Fe2-P4	2.2673(11)				
Fe3-P1	2.2735(11)				
Fe3-P3	2.1956(11)				
Fe3-P4	2.2644(11)				
Fe4-P2	2.2683(11)				
Fe4-P3	2.2861(11)				
Fe4-P4	2.1998(12)				
P2-P3	2.3301(15)				
P1-P4	2.3316(15)				
Fe1-Fe2	2.7085(8)				
Fe2-Fe4	2.7274(8)				
Fe1-Fe3	2.7332(9)				
Fe3-Fe4	2.6953(8)				

Bindung	Bindungslängen
	[Å]
Fe1-Cp ⁼ _{Zent.}	1.776
Fe2-Cp ⁼ _{Zent.}	1.762
Fe3-Cp ⁼ _{Zent.}	1.758
$Fe4-Cp^{=}_{Zent.}$	1.780

Tabelle 8.3	Ausgewählte	
	Bindungswinkel	

Bindung	Bindungswinkel
	[°]
Fe1-P3-Fe3	75.50(4)
P3-Fe3-P1	101.15(12)
Fe3-P1-Fe1	75.46(4)
P1-Fe1-P3	101.45(11)
Fe2-P2-Fe4	75.25(5)
P2-Fe4-P4	101.25(10)
Fe4-P4-Fe2	75.24(4)
P4-Fe2-P2	101.33(11)

Tabelle 8.4	Ausgewählte Ebenen und Ebenenschnittwinkel von 16

Ebene	Atome	Abweichung aus der		Ebenen	Winkel [°]
		besten Ebene [Å]			
E1	Fe1-Fe2-P3-P4	0.4467		E1/E2	97.5
E2	Fe3-Fe4-P1-P2	0.4428		E3/E4	153.6
E3	Fe1-Fe2-P1	/		E5/E6	153.2
E4	Fe1-Fe2-P2	/		E7/E9	155.8

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Ebene	Atome	Abweichung aus der besten Ebene [Å]
E5	Fe3-Fe4-P3	/
E6	Fe3-Fe4-P4	/
E7	Fe1-Fe3-P1	/
E8	Fe1-Fe3-P3	/
E9	Fe2-Fe4-P2	/
E10	Fe2-Fe4-P4	/
E11	Fe1-P3-Fe2-P1	0.4467
E12	P4-Fe3-P2-Fe4	0.4428

Ebenen	Winkel [°]
E9/E10	155
E11/E12	97.5

Ein röntgenstrukturanalytisch charakterisiertes Cp"-Analogon zu 16 existiert nach dem kann aktuellen Kenntnisstand nicht. Die Struktur des Schweratomgerüstes als Dreiecksdodekaeder beschrieben werden, bei dem die {Cp⁼Fe}-Fragmente die Positionen mit Konnektivität fünf und die P-Liganden die Ecken mit der Konnektivität vier besetzen. K. Wade konnte durch experimentelle Daten bei den Dreiecksdodekaedern [{CpCo}4(BH2)4] und [{CpNi}₄(BH₂)₄] beweisen, dass die Ecken höchster Konnektivität durch die Fragmente mit geringerer Elektronendichte besetzt werden^[27,72,73]. In diesem Fall bedeutet dies, dass sich im Gerüst die partielle positive Ladung am {Cp⁻Fe}-Fragment lokalisieren sollte und die negative an den Phosphoratomen. G. Kemeny^[27] verwies bei $[{CpFe}_4(P_2)_2]$ (XII) auf das ³¹P-NMR-Experiment und vermutete die partiell positive Ladung an den P-Liganden, da diese bei sehr tiefem Feld in Resonanz treten^[74]. Geht man jedoch davon aus, dass die elektronenarmen {Cp⁼Fe}-Fragmente, um die 18VE-Kofiguration zu erreichen, die Gerüstelektronen von den P-Liganden wegziehen, dann werden die Phosphorsignale zu tieferem Feld verschoben, was durch das NMR-Experiment untermauert wird.

Die Fe-P-Abstände können mit 2.27 - 2.28 Å und 2.20 Å in zwei Gruppen eingeteilt werden. Jeder P-Fe₂-P-Butterfly besteht aus zwei kurzen und zwei langen Fe-P-Bindungen. Beide P-P-Bindungen haben mit 2.33 Å die gleiche Länge. In den Fe-Fe-Abständen findet man eine leichte Varianz von 0.03 Å. Alle Bindungen liegen im Bereich typischer Einfachbindungen.

Auch die Fe-Cp⁼-Abstände variieren leicht. Dies verwundert jedoch aufgrund sterischen Wechselwirkungen der großen Tms-Substituenten nicht.

Wie bereits erwähnt, konnte dieser Komplextyp mit Cp-Liganden bereits von *Kemény* dargestellt werden^[27]. Folgende Tabelle gibt Aufschluss über die wesentlichen Einflüsse des aufwändigeren Cp⁼-Liganden auf die Struktur.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Der formale Ersatz der Cp- durch Cp⁼-Liganden führt zu einer Verzerrung der Struktur. Nahezu alle Bindungen im Schweratomgerüst werden geringfügig aufgeweitet. Am deutlichsten wird die Verzerrung anhand der Ebenen **E1** und **E2** sichtbar. In **16** ist die Abweichung aus den besten Ebenen mit etwa 0.44 Å um ein Vielfaches größer als bei **XII** mit 0.002 Å. Während in **XII** die Ebenen **E1** und **E2** orthogonal sind, weichen sie bei **16** um 7.5° aus dieser Stellung ab.

Tabelle 8.5V	Vergleich der Strukturdaten von 16 und XII			
Bindung [Å] und W	inkel[°]	$[{Cp}^{=}Fe_{4}(P_{2})_{2}](16)$	$[{CpFe}_4(P_2)_2] (XII)^{[27]}$	
P-P		2.33	2.31	
Fe-P		2.20/2.27-2.28	2.20/2.26-2.27	
Fe-Fe		2.72	2.66	
Cp ^R -Fe		1.77	1.74	
Abweichung E1		0.4467	0.0017	
Abweichung E1		0.4428	0.0024	
E1/E2		97.5	90	
Asphärizität [9	%]	5.35	7.4	

Die Asphärizität ergibt sich mit einem $R_{Min} = 1.819$ Å (P-Polyederzentrum) und einem $R_{Max} = 1.919$ Å (Fe- Polyederzentrum) zu As = 5.35 %. Verbindung **16** rückt in Richtung sphärischer Körper (As = 0 %). Die Struktur verschiebt sich zum verzerrten tetragonalen Antiprisma mit den beiden Flächen **E11** und **E12**. Die beiden Ebenen sind nahezu parallel, aber die Abweichung aus den besten Ebenen aufgrund der Butterfly-Struktur relativ groß.

8.4 Vergleich der Komplexe vom Typ $[{Cp^{=}Co}_{4-n}{Cp^{=}Fe}_{n}P_{4}]$

In dieser Arbeit konnten drei Komplexe des allgemeinen Typs $[{Cp^{=}Co}_{4-n}{Cp^{=}Fe}_{n}P_{4}]$ synthetisiert und röntgenstrukturanalytisch charakterisiert werden. Diese sind $[{Cp^{=}Co}_{4}P_{4}]$ (7d), $[{Cp^{=}Co}_{2}{Cp^{=}Fe}_{2}P_{4}]$ (15) und $[{Cp^{=}Fe}_{4}(P_{2})_{2}]$ (16). Während der homometallische Cobalt-Cluster 7d eine tetragonal-antiprismatische Struktur besitzt, kann $[{Cp^{=}Fe}_{4}(P_{2})_{2}]$ (16) als verzerrtes Dreiecksdodekaeder beschrieben werden. Der Komplex $[{Cp^{=}Co}_{2}{Cp^{=}Fe}_{2}P_{4}]$ (15) bildet das Bindeglied zwischen den beiden Verbindungen. In *Abbildung 8.5* werden die

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Schweratomgerüste dieser Komplexe gegenüber gestellt. *Abbildung 8.6* gibt einen kurzen Überblick über die Unterschiede des $\{Cp=Co\}_2P_2$ -Vierrings in den Verbindungen **7d** und **15**.

Abbildung 8.5Schweratomgerüste der Verbindungen 7d, 15 und 16

Abbildung 8.6	$\{Cp^{=}Co\}_{2}P_{2}$ -Vierring mit den entsprechenden Bindungslängen in Å von
	Verbindung 7d und 15 (Klammerwerte)

Abbildung 8.7	$P\{Cp^{=}Fe\}_{2}P$ -Butterfly mit den entsprechenden Bindungslängen in Å von	
	Verbindung 16 und 15 (Klammerwerte)	

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Die Co-P-Bindungslängen sind mit 2.20 Å bis 2.21 Å und 2.26 Å bis 2.28 Å in beiden betrachteten Vierringen nahezu gleich. In Verbindung **15** ist aufgrund eines mit 0.04 Å etwas längeren Co⁻⁻Co-Abstandes der Vierring minimal stärker gestreckt. Die maximale Abweichung aus der besten Ebene beträgt bei **15** mit 0.0044 Å etwa nur ein Fünftel von deren bei Verbindung **7d** (0.0282 Å). Die Geometrie des $\{Cp^{=}Co\}_2P_2$ -Ringes in **15** wird nur unwesentlich von der geänderten Gerüststruktur, im Vergleich zu **7d**, beeinflusst. In *Abbildung 8.7* werden die strukturellen Daten des P $\{Cp^{=}Fe\}_2P$ -Butterflys gegenübergestellt. Dieser Vierring besitzt in beiden Verbindungen zwei unterschiedliche Fe-P-Bindungen. Die längere ist in Komplex **15** im Vergleich zu **16** um etwa 0.02 Å aufgeweitet. Deutlicher fällt der Unterschied in einer um 0.08 Å verlängerten Fe-Fe-Bindung aus. Der Butterfly in **15** ist mit 163.6° nicht so stark gewinkelt wie in **16** mit 155°. Strukturell ähnelt **15** mehr dem verzerrten tetragonalem Antiprisma [$\{Cp^{=}Co\}_4P_4$] (**7d**) wie es bereits in *Kapitel 6.3* besprochenen wurde.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

9. Reaktionsverhalten der Komplexe vom Typ [{Cp^RCo}₄P₄] (7) (Cp^R = Cp⁻, Cp⁼)

 $[{Cp^{-}Co}_{4}P_{4}]$ (7c) eignet sich zur Untersuchung des Reaktionsverhaltens, da diese Verbindung in großen Mengen selektiv durch Cothermolyse von $[Cp^{-}Co(CO)_{2}]$ (2c) mit weißem Phosphor in Dekalin zugänglich ist^[13].

9.1 Reaktionsverhalten gegenüber molekularem Sauerstoff

Setzt man die Verbindungen **7c** und **7d** in Lösung oder in Feststoff Luftsauerstoff aus, so zersetzen sie sich. Jedoch können beide Komplexe selektiv oxidiert werden, wenn man zur Oxidation ein wasserfreies Luft/Argon-Gemisch wählt.

Abbildung 9.1 Oxidation von $[{Cp^{R}Co}_{4}P_{4}]$ (2) mit Luftsauerstoff

Eine Lösung von **7c** bzw. **7d** in Tetrahydrofuran wird unter Argonatmosphäre hergestellt und gerührt. Ein zweites Reaktionsgefäß mit etwa gleichem Volumen wird mit etwas getrocknetem P_2O_5 gefüllt und unter Luftatmosphäre verschlossen. Beide Gefäße werden miteinander verbunden und die Durchmischung der Gase wird ermöglicht. Geht man von

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

einem Luftsauerstoffgehalt von 21 % aus, beträgt der Anteil bei dieser Reaktion etwa 10 % des Gasvolumens. Nach 24 h wird die Reaktion abgebrochen. $[{Cp^-Co}_4P_4]$ (7c) reagiert selektiv zum vierfach oxidierten Komplex $[{Cp^-Co}_4(P=O)_4]$ (17). Dagegen wird $[{Cp^-Co}_4P_4]$ (7d) nur zweifach zu $[{Cp^-Co}_4(P=O)_2P_2]$ (18d) oxidiert. *S. Weigel* konnte mit $[{Cp''Co}_4P_4]$ (IXb) und molekularem Sauerstoff den zweifach oxidierten Cluster $[{Cp''Co}_4(P=O)_2P_2]$ (18g) darstellen^[25].

17 und **18d** sind braune Feststoffe, die in unpolaren Lösungsmitteln schlecht und in aromatischen mäßig löslich sind. In polaren Lösungsmitteln lösen sie sich gut. Auch bei Lagerung in Luftatmosphäre können nach Monaten keine Zersetzungsprodukte nachgewiesen werden. Durch Abkühlen einer gesättigten Toluollösung von **17** bzw. **18d** auf 7° C konnten zur Röntgenstrukturanalyse taugliche Einkristalle erhalten werden.

9.1.1 Spektroskopische Daten

Im ¹H-NMR-Spektrum von [{Cp⁻Co}₄(P=O)₄] (**17**) in Deuterobenzol findet man nur einen Signalsatz mit einem typischen Integrationsverhältnis von 9:2:2 für die vier Cp⁻-Liganden. Auch die vier Phosphoratome sind chemisch und magnetisch äquivalent und treten als Singulett bei $\delta = 240$ ppm in Resonanz. *Tabelle 9.1* gibt die NMR-spektroskopischen Daten wieder.

Tabelle 9.1	9.1 NMR-Spektroskopische Daten von $7c$ und 17 in C_6D_6 bei Rau	
Kern δ [ppm]	$[{Cp^{-}Co}_{4}P_{4}]$ (7c)	[{Cp ⁻ Co} ₄ (P=O) ₄] (17)
³¹ P	495 (s)	240 (s)
¹ H	5.37 (s, 8H) 5.02 (s, 8H)	5.14 (s, 8H) 4.89 (s, 8H)
	0.31 (s, 36H)	0.27 (s, 36H)

Im Vergleich zum Edukt treten die Protonen im ¹H-NMR-Experiment bei höherem Feld in Resonanz. Auch das Phosphorsignal erfährt einen Hochfeldshift. So berichtet *H. Schmidbaur* bei der Oxidation von Tri(*tert*.-butyl)phosphin eine Verschiebung des ³¹P-NMR-Signal um 60.9 ppm zu höherem Feld^[75]. Ein zu **17** analoges Cp'-Derivat existiert nicht. Jedoch gelang

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

S. Weigel^[25] die Oxidation von [{Cp'Co}₄P₄] (**IXa**) mit S, Se und Te. Er konnte für den Komplex [{Cp'Co}₄(P=S)₄] im ³¹P-NMR-Spektrum ein Singulett bei δ = 238 ppm detektieren. Dieser Wert steht im Einklang mit dem Wert von **17**.

Im zweifach oxidierten [$\{Cp^{=}Co\}_{4}(P=O)_{2}P_{2}$] (**18d**) werden zwei unterschiedliche Datensätze für die Cp⁼-Liganden gefunden. Die P=O-Liganden treten wie bei **17** bei höherem Feld in Resonanz. Die Signale der verbleibenden Phosphor-Liganden werden etwas zu tieferem Feld verschoben. Dies stimmt mit den Daten von [$\{Cp''Co\}_{4}(P=O)_{2}P_{2}$] (**18g**) überein.

Tabelle 9.2	NMR-spektroskopische Daten in C_6D_6 bei Raumtemperatur von 7d, 18d
	und 18g

Kern	$[{Cp^{=}Co}_{4}P_{4}](7d)$	$[{Cp^{=}Co}_{4}(P=O)_{2}P_{2}] (18d)$	[{Cp''Co} ₄ (P=O) ₂ P ₂] (18g) ^[25]
δ [ppm]			
³¹ P		545 (t, 2P)	539 (t, 2P)
	507 (s, 4P)	${}^{2}J_{PP} = 112 \text{ Hz}$	${}^{2}J_{PP} = 106 \text{ Hz}$
		241 (t, 2P)	239 (t, 2P)
		$^{2}J_{PP} = 112 \text{ Hz}$	${}^{2}J_{PP} = 106 \text{ Hz}$
$^{1}\mathrm{H}$	5.76 (s, 8H)	5.91 (s, 2H)	5.83 (s, 2H)
	5.07 (s, 4H)	5.52 (s, 2H)	5.38 (s, 2H)
	0.39 (s, 72H)	4.78 (s, 2H)	4.61 (s, 2H)
		4.69 (s, 2H)	4.53 (s, 2H)
		0.48 (s, 36H)	1.46 (s, 36H)
		0.27 (s, 36H)	1.37 (s, 36H)

Der Vergleich mit dem Cp^{''}-Derviat liefert die typische Tieffeldverschiebung der NMR-Signale aufgrund der Tms-Substituenten. Auch bei **18d** konnte im ³¹P-NMR-Spektrum ein A_2M_2 -Spinsystem mit einer Kopplungskonstante von ¹J_{PP} = 112 Hz bestimmt werden. Die Oxidation der Phosphor-Liganden führt zu einer Ladungsumverteilung im Gerüst. Die P=O-Liganden treten im Vergleich zum Edukt bei höherem Feld in Resonanz. Die beiden anderen Phosphoratome werden um 38 ppm zu tieferem Feld verschoben. Auch die Protonen-Signale erscheinen bei tieferem Feld. Jedoch können die Protonensignale nicht zugeordnet werden, da nicht geklärt werden kann, ob sich der entschirmende Einfluss stärker auf die {Cp⁼Co}-Fragmente in der gleichen Ebene der P=O-Liganden auswirkt oder auf die

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

gegenüberliegenden. Sowohl das Ergebnis als auch die Verschiebungsbereiche korrelieren gut mit den Daten von $[{Cp''Co}_4(P=O)_2P_2]$ (18g).

9.1.2 Röntgenstrukturanalyse von [{Cp⁻Co}₄(P=O)₄] (17)

Abbildung 9.2 zeigt das Ergebnis der Röntgenstrukturanalyse von $[{Cp^{-}Co}_4(P=O)_4]$ (17). Ausgewählte Strukturparameter sind den folgenden Tabellen zu entnehmen. Detaillierte Angaben befinden sich im Anhang A.11.

Auch dieser Komplex ist wie sein Edukt strukturell zwischen Dreiecksdodekaeder und verzerrtem Kubus einzuordnen.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Tabelle 9.3 Ausgewählte Bindungslängen

Bindung	Bindungslängen	Bindung	Bindungslängen
	[Å]		[Å]
Col-Co3	2.5168(10)	Co1-Cp ⁻ _{Zent.}	1.731
Co2-Co4	2.5179(9)	Co2-Cp ⁻ _{Zent.}	1.740
Co1 Co2	3.579	Co3-Cp ⁻ _{Zent.}	1.738
Co4 Co3	3.579	Co4-Cp ⁻ _{Zent.}	1.738
		P1-O1	1.512(7)
Co1-P1	2.1959(16)	P2-O2	1.496(9)
Co1-P3	2.2132(17)	P3-O3	1.532(16)
Co1-P4	2.2428(14)	P4-O4	1.507(11)
Co2-P1	2.2347(16)		
Co2-P2	2.1991(17)	Tabelle 9.4	Ausgewählte
Co2-P4	2.2158(16)		Bindungswinkel
Co3-P1	2.2100(18)	L	1
Co3-P2	2.2437(14)	Bindung	Bindungswinkel
Co3-P3	2.2079(18)		[°]
Co4-P2	2.2113(17)	P1-Co1-P4	71.65(6)
Co4-P3	2.2467(17)	Co1-P4-Co2	106.79(7)
Co4-P4	2.1959(17)	P4-Co2-P1	71.44(6)
		Co2-P1-Co1	107.77(7)
P1-P2	2.594(2)	P2-Co3-P3	71.14(6)
P3-P4	2.583(2)	Co3-P3-Co4	107.69(7)
P2-P3	2.590(2)	P3-Co4-P2	71.09(6)
P1-P4	2.598(2)	Co4-P2-Co3	107.67(7)

Tabelle 9.5

Ausgewählte Ebenen und Ebenenschnittwinkel von 17

Ebene		Atome	Abweich besten	ung aus der Ebene [Å]	Ebenen	Winkel [°]
E1	(Co1-P4-Co4-P3	0	.1147	E1/E2	0.4
E2	(Co2-P2-Co3-P1	0	.1090	E3/E4	14.6
-						-
Einleite Problemst	ung ellung	Eigene Ergebnisse	Experimenteller Teil	Zusammenfassung	Literatur	Anhang

Ebene	Atome	Abweichung aus der besten Ebene [Å]	Ebenen	Winkel [°]
E3	Co1-P3-P4	/	E5/E6	13.9
E4	Co4-P3-P4	/		
E5	Co3-P2-P1	/		
E6	Co2-P1-P2	/		

Wie bereits aus den NMR-spektroskopischen Daten zu ersehen ist, werden alle vier Phosphoratome oxidiert. In *Tabelle 9.6* sind kurz die wesentlichen strukturellen Veränderungen zum Edukt [{Cp⁻Co}₄P₄] (**7c**) wiedergegeben. Die Oxidation der Phosphor-Liganden mit Sauerstoff führt zu einer leichten Co-P-Bindungskontraktion um durchschnittlich 0.01 Å. Dies entspricht den Untersuchungsergebnissen von *S. Weigel*^[25] und *G. Kemény*^[27], die durch die Oxidation ihrer Cluster ebenfalls eine Kontraktion der Metall-Phosphor-Bindung beobachteten. Die Co-Co- bzw. P.··P-Abstände werden etwas aufgeweitet. Die Butterfly-artige Struktur der beiden {Cp⁻Co}₂P₂-Vierringe ist im oxidierten Komplex etwas stärker ausgeprägt mit einem Faltungswinkel von 14.6° (165.4°) bzw. 13.9° (166.1°). Die mittlere Abweichung aus den besten Ebenen von **E1** und **E2** ist etwa um 0.01 Å größer als im Edukt. Die Tms-Substituenten weisen in Richtung der P=O-Liganden mit einem durchschnittlichen Si-O-Abstand von 3.62 Å. Dies liegt im Bereich der Summe der Van-der-Waals-Radien von 3.60 Å^[76]. In Lösung können Wechselwirkungen nicht ausgeschlossen werden, da Silicium aufgrund seiner großen Sauerstoffaffinität dazu prädestiniert ist. Dies könnte ein entscheidender Beitrag zur Stabilisierung der P=O-Liganden sein.

Tabelle 9.6	Vergleich der strukturellen Daten						
	_						
Mittlere Abständ	le [Å] und	$[{Cp^{-}Co}_{4}(P=O)_{4}] (17)$	$[{Cp^{-}Co}_{4}P_{4}]$ (7c)				
Bindungswin	nkel [°]						
Co-Co)	2.52	2.51				
Co-P		2.24/2.21/2.20	2.26/2.25/2.20				
Р…Р		2.59	2.56				
E1/E2		0.4	0.3				
E3/E4		13.9	13.5				
E5/E6		14.6	13.6				

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Insgesamt fallen die strukturellen Unterschiede sehr gering aus. Die Gerüststruktur wird bei der Oxidation des Cp'-Analogon mit Schwefel stärker verändert. Besonders schlägt sich dies in einer Aufweitung um 0.15 Å der P…P-Abstände nieder^[25]. Die *tert*.-Butyl-Substituenten weisen nicht direkt in Richtung des Chalkogens.

9.1.3 Röntgenstrukturanalyse von [{Cp⁼Co}₄(P=O)₂P₂] (18d)

Abbildung 9.3 zeigt das Ergebnis der Röntgenstrukturanalyse von $[{Cp=Co}_4(P=O)_2P_2]$ (**18d**). Ausgewählte Strukturparameter sind den *Tabellen 9.7* bis *9.9* zu entnehmen. Detaillierte Angaben befinden sich im Anhang **A.12**.

Abbildung 9.3 Röntgenstruktur von $[{Cp^{=}Co}_{4}(P=O)_{2}P_{2}]$ (18d)	
---	--

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Bindungslängen

[Å]

1.752

1.759

1.745

1.747

1.487(6)

1.491(7)

Ausgewählte

Bindungswinkel

Bindungswinkel

[°]

74.62(9)

105.09(10)

74.45(9)

105.19(10)

69.54(9)

109.18(11)

69.55(9)

109.05(12)

Bindung	Bindungslängen	Bindung
	[Å]	
Co1-Co3	2.5445(19)	Co-Cp ⁼ _{Zent.}
Co2-Co4	2.5376(17)	Co-Cp ⁼ _{Zent.}
Co1 Co2	3.503	Co-Cp ⁼ _{Zent.}
Co4 Co3	3.649	Co-Cp ⁼ _{Zent.}
		P1-O1
Co1-P1	2.214(2)	P2-O2
Co1-P2	2.189(3)	
Co1-P3	2.264(3)	
Co2-P1	2.192(3)	
Co2-P2	2.220(2)	Tabelle 9.8
Co2-P4	2.253(3)	
Co3-P2	2.171(3)	
Co3-P3	2.27(2)	Bindung
Co3-P4	2.273(2)	
Co4-P1	2.179(3)	P1-Co1-P2
Co4-P3	2.271(2)	Co1-P2-Co2
Co4-P4	2.209(3)	P2-Co2-P1
		Co2-P1-Co1
P1…P2	2.594(2)	P4-Co3-P3
P3…P4	2.583(2)	Co3-P3-Co4
P2…P3	2.590(2)	P3-Co4-P4
P1…P4	2.598(2)	Co4-P4-Co3

Tabelle 9.9

Ausgewählte Ebenen und Ebenenschnittwinkel von 18d

Ebene		Atome	Abweich besten	ung aus der Ebene [Å]	Ebenen	Winkel [°]	
E1	Co1-P1-Co2-P2		0	.0569	E1/E2	0.2	
E2	Co3-P3-Co4-P4		0	.1166	E3/E4	7.4	
Einleitt Problemst	ung ellung	Eigene Ergebnisse	Experimenteller Teil	Zusammenfassung	Literatur	Anhang	

- 111 -	
---------	--

Ebene	Atome	Abweichung aus der besten Ebene [Å]	Ebenen	Winkel [°]
E3	Co1-P1 -P2	/	E5/E6	0.2
E4	Co2-P1 -P2	/		
E5	Co3-P3-P4	/		
E6	Co4-P3 -P4	/		
	00115114	/		

Die zweifache Oxidation von $[\{Cp^{-}Co\}_4P_4]$ (7d) mit Sauerstoff führt zu einer wesentlichen Verzerrung des Schweratomgerüstes und das Symmetrieelement verschwindet. Die Struktur kann nicht mehr eindeutig als tetragonal antiprismatisch bezeichnet werden. Vielmehr ordnet sich 18d jetzt auch wie $[\{Cp^{-}Co\}_4P_4]$ (7c) und $[\{Cp^{-}Co\}_4(P=O)_4]$ (17) zwischen Dreiecksdodekaeder und verzerrtem Kubus ein. *Abbildung 9.4* stellt die beiden Schweratomgerüste des Edukts 7d und des oxidierten Clusters 18d gegenüber. In *Tabelle 9.10* werden zusätzlich die signifikantesten strukturellen Unterschiede herausgearbeitet.

Abbildung 9.4	Schweratomgerüste vor	$[{Cp^{=}Co}_{4}(P=O)_{2}P_{2}]$	(18d) und	$[\{Cp^{=}Co\}_{4}P_{4}]$
	(7 <i>d</i>)			

Die Oxidation erfolgt nur an einem Vierring (E1). Dreifach oder vollständig oxidierte Komplexe können nicht nachgewiesen werden.

Im oxidierten Vierring kommt es zu einer Co-P-Bindungskontraktion von bis zu 0.04 Å. Der P…P-Abstand verringert sich um 0.09 Å. **E1** ist nicht mehr planar und kann durch einen leicht gewinkelten $\{Cp^{=}Co\}_2P_2$ -Butterfly mit einem Winkel von 7.4° bzw. 172.6° beschrieben werden. Die Auswirkungen am nicht oxidieren Vierring **E2** fallen größer aus.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Mittlere Abstände [Å] und	$[{Cp^{=}Co}_{4}(P=O)_{2}P_{2}] (18d)$	$[{Cp^{=}Co}_{4}P_{4}]$ (7d)
Bindungswinkel [°]		
Co-Co	2.52	2.50
Co-P	2.27/2.21/2.19	2.26/2.20
P…P/P-P	2.59/ -	2.68/2.40
E1/E2	0.4	0.1
E3/E4	7.4	0.4
E5/E6	14.6	0.5

Tabelle 9.10	Vergleich der strukturellen Daten von 18d und 7d
--------------	--

Der zweite Vierring (**E2**) wird mit 14.6° noch stärker aus der planaren Anordnung abgewinkelt. Die längere Co-P-Bindung wird von 2.26 Å auf 2.27 Å verlängert und die kürzere von 2.20 Å auf 2.18 Å gestaucht. Auch hier sinkt die P…P-Entfernung über die Diagonale auf 2.59 Å. Die P…P-Abstände zwischen den Ebenen **E1** und **E2** weiten sich auf 2.59 Å und liegen somit nicht mehr eindeutig im Einfachbindungsbereich. Wechselwirkungen können jedoch nicht ausgeschlossen werden^[68].

Bei dem von S. Weigel röntgenstrukturanalytisch charakterisierten Komplex $[{Cp'Co}_4(P=S)_2P_2]^{[25]}$ werden die P-P-Bindungen auf 2.46 Å gestreckt und stimmen damit exakt mit dem von Ginsberg gefunden Wert für die längste gesicherte P-P-Bindung überein^[62]. Die tetragonal-antiprismatische Struktur bleibt erhalten. In [$\{Cp''Co\}_4(P=S)_2P_2$] befinden sich die beiden P=X-Liganden an der Spitze der Raumdiagonalen. S. Weigel prognostizierte für $[{Cp''Co}_4(P=O)_2P_2]$ (18g) eine vergleichbare Struktur. Ob die unterschiedlichen Positionen der P=X-Liganden auf den Einfluss der größeren Tms-Substituenten oder den im Vergleich zum Schwefel kleineren Sauerstoffatomen zuzuschreiben sind, kann nicht beantwortet werden. Die bisher nicht durchgeführte Oxidation von $[{Cp^{=}Co}_{4}P_{4}]$ (7d) mit Schwefel würde jedoch diese Frage klären. Wie im Cp''-Derivat kann auch $[{Cp=Co}_4(P=O)_2P_2]$ (18d) nicht weiter oxidiert werden. Die Cp=Liganden scheinen die freien Phosphoratome abzuschirmen und verhindern einen Angriff der Sauerstoffmoleküle.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

9.2 Methylierung von $[{Cp^{-}Co}_4P_4]$ (7c)

Wie bereits in der Einleitung erwähnt, konnten *Stoppioni et. al*^[37] als einzige einen unsubstituierten Phosphor-Liganden in der Koordinationssphäre eines Übergangsmetalles methylieren. Sie begründeten das Ergebnis mit der Isolabalanalogie des P_3^- mit dem Cyclopropenyl-Ring.

$$(CH)_3^{-} \xrightarrow{16 \text{ VE}} P_3^{-}$$

Das Isolobalkonzept ist Gegenstand der Diskussion in zahlreichen Lehrbüchern und Veröffentlichungen^[2,77]. Besonders erwähnenswert ist hier der Nobelpreis-Vortrag von *R*. *Hoffmann* "Brücken zwischen Anorganischer und Organischer Chemie^{(78]}. Demnach sollte der P₃⁻-Ligand ein vergleichbares Reaktionsverhalten aufweisen, wie der isolobale organische Ligand. Aufgrund der lone-pair Elektronen wird aber der η^3 -P₃⁻-Ring leichter von elektrophilen Reagenzien angegriffen. Dies konnte von *P. Stoppioni*^[37] bestätigt werden. Bei dem Cluster [{Cp⁻Co}₄P₄] (**7c**) weisen die lone-pair Elektronen radial nach außen. Ein elektrophiler Angriff sollte somit möglich sein.

Gibt man zu einer Lösung von [$\{Cp^-Co\}_4P_4$] (**7c**) in Toluol im Temperaturbereich von 5° C bis 15° C eine Lösung von Iodmethan in THF, so verfärbt sich die anfänglich tiefgrüne Lösung nach einigen Minuten grün-braun. Die Reaktion wird NMR-spektroskopisch verfolgt und abgebrochen, wenn das Edukt **7c** nicht mehr nachgewiesen werden kann. Während der Reaktion fällt langsam ein feiner kristalliner brauner Niederschlag aus.

Nach dem Entfernen des Lösungsmittels und des überschüssigen Iodmethans wird der braune Rückstand in Petrolether suspensiert, filtriert und im Ölpumpenvakuum getrocknet.

9.2.1 Eigenschaften von [{Cp⁻Co}₄(P-CH₃)P₃]I (19)

Verbindung **19** ist sehr schlecht in unpolaren und in aromatischen und mäßig in polaren Lösungsmitteln löslich. Bereits nach wenigen Stunden verringert sich die Löslichkeit drastisch. Untersuchungen der Reaktionssuspension ergeben, dass nur ein Teil der Verbindung **19** ausfällt (Fraktion **A**) und der Rest (Fraktion **B**) in Lösung bleibt. So stellt sich heraus, dass nur der gelöste Anteil nach dem Entfernen des Lösungsmittels gut wieder gelöst werden kann.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

9.2.2 ³¹P-NMR-spektroskopische Daten

In Deuterochloroform konnte ein ³¹P-NMR-Spektrum des Komplexes sowohl von Fraktion **A** als auch von Fraktion **B** aufgenommen werden. Beide Fraktionen enthalten die gleiche Verbindung. Die vier Phosphor-Liganden sind in Verbindung **19** nicht mehr magnetisch und chemisch äquivalent. So erscheinen zwei Signale im Bereich des Eduktsignales. Jedoch fällt besonders das bei höherem Feld in Resonanz tretende Phosphoratom auf. Vergleicht man dies mit den Ergebnissen von *P. Stoppioni*, dessen Signal für den methylierten Phosphor-Liganden um 153.9 ppm zu höherem Feld verschoben wurde^[37], so ist zu folgern, dass nur ein Phosphor-Ligand methyliert wird. Das erklärt, weshalb die Signale der anderen Liganden im gleichen Bereich wie beim Edukt bleiben. Der methylierte Phosphor-Ligand liegt im Komplex zu weit von den anderen entfernt, um sich stark auf deren chemische Verschiebung auszuwirken.

Tabelle 9.11	Vergleich der ³¹ P-NMR-spektroskopischen Daten von [{ $Cp^{-}Co$ } ₄ P ₄] (7c)
	und Verbindung 19

	[{Cp ⁻ Co	$_{4}P_{4}$] (7c)	[{Cp	o ⁻ Co} ₄ (P-CH ₃)P ₃]]	I (19)
Kern	δ [ppm]	Multiplizität	δ [ppm]	Multiplizität	Kopplungskonst.
					[Hz]
³¹ P	498	s, 4P	511	dd, 2P _A	$^2\mathbf{J}(\mathbf{P}_{\mathrm{A}}\mathbf{-}\mathbf{P}_{\mathrm{B}})=46$
					$^{2}\mathbf{J}(\mathbf{P}_{\mathbf{A}}\mathbf{-}\mathbf{P}_{\mathbf{C}})=46$
			464	t, 1P _B	$^{2}\mathbf{J}(\mathbf{P}_{\mathbf{B}}\mathbf{-P}_{\mathbf{A}})=46$
			202	m, 1P _C	

Abbildung 9.5Struktur von Verbindung 19

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Dies spiegelt sich in den Kopplungen wieder. Den Atomen werden die Resonanzfrequenzen $P_A = 511$ ppm (dd), $P_B = 464$ ppm (t) und $P_C = 202$ ppm (m) zugeordnet. Atom P_A koppelt demnach mit zwei verschiedenen Phosphoratomen. Das Signal von P_B weist eine Triplettaufspaltung auf. Aufgrund der Kopplungskonstanten kann eine Kopplung zwischen den zwei P_A Atomen und P_B angenommen werden. Eine ${}^2J(P_B-P_C)$ -Kopplung ist nicht zu erkennen. Für das Signal von Atom P_C würde man demnach ein Triplett mit feiner Quartettaufspaltung erwarten. Die Ursache der Quartettaufspaltung sollte eine ${}^2J_{P-H}$ -Kopplung sein, wenn man davon ausgeht, dass Atom P_C methyliert wurde. Die Zuordnung der Phosphorsignale kann *Abbildung 9.5* entnommen werden.

9.2.3 ¹H-NMR-spektroskopische Daten

Überträgt man die Ergebnisse auf das Protonenspektrum, so müssten drei verschiedene Signalsätze für die Cp⁻-Liganden erscheinen. Des weiteren sollte die Methyl-Gruppe im ¹H-NMR-Spektrum mit einer ²J_{P-H}-Kopplung zu erkennen sein. In *Tabelle 9.12* sind die ¹H-NMR-spektroskopischen Daten aufgelistet.

Tabelle 9.12	Vergleich der ¹ H-NMR-spektroskopischen Daten von [$\{Cp^{-}Co\}_4P_4$] (7c)
	und $[{Cp^{-}Co}_{4}(P-CH_{3})P_{3}]I(19)$

[{Cp ⁻ Co	$_{4}P_{4}$] (7c)	[{Cp ⁻ Co} ₄ (P	-CH ₃)P ₃]I (19)
δ [ppm]	Multiplizität	δ [ppm]	Multiplizität
5.37	s, 8H	5.67	s, 2H
5.02	s, 8H	5.61	s, 2H
		5.37	s, 2H
		5.30	s, 2H
		5.17	s, 4H
		5.03	s, 4H
		2.51	s, br, 3H
0.31	s, 36H	0.20	s, 18H
		0.17	s, 9H
		0.06	s, 9H

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Im ¹H-NMR-Spektrum können eindeutig drei Signalsätze im Integralverhältnis von 1:1:2 für die vier Cp⁻-Liganden registriert werden. Dies entspricht den Beobachtungen des ³¹P-NMR-Experimentes. Die Methyl-Gruppe tritt bei $\delta = 2.51$ ppm (s) in Resonanz. Zu erwarten wäre ein Dublett mit sichtbarer ²J_{P-H}-Kopplung. *P. Stoppioni* ermittelte für seinen Komplex eine ²J_{P-H}-Kopplung von 12 Hz^[37]. Das Singulett bei $\delta = 2.51$ ppm hat eine relativ große Halbwertsbreite von 40 Hz. Die ²J_{P-H}-Kopplung, die das Signal zum Dublett aufspalten sollte, könnte so schwach sein, dass sie hier nicht aufgelöst wird. Eine mögliche Erklärung für die Verbreiterung des Signals könnte der Nachbargruppeneffekt des Iodids sein. Das Iod-Anion hat aufgrund seiner Größe keine sphärische Elektronenverteilung, d.h. ein Iodid-Ion erzeugt ein inhomogenes Magnetfeld^[79]. Da nun das Iodid-Ion in Lösung nicht lokalisiert ist, ist der Einfluss am Ort der Methylprotonen verschieden, was zu einer Verbreiterung des Signals führen könnte.

Durch die Messung eines ¹H-NMR-Tieftemperaturspektrums wäre es vielleicht möglich die Aufspaltung des Methylsignals aufzulösen. Jedoch fällt bei der Abkühlung der NMR-Probe die Verbindung **19** größtenteils aus und die in Lösung verbleibende Menge reicht nicht aus, um ein auswertbares Spektrum aufzunehmen.

9.2.4 Massenspektrometrische Daten

Tabelle 9.13

Im 70 eV EI-Massenspektrum kann der Molekülionenpeak von $[{Cp^-Co}_4(P-CH_3)P_3]^+$ bei m/z = 922 amu detektiert werden. Die folgende Tabelle zeigt weitere charakteristische Defragmentierungen.

Defragmentierungsmuster von $[{Cp^{-}Co}_{4}(P-CH_{3})P_{3}]I(19)$

Fragment	m/z [amu]	rel. Intensität [%]
$[{Cp^{-}Co}_{4}(P^{-}CH_{3})P_{3}]^{+}$	922.2	100
$[{Cp^{-}Co}_{4}(P)P_{3}]^{+}$	907.2	9.8
$[{Cp^{-}Co}_{3}P_{2}]^{+}$	649.5	10.5
$[{Cp^{-}Co}P]^{+}$ oder	226.2	9.3
$[{Cp^{-}Co}_{4}(P)P_{3}]^{4+}$		

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

9.2.5 Strukturvorschlag

Anhand der NMR-spektroskopischen Daten wird angenommen, dass $[{Cp^-Co}_4P_4]$ (7c) mit Iodmethan unter den verwendeten Konditionen einfach methyliert wird.

Das Iodmethan kann dabei auf zwei verschiedene Arten gebunden sein. Einerseits kann eine Addition des Methyl-Liganden zur Öffnung einer Co-P-Bindung führen. Die Methylgruppe addiert an den Phosphor-Liganden und das Iodid an das Metallfragment. So besteht der allgemeine Trend, dass alkylierte Phosphonium-Salze eine größere ${}^{2}J_{P-H}$ -Kopplung aufweisen als die entsprechenden Phosphane^[80]. Würde jedoch das Iodid direkt mit einem Metallfragment in Wechselwirkung treten, dann müssten sich die Protonensignale des entsprechenden {Cp⁻Co}-Fragmentes stark von den anderen Signalen unterscheiden. Anderseits ist der Erhalt der Gerüststruktur wahrscheinlicher. Hierfür spricht vor allem, dass der methylierte Phosphor-Ligand stark zu höherem Feld verschoben wird, wie es auch von *P. Stoppioni*^[37] berichtet wurde. Aus diesem Grund wird folgende Reaktion vorgeschlagen.

Abbildung 9.6	Synthese und Strukturvorschlag für $[{Cp^-Co}_4(PCH_3)P_3]I(19)$
---------------	--

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

IV. Experimenteller Teil

1. Analysemethoden

Zur spektroskopischen und analytischen Untersuchung der dargestellten Verbindungen wurden folgende Analysemethoden eingesetzt:

Elementaranalyse:

Die Elementaranalysen (C, H, N-Analysen) wurden von Frau M. Alester, Frau B. Dusch und Frau T. Schaible mit dem Elementar-Analyser 240 bzw. 400 der Firma Perkin-Elmer im Fachbereich Chemie der Universität Kaiserslautern angefertigt.

Infrarot-Spektroskopie:

Die Aufnahme der Infrarot-Spektren erfolgte mit einem 16 PC FT-IR-Spektrometer der Firma Perkin-Elmer. Die Lösungen wurden in Calciumfluorid-Küvetten mit 0.2 mm Schichtdicke in Referenz zum reinen Lösungsmittel vermessen.

Massenspektrometrie :

Zur Aufnahme der Massenspektren stand das Massenspektrometer MAT 90 der Firma Finnigan zur Verfügung.

NMR-Spektroskopie:

Die NMR-Spektren wurden an den FT-NMR-Geräten AC 200 bzw. AMX 400 der Firma Bruker gemessen. Die Substanzen wurden in deuterierten Lösungsmitteln unter Argonatmosphäre vermessen. Die chemischen Verschiebungen sind entsprechend der δ -Skala angegeben. Dabei werden zur Charakterisierung der Spinmultiplizitäten die üblichen Abkürzungen verwendet:

s =	Singulett	m =	Multiplett	dd =	Doppeldublett
d =	Dublett	br =	breit	t =	Triplett
spt =	Septett	q =	Quartett		

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Die Angabe der Kopplungskonstanten erfolgt in Hertz (Hz). Für die unterschiedlichen Kerne gelten folgende Meßfrequenzen und Standards:

- ³¹P-NMR : 161.97 MHz bzw. 81.02 MHz; 85% ige Phosphorsäure, extern ($\delta = 0$ ppm).
- ¹H-NMR : 400.14 MHz bzw. 200.13 MHz; als interner Standard wurden die Signale der in den deuterierten Lösungsmitteln vorhandenen, nicht vollständig deuterierten Moleküle verwendet. Dabei wurde folgende Zuordnung getroffen:
- $\delta(C_6D_5H) = 7.20 \text{ ppm}, \delta(CHCl_3) = 7.25 \text{ ppm}$

Kristallstrukturanalysen:

Die Röntgenstrukturanalysen wurden von Herrn Dr. G. Wolmershäuser mit Hilfe eines Stoe IPDS-Diffraktometers angefertigt.

Zur Lösung der Strukturen kam das Programm SIR 97 und zur Verfeinerung das Programm Siemens SHELXL-97 zum Einsatz. Die Strukturplots wurden mit dem Programm SCHAKAL^[81] erstellt.

2. Ausgangsverbindungen

Alle nicht käuflichen bzw. nicht vorrätigen Ausgangsverbindungen wurden nach den folgenden Literaturvorschriften hergestellt:

Nummer	Verbindung	Literatur
VI, 3c, 3d	$[{Cp^{R}Fe(CO)_{2}}_{2}](Cp^{R}=Cp^{*},Cp^{-},Cp^{-})$	[82]
VII	$[Cp*Fe(\eta^5-P_5)]$	[52]
2c, 2d	$[Cp^{R}Co(CO)_{2}] (Cp^{R} = Cp^{=}, Cp^{-})$	[83]
1d	Cp ⁼ H	[39]
1c	Ср-Н	[84]
1f	Ср'Н	[85]
V	$[{Cp^{=}Co}_{4}P_{10}]$	[13]

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

3. Versuchsbeschreibungen

Die als Säulenmaterial verwendeten neutralen und basischen Aluminiumoxide (Hersteller: ICN Biochemicals GmbH) sowie das Kieselgel (0.02-0.06 mm, Firma Merck) wurden 20 Stunden bei 190 °C im Ölpumpenvakuum ausgeheizt, mit 4 % destilliertem und entgastem Wasser deaktiviert (Aktivitätsstufe II) und unter Argon aufbewahrt.

Lösungsmittel wurden im Ölpumpenvakuum bei ca. 9 x 10⁻³ mbar entfernt. Der unter Wasser aufbewahrte weiße Phosphor wurde vor der jeweiligen Reaktion ca. 15-20 Minuten im Ölpumpenvakuum getrocknet.

Iodmethan wurde kurz vor der jeweiligen Reaktion destillativ gereinigt.

Sämtliche hier beschriebenen Versuche wurden unter Inertgasatmosphäre (Argon, 99.998 % der Firma Messer Griesheim) in ausgeheizten, mehrmals evakuierten und mit Argon gespülten Glasgeräten durchgeführt.

Die verwendeten Lösungsmittel werden wie folgt getrocknet und unter Argon aufbewahrt:

Lösungsmittel	Trockenmittel
Toluol, Dekalin, Xylol	Na-Metall
THF	K-Metall
Dichlormethan, Deuterochloroform	Phosphorpentoxid
Deuterobenzol, Acetonitril	Calciumhydrid
Petrolether, Hexan, Diethylether	Na/K-Legierung
Deuteroaceton, Aceton	Kaliumcarbonat

3.1 Darstellung von (tert.-Butyl)-(trimethylsilyl)- und (tert.-Butyl)bis-(trimetylsilyl)cyclopentadien

Zu 20 ml HCp' (**1f**) (16.74 g = 0.138 mol) gelöst in 250 ml Petrolether (Siedebereich 35-70 °C) werden innerhalb einer Stunde 0.14 mol Butyllithium (1,6 n Hexanlösung) hinzugetropft. Die Suspension wird für 3 h auf 30 °C erwärmt. Anschließend erfolgt über eine Dauer von 1 h eine Zugabe von 35.56 ml Chlortrimethylsilan (30.41 g = 0.28 mol). Danach erhitzt man für weitere 4 h auf 45 °C.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Die Suspension wird danach auf 0 °C gekühlt, filtriert (Porenweite D4) und der Filterkuchen mit 100 ml kaltem Petrolether gewaschen. Das Lösungsmittel wird bei Normaldruck abdestilliert. Das Produkt siedet bei 71 °C und 9 mbar.

Ausbeute :

HCp^{-'} (**1a**) 18.0 g (0.093 mol), 67.4% bezogen auf HCp['] (**1f**)

Zu 10 ml HCp^{-'} (**1a**) (8.38 g = 0.043 mol), gelöst in 100 ml Petrolether (Siedebereich 35-70 °C), werden innerhalb einer halben Stunde 0.09 mol Butyllithium (1,6 n Hexanlösung) hinzugetropft. Die Suspension wird für 5 h auf 40 °C erwärmt. Anschließend werden über eine Dauer von 1 h 11.2 ml Chlortrimethylsilan (7.36 g = 0.09 mol) zugegeben. Danach erhitzt man für weitere 15 h auf 50 °C. Die Aufarbeitung erfolgt wie bei HCp^{-'} (**1a**).

Das Produkt wird durch Vakuumdestillation abgetrennt.

1. Fraktion : 35 °C, 2 mbar (HCp^{-'})

2. Fraktion : 60 °C, $4 \cdot 10^{-3}$ mbar (HCp^{='})

Ausbeuten :

HCp^{-'} (1a) 5,22g (0.027 mol), 62.8% nicht umgesetztes HCp^{-'} (1a)

 $HCp^{='}$ (1b) 1.86 g (6.98 mmol), 16.2 % bezogen auf $HCp^{-'}$ (1a)

Elementaranalysen:

HCp ⁻ ′	$(M_{ber.} = 194.38 \text{ g/mol})$	HCp ⁼ ′	$(M_{ber.} = 266.37 \text{g/mol})$
ber.: C 74.14 %	H 11.41 %	ber.: C 67.63 %	Н 11.35 %
gef.: C 75.12 %	Н 11.35 %	gef.: C 67.77 %	Н 11.37 %

3.2 Synthese von $[Cp^{R}Co(CO)_{2}]$ $(Cp^{R}=Cp^{-2}, Cp^{-2})$

3.2.1 Darstellung von [Cp⁻Co(CO)₂] (2a)

3.8 g (11.1 mmol) $[Co_2(CO)_8]$ werden zusammen mit 2.95 g (16 mmol) $HCp^{-'}$ (1a) und 2 ml 1,3-Cyclohexadien in 80 ml CH_2Cl_2 gelöst und bis zum Sieden erhitzt. Nach 50 min werden

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

weitere 2.16 g (12,3 mmol) $HCp^{-\prime}$ (1a) hinzugefügt. Die Lösung refluxiert anschließend für weitere 3 Stunden.

Aufarbeitung:

Nach dem Entfernen des Lösungsmittels im Hochvakuum verbleibt ein rot-oranger öliger Rückstand. Dieser wird in 50 ml Hexan aufgenommen und säulenchromatographisch an neutralem Al_2O_3 (2,5 x 20 cm, Aktivitätsstufe II, Hexan, Wasserkühlung) getrennt. Mit Hexan als Eluens kann eine orange Fraktion bestehend aus $[Cp^{-\prime}Co(CO)_2]$ (2a) und $HCp^{-\prime}$ (1a) abgetrennt werden. $HCp^{-\prime}$ (1a) kann durch Vakuumdestillation bei 35 °C und 2 mbar vollständig entfernt werden.

Ausbeute :

 $[Cp^{-\prime}Co(CO)_2]$ (2a) 5.46 g (17.71 mmol), 79.8 % d. Th. bez. auf $[Co_2(CO)_8]$

Elementaranalyse :

[Cp ⁻ ′Co(CO) ₂]	$(M_{ber.} = 308.31 \text{ g/mol})$
ber.: C 44.31 %	Н 6.04 %
gef.: C 44,71 %	Н 6.23 %

3.2.2 Darstellung von [Cp⁼'Co(CO)₂] (2b)

Die Synthese und Aufarbeitung erfolgt analog zu 3.2.1, jedoch mit folgenden Mengen:

$[Co_2(CO)_8]$	465 mg (1.4 mmol)
Cp ⁼ ′H (1b)	1. Zugabe : 550 mg (2.06 mmol)
	2. Zugabe : 370 mg (1.40 mmol)
C_6H_8	1 ml
CH_2Cl_2	25 ml

Nach der säulenchromatographischen Trennung an neutralem Aluminiumoxid (2.5 x 20 cm, Aktivitätsstufe II, Wasserkühlung) verbleibt ein Gemisch aus $[Cp^{='}Co(CO)_2]$ (**2b**) und $HCp^{='}$ (**1b**). Die Abtrennung von **1b** durch Vakuumdestillation bei 60 °C und 4·10⁻³ mbar gelingt nicht vollständig.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Ausbeute :

 $[Cp^{='}Co(CO)_2] (2b)$ 125 g (0.328 mmol), 11.7 % d. Th. bez. auf $[Co_2(CO)_8]$ (M_{ber.}= 380,30 g/mol)

3.3 Synthese von $[{Cp^{R}Fe(CO)_{2}}] (3) (Cp^{R} = Cp^{-'}, Cp^{='})$

3.3.1 Darstellung von $[{Cp^{-}Fe(CO)_2}_2]$ (3a)

4.19 g (0.022 mmol) HCp^{-'} und 5,5 ml (0.040 mol) [Fe(CO)₅] werden in 50 ml Xylol gelöst und anschließend 24 h refluxiert. Danach folgt eine Zugabe von 0.7 ml (0.005 mol) [Fe(CO)₅] und es wird für weitere 24 h unter Rückfluss erhitzt.

Nach dem Entfernen des Lösungsmittels im Ölpumpenvakuum (30 °C, $5 \cdot 10^{-3}$ mbar) verbleibt ein schwarz-brauner Feststoff sowie ein Metallspiegel von elementarem Eisen, der sich auf der Innenwand des Reaktionsgefäßes niedergeschlagen hat. Der Feststoff wird in eine Soxhletapparatur überführt und 4 h mit ca. 150 ml CH₂Cl₂ extrahiert. Nach dem Entfernen des Lösungsmittels verbleibt ein rot-brauner Feststoff bestehend aus [{Cp⁻Fe(CO)₂}₂] (**3a**).

Ausbeute :

 $[{Cp^{-}Fe(CO)_2}_2]$ (3a) 4.53 g (7.43 mmol), 67.54 % d. Th. bez. auf HCp^{-'} (1a)

Elementaranalyse :

$[{Cp^{-}Fe(CO)_2}_2]$			$(M_{ber.} = 610.44 \text{ g/mol})$		
ber.: C	55.09 %	Η	6.94 %		
gef.: C	54.62 %	Н	6.94 %		

3.3.2 Darstellung von [{Cp⁼ 'Fe(CO)₂}₂] (**3b**)

Die Synthese und Aufarbeitung erfolgt analog zu 3.3.1, jedoch mit folgenden Mengen:

$\mathrm{HCp}^{-\prime}(\mathbf{1b})$	645 mg (3.342 mmol)
[Fe(CO) ₅]	1. Zugabe : 570 µl (4.01 mmol)
	2. Zugabe : 380 µl (2.67 mmol)
Xylol	50 ml

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Nach der Extraktion enthält **3b** noch Spuren einer unbekannten paramagnetischen Verbindung. Die Abtrennung gelang bisher säulenchromatographisch an neutralem Al₂O₃ (Aktivitätsstufe II) nicht.

Ausbeute :

 $[\{Cp^{='}Fe(CO)_2\}_2] (3b) \qquad 126 \text{ mg (0.167 mmol), } 5.0 \% \text{ d. Th. bez. auf HCp}^{='} (1b)$ $(M_{ber.} = 754.43 \text{ g/mol})$

3.4 Synthese von $[Cp^{R}Fe(\eta^{5}-P_{5})](Cp^{R}=Cp^{-7}, Cp^{-7}, Cp^{-7})$

Tabelle 3.1 können die Ansatzmengen entnommen werden.

X mmol [{ $Cp^{R}Fe(CO)_{2}$ }] (**3**) werden zusammen mit Y mmol P₄ in 250 ml Dekalin suspendiert und 4 h unter Rückfluss erhitzt. Anschließend wird das Lösungsmittel im Ölpumpenvakuum bei 40 °C und 5·10⁻³ mbar entfernt. Der braune Rückstand wird in ca. 10 ml THF gelöst und mit ca. 3 g Kieselgel (Aktivitätsstufe II) versetzt. Danach trocknet man im Ölpumpenvakuum bis zur Rieselfähigkeit und trägt auf eine chromatographische Säule auf (Kieselgel (Aktivitätsstufe II), Säule 1.5 x 15 cm, Petrolether, Wasserkühlung) auf. In einer grünen Fraktion kann mit Petrolether als Eluens [$Cp^{R}Fe(\eta^{5}-P_{5})$] ($Cp^{R} = Cp^{-7}$, Cp^{-7} , Cp^{-7}) isoliert werden.

Tabelle 3.1	Ansatzmengen zur Synthese von $[Cp^{R}Fe(\eta^{5}-P_{5})]$ (4)
Tabelle 3.1	Ansatzmengen zur Synthese von $[Cp^{R}Fe(\eta^{5}-P_{5})]$ (4)

Substanz		$[Cp^{-}Fe(\eta^{5}-P_{5})]$ (4a)	$[Cp^{-}Fe(\eta^{5}-P_{5})] (4c)$	$[Cp^{=}Fe(\eta^{5}-P_{5})] (\mathbf{4d})$
$[\{Cp^{R}Fe(CO)_{2}\}_{2}]$	X v	1.80 g (3.02 mmol)	2.65 g (7.61 mmol)	3.37 g (5.25 mmol)

Ausbeuten :

$[Cp^{-}Fe(\eta^{5}-P_{5})]$ (4a)	1.28 g (3.17 mmol); 52.5 % d. Th. bez. auf [$\{Cp^{-}Fe(CO)_2\}_2$] (3a)
$[Cp^{-}Fe(\eta^{5}-P_{5})] (\mathbf{4c})$	1.01 g (2.87 mmol); 28.7 % d. Th. bez. auf [{Cp ⁻ Fe(CO) ₂ } ₂] (3c)
$[Cp^{=}Fe(\eta^{5}-P_{5})] (\mathbf{4d})$	3.57 g (8.50 mmol); 80.9 % d. Th. bez. auf [$\{Cp^{=}Fe(CO)_2\}_2$] (3d)

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

	$M_{ber.} \left[g/mol\right]$	C _{ber.} [%]	C _{exp.} [%]	H _{ber.} [%]	H _{exp.} [%]
$[Cp^{-}Fe(\eta^{5}-P_{5})] (4a)$	404.09	35.67	35.54	5.24	5.16
$[Cp^{-}Fe(\eta^{5}-P_{5})] (4c)$	347.98	27.61	28.26	3.77	4.09
$[Cp^{=}Fe(\eta^{5}-P_{5})] (\mathbf{4d})$	420.16	31.44	31.40	5.04	4.90

Elementaranalysen:

3.5 Darstellung von [{ $Cp^{=}Fe$ }($\eta^{5:5}$ - P_5){FeCp}] $PF_6(5d)$

250 mg (0.595 mmol) $[Cp^{=}Fe(\eta^{5}-P_{5})]$ (**4d**) und 260 mg (0.765mmol) $[\{CpFe\}(\eta^{6}-C_{6}H_{6})]PF_{6}$ werden in 100 ml CH₂Cl₂ in einer geeigneten Bestrahlungsapparatur 6 h mit einer 150 W Wolfram-Lampe bestrahlt. Bereits nach wenigen Minuten kann ein Farbumschlag von grün nach braun beobachtet werden. Anschließend wird das Lösungsmittel im Ölpumpenvakuum entfernt. Der verbleibende Feststoff wird in 50 ml Petrolether suspendiert, anschließend zentrifugiert und das Lösungsmittel abdekantiert. Diese Prozedur wird 4 mal wiederholt.

Ausbeute :

 $[\{Cp^{=}Fe\}(\eta^{5:5}-P_5)\{CpFe\}]PF_6 (5d) 291 mg (0.425 mmol), 71.4 \% d. Th. bez. auf (M_{ber.}=686.07 g/mol) [Cp^{=}Fe(\eta^{5}-P_5)] (4d)$

3.6 Cothermolyse von $[Cp^*Fe(\eta^5-P_5)]$ (VII) mit $[Cp^{=}Co(CO)_2]$ (2d)

195 mg (0.60 mmol) $[Cp*Fe(\eta^5-P_5)]$ (VII) und 560 mg (1.62 mmol) $[Cp=Co(CO)_2]$ (2d) werden in 100 ml Dekalin gelöst und 80 min unter Rückfluss erhitzt. Die Reaktion wird IR-spektroskopisch verfolgt. Man beobachtet die Abnahme der Carbonyl-Banden des Eduktes 2d im terminalen Bereich. Die Reaktion wird beendet, wenn diese vollständig verschwunden sind. Danach wird das Lösungsmittel im Ölpumpenvakuum abdestilliert. Der ölige Rückstand wird in ca. 10 ml THF gelöst und mit ca. 3 g basischem Aluminiumoxid (Aktivitätsstufe II) versetzt. Danach trocknet man im Ölpumpenvakuum bis zur Rieselfähigkeit und trägt auf eine chromatographische Säule auf (basisches Aluminiumoxid (Aktivitätsstufe II), Säule 2.5 x 30 cm, Petrolether, Wasserkühlung) auf.

Mit Petrolether eluiert man zunächst $[{Cp=Co}_3(\mu_3-P)_2]$ (6d) in einer violetten Fraktion. Bei gleicher Polarität erhält man eine grüne Fraktion von $[{Cp=Co}_4P_4]$ (7d). Bei Erhöhung der

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Polarität eluiert man mit einem Petrolether/Toluol-Gemisch (10:1) eine braune Mischfraktion aus $[{Cp*Fe} {Cp=Co}_2P_4P]$ (8) und $[{Cp=Co}_4P_4]$ (7d). $[{Cp*Fe} {Cp=Co}_2P_4P]$ (8) kann weder durch säulenchromatographische Aufarbeitung noch durch Verwendung anderer Absorbentien oder durch fraktionierte Fällung isoliert werden.

An den Verbindungen 6d und 7d konnten Röntgenstrukturanalysen durchgeführt werden.

Ausbeuten :

$[\{Cp^{=}Co\}_{3}(\mu_{3}-P)_{2}] (6d)$	35 mg (0.04 mmol), 7.43 % d. Th. bez. auf $[Cp^{-}Co(CO)_2]$ (2d)
	2.7 % d. Th. bez. auf [Cp*Fe(η^5 -P ₅)] (VI)
$[{Cp^{=}Co}_{4}P_{4}]$ (7d)	200 mg (0.17 mmol), 41.97 % d. Th. bez. auf $[Cp^{=}Co(CO)_2]$ (2d)
	22.7 % d. Th. bez. auf [Cp*Fe(η^5 -P ₅)] (VI)

Elementaranalysen:

$[{Cp^{=}Co}_{3}(\mu_{3}-P)_{2}]$	$(M_{ber.} = 867.10 \text{ g/mol})$	$[\{Cp^{=}Co\}_4P_4]$	$(M_{ber.} = 1197.42 \text{ g/mol})$
ber.: C 45.71 %	Н 7.32 %	ber.: C 44.13 %	Н 7.07 %
gef.: C 44,98 %	Н 7.03 %	gef.: C 44.35 %	Н 7.25 %

3.7 Thermolyse von $[Cp^*Fe(\eta^5 - P_5)]$ (VII) mit $[Cp^-Co(CO)_2]$ (2c)

720 mg (2.08 mmol) $[Cp*Fe(\eta^5-P_5)]$ (**VII**) und 870 mg (3.45 mmol) $[Cp^-Co(CO)_2]$ (**2c**) werden in 50 ml Dekalin gelöst und 90 min unter Rückfluss erhitzt. Die Reaktion wird NMR-spektroskopisch verfolgt und wird abgebrochen, wenn das Edukt **VII** vollständig verschwunden ist. Danach wird das Lösungsmittel im Ölpumpenvakuum abdestilliert. Der ölige Rückstand wird in ca. 10 ml THF gelöst und mit ca. 2 g basischem Aluminiumoxid (Aktivitätsstufe II) versetzt. Danach trocknet man im Ölpumpenvakuum bis zur Rieselfähigkeit und trägt auf eine chromatographische Säule (neutrales Aluminiumoxid (Aktivitätsstufe II), Säule 1.5 x 12 cm, Petrolether, Wasserkühlung) auf.

Mit Petrolether eluiert man zunächst [$\{Cp^-Co\}_3(\mu_3-P)_2$] (6c) in einer violetten Fraktion. Bei gleicher Polarität erhält man eine grüne Fraktion von $[{Cp}-Co}_4P_4]$ (7c). Bei Erhöhung der Polarität eluiert man mit Toluol braune Mischfraktion eine aus $[\{Cp^*Fe\}_2(\mu_3.\eta^{4:4:1:1}-P_4)\{Cp^-Co\}] \quad (9) \quad und \quad mehreren \quad nicht \quad bekannten \quad Neben$ und Zersetzungsprodukten. [{Cp*Fe}₂(μ_3 . $\eta^{4:4:1:1}$ -P₄){ Cp^-Co }] (9) kann auch durch

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

säulenchromatographische Aufarbeitung unter Verwendung anderer Absorbentien oder durch fraktionierte Fällung nicht isoliert werden.

Ausbeuten :

$[{Cp^{-}Co}_{3}(\mu_{3}-P)_{2}]$ (6c)	13 mg (0.02 mmol); 1.7 % d. Th. bez. auf $[Cp^{-}Co(CO)_2]$ (2c)
	0.4 % d. Th. bez. auf [Cp*Fe(η^5 -P ₅)] (VI)
$[{Cp^{-}Co}_{4}P_{4}(7c)$	340 mg (0.37 mmol); 42,9 % d. Th. bez. auf $[Cp^{-}Co(CO)_2]$ (2c)
	14.2 % d. Th. bez. auf [Cp*Fe(η^5 -P ₅)] (VI)

Elementaranalysen:

$[{Cp^{-}Co}_{3}(\mu_{3}-P)_{2}]$	$(M_{ber.} = 650.54 \text{ g/mol})$	$[\{Cp^-Co\}_4P_4]$	$(M_{ber.} = 908.72 \text{ g/mol})$
ber.: C 44.31 %	Н 6.04 %	ber.: C 44.31 %	Н 6.04 %
gef.: C 44,71 %	Н 6.23 %	gef.: C 44.92 %	Н 6.41 %

3.8 Cothermolyse von $[Cp^*Fe(\eta^5-P_5)]$ (VII) mit $[Cp^{-1}Co(CO)_2]$ (2b)

240 mg (0.70 mmol) [Cp*Fe(η^5 -P₅)] (VII) und 530 mg (1.41 mmol) [Cp⁼/Co(CO)₂] (2b) werden in 70 ml Dekalin gelöst und 65 min unter Rückfluss erhitzt. Die Reaktion wird IR-spektroskopisch verfolgt. Man beobachtet die Abnahme der Carbonyl-Banden des Eduktes 2b im terminalen Bereich. Die Reaktion wird beendet, wenn diese vollständig verschwunden sind. Danach wird das Lösungsmittel im Ölpumpenvakuum bei 5·10⁻³ mbar und 30 °C abdestilliert. Der ölige Rückstand wird in ca. 10 ml THF gelöst und mit ca. 2 g basischem Aluminiumoxid (Aktivitätsstufe II) versetzt. Danach trocknet man im Ölpumpenvakuum bis zur Rieselfähigkeit und trägt auf eine chromatographische Säule (basisches Aluminiumoxid (Aktivitätsstufe II), Säule 1.5x12 cm, Petrolether, Wasserkühlung) auf.

Mit Petrolether eluiert man zunächst $[{Cp^{='}Co}_2(P_2)_2]$ (**10b**) in einer dunkelvioletten Fraktion. Bei Erhöhung der Polarität eluiert man mit einem Petrolether/Toluol-Gemisch von 20:1 eine grüne Fraktion der unbekannten Verbindung **11**. Beide Komplexe konnten bisher nicht analysenrein dargestellt werden.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

- 127 -

Ausbeute :

$[{Cp^{='}Co}_{3}(P_{2})_{2}]$ (10b)	145 mg (0.188 mmol); 13.3 % d. Th. bez. a	auf
$(M_{ber.} = 772.50 [g/mol])$	$[Cp^{=}Co(CO)_{2}]$ (2b)	
	26.9 % d. Th. bez. auf [Cp*Fe(η^5 -P ₅)] (VII)	

3.9 Cothermolyse von $[Cp^{=}Fe(\eta^{5}-P_{5})]$ (4d) mit $[Cp^{=}Co(CO)_{2}]$ (2d) in siedendem Dekalin

490 mg (1.165 mmol) $[Cp^{-}Fe(\eta^{5}-P_{5})]$ (4d) und 631 mg (1.942 mmol) $[Cp^{-}Co(CO)_{2}]$ (2d) werden in 120 ml Dekalin gelöst und 60 min unter Rückfluss erhitzt. Die Reaktion wird IR-spektroskopisch verfolgt. Man beobachtet die Abnahme der Carbonyl-Banden des Eduktes 2d im terminalen Bereich. Die Reaktion wird beendet, wenn diese vollständig verschwunden sind. Danach wird das Lösungsmittel im Ölpumpenvakuum abdestilliert. Der ölige Rückstand wird in ca. 10 ml THF gelöst und mit ca. 3 g basischem Aluminiumoxid (Aktivitätsstufe II) versetzt. Danach trocknet man im Ölpumpenvakuum bis zur Rieselfähigkeit und trägt auf eine chromatographische Säule auf (neutralem Aluminiumoxid (II), Säule 2.5 x 30 cm, Petrolether, Wasserkühlung) auf.

Mit Petrolether eluiert man zunächst $[Cp^{=}_{2}Fe]$ (**12d**) in einer gelben Fraktion. Bei gleicher Polarität erhält man eine gelbgrüne Fraktion von $[\{Cp^{=}Fe\}_{2}(\mu-\eta^{4:4}-P_{4})]$ (**13d**) und eine braune von $[\{Cp^{=}Fe\}_{2}(\mu_{3}-\eta^{4:4:1:1}-P_{4})\{Cp^{=}Co\}]$ (**14**). In der letzten Fraktion kann bei gleichbleibender Polarität ein Gemisch aus $[\{Cp^{=}Fe\}_{2}(\mu_{3}-\eta^{4:4:1:1}-P_{4})\{Cp^{=}Co\}]$ (**14**) und $[\{Cp^{=}Fe\}_{2}\{Cp^{=}Co\}_{2}P_{4}]$ (**15**) erhalten werden. Aus diesem Gemisch konnten durch fünf aufeinanderfolgende säulenchromatische Trennvorgänge an neutralem Aluminiumoxid (Aktivitätsstufe II, 2.5 x 30 cm Petrolether, Wasserkühlung) wenige Milligramm an $[\{Cp^{=}Fe\}_{2}\{Cp^{=}Co\}_{2}P_{4}]$ (**15**) isoliert werden.

An den Verbindungen 13d, 14 und 15 konnten Röntgenstrukturanalysen durchgeführt werden.

Ausbeuten :

$[Cp^{=}_{2}Fe] (\mathbf{12d})$	14 mg (0.028 mmol), 4.8 % d. Th. bez. auf
$(M_{ber.} = 474.74 \text{ g/mol})$	$[Cp^{=}Fe(\eta^{5}-P_{5})] (\mathbf{4d})$
$[{Cp}^{=}Fe}_{2}(\mu-\eta^{4:4}P_{4})]$ (13d)	121 mg (0.184 mmol), 31.6 % d. Th. bez. auf
(M _{ber.} = 654.49 g/mol)	$[Cp^{=}Fe(\eta^{5}-P_{5})] (\mathbf{4d})$
$[\{Cp^{=}Fe\}_{2}(\mu_{3}-\eta^{4:4:1:1}-P_{4})\{Cp^{=}Co\}] (14)$	56 mg (0.061 mmol), 10.5 % d. Th. bez. auf

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

$(M_{ber.} = 922.87 \text{ g/mol})$	$[Cp^{=}Fe(\eta^{5}-P_{5})]$ (4d)
$[{Cp^{=}Fe}_{2}{Cp^{=}Co}_{2}P_{4}]$ (15)	6 mg (0.005 mmol), 0.9 % d. Th. bez. auf
$(M_{ber.} = 1191.25 \text{ g/mol})$	$[Cp^{=}Fe(\eta^{5}-P_{5})]$ (4d)

Elementaranalysen:

$[{Cp^{=}Fe}_{2}(\mu-\eta^{4:4}P_{4})]$ (13d)			[{Cp ⁼ Fe}	$}_{2}(\mu_{3}-\eta^{4:4:1:1}-P_{4})$	$(Cp^{\overline{C}}Co^{\overline{C}})$ (14)
ber.: C	40.37 %	Н 6.47 %	ber.: C 42.9	94 % H	6.88 %
gef.: C	40,71 %	Н 6.23 %	gef.: C 44.0	09 % H	6.21 %

Die Verbindung 15 konnte nicht analysenrein in ausreichenden Mengen isoliert werden.

3.10 Cothermolyse von $[Cp^{-}Fe(\eta^{5}-P_{5})]$ (4a) mit $[Cp^{-}Co(CO)_{2}]$ (2d) in siedendem Dekalin

Die Reaktion wird analog zu 3.9 durchgeführt, jedoch mit 832 mg (2.061 mmol) $[Cp^{-}Fe(\eta^{5}-P_{5})]$ (**4a**) und 1080 mg (3.503 mmol) $[Cp^{-}Co(CO)_{2}]$ (**2a**). Die Produkte konnten im Rahmen dieser Arbeit nicht mehr getrennt werden.

3.11 Cothermolyse von $[Cp^{-}Fe(\eta^{5}-P_{5})]$ (4c) mit $[Cp^{-}Co(CO)_{2}]$ (2c) in siedendem Dekalin

460 mg (1.326 mmol) $[Cp^{-}Fe(\eta^{5}-P_{5})]$ (4c) und 570 mg (2.261 mmol) $[Cp^{-}Co(CO)_{2}]$ (2c) werden in 50 ml Dekalin gelöst und 60 min unter Rückfluss erhitzt. Die Reaktion wird IR-spektroskopisch verfolgt. Man beobachtet die Abnahme der Carbonyl-Banden des Eduktes 2c im terminalen Bereich. Die Reaktion wird beendet, wenn diese vollständig verschwunden sind. Danach wird das Lösungsmittel im Ölpumpenvakuum abdestilliert. Der ölige Rückstand wird in ca. 10 ml THF gelöst und mit ca. 3 g basischem Aluminiumoxid (Aktivitätsstufe II) versetzt. Danach trocknet man im Ölpumpenvakuum bis zur Rieselfähigkeit und trägt auf eine chromatographische Säule auf (neutrales Aluminiumoxid (Aktivitätsstufe II), Säule 2.5 x 30 cm, Petrolether, Wasserkühlung) auf.

In der ersten Fraktion erhält man das gelbe Ferrocen $[Cp_2Fe]$ (12c). Die Ausbeute wurde jedoch nicht bestimmt. In einer grünen Fraktion eluiert man mit Petrolether den Komplex

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

 $[{Cp^-Co}_4P_4]$ (7c). Weitere Fraktionen enthalten nur sehr geringe Mengen an mehreren nicht charakterisierbaren Substanzen.

Ausbeute :

 $[\{Cp^{-}Co\}_{4}P_{4}(7c) 373 mg (0.312 mmol); 55.2 \% d. Th. bez. auf [Cp^{-}Co(CO)_{2}](2c) (M_{ber.} = 1197.42 g/mol) 18.8 \% d. Th. bez. auf [Cp^{-}Fe(\eta^{5}-P_{5})] (4c)$

3.12 Cothermolyse von $[Cp^{R_1}Fe(\eta^5 - P_5)]$ (4) mit $[\{Cp^{R_2}Fe(CO)_2\}_2]$ (2) in siedendem Xylol

3.12.1 $Cp^{R1} = Cp^{R2}$

Erhitzt man ein Gemisch aus $[Cp^{R}Fe(\eta^{5}-P_{5})]$ (4) und $[\{Cp^{R}Fe(CO)_{2}\}_{2}]$ (2) im molaren Verhältnis von 2:1 in Xylol auf 140 °C, so kann IR-spektroskopisch die Abnahme der CO-Banden des Eduktes verfolgt werden. Die Reaktionsdauer hängt hierbei vom Cp^{R} -Liganden am Eisen-Carbonyl ab. Die Reaktion wird abgebrochen, sobald sich IR-spektroskopisch keine CO-Liganden mehr nachgewiesen lassen können. *Tabelle 3.2* gibt eine Übersicht über die verwendeten Ansatzmengen sowie die Reaktionszeiten.

Danach wird das Lösungsmittel im Ölpumpenvakuum abdestilliert. Der Rückstand wird in ca. 10 ml THF gelöst und mit ca. 3 g Kieselgel (Aktivitätsstufe II) versetzt. Danach trocknet man im Ölpumpenvakuum bis zur Rieselfähigkeit und trägt auf eine chromatographische Säule auf (Kieselgel (Aktivitätsstufe II), Säule 1.5 x 15 cm, Petrolether, Wasserkühlung) auf.

In der ersten Fraktion eluiert man mit Petrolether das gelbe Ferrocen $[Cp^{R}_{2}Fe]$. Bei gleicher Polarität kann in einer grünen Fraktion das Edukt $[Cp^{R}Fe(\eta^{5}-P_{5})]$ (4) eluiert werden. In der letzten Fraktion erhält man den grün-gelben Komplex $[{Cp^{R}Fe}_{2}(\mu-\eta^{4:4}-P_{4})]$ (13). *Tabelle 3.3* gibt Auskunft über die Ausbeuten.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Tabelle 3.2	Reaktionsbedingungen

Cp ^R	$[Cp^{R}Fe(\eta^{5}-P_{5})]$ (4)	$[{Cp^{R}Fe(CO)_{2}}_{2}](2)$	Xylol	Reaktionsdauer
	[mg] ([mmol])	[mg] ([mmol])	[ml]	[min]
Ср-′	235 (0.582)	107 (0.293)	50	20
Cp ⁻	322 (0.920)	144 (0.462)	50	12
Cp ⁼	220 (0.530)	101 (0,265)	50	25
Cp*	826 (2.388)	590 (1.194)	100	55

Tabelle 3.3	Ausbeutenübersicht [a.) bez. auf $[Cp^{R}Fe(\eta^{5}-P_{5})]$ (4); b.) bez. auf
	$[{Cp^{R}Fe(CO)_{2}}_{2}](3)]$

Cp ^R	[Cp ^R ₂ Fe]	$[Cp^{R}Fe(\eta^{5}-P_{5})]$ (4)	$[{Cp^{R}Fe}_{2}(\mu-\eta^{4:4}P_{4})]$ (13)
	[%] ([mg] = (mmol])	[%] ([mg] = (mmol])	[%] ([mg] = (mmol])
Cp ⁻ ′	b.) 66.8 (87 = 0.196)	a.) 56.0 (132 = 0.326)	a.) 5.5 (25 =0.040)
			b.) 13.6
Cp ⁻	b.) 90.2 (87 = 0.417)	a.) 87.3 (281 = 0.803)	a.) /
			b.) /
Cp ⁼	b.) 52.1 (53 = 0.138)	a.) 52.7 (116 = 0.279)	a.) 10.0 (43 = 0.066)
			b.) 24.9
Cp*	b.) 13.5 (80 = 0.161)	a.) 92.7 (766 = 2.213)	a.) 3.8 (58 = 0.115)
			b.) 9.6

3.12.2 $Cp^{R1} \neq Cp^{R2}$

Die Vorschrift ist analog zu 3.12.1 einzuhalten. *Tabelle 3.4* gibt eine Übersicht über die verwendeten Ansatzmengen. In der ersten Fraktion eluiert man mit Petrolether die gelben Ferrocene $[Cp^{R_1}FeCp^{R_2}]$ ($Cp^{R_1} = Cp^{R_2}$, $Cp^{R_1} \neq Cp^{R_2}$). Bei gleicher Polarität kann in einer grünen Fraktion das Edukt $[Cp^{R_1}Fe(\eta^5-P_5)]$ (4) eluiert werden. Im Falle von $Cp^{R_1} = Cp^=$ und $Cp^{R_2} = Cp^*$ findet eine Ringübertragung statt und die Fraktion enthält ein nicht vollständig

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

trennbares Gemisch aus $[Cp^{=}Fe(\eta^{5}-P_{5})]$ (**4d**) und $[Cp^{*}Fe(\eta^{5}-P_{5})]$ (**VII**). In einer weiteren Fraktion kann der Komplex $[\{Cp^{=}Fe\}(\mu-\eta^{4:4}P_{4})]$ (**13d**) isoliert werden. Weitere Fraktionen enthalten bisher nicht charakterisierte Verbindungen. Eine Angabe von Ausbeuten ist nicht möglich. *Tabelle 3.5* gibt einen Überblick über das Produktbild der bekannten Komplexe.

Tabelle 3.4	Reaktionsbedingungen					
α R1 α R2 α	R_{1} $(5 R)$ $(0 R_{2}$ $(0 r)$ $(0 r)$	X7 1 1	D = 1 + 1			

Сркі	Ср ^{к2}	$[Cp^{K1}Fe(\eta^{3}-P_{5})]$ (4) $[\{Cp^{K2}Fe(CO)_{2}\}_{2}]$ (2)		Xylol	Reaktionsdauer
		[mg] ([mmol])	[mg] ([mmol])	[ml]	[min]
Cp*	Cp ⁼	40 (0.116)	152 (0.233)	25	80
Cp ⁼	Cp*	550 (1.309)	301 (0.612)	50	25
Cp ⁼	Cp ⁻	520 (1.238)	323 (0.642)	50	15
Cp ⁻	Cp ⁼	290 (0.839)	269 (0.423)	50	25

Tabelle 3.5	Produktübersicht (X kennzeichnet die entstanden Komplexe)
-------------	---

Cp ^{R1}	Cp*	Cp ⁼	Cp ⁼	Cp ⁻
Cp ^{R2}	Cp ⁼	Cp*	Cp ⁻	Cp ⁼
[Cp ^{R1} ₂ Fe]		Х		Х
[Cp ^{R2} ₂ Fe]	Х	Х	Х	Х
$[Cp^{R1}{}_2Fe Cp^{R2}]$		Х		
$[Cp^{R_1}Fe(\eta^5-P_5)]$ (4)	Х		Х	
$[Cp^{R2}Fe(\eta^{5}-P_{5})]$ (4)	Х			
$[\{Cp^{R1}Fe\}_{2}(\mu-\eta^{4:4}P_{4})] (13)$		Х	Х	Х
$[\{Cp^{R2}Fe\}_2(\mu-\eta^{4:4}P_4)] (13)$	Х			

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

3.13 Cothermolyse von $[{Cp^{=}Co}_{4}P_{10}]$ (V) mit $[Cp^{=}Co(CO)_{2}]$ (2d) in siedendem Dekalin

250 mg (0.18 mmol) [{ $Cp^{=}Co$ }₄P₁₀] (**V**) und 520 mg (1.60 mmol) [$Cp^{=}Co(CO)_2$] (**2d**) werden in 50 ml Dekalin auf 190 °C erhitzt. IR-spektroskopisch kann die Abnahme der beiden terminalen CO-Banden des Edukts beobachtet werden. Gleichzeitig wird im verbrückenden Bereich eine neue Bande gebildet, die, nachdem das Edukt nicht mehr nachgewiesen wird, langsam an Intensität abnimmt.. Die Reaktion wird nach 22 h beendet, wenn IRspektroskopisch keine CO-Liganden mehr detektiert werden können.

Danach wird das Lösungsmittel im Ölpumpenvakuum abdestilliert. Der Rückstand wird in ca. 10 ml THF gelöst und mit ca. 3 g neutralem Aluminiumoxid (Aktivitätsstufe II) versetzt. Danach trocknet man im Ölpumpenvakuum bis zur Rieselfähigkeit und trägt auf eine

chromatographische Säule auf (neutrales Aluminiumoxid (Aktivitätsstufe II), Säule 1.5 x 10 cm, Petrolether, Wasserkühlung) auf.

Mit Petrolether eluiert man zunächst $[{Cp=Co}_3(\mu_3-P)_2]$ (6d) in einer violetten Fraktion. Bei gleicher Polarität erhält man eine grüne Fraktion von $[{Cp=Co}_4P_4]$ (7d).

Ausbeuten :

$[{Cp^{=}Co}_{3}(\mu_{3}-P)_{2}]$ (6d)	110 mg (0.126 mmol), 23.6 % d. Th. bez. auf $[Cp^{-}Co(CO)_2]$ (2d)
(M _{ber.} = 867.10 g/mol)	14.0 % d. Th. bez. auf [{ $Cp^{=}Co$ } ₄ P_{10}] (V)
$[{Cp^{=}Co}_{4}P_{4}]$ (7d)	218 mg (0.182 mmol), 45.5 % d. Th. bez. auf $[Cp^{=}Co(CO)_2]$ (2d)
$(M_{ber.} = 1197.42 \text{ g/mol})$	40.4 % d. Th. bez. auf [{ $Cp^{=}Co$ } ₄ P_{10}] (V)

3.14 Cothermolyse von $[{Cp^{=}Co}_{4}P_{10}]$ (V) mit $[{Cp^{=}Fe(CO)}_{2}]$ (3d) in siedendem Dekalin

390 mg (0.282 mmol) [{Cp⁼Co}₄P₁₀] (**V**) und 560 mg (0.877 mmol) [{Cp⁼Fe(CO)₂}₂] (**3d**) werden in 120 ml Dekalin auf 190 °C erhitzt. IR-spektroskopisch kann die Abnahme der CO-Banden des Edukts beobachtet werden. Die Reaktion wird nach 100 min abgebrochen, sobald IR-spektroskopisch keine CO-Liganden mehr detektiert werden können.

Danach wird das Lösungsmittel im Ölpumpenvakuum abdestilliert. Der Rückstand wird in ca. 10 ml THF gelöst und mit ca. 3 g neutralem Aluminiumoxid (Aktivitätsstufe II) versetzt. Danach trocknet man im Ölpumpenvakuum bis zur Rieselfähigkeit und trägt auf eine

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			
chromatographische Säule auf (neutrales Aluminiumoxid (Aktivitätsstufe II), Säule 1.5 x 10 cm, Petrolether, Wasserkühlung) auf.

Mit Petrolether eluiert man zunächst $[Cp_{2}Fe]$ (**12d**) in einer gelben Fraktion. Bei gleichem Eluens eluiert man in einer braunen Fraktion $[\{Cp^{=}Fe\}_{2}(\mu_{3}-\eta^{4:4:1:1}-P_{4})\{Cp^{=}Co\}]$ (**14**). In einer weiteren Fraktion kann bei gleichbleibender Polarität ein Gemisch aus $[\{Cp^{=}Fe\}_{2}(\mu_{3}-\eta^{4:4:1:1}-P_{4})\{Cp^{=}Co\}]$ (**14**) und $[\{Cp^{=}Fe\}_{2}\{Cp^{=}Co\}_{2}P_{4}]$ (**15**) erhalten werden. Aus diesem Gemisch können durch fünf aufeinanderfolgende säulenchromatische Trennvorgänge an neutralem Aluminiumoxid (Aktivitätsstufe II, 2.5 x 30 cm, Petrolether, Wasserkühlung) wenige Milligramm an $[\{Cp^{=}Fe\}_{2}\{Cp^{=}Co\}_{2}P_{4}]$ (**15**) isoliert werden. In der letzten Fraktion erhält man mit Petrolether den braunen Cluster $[\{Cp^{=}Fe\}_{4}(P_{2})_{2}]$ (**16**).

Ausbeuten :

$[Cp^{=}_{2}Fe] (\mathbf{12d})$	98 mg (0.206 mmol), 23.5 % d. Th. bez. auf
(M _{ber.} = 474.74 g/mol)	$[{Cp}^{=}Fe(CO)_{2}_{2}] (\mathbf{3d})$
$[\{Cp^{=}Fe\}_{2}(\mu_{3}\text{-}\eta^{4:4:1:1}\text{-}P_{4})\{Cp^{=}Co\}] (\textbf{14})$	152 mg (0.165 mmol), 23.4 % d. Th. bez. auf
$(M_{ber.} = 922.87 \text{ g/mol})$	$[{Cp^{-}Co}_{4}P_{10}](\mathbf{V})$
	18.8 % d. Th. bez. auf [{ $Cp^{=}Fe(CO)_{2}$ }] (3d)
$[{Cp^{=}Fe}_{2}{Cp^{=}Co}_{2}P_{4}]$ (15)	8 mg (0.007 mmol), 1.0 % d. Th. bez. auf
$(M_{ber.} = 1191.25 \text{ g/mol})$	$[{Cp^{=}Co}_{4}P_{10}](\mathbf{V})$
	0.8 % d. Th. bez. auf [{ $Cp^{=}Fe(CO)_{2}_{2}$] (3d)
$[{Cp^{=}Fe}_{4}(P_{2})_{2}]$ (16)	75 mg (0.063 mmol), 8.9 % d. Th. bez. auf
$(M_{ber.} = 1185.07 \text{ g/mol})$	$[{Cp^{=}Co}_{4}P_{10}](\mathbf{V})$
	14.4 % d. Th. bez. auf [$\{Cp^{=}Fe(CO)_{2}\}_{2}$] (3d)

Elementaranalyse :

$[{Cp}^{=}Fe_{4}(P_{2})_{2}]$ (16)					
ber.: C	44.59 %	Н 7.15 %			
gef.: C	43.71 %	Н 7.23 %			

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

3.15 Reaktion von [{ $Cp^{R}Co$ }₄ P_{4}] (7) ($Cp^{R} = Cp^{-}$, $Cp^{=}$) mit Luftsauerstoff

3.15.1 Umsetzung von [{Cp⁻Co}₄P₄] (7c)

100 mg (0.110 mmol) [$\{Cp^-Co\}_4P_4$] (7c) werden in 50 ml THF gelöst, in einen 250 ml Rundkolben gefüllt und mit einem Magnetrührer gut durchmischt. Ein zweiter 250 ml Kolben wird wie folgt präpariert:

Der Kolben wird einen Tag zuvor etwa zu einem Viertel mit einem Gemisch aus Glaswolle und Phosphorpentoxid gefüllt und mit einem Glasstopfen verschlossen.

Anschließend werden die beiden Kolben miteinander verbunden. Nach 24 h wird die Reaktion abgebrochen. Das Lösungsmittel wird im Ölpumpenvakuum entfernt. Der braune Rückstand wird 5 mal mit 50 ml kaltem Pentan gewaschen. Es verbleibt ein brauner Feststoff bestehend aus $[{Cp^{-}Co}_{4}(P=O)_{4}]$ (17). Ein analysenreines Produkt konnte auf diese Weise nicht hergestellt werden.

Ausbeute :

 $[\{Cp^{-}Co\}_{4}(P=O)_{4}] (17)$ 78 mg (0.082 mmol), 74.3 % d. Th. bez. auf [$\{Cp^{-}Co\}_{4}P_{4}$] (7c) (M_{ber.}= 960.36 g/mol)

3.15.2 Umsetzung von [{Cp⁼Co}₄P₄] (7d)

Die Umsetzung und Aufarbeitung erfolgt analog zu 3.15.1, jedoch mit folgenden Ansatzmengen. Auch hier gelingt die analysenreine Darstellung nicht.

$[{Cp^{-}Co}_{4}P_{4}]$ (7c)	115 mg (0.096 mmol)
Reaktionsgefäße	250 ml
THF	125 ml
Reaktionsdauer	40 h

Ausbeute :

 $[\{Cp^{=}Co\}_{4}(P=O)_{2}P_{2}] (18d) \quad 56 \text{ mg } (0.046 \text{ mmol}), 47.9 \% \text{ d. Th. bez. auf } [\{Cp^{=}Co\}_{4}P_{4}] (7d) (M_{\text{ber.}} = 1217.07 \text{ g/mol})$

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

3.16 Umsetzung von [{ $Cp^{-}Co$ }₄ P_4] (7c) mit Iodmethan

75 mg (0.083 mmol) [{Cp⁻Co}₄P₄] (**7c**) werden in 20 ml Toluol gelöst und auf 5 °C im Eisbad gekühlt. Hierzu werden 47 mg (0.331 mmol) Iodmethan, gelöst in 5 ml THF, unter starkem Rühren getropft. Die Reaktionstemperatur liegt dabei stets unter 15 °C. Die Reaktionslösung ändert nach einigen Minuten die Farbe von grün nach grün-braun. Nach 12 h wird die Reaktion beendet und das Lösungsmittel im Ölpumpenvakuum bei Raumtemperatur entfernt. Der grün-braune Rückstand wird mit Petrolether gewaschen, filtriert und im Ölpumpenvakuum getrocknet. Der Filterkuchen kann als [{Cp⁻Co}₄(PCH₃)P₃]⁺ Γ (**19**) identifiziert werden.

Ausbeute:

 $[\{Cp^{-}Co\}_{4}(PCH_{3})P_{3}]^{+}I^{-}(19)$ 79.5 mg (0.075 mmol); 90.4 % d. Th. bez. auf [{Cp^{-}Co}_{4}P_{4}] (7c)

Elementaranalyse:

$\left[\left\{Cp^{-}Co\right\}_{4}(PCH_{3})P_{3}\right]^{+}I^{-}$	$(M_{ber.} = 1050.65 \text{ g/mol})$
ber.: C 38.01 %	Н 5.63 %
gef.: C 38.17 %	Н 5.36 %

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

V. Zusammenfassung

Der Variantenreichtum der Pentaphosphaferrocene konnte unter Verwendung von trimethylsilyl-substituierten Cp^{R} -Liganden erweitert werden. Hierbei lassen sich bei der Herstellung dieser Ferrocen-Analoga durch Cothermolyse der dimeren Verbindungen [$\{Cp^{R}Fe(CO)_{2}\}_{2}$] (3) mit weißem Phosphor höhere Ausbeuten realisieren als bei den *tert.*-butyl-substituierten Derivaten.

Neben den einfach und zweifach Tms-substituierten Cp⁻- und Cp⁻-Liganden kommt auch der gemischt substituierte Cp⁻'-Ligand zum Einsatz, was zur Bildung eines Enantiomerenpaares führt. In den Pentaphosphaferrocenen **4a**, **c** und **d** haben die beiden Fünfringe eine parallele Ausrichtung, aber im Gegensatz zu $[Cp*Fe(\eta^5-P_5)]^{[21]}$ (**VII**) eine nahezu ekliptische Ringkonformation. Die silyl-substituierten Pentaphosphaferrocene führen in analogen Reaktionen zum Teil zu anderen Produktbildern.

Bei der Cothermolyse von $[Cp^*Fe(\eta^5-P_5)]$ (VII) und $[Cp^=Co(CO)_2]$ (2d) entstehen die drei Komplexe $[\{Cp^=Co\}_3(\mu_3-P)_2]$ (6d), $[\{Cp^=Co\}_4P_4]$ (7d) und $[\{Cp^*Fe\}\{Cp^=Co\}_2P_4P]$ (8).

6d hat eine trigonal-bipyramidale Struktur mit einem gleichseitigen { $Cp^{=}Co$ }-Dreiring, der auf beiden Seiten durch einen μ_3 -P-Ligand überkappt wird. [{ $Cp^{=}Co$ }_4P_4] (**7d**) besitzt eine tetragonal-antiprismatische Struktur mit planaren { $Cp^{=}Co$ }_2P_2-Vierringen. Die Positionen im Schweratomgerüst werden alternierend von Cobalt- und Phosphoratomen besetzt. **8** weist ein verzerrt cubanartiges Grundgerüst auf, welches formal aus einer FeP_2P- und einer Co₂P_2-Butterfly-Einheit besteht.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

*Eduktverhältnis von [Cp⁼Co(CO)₂] zu [Cp^RFe(η⁵-P₅)]

Setzt man aber $[Cp^{=}Fe(\eta^{5}-P_{5})]$ (4d) als Phosphorquelle ein, so können in einer analogen Reaktion neben den bekannten Komplexen 6d und 7d auch die Verbindungen $[{Cp^{=}Fe}_{2}(\mu_{3}-\eta^{4:4:1:1}-P_{4}){Cp^{=}Co}]$ (14), $[{Cp^{=}Fe}_{2}{Cp^{=}Co}_{2}P_{4}]$ (15) und $[{Cp^{=}Co}_{4}P_{10}]$ (V) dargestellt werden. Letztere wurde bereits direkt durch die Cothermolyse von $[Cp^{=}Co(CO)_{2}]$ (2d) mit weißem Phosphor synthetisiert^[13]. Der Cluster $[{Cp^{*}Fe}_{Cp^{=}Co}_{2}P_{4}P]$ (8) entsteht nicht mehr. Die Isolierung der einzelnen Komponenten aus diesem Produktgemisch gelang

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

nicht. Variiert man jedoch das Eduktverhältnis von $[Cp^{=}Co(CO)_2]$ (2d) zu $[Cp^{=}Fe(\eta^5-P_5)]$ (4d) von 2.7 : 1 auf 1.7 : 1, so kann das Produktbild vereinfacht werden. Die Komplexe 6d und 7d werden nicht mehr nachgewiesen, dagegen entstehen der neue Cluster $[{Cp^{=}Fe}_2(\mu-\eta^{4:4}-P_4)]$ (13d) und das literaturbekannte Ferrocen $[Cp^{=}_2Fe]^{[59]}$ (12d). An den Verbindungen 6d, 7d, 13d, 14 und 15 konnten Röntgenstrukturanalysen durchgeführt werden. Der *pseudo*-Tripeldecker-Komplex $[{Cp^{=}Fe}_2(\mu-\eta^{4:4}-P_4)]$ (13d) besitzt ein geöffnetes P₄-Mitteldeck, welches als zum *cis*-Butadien isolobale *s-cis*-Tetraphosphabutadienyl-Einheit beschrieben werden kann. Die Cp⁼-Ringe haben im Kristall eine nahezu ekliptische Konformation, wobei je ein Tms-Substituent über bzw. unter der offenen Kante des Mitteldecks angeordnet ist.

 $[{Cp^{=}Fe}_{2}(\mu_{3}-\eta^{4:4:1:1}-P_{4}){Cp^{=}Co}]$ (14) hat ein pentagonal-bipyramidales Schweratomgerüst mit einem ${Cp^{=}Co}P_{4}$ -Fünfring, der auf beiden Seiten von jeweils einem ${Cp^{=}Fe}$ -Fragment mit 13 Valenzelektronen überkappt ist. Die parallele Anordnung der Cp⁼-Liganden zum ${Cp^{=}Co}P_{4}$ -Fünfring weist den Cluster als Tripeldecker-Komplex aus.

Der Komplex [$\{Cp^{=}Fe\}_{2}\{Cp^{=}Co\}_{2}P_{4}$] (**15**) kann strukturell zwischen tetragonalem Antiprisma und Dreiecksdodekaeder eingeordnet werden, wobei er Elemente beider Strukturtypen besitzt. Formal setzt er sich aus einer planaren $\{Cp^{=}Co\}_{2}P_{2}$ -Vierring- und einer leicht gewinkelten $P\{Cp^{=}Fe\}_{2}P$ -Butterfly-Einheit zusammen.

Bei der Cothermolyse von $[Cp^*Fe(\eta^5-P_5)]$ (VII) bzw. $[Cp^-Fe(\eta^5-P_5)]$ (4c) mit $[Cp^-Co(CO)_2]$ (2c) unterscheiden sich ebenfalls die Produktbilder. So werden in der Reaktion mit VII die drei Verbindungen $[\{Cp^-Co\}_3(\mu_3-P)_2]$ (6c), $[\{Cp^-Co\}_4P_4]$ (7c) und $[\{Cp^*Fe\}_2(\mu_3-\eta^{4:4:1:1}-P_4)\{Cp^-Co\}]$ (9) gebildet. Der Komplex 7c ist bereits literaturbekannt^[13], jedoch gelang es in dieser Arbeit erstmals, diese Verbindung röntgenstrukturanalytisch zu charakterisieren.

 $[{Cp^{-}Co}_{3}(\mu_{3}-P)_{2}]$ (6c) kann strukturell wie $[{Cp^{-}Co}_{3}(\mu_{3}-P)_{2}]$ (6d) beschrieben werden.

Der homometallische Komplex [$\{Cp^-Co\}_4P_4$] (**7c**) besitzt nicht wie [$\{Cp^-Co\}_4P_4$] (**7d**) eine tetragonal-antiprismatische Struktur. Vielmehr kann man diesen Cluster aufgrund fehlender P-P-Bindungen zwischen verzerrtem Kubus und Dreiecksdodekaeder einordnen.

 $[\{Cp^*Fe\}_2(\mu_3-\eta^{4:4:1:1}-P_4)\{Cp^-Co\}] (9) \text{ konnte nicht vollständig charakterisiert werden. Aber der Cluster sollte eine zu } [\{Cp^*Fe\}_2(\mu_3-\eta^{4:4:1:1}-P_4)\{Cp'Co\}] (XI)^{[26]} analoge Struktur besitzen. Das Schweratomgerüst bildet eine pentagonale Bipyramide mit einer <math>\{Cp^-Co\}P_4$ -Einheit als Basis. Im Gegensatz zu $[\{Cp^=Fe\}_2(\mu_3-\eta^{4:4:1:1}-P_4)\{Cp^=Co\}] (14)$ haben die Cp*-Liganden und der $\{Cp^-Co\}P_4$ -Fünfring in diesem Cluster keine parallele Anordnung.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Wählt man als Phosphorquelle jedoch $[Cp^{-}Fe(\eta^{5}-P_{5})]$ (4c), so können neben dem literaturbekannten Ferrocen $[Cp^{-}_{2}Fe]$ (12c)^[47] und $[\{Cp^{-}Co\}_{4}P_{4}]$ (7c) nur Spuren verschiedener anderer unbekannter Verbindungen nachgewiesen werden.

Nutzt man hingegen $[{Cp^{=}Co}_{4}P_{10}]$ (**V**)^[13] in der Reaktion mit $[{Cp^{=}Fe(CO)_{2}}_{2}]$ (**3d**) als "Phosphorlieferant", ähnelt das Produktbild der Umsetzung von $[Cp^{=}Fe(\eta^{5}-P_{5})]$ (**4d**) mit $[Cp^{=}Co(CO)_{2}]$ (**2d**). So entstehen neben den aus dieser Reaktion bereits bekannten Clustern $[{Cp^{=}Fe}_{2}(\mu_{3}-\eta^{4:4:1:1}-P_{4}){Cp^{=}Co}]$ (**14**) und $[{Cp^{=}Fe}_{2}{Cp^{=}Co}_{2}P_{4}]$ (**15**) auch die Verbindung $[{Cp^{=}Fe}_{4}(P_{2})_{2}]$ (**16**).

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Im Dreiecksdodekaeder [{ $Cp^{=}Fe$ }_4(P_2)_2] (**16**) besetzen die { $Cp^{=}Fe$ }-Fragmente die Ecken mit der Konnektivität fünf und die Phosphoratome die Positionen mit der Konnektivität vier. Im Kristall verzerren die $Cp^{=}$ -Liganden die Gerüststruktur in Richtung tetragonales Antiprisma. Die Reaktion von [{ $Cp^{=}Co$ }_4P_{10}] (**V**)^[13] mit [$Cp^{=}Co(CO)_2$] (**2d**) stellt einen weiteren Zugangsweg zu den beiden Komplexen [{ $Cp^{=}Co$ }_3(μ_3 -P)_2] (**6d**) und [{ $Cp^{=}Co$ }_4P_4] (**7d**) dar.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Das Reaktionsverhalten von $[{Cp^{R}Co}_{4}P_{4}]$ ($Cp^{R} = Cp^{-}$, Cp^{-}) gegenüber molekularem Sauerstoff hängt stark vom Liganden ab. Während die Oxidation von $[{Cp^{-}Co}_{4}P_{4}]$ (**7c**) zum vierfach oxidierten Komplex $[{Cp^{-}Co}_{4}(P=O)_{4}]$ (**17**) führt, kann mit $[{Cp^{-}Co}_{4}P_{4}]$ (**7d**) nur die zweifache Oxidation zu $[{Cp^{-}Co}_{4}(P=O)_{2}P_{2}]$ (**18d**) erzielt werden. An beiden Komplexen konnte eine Röntgenstrukturanalyse durchgeführt werden. Die Einführung von Sauerstoffatomen in **7c** ändert die Struktur nur unwesentlich. Bei **7d** hingegen führt die Oxidation zur Verzerrung des Gerüstes und zur Spaltung von zwei P-P-Bindungen.

Mit einem Überschuss an Methyliodid gelingt es, $[{Cp^-Co}_4P_4]$ (7c) selektiv an einem Phosphor-Liganden zu methylieren. Anhand der spektroskopischen Daten wird für $[{Cp^-Co}_4(PCH_3)P_3]I$ (19) die folgende Struktur angenommen.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

VI. Literatur

- [1] O. J. Scherer, Angew. Chem. 1990, 102, 1137-1155; Angew. Chem. Int. Ed. Engl. 1990, 29, 1104.
- [2] O. J. Scherer, Comments Inorg. Chem. 1987, 6, 1-22.
- [3] K. H. Whitmire, Adv. Organomet. Chem. 1998, 42, 1-145.
- [4] L. F. Dahl, G. L. Simon, J. Am. Chem. Soc. 1973, 95, 2175-2183.
- [5] a.) O. J. Scherer, T. Dave, J. Braun, G. Wolmershäuser, J. Organomet. Chem. 1988, 350, C20-C24.
 - b.) O. J. Scherer, J. Braun, G. Wolmershäuser, Chem. Ber. 1990, 123, 471-475.
- [6] O. J. Scherer, G. Kemény, G. Wolmershäuser, Chem. Ber. 1995, 128, 1145-1148.
- [7] T. Mohr, *Dissertation*, Universität Kaiserslautern **1996**.
- [8] J. Braun, *Dissertation*, Universität Kaiserslautern 1990.
- [9] G. Berg, O. J. Scherer, G. Wolmershäuser, Chem. Ber. 1996, 129, 53-58.
- [10] O. J. Scherer, G. Wolmershäuser, M. Swarowsky, Organometallics 1989, 8, 841-842.
- [11] O. J. Scherer, G. Wolmershäuser, M. Swarowsky, Angew. Chem. 1988, 100, 423-424;
 Angew. Chem. Int. Ed. Engl. 1988, 27, 405.
- [12] O. J. Scherer, G. Wolmershäuser, B. Höbel, Angew. Chem. 1992, 104, 1042-1043;
 Angew. Chem. Int. Ed. Engl. 1992, 31, 1027.
- [13] T. Völmecke, *Dissertation*, Universität Kaiserslautern **1998**.
- [14] J. J. Eisch, R. B. King, Organomet. Synthesis, New-York-London: Academic Press 1965, 114-115.
- [15] R. B. King, M. B. Bisnette, J. Organomet. Chem., 1967, 8, 287-297.
- [16] O. J. Scherer, T. Brück, Angew. Chem. 1987, 99, 59; Angew. Chem. Int. Ed. Engl. 1987, 26, 59.
- [17] G. Schwarz, *Dissertation*, Universität Kaiserslautern 1995.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

- [18] T. Hilt, *Dissertation*, Universität Kaiserslautern **1999**.
- [19] O. J. Scherer, T. Hilt, G. Wolmershäuser, Organometallics 1998, 17, 4110-4112.
- [20] M. Scheer, K. Schuster, A. Krug, H. Hartung, *Chem. Berichte/Recueil* 1997, *130*, 1299-1304.
- [21] O. J. Scherer, T. Brück, G. Wolmershäuser, Chem. Berichte 1989, 122, 2049-2054.
- [22] M. Detzel, T. Mohr, O. J. Scherer, G. Wolmershäuser, Angew. Chem. 1994, 106, 1142 1144; Angew. Chem. Int. Ed. Engl. 1994, 33, 1110-1112.
- [23] C. von Hänisch, D. Fenske, F. Weigand, R. Ahlrichs, *Chem. Eur. J.* 1997, *3*, 1494-1486.
- [24] C. Hofmann, O. J. Scherer, G. Wolmershäuser, J. Organomet. Chem. 1998, 559, 219-222.
- [25] S. Weigel, *Dissertation*, Universität Kaiserslautern 1999.
- [26] O. J. Scherer, S. Weigel, G. Wolmershäuser, Chem. Eur. J. 1998, 4, 1910-1916.
- [27] G. Kemény, *Dissertation*, Universität Kaiserslautern 1994.
- [28] O. J. Scherer, G. Kemény, G. Wolmershäuser, Chem. Ber. 1995, 128, 1145-1148.
- [29] H. Butenschön, J. Foerstner, F. Olbrich, Angew. Chem. 1996, 108, 1323-1325; Angew.
 Chem. Int. Ed. Engl. 1996, 35, 1234-1237.
- [30] A. Cahours, A. W. Hoffmann, Justus Liebigs Ann. Chem. 1857, 104, 1-39.
- [31] O. J. Scherer, J. Braun, P. Walther, G. Heckmann, G. Wolmershäuser, *Angew. Chem.* **1991**, *103*, 861-863; *Angew. Chem. Int. Ed. Engl.* **1991**, *30*, 852.
- [32] W. Wang, A. J. Carty, New J. Chem. 1997, 21, 773-783.
- [33] I.-P. Lorenz, W. Pohl, K. Polborn, Chem. Ber. 1996, 129, 11-13.
- [34] C. Vondung, *Dissertation*, Universität Kaiserslautern 1999.
- [35] O. J. Scherer, G. Wolmershäuser, C. Vondung, Angew. Chem. 1997, 109, 1360-1362;
 Angew. Chem. Int. Ed. Engl. 1997, 36, 1303-1305.
- [36] B. Michaels, V. Soden, Justus Liebigs Ann. Chem. 1885, 229, 310.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

- [37] P. Stoppioni, G. Capozzi, L. Chiti, M. Di Vaira, M. Peruzzini, J. Chem. Soc. Chem. Commun. 1986, 1799-1800.
- [38] H. P. Fritz, C. G. Kreiter, J. Organomet. Chem. 1965, 4, 313-319.
- [39] L. M. Pribytkova, A. V. Kisin, Y. N. Luzikov, N. P. Makoveyeva, V. N. Torocheshnikov, Y. A. Ustynyuk, J. Organomet. Chem. 1971, 30, C57-C60.
- [40] J. Okuda, Top. Curr. Chem. 1991, 160, 97-145.
- [41] O. J. Scherer, T. Völmecke, G. Wolmershäuser, Eur. J. Inorg. Chem. 1999, 945-949.
- [42] a.) K. Nesmeyanov, Bull. Acad. Sci. USSR Div. Chem. Sci. (Engl. Transl.) 1969, 1220.
 b.) J. Okuda, Chem. Ber. 1989, 122, 1075-1077.
- [43] a.) K. Schlögel, Fortschr. Chem. Forsch 1966, 6, 479.
 b.) K. Schlögel, Top. Stereochem. 1967, 1, 39.
- [44] P. Jutzi, Chem. Rev. 1986, 86, 983.
- [45] E. W. Abel, S. A. Keppie, M. F. Lappert, S.Moorhouse, J. Organomet. Chem. 1970, 22, C31-33.
- [46] M. D. Rausch, R. A. Genetti, J. Org. Chem. 1970, 35, 3888-3897.
- [47] E. W. Abel, S. Moorhouse, J. Organometal. Chem. 1971, 28, 211-215.
- [48] D. White, L. Carlton, N. J. Coville, J. Organometal. Chem. 1992, 440, 15-25.
- [49] J. Asture, Organomet. 1984, 3, 1094.
- [50] M. Scheer, K. Schuster, K. Schenzel, E. Herrmann, P. G. Jones, Z. Anorg: Allg. Chem. 1991, 600, 109-119.
- [51] R. D. Adams, F. A. Cotton, J. Amer. Chem. Soc. 1973, 95, 6589.
- [52] M. Detzel, T. Mohr, O. J. Scherer, G. Wolmershäuser, Angew. Chem. 1995, 107, 1454-1456; Angew. Chem. Int. Ed. Engl. 1995, 34, 1321-1323.
- [53] T. Brück, *Dissertation*, Universität Kaiserslautern 1989.
- [54] M. Scheer, K. Schuster, A. Krug, H. Hartung, *Chem. Ber./ Recueil* 1997, 130, 1299-1304.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

- [55] O. J. Scherer, T. Hilt, G. Wolmershäuser, Organometallics 1998, 17, 4110-4112.
- [56] a.) K Wade, Adv. Inorg. Radiochem. 1976, 18, 1-66.
 b.) D. M. P. Mingos, Acc. Chem. Res. 1984, 17, 311-319.
- [57] A. Schneider, *Dissertation*, Universität Kaiserslautern 1991.
- [58] A. R. Kudinov, M. I. Rybinskaya, Y. T. Struchkov, A. I. Yanovskii, P. V. Petrovskii, J. Organomet. Chem. 1987, 336, 187-197.
- [59] J. R. Fritch, K. P. C. Vollhardt, Angew. Chem. 1980, 92, 570-572; Angew. Chem. Int.
 Ed. Engl. 1980, 19, 559.
- [60] J. Okuda, E. Herdtweck, J. Organomet. Chem. 1989, 373, 99-105.
- [61] P. Atkins, *Physikalische Chemie*, VCH-Verlag Weinheim, New York, Basel, Cambridge, Tokyo, **1990**, 866.
- [62] A. P. Ginsberg, W. E. Lindsell, K. J. McCullough, C. R. Sprinkle, A- J. Welch, J. Am. Chem. Soc. 1986, 108, 403-416.
- [63] O. J. Scherer, T. Mohr, G. Wolmershäuser, J. Organomet. Chem. 1997, 529, 379-385.
- [64] G. Berg, Dissertation, Universität Kaiserslautern 1995.
- [65] O. J. Scherer, G. Berg, G. Wolmershäuser, Chem. Ber. 1995, 128, 635-639.
- [66] L. F. Dahl, M. E. Barr, Organometallics 1991, 10, 3941-3996.
- [67] Y. Canac, D. Bourissou, A. Baceiredo, H. Gornitzka, W. W. Schoeller, G. Bertrand, *Science* 1998, 279, 2080-2082.
- [68] G. M. Gimarc, J. J. Ott, J. Am. Chem. Soc. 1986, 108, 505-510.
- [69] W. N. Libscomb, *Science* **1966**, *87*, 373-378.
- [70] B. Rink, O. J. Scherer, G. Wolmershäuser, Chem. Ber. 1995, 128, 71-73.
- [71] a.) L. A. Aslanov, V. T. Markow, *Acta. Cryst.* 1989, *A65*, 661-675.
 b.) S. J. Lippard, B. J. Russ, *Inorg. Chem.* 1967, A 345-348.
- [72] J. R. Pipal, R. N. Grimes, Inorg. Chem. 1979, 18, 257-263.
- [73] M. E. Neil, K. Wade, *Inorg. Chem.* **1982**, *21*, 461-464.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

- [74] A. F. Wells, *Structural Inorganic Chemistry*, Clarebdon Press, Oxford, 1975, 5.Auflage, 78-79.
- [75] H. Schmidbaur, G. Blaschke, Z. Naturforsch. 1978, 33b, 1556-1558.
- [76] Hollemann-Wiberg, "Lehrbuch der Anorganischen Chemie", Walter Gruyter Berlin, 1995.
- [77] C. Elschenbroich, A. Salzer, Organometallchemie, B. G. Teubner Stuttgart, 1993.
- [78] R. Hoffmann, Angew. Chem. 1982, 94, 725-739; Angew. Chem. Int. Ed. Engl. 1982, 21, 559.
- [79] H. Günther, NMR-Spektroskopie, Georg Thieme Verlag Stuttgart 1973, 20.
- [80] D. E. C. Corbridge, *Studies in Inorganic Chemistry 20*, Elsevier Amsterdam, Lausanne, New York, Oxford, Shannon, Tokyo **1995**, 1134-1152.
- [81] Schakal 97; E. Keller, Kristallographisches Institut der Universität Freiburg, 1997.
- [82] L. M Cirjak, R. E. Ginsburg, L. F. Dahl, *Inorg. Chem.* **1982**, *21*, 940-957.
- [83] S. A. Frith, J. L. Spencer, W. E. Geiger, J. Edwin, Inorg. Synth. 1985, 23, 15-16.
- [84] C. S. Kreihanzel, M. L. Losee, J. Am. Chem. Soc. 1968, 90, 4701-4705.
- [85] R. Riemhenschneider, Z. Naturforsch. 1963, 18b, 641-645.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

VII. Anhang

1. Anhang A

Allgemeines

Verfeinerung nach F^2 mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F^2 . Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F^2 gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung werden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F^2 bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

$$wR_{2} = \sqrt{\frac{\sum \left[w\left(F_{o}^{2} - F_{c}^{2}\right)^{2}\right]}{\sum \left[w\left(F_{o}^{2}\right)^{2}\right]}}}$$

$$R_{1} = \frac{\sum \left\|F_{o}\right| - \left|F_{c}\right\|}{\sum \left|F_{o}\right|}$$

$$GooF = \sqrt{\frac{\sum \left[w\left(F_{o}^{2} - F_{c}^{2}\right)\right]}{(n-p)}}$$

$$n = Zahl der Reflexe; p = Zahl der verfeinerten Parameter$$

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

<u>Anhang A.1</u>: Strukturdaten von $[Cp^{-}Fe(\eta^{5}-P_{5})]$ (4c).

Tabelle A.1.1 Kristalldaten und Strukturverfeinerung

Tabelle A.1.1 Kristalldaten und	C14 C14 C13 C13 C12 C12 C12 C12 C12 C12 C12 C12 C12 C12	
Summenformel	C ₈ H ₁₃ FeP ₅ Si	
Molmasse	347.97	(Fe1)
Temperatur	293(2) K	\checkmark
Strahlung	ΜοΚα	PIS DI
Wellenlänge	0.71073 Å	(P14 P13 P12 P12)
Scanmodus	Phi-Oszillation	S O S
Kristallsystem	Triklin	
Raumgruppe	PĪ	
Zelldimensionen	a = 7.1782(4) Å	$\alpha = 101.927(8)^{\circ}$
	b = 18.2555(13) Å	$\beta = 90.483(8)^{\circ}$
	c = 23.4592(16) Å	$\gamma = 96.483(8)^{\circ}$
Zellvolumen	2986.9(3) $Å^3$	•
Formeleinheiten pro Zelle Z	8	
Berechnete Dichte	1.548 Mg/m^3	
Absorptionskoeffizient	1.594 mm^{-1}	
Kristallgröße	0.55 x 0.47 x 0.40 mm	
Gemessener θ-Bereich	2.86 bis 25.68°	
Anzahl der gemessenen Reflexe	42245	
Unabhängige Reflexe	10641 (Rint = 0.0559)	
Absorptionskorrektur	Empirisch (MULABS/PLATON	98)
Max. und min. Transmission	0.52342 und 0.47532	
Diffraktometer	Stoe IPDS	
Strukturlösung	Direkte Methoden	
Strukturlösungsprogramm	SHELXS-97 (Sheldrick, 1990)	
Strukturverfeinerung	Vollmatrix Least-Squares gegen l	F^2
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)	
Daten / Restraints / Parameter	10641 / 0 / 553	
Endgültige R-Werte [I>2 σ (I)]	R1 = 0.0386, $wR2 = 0.0921$	
R-Werte (alle Daten)	R1 = 0.0618, $wR2 = 0.0994$	
Wichtungsschema	$w=1/[\sigma^{2}(Fo^{2})+(0.0600P)^{2}+0.0000P)^{2}$	$P = (Fo^2 + 2Fc^2)/3$
GooF (alle Daten)	0.915	
Größtes Maximum und Minimum	0.528 und -0.431 eÅ ⁻³	

Verfeinerung nach F^2 mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F^2 . Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F^2 gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F² bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Tabelle A.1.2		
Atomkoordinaten [x]	0 ⁴] und äquivalente isotrope A	Auslenkungsparameter [Å ² x 10 ³].

U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	Х	У	Z	U(eq)
Fe(1)	4138(1)	4375(1)	1206(1)	41(1)
P(11)	6640(2)	3696(1)	1381(1)	69(1)
P(12)	6685(2)	4102(1)	600(1)	78(1)
P(13)	6183(2)	5244(1)	814(1)	78(1)
P(14) D(15)	5791(2)	5524(1) 4566(1)	1717(1)	70(1)
P(15) Si(1)	1982(2)	4500(1) 2450(1)	2000(1) 1101(1)	49(1)
C(11)	1960(5)	3469(2)	1091(1)	42(1)
C(12)	2064(5)	3816(2)	594(2)	50(1)
C(13)	1770(6)	4586(2)	779(2)	59(1)
C(14) C(15)	1508(6) 1623(5)	4/29(2) 4053(2)	1380(2) 1573(2)	5/(1) 49(1)
C(15) C(16)	-437(7)	1981(2)	891(2)	83(2)
C(17)	3621(7)	2013(2)	560(2)	72(1)
C(18)	2583(8)	2371(3)	1854(2)	87(2)
Fe(2)	3987(1)	5911(1)	3883(1)	44(1)
P(2L) P(22)	1510(2) 2085(2)	6548(1) 5595(1)	3619(1) 3015(1)	69(1) 72(1)
P(23)	2324(2)	4728(1)	3460(1)	87(1)
P(24)	1891(2)	5142(1)	4348(1)	99(1)
P(25)	1427(2)	6288(1)	4452(1)	86(1)
Si(2)	6177(2)	7822(1)	3927(1)	51(1)
C(21) C(22)	6170(5) 6472(5)	6808(2) 6202(2)	3957(2) 3490(2)	44(1) 51(1)
C(23)	6609(6)	5548(2)	3698(2)	64(1)
C(24)	6387(6)	5716(2)	4299(2)	63(1)
C(25)	6112(6)	6489(2)	4467(2)	52(1)
C(26)	8652(7)	8259(2)	4104(3)	84(2)
C(27)	4582(9)	8287(3)	3182(2) 4469(3)	94(2)
Fe(3)	8837(1)	2422(1)	3545(1)	41(1)
P(31)	5947(2)	1651(1)	3311(1)	70(1)
P(32)	6014(2)	2544(1)	4035(1)	75(1)
P(33) D(34)	7319(Z) 8085(2)	3524(1) 3232(1)	3805(1) 2931(1)	86(1) 90(1)
P(35)	7257(2)	2071(1)	2627(1)	82(1)
Si(3)	9705(2)	576(1)	3784(1)	59(1)
C(31)	10364(5)	1593(2)	3762(2)	47(1)
C(32)	LU358(6)	2225(2)	4241(2)	52(1) 59(1)
C(34)	11696(6)	2673(2)	3486(2)	57(1)
C(35)	11196(5)	1890(2)	3297(2)	50(1)
C(36)	11928(8)	219(3)	3961(3)	111(2)
C(37)	7976(8)	504(3)	4358(2)	88(2)
C(38) Fe(4)	2115(1)	7760(1)	1419(1)	39(1)
P(41)	-392(2)	8504(1)	1613(1)	68(1)
P(42)	-649(2)	7661(1)	848(1)	76(1)
P(43)	43(2)	6657(1)	1056(1)	80(1)
P(44) D(45)	729(2) 498(2)	6883(1) 8029(1)	1951(1) 2296(1)	83(1) 75(1)
Si(4)	4023(2)	9621(1)	1236(1)	71(1)
C(41)	4156(5)	8612(2)	1262(2)	49(1)
C(42)	3932(6)	7982(2)	780(2)	60(1)
C(43) C(44)	4363(6) 4826(6)	/33U(2) 7540(2)	972(2) 1567(2)	65(上) 61(1)
C(45)	4705(5)	8321(2)	1746(2)	52(1)
C(46)	6427(10)	10008(4)	1074(4)	129(3)
C(47)	2323(11)	9667(3)	643(3)	118(2)
C(48)	3375(10)	10140(3)	1956(3)	110(2)

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

$\begin{array}{l} {\rm Fe}(1)-{\rm C}(13)\\ {\rm Fe}(1)-{\rm C}(14)\\ {\rm Fe}(1)-{\rm C}(12)\\ {\rm Fe}(1)-{\rm C}(15)\\ {\rm Fe}(1)-{\rm P}(13)\\ {\rm Fe}(1)-{\rm P}(13)\\ {\rm Fe}(1)-{\rm P}(14)\\ {\rm Fe}(1)-{\rm P}(15)\\ {\rm Fe}(1)-{\rm P}(11)\\ {\rm P}(11)-{\rm P}(15)\\ {\rm P}(11)-{\rm P}(15)\\ {\rm P}(11)-{\rm P}(12)\\ {\rm P}(12)-{\rm P}(13)\\ {\rm P}(13)-{\rm P}(14)\\ {\rm P}(14)-{\rm P}(15)\\ {\rm Si}(1)-{\rm C}(11)\\ {\rm Si}(1)-{\rm C}(11)\\ {\rm Si}(1)-{\rm C}(18)\\ {\rm Si}(1)-{\rm C}(16)\\ {\rm C}(11)-{\rm C}(15)\\ {\rm C}(11)-{\rm C}(15)\\ {\rm C}(11)-{\rm C}(15)\\ {\rm C}(12)-{\rm C}(23)\\ {\rm Fe}(2)-{\rm C}(24)\\ {\rm Fe}(2)-{\rm C}(24)\\ {\rm Fe}(2)-{\rm C}(25)\\ {\rm Fe}(2)-{\rm P}(21)\\ {\rm Fe}(2)-{\rm P}(22)\\ {\rm Fe}(2)-{\rm P}(21)\\ {\rm Fe}(2)-{\rm P}(21)\\ {\rm P}(21)-{\rm P}(25)\\ {\rm Fe}(2)-{\rm P}(24)\\ {\rm Fe}(2)-{\rm P}(24)\\ {\rm P}(24)-{\rm P}(25)\\ {\rm Si}(2)-{\rm C}(24)\\ {\rm C}(24)-{\rm C}(25)\\ {\rm C}(23)-{\rm C}(24)\\ {\rm C}(24)-{\rm C}(25)\\ {\rm C}(24)-{\rm C}(25)\\ {\rm C}(23)-{\rm C}(24)\\ {\rm C}(24)-{\rm C}(25)\\ {\rm$	2.077(4) 2.080(4) 2.081(4) 2.085(4) 2.116(3) 2.3586(13) 2.3586(13) 2.3710(12) 2.3710(12) 2.3721(12) 2.3735(13) 2.0965(17) 2.111(2) 2.1023(19) 2.1042(18) 1.856(4) 1.855(5) 1.861(5) 1.428(5) 1.436(5) 1.422(5) 1.436(5) 1.410(5) 2.074(4) 2.084(4) 2.079(4) 2.084(4) 2.079(4) 2.084(4) 2.079(4) 2.080(4) 2.114(3) 2.3628(14) 2.3628(14) 2.3628(14) 2.3628(14) 2.3628(14) 2.3628(14) 2.3628(14) 2.3628(14) 2.3628(14) 2.3748(13) 2.3748(13) 2.3748(13) 2.3748(13) 2.3748(13) 2.3748(13) 2.3748(13) 2.3748(13) 2.104(2) 2.103(2) 2.121(2) 1.842(5) 1.866(3) 1.856(5) 1.423(5) 1.393(6) 1.420(5)		Fe(3)-C(34) Fe(3)-C(32) Fe(3)-C(32) Fe(3)-C(31) Fe(3)-P(32) Fe(3)-P(31) Fe(3)-P(31) Fe(3)-P(31) Fe(3)-P(32) P(31)-P(32) P(31)-P(32) P(31)-P(32) P(32)-P(33) P(33)-P(34) P(34)-P(35) Si(3)-C(37) Si(3)-C(31) Si(3)-C(36) C(31)-C(32) C(32)-C(33) C(33)-C(34) C(34)-C(35) Fe(4)-C(42) Fe(4)-C(42) Fe(4)-C(42) Fe(4)-C(42) Fe(4)-P(42) Fe(4)-P(42) Fe(4)-P(42) Fe(4)-P(42) Fe(4)-P(41) Fe(4)-P(41) Fe(4)-P(42) P(41)-P(42) P(42)-P(43) Fe(4)-C(41) Si(4)-C(41) Si(4)-C(41) Si(4)-C(41) Si(4)-C(41) Si(4)-C(42) C(41)-C(42) C(41)-C(42) C(42)-C(43) C(43)-C(44) C(44)-C(45) C(44)-C(44) C(44)-C(45) C(45) C(45	2.064(4) 2.070(4) 2.076(4) 2.076(4) 2.107(3) 2.3472(13) 2.3583(13) 2.3645(12) 2.3667(13) 2.3674(13) 2.0935(19) 2.101(2) 2.097(2) 2.103(2) 2.108(2) 1.853(5) 1.874(3) 1.857(6) 1.423(5) 1.436(5) 1.436(5) 1.411(5) 2.077(4) 2.068(4) 2.077(4) 2.106(3) 2.3547(14) 2.3657(12) 2.3657(12) 2.3657(12) 2.3657(12) 2.3657(12) 2.3657(12) 2.3657(12) 2.3657(12) 2.3657(12) 2.3657(12) 2.3657(12) 2.3664(12) 2.3657(12) 2.0975(19) 2.1009(19) 2.102(2) 2.098(2) 2.108(2) 1.868(4) 1.862(6) 1.420(5) 1.420(6) 1.397(6) 1.413(5)	
$\begin{array}{c} C(13) - Fe(1) - C(14) \\ C(13) - Fe(1) - C(12) \\ C(14) - Fe(1) - C(12) \\ C(13) - Fe(1) - C(15) \\ C(12) - Fe(1) - C(15) \\ C(12) - Fe(1) - C(11) \\ C(14) - Fe(1) - C(11) \\ C(12) - Fe(1) - C(11) \\ C(12) - Fe(1) - C(11) \\ C(13) - Fe(1) - C(11) \\ C(13) - Fe(1) - C(12) \\ C(14) - Fe(1) - C(12) \\ C(12) - Fe(1) - C(12) \\ C(12) - Fe(1) - C(12) \\ C(13) - Fe(1) - C(13) \\ C(13) - Fe(1) \\ C(13) - Fe(1) - C(13) \\ C(13) - Fe(1) \\ C(13) -$) 3) 6) 6) 6) 6) 7) 7) 7) 7) 7]	39.31(16) 39.99(15) 56.65(16) 56.13(16) 39.56(14) 56.34(15) 57.19(14) 57.10(14) 39.99(13) 39.74(13) 53.52(13) 95.76(12) 51.73(10) 12.69(10) 33.83(12)	$\begin{array}{c} C(14)-Fe(1)-P(1)\\ C(12)-Fe(1)-P(1)\\ C(15)-Fe(1)-P(1)\\ C(15)-Fe(1)-P(1)\\ P(12)-Fe(1)-P(1)\\ C(13)-Fe(1)-P(1)\\ C(14)-Fe(1)-P(1)\\ C(12)-Fe(1)-P(1)\\ C(15)-Fe(1)-P(1)\\ C(15)-Fe(1)-P(1)\\ P(12)-Fe(1)-P(1)\\ P(13)-Fe(1)-P(1)\\ C(14)-Fe(1)-P(1)\\ C(14)-Fe(1)-P(1)\\ C(12)-Fe(1)-P(1)\\ C(12)-Fe(1)-P(1)\\ C(15)-Fe(1)-P(1)\\ C(15)-Fe(1)-F(1)\\ C(15)$	3) 3) 3) 3) 3) 4) 4) 4) 4) 4) 4) 4) 5) 5) 5) 5)	$\begin{array}{c} 113.01(11)\\ 111.03(10)\\ 152.34(11)\\ 150.25(10)\\ 53.10(6)\\ 110.13(11)\\ 94.15(11)\\ 149.11(11)\\ 114.55(10)\\ 154.03(10)\\ 92.17(5)\\ 52.67(5)\\ 149.71(13)\\ 111.80(13)\\ 155.79(10)\\ 96.63(11)\\ \end{array}$
Einleitung Problemstellung	Eigene Ergebnisse	Experimenteller Teil	Zusammenfassung	Literatur	Anhang

Tabelle A.1.3. Bindungslängen [Å] und -winkel [°]

C(11) - Fe(1) - P(15)) 116	04(10)	C(21) - Fe(2) - P(25)	111 04(10)
$D(12) = E_0(1) = D(15)$) 02	29(5)	$D(22) = E_0(2) = D(2)$	25) 25)	92 15(6)
F(12) F(1) F(1)))2	.55(5)	F(23) F(2) F(2) F(2)	23)	$J_2, I_3(0)$
P(13) - Pe(1) - P(15)) 92	.06(5)	C(24) - Fe(2) - P(24)	95.29(13)
P(14)-Fe(1)-P(15)) 52	.67(5)	C(23)-Fe(2)-P(24) 1	L16.28(13)
C(13)-Fe(1)-P(11) 156	.58(12)	C(25) - Fe(2) - P(24) 1	110.10(11)
C(14) - Fe(1) - P(11)) 152	19(12)	C(22) - Fe(2) - P(24)	155 30(12)
C(12) = C(1) D(11)) 117	1 [(11)	C(22) = C(2) = C(2)	21)	140 EC(10)
C(12) - Fe(1) - P(11)) 11/	.15(11)	C(2I) - Fe(2) - P(24) _	L40.50(10)
C(15) - Fe(1) - P(11)) 114	.20(11)	P(23) - Fe(2) - P(24)	52.78(6)
C(11)-Fe(1)-P(11) 97	.67(10)	P(25) - Fe(2) - P(24)	53.27(7)
P(12)-Fe(1)-P(11) 53	.00(5)	C(24) - Fe(2) - P(22)	145.78(14)
$D(13) - F_{\Theta}(1) - D(11)$) 91	86(5)	$C(23) - E_{P}(2) - P(2)$	22)	108 74(14)
$\Gamma(13) \Gamma C(1) \Gamma(11)$) 01	21/E)	C(25) = C(2) = C(2)		157 01(11)
P(14) - Fe(1) - P(11)) 91	· 31(5)	C(25) - Fe(2) - P(2)	22) _	157.91(11)
P(15) - Fe(1) - P(11)) 52	.43(5)	C(22) - Fe(2) - P(22)	96.25(12)
P(15)-P(11)-P(12) 108	.46(7)	C(21)-Fe(2)-P(22) 1	L17.88(10)
P(15) - P(11) - Fe(1)) 63	.75(5)	P(23) - Fe(2) - P(2)	22)	52.35(5)
$D(12) D(11) E_0(1)$) 63	14(E)	D(2E) = D(2) D(2E)	22)	01 02(E)
F(12) F(11) P(12)) 00	· ± ± () /	F(23) F(2) F(2) F(2)	22)	$J_1, J_2(J)$
P(11) - P(12) - P(13)) 107	.51(7)	P(24) - Fe(2) - P(22)	91.51(6)
P(11)-P(12)-Fe(1) 63	.86(5)	C(24) - Fe(2) - P(21) 1	L60.20(12)
P(13)-P(12)-Fe(1) 63	.68(5)	C(23)-Fe(2)-P(21)	L48.16(14)
P(14) - P(13) - P(12)) 107	86(7)	C(25) - Fe(2) - P(2)	21) -	120 27(11)
$\Gamma(\pm 1)$ $\Gamma(\pm 3)$ $\Gamma(\pm 2)$) <u>107</u>	72(F)	C(23) = C(2) = C(2)	21) -	111 70(12)
P(14) - P(13) - Fe(1)) 03	./3(5)	C(22) - Fe(2) - P(2)	ZI) _	
P(12)-P(13)-Fe(1)) 63	.21(5)	C(21) - Fe(2) - P(21)	97.88(10)
P(15)-P(14)-P(13) 108	.39(7)	P(23)-Fe(2)-P(21)	91.12(5)
P(15) - P(14) - Fe(1)) 63	.69(4)	P(25)-Fe(2)-P(21)	52.72(5)
P(13) - P(14) - F = (1)	63	60(5)	$P(24) - F_{P}(2) - P(2)$	21)	91 55(6)
D(11) D(15) D(14)) 107	76(7)	$\Gamma(21) \Gamma(2) \Gamma(2) \Gamma(2)$	21)	52.00(0)
P(11) - P(15) - P(14)) 107	./0(/)	P(22) - Fe(2) - P(2)		52.10(5)
P(11)-P(15)-Fe(1)) 63	.82(5)	P(22) - P(21) - P(25)	LO8.64(8)
P(14)-P(15)-Fe(1) 63	.64(5)	P(22)-P(21)-Fe	(2)	63.86(5)
C(11)-Si(1)-C(17) 110	.95(18)	P(25)-P(21)-Fe	(2)	63.35(5)
C(11) - Si(1) - C(18)) 108	3(2)	D(23) - D(22) - D(2)	21)	108 21(8)
C(17) $C(10)$ $C(10)$) 110	· J(Z)	1(23) 1(22) 1(21) - (0)	62 = 60 (E)
C(17) - SI(1) - C(18)) 112	.5(2)	P(23) - P(22) - Fe	(2)	63.58(5)
C(11) - Si(1) - C(16)) 106	.8(2)	P(21)-P(22)-Fe	(2)	63.98(5)
C(17) - Si(1) - C(16)) 108	.5(2)	P(22)-P(23)-P(24) 1	LO8.26(8)
C(18)-Si(1)-C(16) 109	.6(3)	P(22)-P(23)-Fe	(2)	64.07(5)
C(15) - C(11) - C(12)) 105	5(3)	P(24) - P(23) - Fe	(2)	63 77(5)
C(15) $C(11)$ $C(12)$) 106	4(2)	(22) = (23) = (23) = (21)	25)	107 72(0)
C(13) - C(11) - S1(1)) 107	.4(3)	P(23) - P(24) - P(24) - P(23) - P(24) - P(24	23) <u>-</u>	L07.75(0)
C(12) - C(11) - S1(1)) 12/	.7(3)	P(23) - P(24) - Fe	(2)	63.45(5)
C(15)-C(11)-Fe(1)) 68	.95(19)	P(25)-P(24)-Fe	(2)	63.22(5)
C(12)-C(11)-Fe(1) 68	.69(19)	P(21)-P(25)-P(24)	LO7.14(8)
Si(1) - C(11) - Fe(1)) 131	66(19)	P(21) - P(25) - Fe	(2)	63 93(5)
C(13) - C(12) - C(11)) 108	6(3)	D(24) - D(25) - Fo	(2)	63 51(6)
C(13) - C(12) - C(11)) 100	.0(3)		(<u>4</u>)	03.51(0)
C(13) - C(12) - Fe(1)) 69	.8(2)	C(27) - S1(2) - C(27)	ZI) _	LU9./(Z)
C(11)-C(12)-Fe(1)) 71	.3(2)	C(27) - Si(2) - C(28) 1	L11.5(3)
C(14)-C(13)-C(12)) 108	.3(3)	C(21)-Si(2)-C(28) 2	L11.0(2)
C(14)-C(13)-Fe(1)) 70	.5(2)	C(27) - Si(2) - C(27)	26)	108.7(3)
$C(12) - C(13) - F_{0}(1)$) 70	2(2)	C(21) = G(2) = C(2)	26)	105 61(10)
C(12) C(13) Pe(1)) 70	.2(2)	C(21) D(2) C(21) C(2)	20)	110 2(2)
C(13) - C(14) - C(15)) 107	.9(3)	C(28) - SI(2) - C(20) _	LIU.2(3)
C(13) - C(14) - Fe(1)) 70	.2(2)	C(22) - C(21) - C(25) -	LO4.9(3)
C(15)-C(14)-Fe(1) 70	.4(2)	C(22)-C(21)-Si	(2)	L27.4(3)
C(14)-C(15)-C(11)) 109	.6(3)	C(25)-C(21)-Si	(2)	L27.2(3)
C(14) - C(15) - Fe(1)	,) 70	0(2)	C(22) - C(21) - Fe	(2)	68 9(2)
C(11) $C(15)$ $Fo(1)$) 70) 71	21(10)	$C(2E) C(21) E_{0}$	(2)	60.7(2)
C(11) - C(13) - Fe(1)) /1	· J1 (10)	C(23) - C(21) - Fe	(2)	120.7(2)
C(24) - Fe(2) - C(23)	, 39	.14(10)	SI(Z) - C(ZI) - Fe	(4) -	L32.30(19)
C(24)-Fe(2)-C(25) 39	.99(15)	C(23)-C(22)-C(ZT) [L10.4(4)
C(23)-Fe(2)-C(25) 66	.40(17)	C(23)-C(22)-Fe	(2)	70.6(2)
C(24)-Fe(2)-C(22) 65	.65(17)	C(21)-C(22)-Fe	(2)	71.4(2)
C(23) = Fe(2) = C(22)) 20	07(15)	C(24)_C(23)_C(22)	107 9(3)
C(25) = C(2) = C(24)	,	02(15)			
C(25) - re(2) - C(22)	/ 60	.03(15)	C(24) - C(23) - Fe	(2)	70.0(2)
C(24) - Fe(2) - C(21)) 67	.∠U(⊥5)	C(22)-C(23)-Fe	(∠)	/0.3(2)
C(23)-Fe(2)-C(21) 66	.85(15)	C(23)-C(24)-C(25) 2	LO8.3(3)
C(25)-Fe(2)-C(21) 40	.03(13)	C(23)-C(24)-Fe	(2)	70.8(2)
C(22) - Fe(2) - C(21)) 20	.66(13)	$C(25) - C(24) - F_{2}$	(2)	70.2(2)
$C(24) = E_{2}(2) + C(21)$, ככ וחר (80(12)	C(21) - C(22) - C(21) - C(21	21)	108 5/2)
$C(2\pi)^{-} FC(2)^{-} F(2)$	/ LU/	.00(12)	C(24) - C(25) - C(25	41) - ())	
C(23) - Fe(2) - P(23)) 93	.9U(IZ)	C(24)-C(25)-Fe	(∠)	69.8(2)
C(25)-Fe(2)-P(23) 146	.34(11)	C(21)-C(25)-Fe	(2)	71.3(2)
C(22)-Fe(2)-P(23) 116	.00(11)	C(34)-Fe(3)-C(33)	39.31(17)
C(21)-Fe(2)-P(23) 155	.62(10)	C(34)-Fe(3)-C(32)	66.78(17)
$C(24) = E_{0}(2) + C(2)$) 110	80(14)	$C(33)^{-E}(3), C(3)$	32)	40 06/15
$C(\Delta \pi) = FC(\Delta) = F(\Delta)$		······································	C(33) = re(3) = C(3)	25) 25)	20.00(10)
C(23) - Fe(2) - P(25)	, 157	.O1(14)	C(34) - Fe(3) - C(30 <i>)</i>	39.00(15)
C(25) - Fe(2) - P(25)) 97	.34(12)	C(33)-Fe(3)-C(35)	66.45(17)
C(22)-Fe(2)-P(25) 149	.14(11)	C(32)-Fe(3)-C(35)	66.65(16)
Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstallung	Fraebnisse	Tail			8
Troorenistenung	LIZCOMSSC	1 011			

C(34)-Fe(3)-C(32	L) 67	.26(14)	C(32)-C(33)-Fe	(3)	70.2(2)
C(33)-Fe(3)-C(3)	L) 67	.38(14)	C(33)-C(34)-C(35) 1	LO8.2(3)
C(32)-Fe(3)-C(3)	L) 40	.19(14)	C(33)-C(34)-Fe	(3)	70.4(2)
C(35) - Fe(3) - C(3)	39	.77(14)	C(35) - C(34) - Fe	(3)	70.5(2)
C(34) - Fe(3) - P(3)	2) 152	28(13)	C(34) - C(35) - C(35)	31) -	109 2(3)
$C(33) = F_{O}(3) = D(3)$	2) <u>112</u>	78(14)	$C(34) - C(35) - E_{2}$	(3)	69.6(2)
C(22) = C(2) = C(2)		02(12)	C(21) C(25) FC	(2)	$(2) \cdot O(2)$
C(3Z) = Fe(3) = P(3)	2) 90 10 10	-93(12)	C(31) - C(33) - Fe	(3)	(1,3(2))
C(35) - Fe(3) - P(3)	2) 153	.2/(10)	C(44) - Fe(4) - C(4)	4Z)	66.74(18)
C(31) - Fe(3) - P(3)	2) 114	.04(11)	C(44) - Fe(4) - C(43)	39.40(17)
C(34) - Fe(3) - P(3)	5) 112	.87(13)	C(42) - Fe(4) - C(43)	40.10(17)
C(33) - Fe(3) - P(3)	5) 151	.17(14)	C(44) - Fe(4) - C(45)	39.84(15)
C(32)-Fe(3)-P(3	5) 154	.26(11)	C(42) - Fe(4) - C(45)	66.35(16)
C(35)-Fe(3)-P(3	5) 96	.18(12)	C(43) - Fe(4) - C(45)	66.42(17)
C(31)-Fe(3)-P(3	5) 114	.53(11)	C(44) - Fe(4) - C(41)	67.33(16)
P(32)-Fe(3)-P(3	5) 92	.19(5)	C(42) - Fe(4) - C(4)	41)	40.04(14)
C(34) - Fe(3) - P(3)	L) 153	.65(12)	C(43) - Fe(4) - C(4)	41)	67.46(15)
C(33) - Fe(3) - P(3)	L) 154	-66(12)	C(45) - Fe(4) - C(4)	41)	39.69(15)
C(32) = Fe(3) = P(3)	1) 115	40(12)	C(44) - Fe(4) - P(4)	42) ⁻	153 80(13)
$C(35) = E_0(3) = D(3)$	L) 11/	Q6(11)	$C(12) - F_0(1) - D(1)$	12)	05.00(13)
C(33) - Fe(3) - F(3)		00(11)	C(42) - FC(4) - F(4) - F(4) - F(4)	12) 10)	95.72(15)
C(31) - Fe(3) - P(3)	L) 97	$.04(\perp 1)$	C(43) - Fe(4) - P(4)	42) -	L14.00(14)
P(3Z) - Fe(3) - P(3)	L) 52	. /6(5)	C(45) - Fe(4) - P(42) _	
P(35)-Fe(3)-P(3)	L) 52	.84(5)	C(41) - Fe(4) - P(42)	L12.31(12)
C(34) - Fe(3) - P(34)	1) 94	.00(12)	C(44) - Fe(4) - P(45)	LII.60(13)
C(33)-Fe(3)-P(34	1) 111	.11(11)	C(42)-Fe(4)-P(45) 2	L56.43(12)
C(32)-Fe(3)-P(34	1) 150	.42(11)	C(43)-Fe(4)-P(45) 2	L49.39(14)
C(35)-Fe(3)-P(34	1) 113	.35(11)	C(45) - Fe(4) - P(45)	96.87(11)
C(31)-Fe(3)-P(34	1) 152	.67(11)	C(41)-Fe(4)-P(45) 1	L16.59(10)
P(32)-Fe(3)-P(34	1) 91	.90(6)	P(42)-Fe(4)-P(45)	92.28(5)
P(35)-Fe(3)-P(34	1) 52	.99(6)	C(44) - Fe(4) - P(43)	L13.06(12)
P(31) - Fe(3) - P(3)	4) 91	.94(5)	C(42) - Fe(4) - P(43)	110.04(12)
C(34) - Fe(3) - P(3)	R) 111	89(11)	C(43) - Fe(4) - P(4)	43)	93 14(12)
C(33) - Fe(3) - D(3)	3) 03	76(12)	C(45) - Fe(4) - P(4)	43)	15278(12)
$C(32) = F_{O}(3) = D(3)$	2) 110	00(11)	$C(41) - F_{O}(4) - D(4)$	43)	$149 \ 20(11)$
C(32) Fe(3) F(3)	2) 151	21(11)	$D(42) - E_0(4) - D(4)$		$52 \ 91(5)$
C(33) = Fe(3) = P(3)	D) 151 D) 151	GE(11)	P(42) - P(4) -	43) 12)	52.91(5)
C(31) - Fe(3) - P(3)	D) E2		P(43) - Fe(4) - P(4)	43) 41) -	92.45(5)
P(3Z) - Fe(3) - P(3)	5) 52	.83(5)	C(44) - Fe(4) - P(4⊥) _ 41) -	L5Z.06(1Z)
P(35) - Fe(3) - P(3)	3) 92 2) 00	.32(6)	C(42) - Fe(4) - P(41) <u>-</u>	L1/.24(13)
P(3L) - Fe(3) - P(3)	3) 92	.04(5)	C(43) - Fe(4) - P(41) <u>-</u>	156.78(14)
P(34) - Fe(3) - P(3)	5) 52 -) 105	./4(6)	C(45) - Fe(4) - P(41) _	L13.86(11)
P(32) - P(31) - P(32)	D) 107	.83(8)	C(41) - Fe(4) - P(41) 41)	97.52(11)
P(3Z) - P(3L) - Fe(.	3) 63	.20(5)	P(42) - Fe(4) - P(4) - P(4)	41) 41)	52.85(5)
P(35) - P(31) - Fe(.	3) 63 100	.43(5)	P(45) - Fe(4) - P(41) 41)	52.70(5)
P(31) - P(32) - P(3)	3) 108	.67(8)	P(43) - Fe(4) - P(4) = P(4)	41) 44)	92.09(5)
P(31) - P(32) - Fe(.	3) 64	.05(5)	C(44) - Fe(4) - P(44)	94.15(13)
P(33)-P(32)-Fe(.	3) 64	.08(5)	C(42) - Fe(4) - P(44)	L48.31(13)
P(32)-P(33)-P(34	1) 107	.55(8)	C(43) - Fe(4) - P(44) 1	L09.39(13)
P(32)-P(33)-Fe(3	3) 63	.09(5)	C(45) - Fe(4) - P(44)	L15.40(11)
P(34)-P(33)-Fe(3	3) 63	.61(5)	C(41)-Fe(4)-P(44) 1	L54.92(12)
P(33)-P(34)-P(39	5) 108	.11(8)	P(42)-Fe(4)-P(44)	91.83(6)
P(33)-P(34)-Fe(3	3) 63	.65(5)	P(45)-Fe(4)-P(44)	52.99(5)
P(35)-P(34)-Fe(3	3) 63	.30(5)	P(43)-Fe(4)-P(44)	52.69(6)
P(31)-P(35)-P(34	1) 107	.83(8)	P(41)-Fe(4)-P(44)	91.69(5)
P(31)-P(35)-Fe(3	3) 63	.73(5)	P(45)-P(41)-P(42)	L08.12(7)
P(34)-P(35)-Fe(3	3) 63	.71(5)	P(45)-P(41)-Fe	(4)	63.48(5)
C(37) - Si(3) - C(3)	L) 109	.53(19)	P(42)-P(41)-Fe	(4)	63.29(5)
C(37) - Si(3) - C(3)	3) 111	.1(3)	P(41) - P(42) - P(42)	43)	L08.21(8)
C(31) - Si(3) - C(3)	3) 110	.1(2)	$P(41) - P(42) - F_{P}$	(4)	63.86(5)
C(37) = Si(3) = C(3)	5) 110	8(3)	$D(43) - D(42) - F_{2}$	(4)	63 75(5)
C(31) = C(3) = C(3)	5) 105	6(2)	D(44) - D(42) - D(42)	42)	107 66(7)
C(32) = C(3) = C(3)	5) 100	5(2)	בי(דד)=ב(דב)=P(הית (10/ה (11/) ה	······································	62 70(E)
C(30) - ST(3) - C(30)) 105	-J(J) 	F(HH)-F(H)-FC 	(エ) (A)	(),12() (),12()
C(35) - C(31) - C(3)	4) 105 105	.0(3)	F(42)-F(43)-FC	(せ) 4F)	03.33(5)
C(35) - C(31) - S1(.	127	.4(3)	P(43) - P(44) - P(44) - P(43) - P(43	4D) -	$LU\delta.33(\delta)$
C(32) - C(31) - Si(31)	5) 126	.5(3)	P(43)-P(44)-Fe	(4)	03.60(5)
C(35)-C(31)-Fe(3	3) 68	.9(2)	P(45)-P(44)-Fe	(4)	63.36(5)
C(32)-C(31)-Fe(3	3) 68	.52(19)	P(41)-P(45)-P(44)	LU7.67(8)
Si(3)-C(31)-Fe(3	3) 132	.7(2)	P(41)-P(45)-Fe	(4)	63.82(5)
C(33)-C(32)-C(32)	L) 108	.5(3)	P(44)-P(45)-Fe	(4)	63.66(5)
C(33)-C(32)-Fe(3	3) 69	.8(2)	C(41)-Si(4)-C(48) 1	L09.7(2)
C(31)-C(32)-Fe(3	3) 71	.3(2)	C(41)-Si(4)-C(46) 1	LU6.0(3)
C(34) - C(33) - C(32)	2) 108	.4(3)	C(48)-Si(4)-C(46) 1	LO9.0(3)
C(34)-C(33)-Fe(3	3) 70	.3(2)	C(41)-Si(4)-C(47) 1	L09.1(2)
D 1 1		D	7	T .	
Einleitung	Ligene	Experimenteller	Zusammentassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

C(48)-Si(4)-C(47)	112.4(3)
C(46) - Si(4) - C(47)	110.4(3)
C(45)-C(41)-C(42)	105.5(3)
C(45) - C(41) - Si(4)	127.4(3)
C(42) - C(41) - Si(4)	126.8(3)
C(45) - C(41) - Fe(4)	69.0(2)
C(42)-C(41)-Fe(4)	68.6(2)
Si(4)-C(41)-Fe(4)	131.8(2)
C(43)-C(42)-C(41)	109.1(4)
C(43)-C(42)-Fe(4)	70.1(2)
C(41)-C(42)-Fe(4)	71.4(2)
C(44) - C(43) - C(42)	107.9(4)
C(44) - C(43) - Fe(4)	70.2(2)
C(42) - C(43) - Fe(4)	69.8(2)
C(43) - C(44) - C(45)	107.9(4)
C(43) - C(44) - Fe(4)	70.4(3)
C(45) - C(44) - Fe(4)	70.3(2)
C(44)-C(45)-C(41)	109.6(3)
C(44) - C(45) - Fe(4)	69.9(2)
C(41)-C(45)-Fe(4)	71.3(2)

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Takella A 1.4 Anizathana Auglanhunganananatan $\begin{bmatrix} 3^2 \\ 2 \end{bmatrix}$ 10 ³	
Tabene A.1.4 Amsotrope Ausienkungsparameter [A x 10]	
Der Exponent des anisotropen Auslenkungsfaktors hat die Form:	$-2\pi^{2} [(ha^{*})^{2} U_{11} + + 2hka^{*}b^{*}U_{12}]$

Fe(1)				U 33	U ₂₃	U ₁₃
$ \begin{array}{c} P(11) \\ P(12) \\ P(12) \\ P(13) \\ P(14) \\ P(15) \\ Si(1) \\ C(15) \\ C(11) \\ C(12) \\ C(14) \\ C(15) \\ C(16) \\ C(17) \\ C(16) \\ C(17) \\ C(18) \\ P(22) \\ P(22) \\ P(22) \\ P(22) \\ P(22) \\ C(21) \\ C(22) \\ C(23) \\ P(31) \\ P(32) \\ P(31) \\ P(32) \\ P(31) \\ P(32) \\ P(31) \\ P(32) \\ P(33) \\ P(33) \\ P(34) \\ Si(3) \\ C(32) \\ C(32) \\ C(33) \\ C(32) \\ C(33) \\ C(32) \\ C(33) \\ C(32) \\ C(33) \\ P(41) \\ P(42) \\ P(42) \\ P(43) \\ P(45) \\ Si(4) $	$\begin{array}{c} 42(1)\\ 49(1)\\ 56(1)\\ 74(1)\\ 78(1)\\ 66(1)\\ 50(2)\\ 52(3)\\ 47(2)\\ 43(2)\\ 75(3)\\ 75(3)\\ 107(4)\\ 48(1)\\ 54(1)\\ 74(1)\\ 90(1)\\ 58(1)\\ 44(2)\\ 58(1)\\ 58(1)\\ 77(4)\\ 58(1)\\ 58(1)\\ 77(4)\\ 113(5)\\ 64(3)\\ 56(3)\\ 77(4)\\ 101(4)\\ 113(5)\\ 42(1)\\ 57(1)\\ 83(1)\\ 79(1)\\ 51(2)\\ 64(3)\\ 45(2)\\ 45(2)\\ 109(4)\\ 137(5)\\ 41(1)\\ 51(1)\\ 51(1)\\ 58(1)\\ 77(1)\\ 51(1)\\ 51(1)\\ 51(1)\\ 58(1)\\ 77(1)\\ 51(1)\\ 51(1)\\ 51(1)\\ 76(1)\\ 94(1)\\ 77(1)\\ 51($	$\begin{array}{c} 39(1) \\ 66(1) \\ 104(1) \\ 84(1) \\ 48(1) \\ 78(1) \\ 39(1) \\ 41(2) \\ 50(2) \\ 51(2) \\ 43(2) \\ 51(2) \\ 53(2) \\ 51(2) \\ 53(2) \\ 51(2) \\ 53(2) \\ 51(2) \\ 53(2) \\ 51(2) \\ 53(2) \\ 51(2) \\ 53(2) \\ 51(2) \\ 53(2) \\ 51(2) \\ 53(2) \\ 51(2) \\ 52(2) \\ 54(2) \\ 54(3) \\ 103(4) \\ 53(3) \\ 39(1) \\ 64(1) \\ 97(1) \\ 54(1) \\ 102(1) \\ 102(1) \\ 102(1) \\ 102(1) \\ 102(1) \\ 102(1) \\ 102(1) \\ 102(1) \\ 102(1) \\ 50(2) \\ 54(2) \\ 80(4) \\ 66(3) \\ 53(3) \\ 37(1) \\ 61(1) \\ 98(1) \\ 53(1) \\ 75(1) \\ 92(1) \\ 50(1) \end{array}$	$\begin{array}{c} 40(1)\\ 91(1)\\ 62(1)\\ 75(1)\\ 75(1)\\ 75(1)\\ 50(1)\\ 51(1)\\ 42(2)\\ 48(2)\\ 76(3)\\ 78(3)\\ 52(2)\\ 112(4)\\ 81(3)\\ 77(3)\\ 44(1)\\ 91(1)\\ 53(1)\\ 112(4)\\ 81(3)\\ 77(3)\\ 44(1)\\ 91(1)\\ 53(1)\\ 118(1)\\ 100(1)\\ 63(1)\\ 55(1)\\ 42(2)\\ 50(2)\\ 89(3)\\ 79(3)\\ 45(2)\\ 119(4)\\ 90(4)\\ 116(4)\\ 44(1)\\ 93(1)\\ 71(1)\\ 117(1)\\ 108(1)\\ 51(2)\\ 47(2)\\ 71(3)\\ 80(3)\\ 55(2)\\ 191(7)\\ 95(4)\\ 95(1)\\ 70(1)\\ 95(1)\\ 51(1)\\ 87(1)\\ \end{array}$	$\begin{array}{c} 6(1) \\ 7(1) \\ -8(1) \\ 34(1) \\ -1(1) \\ 9(1) \\ 11(1) \\ 6(1) \\ 13(2) \\ 25(2) \\ 5(2) \\ 5(2) \\ 6(2) \\ 7(2) \\ 2(2) \\ 45(3) \\ 10(1) \\ 16(1) \\ 5(1) \\ 10(1) \\ 16(1) \\ 5(1) \\ 10(1) \\ 70(1) \\ -7(1) \\ 13(1) \\ 6(1) \\ 3(2) \\ 6(2) \\ 29(2) \\ 14(2) \\ 23(3) \\ 57(3) \\ 4(3) \\ 11(1) \\ 12(1) \\ 12(1) \\ 5(1) \\ 13(2) \\ 11(2) \\$	$\begin{array}{c} & 2(1) \\ & -6(1) \\ & 16(1) \\ & 0(1) \\ & -9(1) \\ & -9(1) \\ & -9(1) \\ & -9(1) \\ & 13(1) \\ & 2(1) \\ & -7(2) \\ & -11(2) \\ & 3(2) \\ & 8(2) \\ & 14(3) \\ & 18(2) \\ & 14(3) \\ & 0(1) \\ & -3(1) \\ & -9(1) \\ & -3(1) \\ & -9(1) \\ & -3(1) \\ & -9(1) \\ & -3(1) \\ & -9(1) \\ & -3(1) \\ & -9(1) \\ & -3(1) \\ & -9(1) \\ & -3(1) \\ & -9(1) \\ & -3(1) \\ & -15(1) \\ & -17(1) \\ & -15(1) \\ & -17(1) \\ & -15(1) \\ & -17(1) \\ & -15(1) \\ & -17(1) \\ & -13(1) \\ & 2(2) \\ & -3(2) \\ & 8(2) \\ & 23(4) \\ & 44(3) \\ & 22(4) \\ & 5(1) \\ & 13(1) \\ & -16(1) \\ & 9(1) \\ & 26(1) \\ & 24(1) \\ & 4(1) \end{array}$	$\begin{array}{c} U_{13} \\ & 1(1) \\ 16(1) \\ -2(1) \\ -23(1) \\ -9(1) \\ 4(1) \\ 5(1) \\ 1(1) \\ -4(2) \\ 2(2) \\ 9(2) \\ 6(2) \\ -11(2) \\ 13(2) \\ 26(3) \\ 2(1) \\ 13(1) \\ 5(1) \\ -11(1) \\ -24(1) \\ 3(1) \\ 5(1) \\ -11(1) \\ -24(1) \\ 3(1) \\ 5(1) \\ -11(2) \\ -6(2) \\ -5(3) \\ 19(3) \\ 5(1) \\ -4(1) \\ 23(1) \\ 27(1) \\ 6(1) \\ 8(1) \\ 12(2) \\ 3(2) \\ 2(2) \\ 10(2) \\ 31(3) \\ 14(3) \\ 6(3) \\ 2(1) \\ 16(1) \\ -5(1) \\ -17(1) \\ 8(1) \\ 12(1) \\ -9(1) \end{array}$

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

 \mathcal{P}

<u>Anhang A.2</u>: Strukturdaten von $[Cp^{-}Fe(\eta^{5}-P_{5})]$ (4a).

Tabelle A.2.1 Kristalldaten und Strukturverfeinerung

Summenformel	C ₁₂ H ₂₁ FeP ₅ Si	C3C4 C2 C5C1 Si
Molmasse	404.08	
Temperatur	293(2) K	\smile
Strahlung	ΜοΚα	(Fe)
Wellenlänge	0.71073 Å	\checkmark
Scanmodus	Phi-Oszillation	\sim
Kristallsystem	Triklin	(P3-(P4)-(P5)-P1)
Raumgruppe	PĪ	
Zelldimensionen	a = 6.6507(7) Å	$\alpha = 103.537(11)^{\circ}$
	b = 10.0594(9) Å	$\beta = 91.727(12)^{\circ}$
	c = 14.8713(15) Å	$\gamma = 104.890(11)^{\circ}$
Zellvolumen	930.47(16) Å ³	•
Formeleinheiten pro Zelle Z	2	
Berechnete Dichte	1.442 Mg/m^3	
Absorptionskoeffizient	1.290 mm^{-1}	
Kristallgröße	0.32 x 0.28 x 0.16 mm	
Gemessener θ-Bereich	2.87 bis 25.68°	
Anzahl der gemessenen Reflexe	13025	
Unabhängige Reflexe	3294 (Rint = 0.0505)	
Absorptionskorrektur	semiempirisch (MULABS, PLA	TON 98)
Max. und min. Transmission	0.70098 und 0.65538	
Diffraktometer	Stoe IPDS	
Strukturlösung	Direkte Methoden	
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)	2
Strukturverfeinerung	Vollmatrix Least-Squares gegen	F^2
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)	
Daten / Restraints / Parameter	3294 / 0 / 178	
Endgültige R-Werte $[I > 2\sigma(I)]$	R1 = 0.0492, wR2 = 0.1338	
R-Werte (alle Daten)	R1 = 0.0616, $wR2 = 0.1408$	
Wichtungsschema	$w=1/[\sigma^{2}(Fo^{2})+(0.0879P)^{2}+0.771]$	5P] mit P=(Fo ² +2Fc ²)/3
GooF (alle Daten)	1.006	
Größtes Maximum und Minimum	0.757 und -0.539 eA ⁻⁵	

Verfeinerung nach F^2 mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F^2 . Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F^2 gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F^2 bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Tabelle A.2.2
Atomkoordinaten [x 10^4] und äquivalente isotrope Auslenkungsparameter [Å ² x 10^3]
U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	x	У	Z	U(eq)
Fe(1)	6675(1)	2612(1)	2075(1)	36(1)
Si(1)	7792(2)	6355(2)	2157(1)	54(1)
P(1)	5206(3)	2736(2)	637(1)	95(1)
P(2)	3111(2)	1859(2)	1522(1)	101(1)
P(3)	4312(3)	345(2)	1952(1)	83(1)
P(4)	7133(2)	349(1)	1381(1)	67(1)
P(5)	7690(2)	1795(2)	574(1)	72(1)
C(1)	7888(6)	4827(4)	2605(3)	42(1)
C(2)	6522(6)	4231(4)	3224(3)	40(1)
C(3)	7285(6)	3217(4)	3543(2)	39(1)
C(4)	9144(6)	3143(4)	3103(3)	43(1)
C(5)	9503(6)	4123(4)	2541(3)	44(1)
C(11)	9267(11)	7913(7)	3032(5)	89(2)
C(12)	9015(10)	6285(7)	1085(4)	79(2)
C(13)	5091(9)	6388(7)	2003(5)	79(2)
C(20)	6459(4)	2484(3)	4351(2)	19(1)
C(21)	7152(10)	1097(6)	4286(4)	75(2)
C(22)	7636(10)	3639(6)	5289(3)	73(2)
C(23)	4054(9)	2230(7)	4378(4)	73(2)

Tabelle A.2.3 Bindungslängen [Å] und -winkel [°]

Fe(1)-C(5) Fe(1)-C(4) Fe(1)-C(2) Fe(1)-C(1) Fe(1)-P(2) Fe(1)-P(1) Fe(1)-P(4) Fe(1)-P(5) Fe(1)-P(3) Si(1)-C(1) Si(1)-C(12) Si(1)-C(11) Si(1)-C(13) $Fe(1)-P(1) Fe(1)-P(1) Fe(1)-P(2) Fe(1)-P(3) Fe(1)-P(3) $	2.070(4) 2.082(4) 2.092(4) 2.110(4) 2.122(4) 2.3527(14) 2.3675(15) 2.3697(13) 2.3728(13) 2.3766(16) 1.826(4) 1.807(5) 1.813(7) 1.814(5)		P(1)-P(5) P(1)-P(2) P(2)-P(3) P(3)-P(4) P(4)-P(5) C(1)-C(5) C(1)-C(2) C(2)-C(3) C(3)-C(4) C(3)-C(20) C(4)-C(5) C(20)-C(23) C(20)-C(21) C(20)-C(22) $P(2)-P(2) P(2)-P(2) P(2)-P(2) P(2)-P(2) P(2)-P(2) P(2)-P(2) P(2)-P(2) P(2)-P(2) P(2)-P(2) P(2)-P(2) P(2)-P(3) P(3)-P(4) P(4)-P(5) C(1)-C(5) C(2)-C(2) P(2)-P(2) P(2)-P(3) P(3)-P(4) P(4)-P(5) C(1)-C(5) C(1)-C(5) C(2)-C(3) C(2)-C(3) C(3)-C(2) C(2)-C(2) C(2)-C(2$	2.099(3) 2.115(3) 2.02(3) 2.082(2) 2.064(2) 1.425(6) 1.436(5) 1.415(6) 1.426(5) 1.592(5) 1.416(6) 1.557(6) 1.562(6) 1.617(6)	
$\begin{array}{c} C(5)-Fe(1)-C(4)\\ C(5)-Fe(1)-C(2)\\ C(4)-Fe(1)-C(2)\\ C(5)-Fe(1)-C(1)\\ C(2)-Fe(1)-C(1)\\ C(2)-Fe(1)-C(3)\\ C(4)-Fe(1)-C(3)\\ C(2)-Fe(1)-C(3)\\ C(2)-Fe(1)-C(3)\\ C(1)-Fe(1)-P(2)\\ C(4)-Fe(1)-P(2)\\ C(2)-Fe(1)-P(2)\\ C(2)-Fe(1)-P(2)\\ C(1)-Fe(1)-P(2)\\ C(3)-Fe(1)-P(2)\\ \end{array}$	39 66 69 39 67 39 66 39 67 153 153 153 98 114 114	2.87(17) 5.10(15) 5.06(15) 5.83(16) 5.27(16) 5.96(15) 5.64(15) 5.64(15) 5.23(15) 5.23(16) 5.91(14) 5.50(13) 5.04(11) 5.87(12) 5.85(11)	$\begin{array}{c} C(5)-Fe(1)-P(1)\\ C(4)-Fe(1)-P(1)\\ C(2)-Fe(1)-P(1)\\ C(1)-Fe(1)-P(1)\\ C(3)-Fe(1)-P(1)\\ P(2)-Fe(1)-P(1)\\ C(5)-Fe(1)-P(4)\\ C(4)-Fe(1)-P(4)\\ C(2)-Fe(1)-P(4)\\ C(3)-Fe(1)-P(4)\\ P(2)-Fe(1)-P(4)\\ P(2)-Fe(1)-P(4)\\ P(1)-Fe(1)-P(4)\\ C(5)-Fe(1)-P(5)\\ C(4)-Fe(1)-P(5)\\ \end{array}$		$\begin{array}{c} 113.15(14)\\ 152.02(14)\\ 115.47(12)\\ 95.68(12)\\ 154.11(12)\\ 53.24(8)\\ 111.93(12)\\ 94.59(11)\\ 152.67(12)\\ 150.83(11)\\ 113.73(12)\\ 91.70(6)\\ 90.79(6)\\ 94.12(11)\\ 111.85(11)\end{array}$
Einleitung Problemstellung	Eigene Ergebnisse	Experimenteller Teil	Zusammenfassung	Literatur	Anhang

C(2)-Fe(1)-P(5)	152.11(12)
C(3) - Fe(1) - P(5)	112.39(12) 150.92(11)
P(2)-Fe(1)-P(5)	92.15(6)
P(1)-Fe(1)-P(5)	52.56(7)
P(4) - Fe(1) - P(5)	51.61(6)
C(3) - Fe(1) - P(3) C(4) - Fe(1) - P(3)	152.23(14) 113 58(13)
C(2) - Fe(1) - P(3)	116.33(12)
C(1)-Fe(1)-P(3)	155.46(11)
C(3) - Fe(1) - P(3)	97.33(12)
P(2) - Fe(1) - P(3) P(1) - Fe(1) - P(3)	52.77(8) 91 26(7)
P(4) - Fe(1) - P(3)	52.05(6)
P(5)-Fe(1)-P(3)	90.46(6)
C(1)-Si(1)-C(12)	110.5(2)
C(12) - Si(1) - C(11)	100.1(2) 109.2(3)
C(1)-Si(1)-C(13)	109.0(2)
C(12)-Si(1)-C(13)	111.6(3)
C(11)-Si(1)-C(13)	110.3(3)
P(5) - P(1) - P(2) P(5) - P(1) - Fe(1)	107.73(10)
P(2) - P(1) - Fe(1)	63.02(7)
P(3)-P(2)-P(1)	107.07(9)
P(3)-P(2)-Fe(1)	64.20(6)
P(1) - P(2) - Fe(1) P(4) - P(3) - P(2)	63.74(6) 108 16(10)
P(4) - P(3) - Fe(1)	63.81(5)
P(2)-P(3)-Fe(1)	63.03(7)
P(5) - P(4) - P(3)	108.80(9)
P(3) - P(4) - Fe(1)	64.15(6)
P(4) - P(5) - P(1)	108.20(9)
P(4) - P(5) - Fe(1)	64.12(5)
P(1) - P(5) - Fe(1)	63.59(6)
C(5) - C(1) - Si(1)	127.5(3)
C(2) - C(1) - Si(1)	126.7(3)
C(5)-C(1)-Fe(1)	68.6(2)
C(2) - C(1) - Fe(1) Si(1) - C(1) - Fe(1)	69.3(2) 133 4(2)
C(3)-C(2)-C(1)	110.5(3)
C(3)-C(2)-Fe(1)	71.5(2)
C(1)-C(2)-Fe(1)	70.7(2)
C(2) - C(3) - C(4) C(2) - C(3) - C(20)	127.0(3)
C(4) - C(3) - C(20)	126.0(3)
C(2)-C(3)-Fe(1)	69.3(2)
C(4)-C(3)-Fe(1)	68.7(2)
C(3)-C(4)-C(5)	108.3(3)
C(3)-C(4)-Fe(1)	71.7(2)
C(5)-C(4)-Fe(1)	69.6(2)
C(1) - C(5) - C(4) C(1) - C(5) - Fo(1)	109.7(3)
C(4) - C(5) - Fe(1)	70.5(2)
C(23)-C(20)-C(21)	112.4(4)
C(23)-C(20)-C(3)	111.6(3)
C(21) - C(20) - C(3) C(23) - C(20) - C(22)	109.1(3)
C(21)-C(20)-C(22)	108.2(4)
C(3)-C(20)-C(22)	103.7(3)

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Tabelle A.2.4	Anisotrope Au	slenkungsparameter [Å ² x 10 ³]	
Der Exponent	des anisotropen	Auslenkungsfaktors hat die Form:	$-2\pi^{2} [(ha^{*})^{2} U_{11} + + 2hka^{*}b^{*}U_{12}]$

	U_{12}	U_{11}	U ₂₂	U ₃₃	U ₂₃	U ₁₃
	21/1)	22/1)	41 (1)	2(1)	4 / 1 \	0(1)
Fe(I)	31(1)	33(1)	41(1)	$Z(\perp)$	4(1) 16(1)	8(1)
Si(1)	61(1)	51(1)	61(1)	29(I)	16(1)	19(1)
P(1)	133(2)	72(1)	74(1)	9(1)	-45(1)	31(1)
P(2)	39(1)	113(1)	116(1)	-39(1)	-16(1)	26(1)
P(3)	83(1)	60(1)	73(1)	-1(1)	19(1)	-25(1)
P(4)	76(1)	43(1)	75(1)	-6(1)	-4(1)	23(1)
P(5)	74(1)	77(1)	47(1)	0(1)	17(1)	1(1)
C(1)	45(2)	32(2)	45(2)	5(2)	8(2)	5(2)
C(2)	41(2)	32(2)	45(2)	4(2)	12(2)	12(2)
C(3)	41(2)	34(2)	39(2)	4(2)	6(2)	10(2)
C(4)	35(2)	39(2)	51(2)	3(2)	-4(2)	11(2)
C(5)	32(2)	43(2)	49(2)	1(2)	6(2)	4(2)
C(11)	107(5)	66(4)	104(5)	40(3)	12(4)	27(4)
C(12)	95(4)	90(5)	72(3)	47(3)	26(3)	34(4)
C(13)	71(3)	71(4)	114(5)	53(3)	18(3)	27(3)
C(20)	30(1)	16(2)	18(1)	13(1)	10(1)	9(1)
C(21)	93(4)	62(4)	84(4)	45(3)	24(3)	23(3)
C(22)	99(4)	65(4)	55(3)	25(2)	12(3)	15(3)
C(23)	86(4)	79(4)	72(3)	41(3)	35(3)	30(3)

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

<u>Anhang A.3</u>: Strukturdaten von $[Cp^{=}Fe(\eta^{5}-P_{5})]$ (4d).

Tabelle A.3.1 Kristalldaten und Strukturverfeinerung

			Si
Summenformel	C ₁₁ H ₂₁ FeP ₅ Si ₂	C1C5 C4C3	$\overline{\mathbf{O}}$
Molmasse	420.16	00	$\bigcirc \bigcirc$
Temperatur	293(2) K	Ē	
Strahlung	ΜοΚα		
Wellenlänge	0.71073 Å		
Scanmodus	Phi-Oszillation	(P1(P5)-(P2)(P4)(P3)	
Kristallsystem	Triklin		
Raumgruppe	ΡT		
Zelldimensionen	a = 6.7162(5) Å	$\alpha = 104.359(10)^{\circ}$	
	b = 10.2645(8) Å	$\beta = 91.675(10)^{\circ}$	
	c = 15.4115(13) Å	$\gamma = 105.825(9)^{\circ}$	
Zellvolumen	984.88(13) $Å^3$	•	
Formeleinheiten pro Zelle Z	2		
Berechnete Dichte	1.417 Mg/m^3		
Absorptionskoeffizient	1.279 mm^{-1}		
Kristallgröße	0.68 x 0.29 x 0.16 mm		
Gemessener θ-Bereich	2.14 bis 25.96°		
Anzahl der gemessenen Reflexe	14024		
Unabhängige Reflexe	3566 (Rint = 0.0525)		
Absorptionskorrektur	Numerisch		
Max. und min. Transmission	0.860 und 0.547		
Diffraktometer	Stoe IPDS		
Strukturlösung	Direkte Methoden		
Strukturlösungsprogramm	SIR92 (Giacovazzo et al.,	1993)	
Strukturverfeinerung	Vollmatrix Least-Squares	gegen F ²	
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1	997)	
Daten / Restraints / Parameter	3566 / 10 / 200		
Endgültige R-Werte $[I \ge 2\sigma(I)]$	R1 = 0.0364, wR2 = 0.097	9	
R-Werte (alle Daten)	R1 = 0.0408, wR2 = 0.100	98	
Extinktionskoeffizient	0.036(4)		
Wichtungsschema	$w=1/[\sigma^{2}(Fo^{2})+(0.0650P)^{2}-$	-0.2400P] mit P=(Fo ² +2Fc ²)/3	
GooF (alle Daten)	1.042		
Größtes Maximum und Minimum	0.319 und -0.494 eÅ ⁻³		

Verfeinerung nach F^2 mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F^2 . Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F^2 gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung werden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F^2 bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Tabelle A.3.2
Atomkoordinaten [x 10^4] und äquivalente isotrope Auslenkungsparameter [Å ² x 10^3]
U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	x	У	Z	U(eq)
Fe P(1) P(2) P(3) P(4) P(5) P(6) P(7)	1626(1) 2587(2) 178(2) -1936(2) -777(2) 1981(2) 1670(2) -1040(3)	2662(1) 1787(1) 2734(1) 1912(2) 439(1) 396(1) 2242(15) 2580(2)	7011(1) 5559(1) 5612(1) 6482(1) 6915(1) 6355(1) 5443(9) 6011(15)	38(1) 72(1) 93(1) 103(1) 85(1) 71(1) 34(4) 65(6)
P(8) P(9) P(10) Si(1) Si(2) C(1) C(2) C(3) C(4) C(5) C(11) C(12) C(12) C(13) C(21) C(22) C(23)	-1590(3) 630(3) 2630(3) 2830(1) 1240(1) 2903(4) 1537(4) 2267(4) 4091(4) 4479(4) 4465(7) 4018(7) 101(6) -1600(6) 2597(8) 1931(7)	$1079(19) \\ 157(19) \\ 900(2) \\ 6391(1) \\ 2401(1) \\ 4860(2) \\ 4282(2) \\ 3276(2) \\ 3209(2) \\ 4166(2) \\ 7971(3) \\ 6289(5) \\ 6461(4) \\ 2146(4) \\ 3627(4) \\ 729(4) \\ \end{array}$	6853(11) 6635(12) 5901(15) 7068(1) 9320(1) 7520(2) 8116(1) 8422(1) 7994(2) 7451(2) 7932(3) 5990(2) 6952(3) 9326(3) 10405(2) 9164(3)	$\begin{array}{c} 45(5) \\ 55(5) \\ 72(7) \\ 51(1) \\ 49(1) \\ 41(1) \\ 41(1) \\ 41(1) \\ 42(1) \\ 82(1) \\ 82(1) \\ 85(1) \\ 82(1) \\ 78(1) \\ 90(1) \\ 83(1) \end{array}$

Tabelle 3. Bindungslängen [Å] und -winkel [°]

Fe-C(4) Fe-C(5) Fe-C(2) Fe-C(3) Fe-C(1) Fe-P(8) Fe-P(7) Fe-P(3) Fe-P(2) Fe-P(2) Fe-P(2) Fe-P(1) Fe-P(1) Fe-P(4) P(1)-P(5) P(3)-P(4) P(4)-P(5) P(6)-P(10)	2.067(2) 2.075(2) 2.079(2) 2.104(2) 2.114(2) 2.287(17) 2.30(2) 2.3563(10) 2.3667(9) 2.3746(9) 2.3746(9) 2.3752(9) 2.0708(15) 2.0973(18) 2.133(2) 2.109(2) 2.0730(16) 1.942(17)		$\begin{array}{c} P(6)-P(7) \\ P(7)-P(8) \\ P(8)-P(9) \\ P(9)-P(10) \\ Si(1)-C(12) \\ Si(1)-C(11) \\ Si(1)-C(1) \\ Si(2)-C(21) \\ Si(2)-C(21) \\ Si(2)-C(22) \\ Si(2)-C(23) \\ Si(2)-C(3) \\ C(1)-C(5) \\ C(1)-C(5) \\ C(1)-C(2) \\ C(2)-C(3) \\ C(3)-C(4) \\ C(4)-C(5) \end{array}$	$\begin{array}{c} 2.118(18)\\ 2.215(17)\\ 1.971(17)\\ 1.901(18)\\ 1.857(3)\\ 1.866(4)\\ 1.859(4)\\ 1.881(2)\\ 1.854(4)\\ 1.859(3)\\ 1.858(4)\\ 1.879(2)\\ 1.421(3)\\ 1.425(3)\\ 1.426(3)\\ 1.418(4)\\ 1.419(3) \end{array}$	
C(4)-Fe-C(5) C(4)-Fe-C(2) C(5)-Fe-C(2) C(4)-Fe-C(3) C(5)-Fe-C(3) C(2)-Fe-C(3) C(4)-Fe-C(1) C(5)-Fe-C(1) C(2)-Fe-C(1) C(3)-Fe-C(1)	40 60 31 67 32 67 32 67 32 40 67	0.06(9) 5.27(10) 5.26(10) 9.74(10) 7.20(9) 9.86(9) 7.21(9) 9.64(9) 0.02(9) 7.79(8)	C(4)-Fe-P(8) C(5)-Fe-P(8) C(2)-Fe-P(8) C(3)-Fe-P(8) C(1)-Fe-P(8) C(4)-Fe-P(7) C(5)-Fe-P(7) C(2)-Fe-P(7) C(3)-Fe-P(7) C(1)-Fe-P(7)		130.1(4) 167.6(4) 103.9(4) 100.4(4) 136.3(4) 167.2(5) 130.3(5) 103.1(5) 135.3(5) 100.1(5)
Einleitung Problemstellung	Eigene Ergebnisse	Experimenteller Teil	Zusammenfassung	Literatur	Anhang

C(4) -Fe-P(3) $C(5) -Fe-P(3)$ $C(2) -Fe-P(3)$ $C(1) -Fe-P(3)$ $P(3) -Fe-P(3)$ $C(4) -Fe-P(2)$ $C(5) -Fe-P(2)$ $C(5) -Fe-P(2)$ $C(3) -Fe-P(2)$ $C(3) -Fe-P(2)$ $P(7) -Fe-P(2)$ $P(7) -Fe-P(2)$ $P(3) -Fe-P(2)$ $P(3) -Fe-P(5)$ $C(2) -Fe-P(5)$ $C(3) -Fe-P(5)$ $P(3) -Fe-P(5)$ $P(3) -Fe-P(5)$ $P(3) -Fe-P(5)$ $P(3) -Fe-P(5)$ $P(3) -Fe-P(1)$ $C(5) -Fe-P(1)$ $C(2) -Fe-P(1)$ $C(3) -Fe-P(1)$ $P(3) -Fe-P(4)$ $P(5) -Fe-P(4)$ $P(5) -Fe-P(4)$ $P(1) -Fe-P(4)$ $P(5) -Fe-P(4)$ $P(1) -Fe-P(4)$ $P(1) -Fe-P(4)$ $P(1) -Fe-P(4)$ $P(1) -Fe-P(4)$ $P(1) -Fe-P(4)$ $P(3) -Fe-P(4)$ $P(1) -F(2) -Fe$ $P(4) -P(3) -Fe$ $P(1) -P(2) -Fe$ $P(4) -P(3) -Fe$ $P(3) -P(4) -Fe$ $P(3) -P(4)$	153 153 153 97 114 114 114 114 114 112 115 152 95 78 25 53 94 112 151 152 151 152 151 72 98 91 90 111 94 152 151 72 98 91 90 111 94 152 153 92 113 152 113 152 113 152 113 152 113 152 113 152 113 152	.67(8) .67(8) .65(8) .90(8) .82(8) .82(8) .0(4) .5(5) .50(8) .60(8) .84(7) .11(7) .84(7) .1(4) .7(5) .69(6) .42(7) .35(7) .14(7) .62(7) .24(8) .5(4) .0(5) .55(4) .85(4) .39(8) .06(7) .63(7) .29(8) .83(7) .7(4) .4(5) .34(4) .51(5) .70(4) .34(8) .28(8) .82(7) .35(7) .10(7) .2(4) .2(5) .94(5) .79(5) .75(4) .57(P(8)-P(9)-Fe P(9)-P(10)-Fe P(6)-P(10)-Fe C(12)-Si(1)-C(C(12)-Si(1)-C(C(11)-Si(1)-C(C(11)-Si(1)-C(C(11)-Si(2)-C(C(21)-Si(2)-C(C(21)-Si(2)-C(C(21)-Si(2)-C(C(22)-Si(2)-C(C(22)-Si(2)-C(C(2)-C(1)-Fe C(2)-C(1)-Fe C(2)-C(1)-Fe C(3)-C(2)-Fe C(1)-C(2)-Fe C(1)-C(2)-Fe C(4)-C(3)-Fe C(2)-C(3)-Fe Si(2)-C(3)-Fe Si(2)-C(3)-Fe C(3)-C(4)-C(5) C(3)-C(4)-Fe C(1)-C(5)-Fe C(4)-C(5)-Fe	11) 1 13) 1 1) 1 1) 23) 22) 22) 3) 3) .) .) .)	62.5(7) 107.9(10) 65.7(8) 64.1(7) 108.5(2) 112.10(19) 11.03(15) 104.95(14) 109.36(13) 12.56(19) 109.2(2) 108.6(2) 10.48(13) 109.95(14) 105.82(15) 105.3(2) 127.34(18) 126.83(18) 68.69(13) 68.68(12) 133.20(12) 10.6(2) 71.04(12) 71.31(12) 105.65(19) 126.80(17) 127.11(18) 68.72(12) 69.11(12) 132.33(12) 109.2(2) 71.54(13) 70.25(13) 109.2(2) 71.67(13) 69.69(14)
---	--	--	--	--	--

	U ₁₂	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃
Fe	36(1)	37(1)	37(1)	7(1)	4(1)	9(1)
P(1)	73(1)	77(1)	46(1)	1(1)	16(1)	2(1)
P(2)	132(1)	76(1)	64(1)	11(1)	-43(1)	29(1)
P(3)	42(1)	123(1)	110(1)	-35(1)	-15(1)	28(1)
P(4)	86(1)	64(1)	71(1)	6(1)	18(1)	-24(1)
P(5)	82(1)	45(1)	76(1)	-1(1)	-2(1)	22(1)
Si(1)	57(1)	47(1)	60(1)	28(1)	18(1)	18(1)
Si(2)	58(1)	52(1)	47(1)	24(1)	13(1)	22(1)
C(1)	44(1)	38(1)	42(1)	11(1)	6(1)	10(1)
C(2)	47(1)	40(1)	39(1)	12(1)	11(1)	16(1)
C(3)	47(1)	38(1)	37(1)	10(1)	4(1)	11(1)
C(4)	41(1)	43(1)	44(1)	10(1)	-2(1)	12(1)
C(5)	35(1)	42(1)	44(1)	9(1)	4(1)	6(1)
C(11)	98(3)	47(2)	97(2)	21(2)	11(2)	13(2)
C(12)	95(3)	105(3)	78(2)	54(2)	41(2)	38(2)
C(13)	72(2)	82(2)	120(3)	57(2)	26(2)	39(2)
C(21)	72(2)	101(3)	83(2)	50(2)	32(2)	37(2)
C(22)	120(3)	99(3)	46(2)	22(2)	1(2)	19(2)
C(23)	99(3)	73(2)	107(3)	54(2)	38(2)	44(2)

Tabelle A.3.4 Anisotrope Auslenkungsparameter $[Å^2 \times 10^3]$ Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2 [(ha^*)^2 U_{11} + ... + 2hka^*b^* U_{12}]$

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

<u>Anhang A.4</u>: Strukturdaten von $[{Cp^{=}Co}_{3}(\mu_{3}-P)_{2}]$ (6d).

Tabelle A.4.1 : Kristalldaten und Strukturverfeinerung.

			ĺ
Summenformel	$C_{33}H_{63}C_{03}P_2Si_6$		S
Molmasse	867.10		7P
Temperatur	293(2) K	(P2)	Oŧ
Strahlung	ΜοΚα	Si32	
Wellenlänge	0.71073 Å		
Scanmodus	Phi-Oszillation		
Kristallsystem	Monoklin		ď
Raumgruppe	Cc		
Zelldimensionen	a = 25.3975(18) Å	$\alpha = 90^{\circ}$	
	b = 11.7755(6) Å	$\beta = 119792(7)^{\circ}$	
	$c = 18\ 0047(13)$ Å	$\gamma = 90^{\circ}$	
Zellvolumen	$4673 0(5) Å^3$		
Formeleinheiten pro Zelle Z	4		
Berechnete Dichte	1.233 Mg/m^3		
Absorptionskoeffizient	1.295 mm^{-1}		
Kristallgröße	$0.60 \ge 0.40 \ge 0.20 \text{ mm}$		
Gemessener θ -Bereich	2 96 bis 25 68°		
Anzahl der gemessenen Reflexe	31963		
Unabhängige Reflexe	8825 (Rint = 0.0446)		
Absorptionskorrektur	Numerisch (ABST/PLATON 98	3)	
Max. und min. Transmission	0.79044 und 0.59923		
Diffraktometer	Stoe IPDS		
Strukturlösung	Direkte Methoden		
Strukturlösungsprogramm	SIR92 (Giacovazzo et al., 1993)		
Strukturverfeinerung	Vollmatrix Least-Squares gegen	$1 F^2$	
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)		
Daten / Restraints / Parameter	8825 / 2 / 416		
Endgültige R-Werte $[I > 2\sigma(I)]$	R1 = 0.0208, $wR2 = 0.0472$		
R-Werte (alle Daten)	R1 = 0.0238, wR2 = 0.0479		
Absolutstrukturparameter	0.199(6)		
Wichtungsschema	$w=1/[\sigma^{2}(Fo^{2})+(0.0270P)^{2}+0.000)$	00P] mit P=(Fo ² +2Fc ²)/3	
GooF (alle Daten)	0.964		
Größtes Maximum und Minimum	0.206 und -0.248 eÅ ⁻³		

Für die Verfeinerung wurde ein Inversionszwilling (0.2/0.8) angenommen. Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) bzw. der 1.2-fache Wert (Cp-H) des äquivalenten isotropen Temperaturfaktors desjenigen C-Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist. Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

	х	У	Z	U(eq)
Co(1) Co(2) Co(3) P(1) P(2) Si(11) Si(12) Si(21) Si(22) Si(31) Si(32) C(11) C(12) C(13) C(14) C(15) C(21) C(22) C(23) C(24) C(22) C(23) C(24) C(25) C(31) C(32) C(33) C(34) C(35) C(111) C(112) C(113) C(111) C(112) C(113) C(111) C(112) C(111) C(112) C(111) C(112) C(111) C(112) C(111) C(112) C(111) C(112) C(111) C(112) C(111) C(112) C(111) C(112) C(111) C(112) C(111) C(112) C(111) C(122) C(111) C(122) C(111) C(122) C(121) C(121) C(121) C(121) C(121) C(121) C(121) C(221) C(211) C(121) C(121) C(222) C(221) C(222) C(222) C(221) C(222) C(22) C(222)	$ x \\ 1147(1) \\ 830(1) \\ 1226(1) \\ 1743(1) \\ 394(1) \\ 2356(1) \\ -109(1) \\ 1775(1) \\ -713(1) \\ 2786(1) \\ 286(1) \\ 701(1) \\ 1092(1) \\ 1697(1) \\ 1697(1) \\ 1696(1) \\ 1078(1) \\ 1055(1) \\ 835(1) \\ 237(1) \\ 60(1) \\ 573(1) \\ 940(1) \\ 985(1) \\ 1592(1) \\ 1592(1) \\ 1592(1) \\ 1592(1) \\ 1592(1) \\ 1592(1) \\ 1592(1) \\ 1592(1) \\ 1594(1) \\ 1534(1) \\ 2120(2) \\ 3030(1) \\ 2552(2) \\ -482(2) \\ -523(2) \\ -97(2) \\ 1609(2) \\ 2333(1) \\ 2065(1) \\ -1103(2) \\ -643(2) \\ \end{tabular} $	Y 9717(1) 8274(1) 7635(1) 8524(1) 8529(1) 11570(1) 1678(1) 7051(1) 7051(1) 7052(1) 6923(1) 6912(1) 11225(2) 10799(2) 10776(2) 1188(2) 1438(2) 7638(2) 8776(2) 8817(2) 7705(2) 7006(2) 6735(2) 6006(2) 6742(2) 7192(2) 11453(4) 10659(4) 13067(3) 11582(4) 10819(4) 13171(3) 6441(3) 8232(3) 5905(3) 6847(5) 5912(4)	z $3721(1)$ $4447(1)$ $3486(1)$ $4683(1)$ $3086(1)$ $5288(1)$ $2416(1)$ $6563(1)$ $3693(1)$ $4044(1)$ $1224(1)$ $3068(1)$ $2781(1)$ $3482(1)$ $4225(1)$ $3958(2)$ $5668(1)$ $5554(1)$ $4854(1)$ $4505(1)$ $5004(1)$ $2326(1)$ $2989(1)$ $3675(1)$ $3467(1)$ $2642(1)$ $6112(2)$ $5583(2)$ $5188(3)$ $3070(3)$ $1429(2)$ $2103(4)$ $7377(2)$ $7047(2)$ $6153(2)$ $4302(2)$ $3168(2)$	U(eq) 36(1) 34(1) 36(1) 38(1) 38(1) 61(1) 61(1) 50(1) 64(1) 67(1) 63(1) 48(1) 48(1) 47(1) 48(1) 47(1) 48(1) 47(1) 48(1) 48(1) 48(1) 49(1) 50(1) 48(1) 49(1) 50
C(212) C(213) C(221) C(222) C(223) C(223) C(311) C(312) C(313) C(321)	2333(1) 2065(1) -1103(2) -643(2) -1130(1) 3115(2) 3094(2) 2971(2) -426(2)	8232(3) 5905(3) 6847(5) 5912(4) 8345(3) 6634(4) 5868(5) 8377(3) 6458(4)	7047(2) 6153(2) 4302(2) 3168(2) 2894(2) 5204(2) 3583(4) 3863(2) 1188(2)	72(1) 73(1) 123(2) 114(1) 93(1) 99(1) 151(2) 95(1) 111(1)
C(322) C(323)	438(2) 234(2)	5991(4) 8394(3)	518(2) 863(2)	147(2) 98(1)

U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

Tabelle A.4.3 Bindungslängen [Å] und -winkel [°].

$\begin{array}{c} Co(1)-C(12)\\ Co(1)-C(13)\\ Co(1)-C(15)\\ Co(1)-C(11)\\ Co(1)-C(14)\\ Co(1)-P(2) \end{array}$	2.066(2) 2.070(2) 2.096(2) 2.120(2) 2.124(2) 2.1569(6)		Co(1)-P(1) Co(1)-Co(2) Co(1)-Co(3) Co(2)-C(22) Co(2)-C(23) Co(2)-C(25)	2.1590(6) 2.5082(3) 2.5130(4) 2.0726(19) 2.076(2) 2.076(2)	
Einleitung Problemstellung	Eigene Ergebnisse	Experimenteller Teil	Zusammenfassung	Literatur	Anhang

C(31)-Si(32)-C(C(323)-Si(32)-C C(323)-Si(32)-C C(323)-Si(32)-C C(323)-Si(32)-C C(321)-Si(32)-C C(12)-C(11)-C C(12)-C(11)-C C(12)-C(11)-C Si(12)-C(11)-C
C(11)-C(12)-C(12) Einleitung

Tabelle A.4.4	Anisotrope Auslenkungsparameter [Å ² x 10 ³]	
Der Exponent	des anisotropen Auslenkungsfaktors hat die Form:	$-2\pi^{2} [(ha^{*})^{2} U_{11} + + 2hka^{*}b^{*}U_{12}]$

	U ₁₂	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃
Co(1) Co(2) Co(3) P(1) P(2) Si(11) Si(12) Si(21) Si(22) Si(31) Si(32) C(11) C(12) C(12) C(12) C(12) C(13) C(14) C(15) C(21) C(22) C(23) C(24) C(22) C(23) C(24) C(25) C(31) C(32) C(33) C(34) C(35) C(111) C(122) C(123) C(211) C(122) C(213) C(212) C(213) C(212) C(213) C(212) C(213) C(212) C(213) C(212) C(213) C(212) C(213) C(212) C(213) C(212) C(213) C(212) C(213) C(212) C(213) C(212) C(213) C(212) C(213) C(211) C(212) C(213) C(211) C(212) C(213) C(211) C(212) C(213) C(211) C(212) C(213) C(211) C(212) C(213) C(211) C(212) C(213) C(211) C(212) C(213) C(212) C(213) C(211) C(212) C(213) C(211) C(22) C(23) C(211) C(22) C(23) C(211) C(22) C(23) C(212) C(23) C(212) C(212) C(23) C(212) C(23) C(212) C(23) C(212) C(23) C(212) C(23) C(212) C(23) C(212) C(23) C(212) C(23) C(212) C(22) C(23) C(212) C(212) C(22) C(23) C(212) C(212) C(212) C(212) C(212) C(212) C(212) C(212) C(212) C(212) C(212) C(212) C(212) C(212) C(212) C(212) C(212) C(212) C(212) C(22) C	$\begin{array}{c} 42(1)\\ 36(1)\\ 39(1)\\ 35(1)\\ 37(1)\\ 59(1)\\ 55(1)\\ 49(1)\\ 42(1)\\ 44(1)\\ 74(1)\\ 55(1)\\ 67(2)\\ 57(1)\\ 55(1)\\ 55(1)\\ 55(1)\\ 46(1)\\ 49(1)\\ 46(1)\\ 42(1)\\ 46(1)\\ 42(1)\\ 46(1)\\ 42(1)\\ 55(1)\\ 55(1)\\ 55(1)\\ 55(1)\\ 55(1)\\ 55(1)\\ 55(1)\\ 55(2)\\ 104(3)\\ 88(3)\\ 93(2)\\ 55(2)\\ 75(2)\\ 60(2)\\ 104(3)\\ 47(2)\\ 53(2)\\ 75(2)\\ $	32(1) 34(1) 34(1) 40(1) 40(1) 61(1) 47(1) 59(1) 90(1) 82(1) 48(1) 35(1) 47(1) 39(1) 32(1) 52(1) 52(1) 52(1) 53(1) 59(2) 62(2) 44(1) 45(1) 35(1) 55(1) 56(1) 153(4) 112(3) 72(2) 163(5) 105(3) 69(2) 68(2) 89(2) 81(2) 219(5) 105(3) 121(3) 129(4) 66(2)	$\begin{array}{c} 34(1)\\ 32(1)\\ 35(1)\\ 34(1)\\ 32(1)\\ 55(1)\\ 67(1)\\ 35(1)\\ 54(1)\\ 71(1)\\ 42(1)\\ 50(1)\\ 43(1)\\ 57(1)\\ 50(1)\\ 57(1)\\ 50(1)\\ 36(1)\\ 37(1)\\ 43(1)\\ 43(1)\\ 42(1)\\ 53(1)\\ 48(1)\\ 42(1)\\ 53(1)\\ 48(1)\\ 42(1)\\ 53(1)\\ 48(1)\\ 42(2)\\ 122(3)\\ 114(3)\\ 77(2)\\ 199(5)\\ 51(1)\\ 56(1)\\ 62(2)\\ 98(3)\\ 92(2)\\ 88(2)\\ 206(5)\\ 80(2)\\ 89(2)\\ 57(2)\\ 60(2)\\ \end{array}$	$\begin{array}{c} 1(1)\\ 2(1)\\ -3(1)\\ -1(1)\\ 1(1)\\ 1(1)\\ -11(1)\\ 10(1)\\ 0(1)\\ 8(1)\\ -16(1)\\ -9(1)\\ 6(1)\\ 9(1)\\ 8(1)\\ -1(1)\\ -4(1)\\ 8(1)\\ -2(1)\\ 7(1)\\ 7(1)\\ 10(1)\\ -12(1)\\ -9(1)\\ -4(1)\\ -9(1)\\ -12(1)\\ -9(1)\\ -12(1)\\ -9(1)\\ -12(1)\\ -9(1)\\ -24(2)\\ -10(2)\\ -19(2)\\ 8(3)\\ -1(2)\\ 58(3)\\ 19(1)\\ -2(1)\\ 9(1)\\ 25(3)\\ -18(2)\\ 33(2)\\ 27(2)\\ -94(4)\\ 2(2)\\ 11(2)\\ -36(2)\\ 6(1)\\ \end{array}$	$\begin{array}{c} 20(1)\\ 17(1)\\ 18(1)\\ 14(1)\\ 13(1)\\ 21(1)\\ 20(1)\\ 17(1)\\ 18(1)\\ 27(1)\\ 10(1)\\ 24(1)\\ 29(1)\\ 26(1)\\ 28(1)\\ 23(1)\\ 26(1)\\ 28(1)\\ 23(1)\\ 26(1)\\ 29(1)\\ 24(1)\\ 29(1)\\ 24(1)\\ 29(1)\\ 24(1)\\ 29(1)\\ 23(1)\\ 36(1)\\ 29(1)\\ 24(2)\\ 19(1)\\ 22(1)\\ 30(1)\\ 39(2)\\ 15(2)\\ 34(3)\\ 57(2)\\ 3(2)\\ 31(3)\\ 38(1)\\ 15(1)\\ 32(2)\\ 24(2)\\ 19(2)\\ 15(2)\\ 76(3)\\ 29(2)\\ -4(2)\\ 22(2)\\ 38(2)\\ \end{array}$	$\begin{array}{c} -1(1)\\ 0(1)\\ 1(1)\\ -1(1)\\ 1(1)\\ -20(1)\\ 6(1)\\ 9(1)\\ -20(1)\\ 6(1)\\ 9(1)\\ -14(1)\\ 5(1)\\ 8(1)\\ 2(1)\\ -4(1)\\ -10(1)\\ -3(1)\\ -10(1)\\ -3(1)\\ -1(1)\\ 0(1)\\ 12(1)\\ -4(1)\\ -7(1)\\ 2(1)\\ 0(1)\\ 12(1)\\ -4(1)\\ -7(1)\\ 2(1)\\ -4(2)\\ -3(1)\\ 20(2)\\ -42(2)\\ 20(3)\\ 24(2)\\ 24(2)\\ 15(2)\\ -3(1)\\ 20(2)\\ -41(3)\\ -29(2)\\ 8(2)\\ 16(2)\\ -1(3)\\ -27(2)\\ -14(2)\\ 73(4)\\ 12(2)\\ \end{array}$

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

<u>Anhang A.5</u> : Strukturdaten von $[(Cp^{=}Co)_4P_4]$ (7d)

Tabelle A.5.1 Kristalldaten und Strukturverfeinerung.

Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) bzw. der 1.2-fache Wert (Cp-H) des äquivalenten isotropen Temperaturfaktors desjenigen C- Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			
Tabelle A.5.2					
---------------------	---	---------------------	--		
Atomkoordinaten [:	x 10 ⁴] und äquivalente iso	trope Auslenkungspa	rameter [Å ² x 10 ³].		

U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	х	У	Z	U(eq)
Co(1) Co(2) P(1) P(2) Si(11) Si(13) Si(21) Si(23) C(11) C(12) C(13) C(14) C(15) C(21) C(22) C(23) C(24) C(25) C(111) C(12) C(112) C(113) C(131) C(132) C(133) C(211) C(212) C(213) C(213)	$ x \\ 4559(1) \\ 5469(1) \\ 4523(1) \\ 5486(1) \\ 3180(1) \\ 4269(1) \\ 5796(1) \\ 6857(1) \\ 3758(1) \\ 3702(1) \\ 4198(1) \\ 4578(2) \\ 4313(1) \\ 5851(1) \\ 6341(1) \\ 6341(1) \\ 5482(1) \\ 3588(2) \\ 2624(2) \\ 2739(2) \\ 4067(2) \\ 5090(2) \\ 3703(2) \\ 5906(2) \\ 6424(2) \\ 5028(2) \\ 7188(2) \\ 268(2) \\ 7188(2) $	$\begin{array}{c} y \\ 1904(1) \\ 756(1) \\ 472(1) \\ 2193(1) \\ 625(1) \\ 4515(1) \\ -1866(1) \\ 2055(1) \\ 1644(2) \\ 2551(2) \\ 3192(2) \\ 2650(2) \\ 1722(2) \\ -539(2) \\ 119(2) \\ 1020(2) \\ 926(2) \\ -11(2) \\ 929(3) \\ 486(3) \\ 5151(3) \\ 4826(3) \\ 4833(3) \\ -2124(3) \\ -2465(3) \\ -2309(3) \\ 2410(3) \end{array}$	$\begin{array}{c} z\\ 6678(1)\\ 6777(1)\\ 7149(1)\\ 7252(1)\\ 5892(1)\\ 6350(1)\\ 6520(1)\\ 6520(1)\\ 6520(1)\\ 6520(1)\\ 6520(1)\\ 6350(2)\\ 5778(2)\\ 5666(2)\\ 6364(2)\\ 5778(2)\\ 5666(2)\\ 6364(2)\\ 5578(2)\\ 5821(2)\\ 5886(2)\\ 5730(2)\\ 5886(2)\\ 5730(2)\\ 5182(2)\\ 6616(2)\\ 5573(2)\\ 6627(2)\\ 6944(2)\\ 7391(2)\\ 6104(3)\\ 6137(2)\\ 7076(2)\\ \end{array}$	U(eq) 37(1) 36(1) 37(1) 38(1) 51(1) 66(1) 58(1) 54(1) 44(1) 46(1) 46(1) 44(1) 46(1) 44(1) 46(1) 44(1) 46(1) 44(1) 72(1) 84(1) 76(1) 95(2) 101(2) 97(2) 89(1) 104(2) 84(1) 90(1)
C(232) C(233)	6463(2) 7519(2)	3104(3) 1635(3)	5834(2) 5803(2)	88(1) 83(1)

Tabelle A.5.3 Bindungslängen [Å] und -winkel [°].

$\begin{array}{c} Co(1)-C(12)\\ Co(1)-C(14)\\ Co(1)-C(15)\\ Co(1)-C(13)\\ Co(1)-P(1)\\ Co(1)-P(2)\\ Co(1)-P(2)\\ Co(1)-P(2)\#1\\ Co(1)-Co(2)\\ Co(2)-C(22)\\ Co(2)-C(22)\\ Co(2)-C(25)\\ Co(2)-C(25)\\ Co(2)-C(23)\\ Co(2)-C(21)\\ Co(2)-P(2)\\ Co(2)-P(1)\\ Co(2)-P(1)\\ F(1)-Co(2)\#1\\ P(1)-P(1)\#1\\ P(1)-P(2)\#1\\ P(2)-Co(1)\#1\\ \end{array}$	2.119(3) 2.134(3) 2.135(3) 2.161(3) 2.162(3) 2.2034(8) 2.2607(9) 2.2683(9) 2.5019(5) 2.123(3) 2.130(3) 2.131(3) 2.167(3) 2.2619(9) 2.2629(9) 2.2629(9) 2.4047(15) 2.6751(10) 2.2683(9)		$\begin{array}{c} P(2)-P(2)\#1\\ P(2)-P(1)\#1\\ Si(11)-C(113)\\ Si(11)-C(111)\\ Si(11)-C(112)\\ Si(11)-C(11)\\ Si(13)-C(131)\\ Si(13)-C(132)\\ Si(13)-C(133)\\ Si(13)-C(133)\\ Si(21)-C(211)\\ Si(21)-C(211)\\ Si(21)-C(212)\\ Si(21)-C(213)\\ Si(23)-C(231)\\ Si(23)-C(231)\\ Si(23)-C(233)\\ Si(23)-C(233)\\ Si(23)-C(23)\\ C(11)-C(12)\\ C(11)-C(15)\\ C(12)-C(13)\\ \end{array}$	2.4004(16) 2.6751(10) 1.852(4) 1.858(3) 1.860(4) 1.870(3) 1.853(4) 1.853(4) 1.857(3) 1.857(3) 1.838(4) 1.852(4) 1.852(4) 1.849(4) 1.849(4) 1.855(4) 1.859(4) 1.857(3) 1.849(4) 1.859(4) 1.874(3) 1.420(4) 1.422(4) 1.425(4)	
Finlaituna	Eigene	E-manimantallan	7	Litanatan	Aultons
Problemstellung	Ergebnisse	Teil	Zusammennassung	Literatur	Annang

C(13)-C(14) C(14)-C(15) C(21)-C(25) C(21)-C(22)	1.423(4) 1.408(4) 1.414(4) 1.436(4)		C(22)-C(23) C(23)-C(24) C(24)-C(25)	1.423(4) 1.418(4) 1.417(4)	
C(11) -C(12) C(21) -C(22) C(21) -C(22) C(21) -C(22) C(12) -C(1) -C(1) C(12) -C(1) -P(1) C(12) -C(1) -P(1) C(13) -C(1) -P(1) C(13) -C(1) -P(1) C(13) -C(1) -P(1) C(13) -C(1) -P(2) C(14) -C(1) -P(2) C(13) -C(1) -C(2) C(13) -C(1) -C(2) C(13) -C(1) -C(2) C(13) -C(1) -C(2) C(13) -C(1) -C(2) C(13) -C(1) -C(2) C(22) -C(2) -P(1) C(22) -C(2) -P(1) C(22) -C(2) -P(1) C(23) -C(2) -	1.414(4) 1.436(4) 4) 64 5) 64 5) 38 3) 38 3) 38 3) 38 3) 38 3) 38 3) 38 3) 38 3) 38 3) 38 3) 38 3) 38 3) 165 1) 64 1) 64 1) 64 1) 145) 118) 107) 157) 157) 157) 170)#1 163)#1 106)#1 107)#1 107)#1 107)#1 107)#1 107)#1 107)#1 107) 107	<pre>1.16(13) 1.10(12) 1.51(11) 1.87(11) 1.69(12) 1.02(11) 1.74(11) 1.98(12) 1.63(11) 1.79(11) 1.20(9) 1.33(9) 1.48(8) 1.79(11) 1.20(9) 1.11(9) 1.68(8) 1.73(9) 1.11(9) 1.68(8) 1.73(9) 1.17(3) 1.73(9) 1.17(3) 1.73(9) 1.13(9) 1.13(9) 1.13(9) 1.22(8) 1.04(2) 1.93(2) 1.36(2) 1.04(2) 1.93(2) 1.36(2) 1.04(1) 1.05(11) 1.39(11) 1.08(</pre>	C(24) - C(25) $C(24) - C(25)$ $C(24) - C(25)$ $C(25) - C(2) - C(2)$ $C(21) - C(2) - C(2)$ $C(21) - C(2) - C(2)$ $C(21) - C(2) - C(2)$ $C(1) - P(1) - C(2) - C(2)$ $C(1) - P(1) - C(2)$ $C(1) - P(1) - P(1)$ $C(2) - P(1) - P(2)$ $C(2) - P(1) - P(2)$ $C(2) - P(2) - P(2)$ $C(1) + P(2) - P(1)$ $C(2) + P(2) - P(2)$ $C(2) + P(2) - P(2)$ $C(2) + P(2) - P(2)$ $C(2) + P(2) - P(1)$ $C(2) + P(2)$	(1) (1) (1) (1) (1) (1) (1) (1)	97.39(8) 107.98(8) 120.69(8) 143.43(8) 56.97(2) 54.82(2) 97.48(2) 68.14(2) 106.59(3) 112.05(3) 102.07(3) 57.92(3) 57.92(3) 57.88(3) 54.38(2) 92.78(3) 52.29(2) 75.98(3) 68.10(2) 106.28(3) 112.13(4) 102.13(3) 58.15(3) 57.84(4) 54.21(2) 92.78(3) 52.15(2) 76.05(3) 109.84(18) 109.3(2) 109.10(18) 111.38(16) 110.20(15) 106.95(16) 107.8(2) 110.5(2) 113.3(2) 106.75(18) 110.17(16) 108.11(18) 109.6(2) 110.86(17) 107.21(17) 113.0(2) 107.7(2) 108.26(16) 110.6(2) 107.5(2) 109.7(2) 113.46(17) 108.73(16) 106.72(16) 105.2(3) 125.1(2) 69.01(16) 69.67(17) 132.62(15) 111.2(3) 72.25(16) 72.14(17) 105.0(3)
C(21)-CO(2)-P(1) P(2)-CO(2)-P(1): P(1)-CO(2)-P(1):)#⊥ ±06 #1 73 #1 64	5.08(8) 5.51(3) 5.21(3)	C(14)-C(13)-S1 C(12)-C(13)-S1 C(14)-C(13)-C2	(13) (13)	125.7(2) 128.3(2) 69.65(16)
P(1)-CO(2)-P(1) C(22)-CO(2)-CO(2)	#⊥ 64 1) 159 	0.24(8)	C(14)-C(13)-Co C(12)-C(13)-Co	(1) (1)	69.00(15)
Einleitung Problemstellung	Eigene Frøebnisse	Experimenteller Teil	Zusammenfassung	Literatur	Anhang

Si(13)-C(13)-Co(1)	133.87(16)
C(15) - C(14) - C(13) C(15) - C(14) - C(13)	109.3(3) 70.70(17)
C(13) - C(14) - CO(1)	70.79(17) 71.66(10)
C(13) - C(14) - CO(1) C(14) - C(15) - C(11)	100 2(2)
C(14) - C(15) - C(11)	109.3(3)
C(14) - C(15) - CO(1)	70.70(10)
C(11) - C(13) - CO(1)	104 0(2)
C(25) = C(21) = C(22)	104.9(3) 125.0(2)
C(23) - C(21) - SI(21)	120.9(2)
C(22) - C(21) - SI(21)	120.1(2)
C(23) - C(21) - CO(2)	69.43(10)
C(22) - C(21) - CO(2)	$124 \ 92(16)$
C(23) = C(22) = C(21)	111 1/3
C(23) = C(22) = C(21)	72 15(17)
C(23) = C(22) = CO(2)	72.13(17) 72.12(17)
C(24) - C(23) - C(22)	105 2(3)
C(24) - C(23) - Si(23)	124 5(2)
C(22) - C(23) - Si(23)	1295(2)
C(22) = C(23) = C(23)	$69 \ 42(17)$
C(22) - C(23) - Co(2)	69.09(17)
Si(23) - C(23) - Co(2)	$132 \ 97(16)$
C(25) - C(24) - C(23)	109 3(3)
C(25) - C(24) - Co(2)	70 65(17)
C(23) - C(24) - Co(2)	72 02(18)
C(21) - C(25) - C(24)	109.5(3)
C(21) - C(25) - Co(2)	72.18(18)
C(24) - C(25) - Co(2)	70.51(17)
- , , - (=- , (=)	

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Tabelle A.5.4	Anisotrone Auslenkungsnarameter $[Å^2 \times 10^3]$.	
Der Exponent	des anisotropen Auslenkungsfaktors hat die Form:	$-2\pi^2 [(ha^*)^2 U_{11} + + 2hka^* b^* U_{12}]$

	U ₁₂	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃
Co(1) Co(2) P(1) P(2) Si(11) Si(21) Si(23) C(11) C(12) C(12) C(13) C(14) C(15) C(21) C(22) C(23) C(24) C(25) C(111) C(112) C(112) C(113) C(131) C(132) C(133) C(211) C(212) C(213) C(231)	U_{12} $39(1)$ $39(1)$ $40(1)$ $47(1)$ $74(1)$ $68(1)$ $50(1)$ $46(2)$ $45(2)$ $49(2)$ $52(2)$ $48(2)$ $44(2)$ $46(2)$ $44(2)$ $46(2)$ $51(2)$ $73(2)$ $73(2)$ $73(3)$ $65(2)$ $93(3)$ $100(3)$ $112(4)$ $108(4)$ $111(4)$ $99(3)$ $85(3)$	U_{11} $33(1)$ $33(1)$ $33(1)$ $52(1)$ $38(1)$ $40(1)$ $56(1)$ $44(2)$ $47(2)$ $40(2)$ $53(2)$ $48(2)$ $43(2)$ $51(2)$ $51(2)$ $51(2)$ $45(2)$ $48(2)$ $63(2)$ $89(3)$ $84(3)$ $67(2)$ $54(2)$ $66(2)$ $72(3)$ $71(3)$ $53(2)$ $108(3)$	U_{22} $36(1)$ $35(1)$ $36(1)$ $39(1)$ $54(1)$ $81(1)$ $67(1)$ $56(1)$ $39(2)$ $45(2)$ $48(2)$ $44(2)$ $37(2)$ $43(2)$ $44(2)$ $37(2)$ $43(2)$ $44(2)$ $39(2)$ $37(2)$ $43(2)$ $44(2)$ $39(2)$ $7(2)$ $39(2)$ $7(2)$ $39(2)$ $79(3)$ $85(3)$ $79(3)$ $118(4)$ $138(5)$ $109(4)$ $86(4)$ $136(5)$ $100(4)$ $75(3)$	$\begin{array}{c} U_{33} \\ \hline \\ 1(1) \\ 1(1) \\ -1(1) \\ 1(1) \\ -8(1) \\ 6(1) \\ 3(1) \\ 10(1) \\ -1(1) \\ 1(1) \\ 9(1) \\ 11(2) \\ 0(1) \\ -1(1) \\ 4(1) \\ 4(1) \\ 4(1) \\ 3(1) \\ -5(1) \\ -20(2) \\ -4(2) \\ -10(2) \\ 36(2) \\ 5(2) \\ -20(2) \\ 21(2) \\ 0(3) \\ -4(2) \\ 0(3) \\ \end{array}$	$\begin{array}{c} U_{23} \\ \hline \\ -4(1) \\ 3(1) \\ 0(1) \\ -1(1) \\ -5(1) \\ -28(1) \\ 13(1) \\ 8(1) \\ -6(1) \\ -7(2) \\ -13(2) \\ -7(2) \\ -13(2) \\ -7(2) \\ -5(1) \\ 9(2) \\ 7(2) \\ 10(1) \\ 8(2) \\ 9(1) \\ -3(2) \\ -29(2) \\ 7(2) \\ -36(3) \\ -59(3) \\ -17(3) \\ 4(3) \\ 44(3) \\ 3(3) \\ 5(2) \end{array}$	U_{13} $1(1)$ $2(1)$ $-4(1)$ $-3(1)$ $-5(1)$ $4(1)$ $11(1)$ $-7(1)$ $2(1)$ $6(1)$ $2(1)$ $-2(1)$ $4(1)$ $7(1)$ $9(1)$ $3(1)$ $6(1)$ $0(1)$ $-4(2)$ $-11(2)$ $-14(2)$ $-6(2)$ $-9(2)$ $23(2)$ $9(2)$ $37(2)$ $-13(2)$ $-35(2)$
C(232) C(233)	61(2)	95(3)	⊥⊥8(4) 97(4)	36(2) 1(2)	10(3) 23(2)	-4(2) -9(2)

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

<u>Anhang A.6</u> : Strukturdaten von [(Cp⁻Co}₄P₄] (7c)

Tabelle A.6.1 Kristalldaten und Strukturverfeinerung

Summenformel	$C_{32}H_{52}Co_4P_4Si_4$	
Molmasse	908.70	Si2 P4
Temperatur	293(2) K	
Strahlung	ΜοΚα	O GO
Wellenlänge	0.71073 Å	and the
Scanmodus	Phi-Oszillation	
Kristallsystem	Monoklin	L.
Raumgruppe	C2/c	0
Zelldimensionen	a = 19.8631(15) Å	$\alpha = 90^{\circ}$
	b = 19.9331(10) Å	$\beta = 102.318(9)^{\circ}$
	c = 21.4892(17) Å	$\gamma = 90^{\circ}$
Zellvolumen	8312.4(10)Å ³	
Formeleinheiten pro Zelle Z	8	
Berechnete Dichte	1.452 Mg/m^3	
Absorptionskoeffizient	1.859 mm ⁻¹	
Kristallgröße	0.28 x 0.26 x 0.24 mm	
Gemessener θ-Bereich	2.60 bis 25.68°	
Anzahl der gemessenen Reflexe	57814	
Unabhängige Reflexe	7485 (Rint = 0.0822)	
Absorptionskorrektur	Analytisch (STOE/XRED)	
Max. und min. Transmission	0.7765 und 0.7143	
Diffraktometer	Stoe IPDS	
Strukturlösung	Direkte Methoden	
Strukturlösungsprogramm	SHELXS-97 (Sheldrick, 199	90)
Strukturverfeinerung	Vollmatrix Least-Squares ge	egen F ²
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 199	97)
Daten / Restraints / Parameter	7485 / 0 / 410	
Endgültige R-Werte $[I \ge 2\sigma(I)]$	R1 = 0.0336, $wR2 = 0.0684$	
R-Werte (alle Daten)	R1 = 0.0622, wR2 = 0.0731	
Extinktionskoeffizient	0.00015(3)	
Wichtungsschema	$w=1/[\sigma^{2}(Fo^{2})+(0.0300P)^{2}+0$.0000P] mit P=(Fo ² +2Fc ²)/3
GooF (alle Daten)	0.949	
Größtes Maximum und Minimum	0.337 und -0.258 eÅ ⁻³	

Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) bzw. der 1.2-fache Wert (Cp-H) des äquivalenten isotropen Temperaturfaktors desjenigen C-Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Tabelle A.6.2
Atomkoordinaten [x 10^4] und äquivalente isotrope Auslenkungsparameter [Å ² x 10^3]
U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	Х	У	Z	U(eq)
Co(1)	3336(1)	3138(1)	13259(1)	46(1)
Co(2)	2301(1)	3719(1)	11752(1)	46(1)
Co(3)	2078(1)	3039(1)	13266(1)	47(1)
CO(4)	2403(1) 2545(1)	2465(⊥) 2072(1)	11/48(1) 12010(1)	4/(1) 46(1)
P(1) P(2)	2545(1) 1672(1)	3034(1)	12010(1) 12200(1)	40(1) 47(1)
P(3)	2656(1)	2306(1)	12812(1)	47(1)
P(4)	3241(1)	3149(1)	12196(1)	46(1)
Si(11)	4357(1)	1692(1)	13904(1)	69(1)
Si(21)	3594(1)	4593(1)	11101(1)	68(1)
Si(31)	1171(1)	4449(1)	13789(1)	68(1)
S1(41)	880(1)	1435(1)	11253(1) 12059(2)	73(1)
C(11) C(12)	41/0(2)	2009(2)	14228(2)	$5 \perp (\perp)$ 59(1)
C(12)	3826(2)	3674(2)	14076(2)	59(1) 69(1)
C(14)	4203(2)	3736(2)	13604(2)	70(1)
C(15)	4408(2)	3089(2)	13460(2)	63(1)
C(21)	2687(2)	4417(2)	11151(2)	52(1)
C(22)	2294(2)	4746(2)	11544(2)	64(1)
C(23)	1615(2)	4502(2)	11403(2)	77(1)
C(24)	1571(2)	4008(2)	10932(2)	71(1)
C(25) C(31)	2222(2) 1465(2)	3952(2)	10772(2) 13824(2)	50(1)
C(32)	2059(2)	3273(2)	14229(2)	50(1) 60(1)
C(33)	2051(2)	2568(2)	14141(2)	74(1)
C(34)	1460(3)	2401(2)	13686(2)	80(1)
C(35)	1102(2)	3004(2)	13489(2)	67(1)
C(41)	1758(2)	1712(2)	11201(2)	54(1)
C(42)	2397(2)	1441(2)	11537(2)	67(1) 70(1)
C(43) C(44)	2947(2) 2675(2)	1/49(2) 2230(2)	11333(2) 10874(2)	79(1) 73(1)
C(45)	1947(2)	2210(2)	10791(2)	59(1)
C(111)	5234(2)	1587(3)	14425(3)	117(2)
C(112)	4348(3)	1358(3)	13097(2)	110(2)
C(113)	3695(3)	1271(2)	14257(2)	94(1)
C(211)	3921(2)	3865(3)	10705(2)	98(2)
C(212)	4135(2)	4732(3)	11909(2)	98(2)
$C(2\pm 3)$ $C(3\pm 1)$	33/5(3) 1857/2)	53//(3) 4950/2)	LUOZZ(3) 14301(2)	⊥∠∠(∠) 110(2)
C(312)	351(2)	4467(3)	14084(3)	121(2)
C(313)	981(2)	4765(3)	12959(2)	109(2)
C(411)	243(2)	2012(3)	10764(3)	118(2)
C(412)	778(3)	557(3)	10955(3)	124(2)
C(443)	796(3)	1418(3)	12098(3)	130(2)

Tabelle A.6.3 Bindungslängen [Å] und -winkel [°]

Co(1)-C(15)	2.083(3)		Co(2)-C(21)	2.148(3)	
Co(1)-C(14)	2.096(4)		Co(2) - P(2)	2.2066(9)	
Co(1)-C(13)	2.109(3)		Co(2)-P(4)	2.2208(9)	
Co(1)-C(12)	2.132(3)		Co(2)-P(1)	2.2589(9)	
Co(1)-C(11)	2.153(3)		Co(2)-Co(4)	2.5089(7)	
Co(1)-P(1)	2.2075(9)		Co(3)-C(35)	2.095(3)	
Co(1)-P(3)	2.2221(10)		Co(3)-C(34)	2.102(4)	
Co(1)-P(4)	2.2529(9)		Co(3)-C(33)	2.113(4)	
Co(1)-Co(3)	2.5093(6)		Co(3)-C(32)	2.129(3)	
Co(2)-C(22)	2.095(4)		Co(3)-C(31)	2.149(3)	
Co(2)-C(24)	2.109(3)		Co(3) - P(3)	2.2097(10)	
Co(2)-C(23)	2.102(4)		Co(3)-P(1)	2.2196(10)	
Co(2)-C(25)	2.130(3)		Co(3) - P(2)	2.2586(9)	
Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil	-		

$\begin{array}{c} \text{Co}(4)-\text{C}(42)\\ \text{Co}(4)-\text{C}(43)\\ \text{Co}(4)-\text{C}(44)\\ \text{Co}(4)-\text{C}(44)\\ \text{Co}(4)-\text{C}(41)\\ \text{Co}(4)-\text{P}(4)\\ \text{Co}(4)-\text{P}(2)\\ \text{Co}(4)-\text{P}(2)\\ \text{Co}(4)-\text{P}(3)\\ \text{P}(1)-\text{P}(2)\\ \text{P}(2)-\text{P}(3)\\ \text{P}(2)-\text{P}(3)\\ \text{P}(3)-\text{P}(4)\\ \text{Si}(11)-\text{C}(112)\\ \text{Si}(11)-\text{C}(112)\\ \text{Si}(11)-\text{C}(112)\\ \text{Si}(11)-\text{C}(111)\\ \text{Si}(21)-\text{C}(212)\\ \text{Si}(21)-\text{C}(212)\\ \text{Si}(21)-\text{C}(213)\\ \text{Si}(31)-\text{C}(311)\\ \text{Si}(31)-\text{C}(312)\\ \text{Si}(31)-\text{C}(31)\\ \text{Si}(31)-\text{C}($	2.091(4) 2.100(4) 2.115(3) 2.126(3) 2.153(3) 2.2078(10) 2.2219(10) 2.2552(9) 2.5625(12) 2.5656(13) 2.5598(12) 2.5655(12) 1.854(4) 1.861(4) 1.853(5) 1.873(4) 1.868(5) 1.868(5) 1.868(5) 1.851(5) 1.855(4) 1.870(4) 1.865(4)		Si (41)-C(41) Si (41)-C(411) Si (41)-C(412) Si (41)-C(412) C(11)-C(12) C(11)-C(15) C(12)-C(13) C(13)-C(14) C(14)-C(15) C(21)-C(22) C(21)-C(25) C(22)-C(23) C(23)-C(24) C(24)-C(25) C(31)-C(32) C(31)-C(35) C(32)-C(33) C(33)-C(34) C(34)-C(35) C(41)-C(45) C(41)-C(42) C(42)-C(43) C(42)-C(44) C(44)-C(45)	$\begin{array}{c} 1.855(4)\\ 1.859(5)\\ 1.860(5)\\ 1.859(5)\\ 1.427(5)\\ 1.427(5)\\ 1.425(5)\\ 1.425(5)\\ 1.405(5)\\ 1.405(5)\\ 1.405(5)\\ 1.407(5)\\ 1.401(6)\\ 1.412(5)\\ 1.429(5)\\ 1.429(5)\\ 1.429(5)\\ 1.417(6)\\ 1.397(6)\\ 1.414(6)\\ 1.430(5)\\ 1.427(5)\\ 1.401(6)\\ 1.399(6)\\ 1.419(5)\end{array}$	
$\begin{array}{c} c_{15} - c_{0}(1) - C(14) \\ c_{15} - c_{0}(1) - C(13) \\ c_{14} - c_{0}(1) - C(13) \\ c_{14} - c_{0}(1) - C(12) \\ c_{14} - c_{0}(1) - C(12) \\ c_{13} - c_{0}(1) - C(11) \\ c_{13} - c_{0}(1) - C(11) \\ c_{14} - c_{0}(1) - C(11) \\ c_{12} - c_{0}(1) - C(11) \\ c_{12} - c_{0}(1) - C(11) \\ c_{13} - c_{0}(1) - P(1) \\ c_{14} - c_{0}(1) - P(1) \\ c_{13} - c_{0}(1) - P(1) \\ c_{14} - c_{0}(1) - P(1) \\ c_{14} - c_{0}(1) - P(1) \\ c_{13} - c_{0}(1) - P(1) \\ c_{14} - c_{0}(1) - P(3) \\ c_{14} - c_{0}(1) - P(3) \\ c_{14} - c_{0}(1) - P(3) \\ c_{11} - c_{0}(1) - P(3) \\ c_{11} - c_{0}(1) - P(4) \\ c_{14} - c_{0}(1) - P(4) \\ c_{14} - c_{0}(1) - P(4) \\ c_{15} - c_{0}(1) - P(4) \\ c_{15} - c_{0}(1) - P(4) \\ c_{11} - c_{0}(1) - P(4) \\ c_{12} - c_{0}(1) - P(4) \\ c_{13} - c_{0}(1) - P(4) \\ c_{13} - c_{0}(1) - C_{0}(3) \\ c_{14} - c_{0}(1) - c_{0}(3) \\ p(4) - c_{0}(1) - c_{0}(3) \\ p(4) - c_{0}(1) - c_{0}(3) \\ p(4) - c_{0}(2) - c_{2}(23) \\ c_{22} - c_{0}(2) - c_{2}(24) \\ c_{23} - c_{0}(2) - c_{2}(25) \\ c_{23} - c_{0}(2) - c_$) 39) 65) 38) 64) 64) 38) 66) 65) 38 136 103 100 129 166 123 162 150 114 102 89 94 103 157 119 102 89 94 103 139 157 119 102 89 94 103 139 157 119 102 155 103 139 157 119 157 119 103 139 157 119 103 139 157 119 103 157 119 103 139 157 119 103 139 157 119 103 157 119 103 157 119 103 157 119 103 157 119 103 157 119 103 157 119 103 157 119 103 157 119 103 157 119 103 157 119 103 157 119 103 157 19 103 103 103 103 103 103 103 103 103 103	.30(15) .26(16) .65(15) .94(14) .96(16) .88(14) .28(13) .02(15) .76(14) .91(12) .20(12) .30(12) .40(11) .58(10) .15(10) .69(12) .64(13) .26(14) .90(12) .43(10) .90(4) .05(10) .69(12) .78(14) .89(10) .86(9) .12(3) .96(3) .05(11) .92(13) .55(12) .15(10) .15(10) .70(3) .28(3) .98(3) .39(17) .16(15) .88(16) .15(15) .92(14) .15(16) .23(13) .87(13) .92(14) .14(13)	C(22)-Co(2)-P(C(23)-Co(2)-P(C(23)-Co(2)-P(C(23)-Co(2)-P(C(22)-Co(2)-P(C(23)-Co(2)-P(C(23)-Co(2)-P(C(23)-Co(2)-P(C(23)-Co(2)-P(C(23)-Co(2)-P(C(23)-Co(2)-P(C(23)-Co(2)-P(C(23)-Co(2)-P(C(23)-Co(2)-P(C(23)-Co(2)-P(C(23)-Co(2)-Co(3)-Co(3)-Co(3)-C(2)-Co(3)-Co(3)-C(2)-Co(3)-C(2)-Co(3)-Co(3)-C(2)-Co(3)-C(2)-Co(3)-C(2)-Co(3)-C(2)-Co(3)-C(2)-Co(3)-C(2)-Co(3)-C(2)-Co(3)-C(2)-Co(3)-C(2)-Co(3)-C(2)-Co(3)-C(2)-Co(3)-C(2)-Co(3)-C(2)-Co(3)-C(2)-Co(3)-C(2)-Co(3)-C(2)-Co(3)-C(2)-Co(3)-C(2)-Co(3)-P(C(3)-Co(3)-P(C(3)-C0(3)-P(C(3)-C0(3)-P(C(3)-C0(3)-P(C(3)-C0(3)-P(C(3)-C0(3)-P(C(3)-C0(3)-P(C(3)-C0(3)-P(C(3)-C0(3)-P(C(3)-C0(3)-P(C(3)-C0(3)-P(C(3)-C0(3)-P(C(3)-C0(3)-P(C(3)-C0(3)-P(C(3)-C(3)-P(C(3)-C0(3)-P(C(3)-C(3)-P(C(3)-C(3)-P(C(3)-C(3)-P(C(3)-C(3)-P(C(3)-C(3)-P(C(3)-C(3)-P(C(3)-C(3)-P(C(3)-C(3)-P(C(3)-C(3)-P(2) 2) 2) 2) 2) 2) 2) 4) 4) 4) 4) 4) 4) 4) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1	136.08(11) 100.45(11) 103.38(12) 129.65(10) 166.30(9) 123.92(11) 149.77(14) 162.79(14) 114.48(10) 102.38(9) 89.88(4) 94.27(11) 140.45(14) 104.14(14) 158.12(11) 119.68(10) 70.12(3) 69.78(3) 165.97(11) 108.12(14) 141.76(14) 101.75(11) 127.18(10) 55.78(3) 55.25(3) 97.91(3) 39.39(16) 65.21(16) 38.71(16) 64.92(15) 65.23(17) 39.04(15) 39.32(14) 66.34(16) 65.93(14) 38.95(12) 132.24(12) 101.31(13) 102.28(12) 133.76(10) 167.46(14) 144.20(14) 110.71(12) 102.77(10)
Problemstellung	Ergebnisse	Teil	Zusammentassung	Literatur	Annang

Co(3) - P(2) - P(1) Einleitung	54 Eigene	.34(3)	C(23)-C(22)-Co	(2)	70.7(2)
$C_0(2) - P(2) - P(1)$ $C_0(4) - P(2) - P(1)$	55 97	.89(3) .25(4)	Si(21)-C(21)-C C(23)-C(22)-C(b(2) 21)	129.06(16) 109.5(4)
Co(4)-P(2)-P(3) Co(3)-P(2)-P(3)	55 54	.74(3)	C(22)-C(21)-Co C(25)-C(21)-Co	o(2) o(2)	68.40(19) 69.75(18)
Co(4) - P(2) - Co(3) Co(2) - P(2) - P(3)	108 97	.70(4) .69(4)	C(22)-C(21)-Si C(25)-C(21)-Si	.(21) .(21)	127.3(3) 127.1(3)
Co(2) - P(2) - Co(3)	109	.08(4)	C(22)-C(21)-C(25)	105.5(3)
P(4)-P(1)-P(2) Co(2)-P(2)-Co(4)	75 69	.16(4) .02(3)	C(14)-C(15)-Co C(11)-C(15)-Co	o(⊥) o(1)	70.8(2) 72.99(19)
Co(2) - P(1) - P(2)	53	.98(3)	C(14)-C(15)-C(11)	109.7(3)
CO(1) - P(1) - P(2) CO(3) - P(1) - P(2)	97	.48(4) .76(3)	C(13) - C(14) - Co C(15) - C(14) - Co	(1)	/±.±(∠) 69.9(2)
Co(2)-P(1)-P(4)	54	.41(3)	C(13)-C(14)-C(15)	107.8(4)
Co(3) - P(1) - P(4) Co(3) - P(1) - P(4)	55 97	.32(4)	C(12)-C(13)-Co	(1)	71.44(19)
Co(3)-P(1)-Co(2)	108	.61(4)	C(14)-C(13)-C(12)	108.2(3)
Co(1) - P(1) - Co(3)	108	.99(4)	C(13)-C(12)-Co	(1)	69.68(19)
P(3)-Co(4)-Co(2) Co(1)-P(1)-Co(3)	97 69	.89(3) 05(3)	C(11)-C(12)-C(C(11))-C(C(12))-C(C(11))-C(C(12))-C(12))-C(C(12))-C(C(12))-C(C(12))-C(C(12))-C(C(12))-C(C(12))-C(C(12))-C(C(12))-C(C(12))-C(12))-C(C(12))-C(12))-C(C(12))-C(12))-C(C(12))-C(12))-C(C(12))-C(12	13) (1)	109.2(3) 71 35(17)
P(2)-Co(4)-Co(2)	55	.20(3)	Si(11)-C(11)-C	(1)	128.93(17)
C(41)-Co(4)-Co(2) P(4)-Co(4)-Co(2)	131 55	.U8(10) .74(3)	C(12)-C(11)-Co C(15)-C(11)-Co	(1)	69.74(17) 67.73(18)
C(45)-Co(4)-Co(2)	102	.89(11)	C(15)-C(11)-Si	(11)	127.4(3)
C(43) - CO(4) - CO(2) C(44) - CO(4) - CO(2)	136	.01(14)	C(12)-C(11)-C(C(11)-C(C(12)-C(11)-S(C(12)-C(11)-S(C(12)-C(11)-S(C(12)-C(11)-S(C(12)-C(11)-S(C(12)-C(12)-C(12)-S(C(12)-	13) .(11)	127.6(3)
C(42)-Co(4)-Co(2)	167	.71(11)	C(412)-Si(41)-	C(443)	107.0(3)
P(2)-Co(4)-P(3)	70 69	.74(3)	C(41)-Si(41)-C	C(443)	111.8(3)
C(41)-Co(4)-P(3)	115	.75(10)	C(411)-Si(41)-	C(412)	112.2(3)
C(45)-Co(4)-P(3)	154	.77(10)	C(41) - Si(41) - C	!(412)	107.0(2)
C(43)-Co(4)-P(3) C(44)-Co(4)-P(3)	108 145	.17(14)	C(312)-Si(31)-C(41)-Si(41)-C(41)-Si(41)-C(41)-Si(41)-C(41)-Si(41)-C(41	C(31)	107.1(2) 108 5(2)
C(42) - Co(4) - P(3)	94	.19(11)	C(313)-Si(31)-	C(31)	111.1(2)
P(4)-Co(4)-P(2)	89	.82(4)	C(313)-SI(31)- C(311)-SI(31)-	C(312) C(31)	107.8(2)
C(45)-Co(4)-P(2)	111	.24(11)	C(311)-Si(31)-	C(312)	111.8(3)
C(44)-Co(4)-P(2)	144	.65(14)	C(311)-Si(31)-	C(313)	111.2(3)
C(42)-Co(4)-P(2) C(43)-Co(4)-P(2)	128 167	.28(11) .32(13)	C(21)-Si(21)-C C(213)-Si(21)-	:(211) C(211)	108.39(19) 111.5(3)
C(41)-Co(4)-P(4)	166	.97(10)	C(212)-Si(21)-	C(211)	110.8(2)
C(44) - CO(4) - P(4) C(45) - CO(4) - P(4)	102	.04(10)	C(212)-SI(21)-C(21)-C(21)-SI(21)-C(21)-SI(21)-C(21)-SI(21)-C(21)	(213) (213)	109.3(2) 106.43(19)
C(43)-Co(4)-P(4)	101	.32(12)	C(212)-Si(21)-	C(21)	110.44(18)
C(42)-Co(4)-P(4)	131	.77(11)	C(11)-SI(11)-C C(113)-SI(11)-C	C(111)	110.8(3)
C(44)-Co(4)-C(41) C(45)-Co(4)-C(41)	66	.15(14)	C(112)-Si(11)-C(11)-Si(11)-C(11)-Si(11)-C(11)-Si(11)-C(11)-Si(11)-C(11	C(111)	109.9(2) 106.6(2)
C(43)-Co(4)-C(41)	66	.06(15)	C(11)-Si(11)-C	2(113)	108.7(2)
C(44)-Co(4)-C(45) C(42)-Co(4)-C(41)	39	.10(14) .28(14)	C(112)-Si(11)- C(112)-Si(11)-	C(11) C(113)	110.0(2) 110.8(3)
C(43)-Co(4)-C(45)	65	.01(16)	P(1)-P(4)-P(3)	,	75.22(3)
C(43) - Co(4) - C(44) C(42) - Co(4) - C(45)	64	.//(1/)	Co(2) - P(4) - P(3) Co(1) - P(4) - P(3)	() ()	97.16(4) 54.46(3)
C(42)-Co(4)-C(44)	65	.29(17)	Co(4) - P(4) - P(3)		55.78(3)
C(42)-Co(4)-C(43)	39	.07(16)	Co(1)-P(4)-P(1)	.)	54.11(3)
P(1)-Co(3)-Co(1) P(2)-Co(3)-Co(1)	55 97	.25(3)	Co(4) - P(4) - P(1) Co(2) - P(4) - P(1)	.)	97.70(4) 55.81(3)
P(3)-Co(3)-Co(1)	55	.75(3)	Co(2)-P(4)-Co(1)	108.73(4)
C(32) - CO(3) - CO(1) C(31) - CO(3) - CO(1)	102	.44(10)	Co(4) - P(4) - Co(4)	1)	109.11(4)
C(33)-Co(3)-Co(1) C(32)-Co(3)-Co(1)	104	.73(13)	P(2)-P(3)-P(4)	2)	75.20(4)
C(34)-Co(3)-Co(1)	136	.34(14)	Co(4) - P(3) - P(4)	.)	54.05(3)
C(35)-Co(3)-Co(1)	167	.14(11)	Co(3) - P(3) - P(4) Co(1) - P(3) - P(4)	:)	55.58(3)
P(3)-Co(3)-P(2) P(1)-Co(3)-P(2)	69 69	.89(3)	Co(4) - P(3) - P(2)	:) ``	54.52(3)
C(31)-Co(3)-P(2)	116	.53(10)	Co(1)-P(3)-P(2)	:)	97.27(4)
C(33)-Co(3)-P(2) C(32)-Co(3)-P(2)	145 155	.90(14)	Co(1)-P(3)-Co(Co(3)-P(3)-P(2)	4)	108.51(4) 55.95(3)
C(34)-Co(3)-P(2)	108	.55(14)	Co(3) - P(3) - Co(3)	4)	109.26(4)
P(3)-Co(3)-P(1) C(35)-Co(3)-P(2)	89 94	.91(3)	P(3)-P(2)-P(1)	1)	75.27(3)

$\begin{array}{c} C(21) - C(22) - Co(2) \\ C(24) - C(23) - C(22) \\ C(22) - C(23) - Co(2) \\ C(23) - C(24) - Co(2) \\ C(23) - C(24) - Co(2) \\ C(25) - C(24) - Co(2) \\ C(24) - C(25) - Co(2) \\ C(21) - C(25) - Co(2) \\ C(32) - C(31) - Co(3) \\ C(32) - C(31) - Si(31) \\ C(35) - C(31) - Co(3) \\ C(31) - C(32) - Co(3) \\ C(32) - C(33) - Co(3) \\ C(33) - C(34) - Co(3) \\ C(33) - C(34) - Co(3) \\ C(34) - C(35) - Co(3) \\ C(45) - C(41) - Co(4) \\ C(42) - C(41) - Co(4) \\ C(42) - C(41) - Co(4) \\ C(43) - C(42) - Co(4) \\ C(44) - C(43) - Co(4) \\ C(44) - C(43) - Co(4) \\ C(44) - C(43) - Co(4) \\ C(42) - C(41) - Co(4) \\ C(44) - C(43) - Co(4) \\ C(43) - C(44) - C(45) \\ C(44) - C(43) - Co(4) \\ C(43) - C(44) - C(45) \\ C(44) - C(43) - Co(4) \\ C(43) - C(44) - C(45) \\ C(44) - C(43) - Co(4) \\ C(43) - C(44) - C(45) \\ C(43) - C(44) - C(45) \\ C(44) - C(43) - Co(4) \\ C(43) - C(44) - C(45) \\ C(44) - C(43) - Co(4) \\ C(44) - C(44) - C(45) \\ C(44) - C(45) $	$\begin{array}{c} 72.4(2)\\ 107.9(4)\\ 70.8(2)\\ 70.1(2)\\ 108.2(3)\\ 70.3(2)\\ 71.35(18)\\ 108.9(4)\\ 69.74(19)\\ 71.11(18)\\ 105.1(3)\\ 128.1(3)\\ 126.6(3)\\ 69.76(19)\\ 68.30(19)\\ 130.24(18)\\ 109.3(4)\\ 71.29(18)\\ 69.9(2)\\ 108.2(4)\\ 70.2(2)\\ 71.1(2)\\ 107.5(4)\\ 71.1(2)\\ 107.5(4)\\ 71.1(2)\\ 107.5(4)\\ 71.1(2)\\ 107.5(4)\\ 71.1(2)\\ 109.8(4)\\ 70.6(2)\\ 72.38(19)\\ 104.6(3)\\ 128.1(3)\\ 127.2(3)\\ 69.47(19)\\ 68.0(2)\\ 129.21(18)\\ 110.1(4)\\ 70.8(2)\\ 72.7(2)\\ 108.2(4)\\ 71.2(2)\\ 70.1(2)\\ 107.4(4)\\ 70.0(2)\\ \end{array}$
$\begin{array}{c} C(44) - C(43) - Co(4) \\ C(42) - C(43) - Co(4) \\ C(43) - C(44) - C(45) \\ C(43) - C(44) - Co(4) \\ C(43) - C(44) - Co(4) \\ C(45) - C(44) - Co(4) \\ C(44) - C(45) - C(41) \\ C(44) - C(45) - Co(4) \\ C(41) - C(45) - Co(4) \end{array}$	$71.2(2) \\70.1(2) \\107.4(4) \\70.0(2) \\70.87(19) \\109.7(4) \\70.03(19) \\71.49(18)$

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Tabelle A.6.4	Anisotrope Auslenkungsparameter [Å ² x 10 ³]	
Der Exponent	des anisotropen Auslenkungsfaktors hat die Form:	$-2\pi^{2} [(ha^{*})^{2} U_{11} + + 2hka^{*}b^{*}U_{12}]$

	U ₁₂	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃
$\begin{array}{c} \text{Co}(1) \\ \text{Co}(2) \\ \text{Co}(3) \\ \text{Co}(4) \\ \text{P}(1) \\ \text{P}(2) \\ \text{P}(3) \\ \text{P}(4) \\ \text{Si}(21) \\ \text{Si}(21) \\ \text{Si}(31) \\ \text{Si}(41) \\ \text{C}(12) \\ \text{C}(12) \\ \text{C}(13) \\ \text{C}(14) \\ \text{C}(15) \\ \text{C}(21) \\ \text{C}(22) \\ \text{C}(23) \\ \text{C}(24) \\ \text{C}(25) \\ \text{C}(31) \\ \text{C}(32) \\ \text{C}(31) \\ \text{C}(32) \\ \text{C}(34) \\ \text{C}(42) \\ \text{C}(43) \\ \text{C}(44) \\ \text{C}(45) \\ \text{C}(111) \\ \text{C}(212) \\ \text{C}(213) \\ \text{C}(211) \\ \text{C}(212) \\ \text{C}(213) \\ \text{C}(211) \\ \text{C}(212) \\ \text{C}(213) \\ \text{C}(312) \\ \text{C}(312) \\ \text{C}(312) \\ \text{C}(312) \\ \text{C}(313) \\ \text{C}(411) \\ \text{C}(412) \\ \text{C}(443) \\ \text{C}(443) \\ \text{C}(443) \\ \text{C}(412) \\ \text{C}(443) \\ \text{C}(443) \\ \text{C}(412) \\ \text{C}(443) \\ \text{C}(443) \\ \text{C}(412) \\ \text{C}(443) \\ \text{C}(4$	$\begin{array}{c} 51(1)\\ 43(1)\\ 57(1)\\ 51(1)\\ 51(1)\\ 51(1)\\ 44(1)\\ 58(1)\\ 42(1)\\ 79(1)\\ 58(1)\\ 70(1)\\ 81(1)\\ 52(2)\\ 68(2)\\ 84(3)\\ 66(2)\\ 51(2)\\ 56(2)\\ 76(3)\\ 66(3)\\ 44(2)\\ 64(2)\\ 64(2)\\ 64(2)\\ 64(2)\\ 104(3)\\ 120(4)\\ 64(2)\\ 89(3)\\ 81(3)\\ 103(4)\\ 103(4)\\ 105(4)\\ 114(4)\\ 76(3)\\ 178(6)\\ 178(6)\\ 178(6)\\ 178(6)\\ 178(6)\\ 178(6)\\ 178(6)\\ 188(2$	$\begin{array}{c} 45(1)\\ 54(1)\\ 48(1)\\ 54(1)\\ 48(1)\\ 54(1)\\ 44(1)\\ 57(1)\\ 44(1)\\ 56(1)\\ 62(1)\\ 85(1)\\ 72(1)\\ 65(1)\\ 57(3)\\ 68(3)\\ 56(3)\\ 63(3)\\ 75(3)\\ 54(2)\\ 55(3)\\ 93(4)\\ 103(4)\\ 72(3)\\ 66(3)\\ 67(3)\\ 74(3)\\ 66(3)\\ 67(3)\\ 74(3)\\ 66(3)\\ 67(3)\\ 74(3)\\ 66(3)\\ 67(3)\\ 74(3)\\ 66(3)\\ 67(3)\\ 75(3)\\ 103(4)\\ 72(3)\\ 66(3)\\ 67(3)\\ 75(3)\\ 103(4)\\ 72(3)\\ 66(4)\\ 95(3)\\ 75(3)\\ 105(4)\\ 102(4)\\ 68(4)\\ 151(5)\\ 123(5)\\ 124(5)\\ 124(5)\\ 123(5)$	$\begin{array}{c} 38(1)\\ 39(1)\\ 37(1)\\ 36(1)\\ 41(1)\\ 39(1)\\ 37(1)\\ 40(1)\\ 58(1)\\ 57(1)\\ 66(1)\\ 80(1)\\ 40(2)\\ 35(2)\\ 56(2)\\ 68(3)\\ 56(2)\\ 44(2)\\ 59(2)\\ 72(3)\\ 56(2)\\ 44(2)\\ 59(2)\\ 72(3)\\ 57(2)\\ 39(2)\\ 45(2)\\ 37(2)\\ 52(2)\\ 75(3)\\ 59(2)\\ 45(2)\\ 37(2)\\ 52(2)\\ 75(3)\\ 59(2)\\ 46(2)\\ 51(2)\\ 80(3)\\ 48(2)\\ 35(2)\\ 129(5)\\ 84(3)\\ 87(3)\\ 77(3)\\ 81(3)\\ 140(5)\\ 120(4)\\ 148(5)\\ 95(3)\\ 145(5)\\ 168(5)\\ 114(4)\\ \end{array}$	$\begin{array}{c} 0 (1) \\ 11(1) \\ 6(1) \\ -2(1) \\ 6(1) \\ 5(1) \\ 1(1) \\ 3(1) \\ -5(1) \\ 14(1) \\ 14(1) \\ 14(1) \\ -11(1) \\ -2(2) \\ -1(2) \\ -20(2) \\ 5(2) \\ 0(2) \\ 15(2) \\ 21(2) \\ 15(2) \\ 21(2) \\ 15(2) \\ 21(2) \\ 15(2) \\ 21(2) \\ 16(2) \\ 4(2) \\ 7(2) \\ 21(2) \\ 16(2) \\ 4(2) \\ 7(2) \\ 21(2) \\ 16(2) \\ -35(3) \\ -23(2) \\ -6(3) \\ -26(3) \\ 9(2) \\ -10(3) \\ -2(3) \\ 60(4) \\ -6(3) \\ 37(4) \\ 46(3) \\ 4(4) \\ -39(3) \\ -11(3) \\ \end{array}$	$\begin{array}{c} 1 (1) \\ 5 (1) \\ 13 (1) \\ 10 (1) \\ 6 (1) \\ 10 (1) \\ 8 (1) \\ 0 (1) \\ 8 (1) \\ 0 (1) \\ 33 (1) \\ -5 (2) \\ -11 (2) \\ -14 (2) \\ -14 (2) \\ -14 (2) \\ -14 (2) \\ 11 (2) \\ 14 (2) \\ 12 (2) \\ 20 (2) \\ 17 (2) \\ 32 (2) \\ 20 (2) \\ 17 (2) \\ 35 (2) \\ 20 (2) \\ 17 (2) \\ 35 (2) \\ 57 (3) \\ 29 (2) \\ 14 (2) \\ 18 (2) \\ 23 (2) \\ 33 (2) \\ 9 (2) \\ 14 (2) \\ 13 (2) \\ 23 (2) \\ 33 (2) \\ 9 (2) \\ 14 (2) \\ 13 (2) \\ 23 (2) \\ 33 (2) \\ 9 (2) \\ 17 (3) \\ 24 (2) \\ -3 (2) \\ 17 (3) \\ 12 (3) \\ 69 (3) \\ 24 (3) \\ 76 (4) \\ 87 (4) \\ \end{array}$	$\begin{array}{c} 4(1) \\ -1(1) \\ 4(1) \\ -4(1) \\ 4(1) \\ -3(1) \\ 2(1) \\ 0(1) \\ 24(1) \\ -19(1) \\ 24(1) \\ -19(1) \\ 24(1) \\ -25(1) \\ 11(2) \\ 16(2) \\ 15(2) \\ -14(2) \\ 0(2) \\ -5(2) \\ 8(2) \\ 24(2) \\ -10(2) \\ -5(2) \\ 8(2) \\ 24(2) \\ -10(2) \\ -8(2) \\ 20(2) \\ 25(2) \\ -10(3) \\ -12(2) \\ -12(2) \\ 3(2) \\ 20(2) \\ 25(2) \\ -10(3) \\ -12(2) \\ -12(2) \\ 3(2) \\ 20(2) \\ 25(2) \\ -10(3) \\ -12(2) \\ -18(2) \\ 46(3) \\ 36(3) \\ 0(3) \\ 1(3) \\ -37(3) \\ 6(3) \\ 54(3) \\ 60(3) \\ -2(3) \\ -50(3) \\ -69(4) \end{array}$

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

<u>Anhang A.7</u> : Strukturdaten von $[{Cp}^{=}Fe]_2(\mu-\eta^{4:4}P_4]$ (13d)

Tabelle A.7.1 Kristalldaten und Strukturverfeinerung

	8	(Fe1)
Summenformel	$C_{22}H_{42}Fe_2P_4Si_4$	P3 - P4
Molmasse	654.50	(P2 P1)
Temperatur	293(2) K	Fe2
Strahlung	ΜοΚα	
Wellenlänge	0.71073 Å	
Scanmodus	Phi-Oszillation	Si21
Kristallsystem	Triklin	<u>ک</u>
Raumgruppe	PĪ	Ŏ
Zelldimensionen	a = 7.0698(6) Å	$\alpha = 82.933(11)^{\circ}$
	b = 12.2162(11) Å	$\beta = 87.659(10)^{\circ}$
	c = 20.3485(18) Å	$\gamma = 74.191(10)^{\circ}$
Zellvolumen	$1678.1(3) \text{ Å}^3$	
Formeleinheiten pro Zelle Z	2	
Berechnete Dichte	1.295 Mg/m^3	
Absorptionskoeffizient	1.208 mm^{-1}	
Kristallgröße	0.24 x 0.22 x 0.08 mm	
Gemessener θ-Bereich	2.82 bis 25.68°	
Anzahl der gemessenen Reflexe	23666	
Unabhängige Reflexe	5979 (Rint = 0.0735)	
Absorptionskorrektur	Analytical (ABST/PLATON 98)	
Max. und min. Transmission	0.90976 und 0.75713	
Diffraktometer	Stoe IPDS	
Strukturlösung	Direkte Methoden	
Strukturlösungsprogramm	SHELXS-97 (Sheldrick, 1990)	
Strukturverfeinerung	Vollmatrix Least-Squares gegen F	²
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)	
Daten / Restraints / Parameter	5979 / 12 / 301	
Endgültige R-Werte $[I \ge 2\sigma(I)]$	R1 = 0.0322, $wR2 = 0.0614$	
R-Werte (alle Daten)	R1 = 0.0658, $wR2 = 0.0678$	
Wichtungsschema	$w=1/[\sigma^{2}(Fo^{2})+(0.0270P)^{2}+0.0000$	P] mit P= $(Fo^2 + 2Fc^2)/3$
GooF (alle Daten)	0.827	
Größtes Maximum und Minimum	0.352 und -0.299 eÅ ⁻³	

Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) bzw. der 1.2-fache Wert (Cp-H) des äquivalenten isotropen Temperaturfaktors desjenigen C-Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Tabelle A.7.2
Atomkoordinaten [x 10 ⁴] und äquivalente isotrope Auslenkungsparameter [Å ² x 10 ³]
U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	x	У	Z	U(eq)
Fe(1)	7820(1)	-32(1)	2872(1)	39(1)
Fe(2)	5606(1)	2040(1)	2569(1)	39(1)
P(1)	4539(1)	435(1)	2724(1)	62(1)
P(2)	5450(2)	953(1)	3569(1)	70(1)
P(3)	8374(2)	1574(1)	3235(1)	66(1)
P(4)	8735(1)	1388(1)	2231(1)	56(1)
Si(11)	8669(2)	-1814(1)	1486(1)	63(1)
Si(12)	8009(2)	-1980(1)	4385(1)	55(1)
Si(21)	4347(2)	2708(1)	802(1)	80(1)
Si(22)	5457(2)	4726(1)	3201(1)	56(1)
C(11)	8950(5)	-1488(2)	2344(2)	48(1)
C(12)	7872(5)	-1763(2)	2922(1)	45(1)
C(13)	8732(5)	-1583(2)	3512(2)	45(1)
C(14)	10370(5)	-1173(2)	3285(2)	51(1)
C(15)	10489(5)	-1118(2)	2586(2)	51(1)
C(21)	4278(5)	3010(2)	1678(2)	53(1)
C(22)	5423(5)	3599(2)	1986(2)	47(1)
C(23)	4715(4)	3824(2)	2638(2)	43(1)
C(24)	3095(5)	3348(2)	2733(2)	53(1)
C(25)	2808(5)	2867(2)	2161(2)	58(1)
C(111)	10426(8)	-3233(3)	1388(2)	110(2)
C(112)	9318(8)	-714(4)	873(2)	98(2)
C(113)	6125(7)	-1904(4)	1387(2)	93(1)
C(121)	5347(6)	-1894(3)	4426(2)	77(1)
C(122)	9477(8)	-3483(3)	4622(2)	110(2)
C(123)	8646(7)	-1050(4)	4944(2)	92(1)
C(211)	6789(8)	2688(4)	447(2)	121(2)
C(212)	3762(9)	1333(4)	765(2)	118(2)
C(213)	2472(10)	3902(4)	349(3)	149(3)
C(221)	5245(9)	4155(4)	4081(2)	116(2)
C(222)	3728(6)	6172(3)	3039(2)	86(L)
C(223)	/982(/)	4810(4)	2994(3)	IIU(2)

Tabelle A.7.3 Bindungslängen [Å] und -winkel [°]

Fe(1)-C(14)	2.090(3)		P(3)-P(4)	2.0804(15)	
Fe(1)-C(15)	2.096(3)		Si(11)-C(11)	1.869(3)	
Fe(1)-C(12)	2.094(3)		Si(11)-C(112)	1.857(4)	
Fe(1)-C(13)	2.121(3)		Si(11)-C(113)	1.852(5)	
Fe(1) - C(11)	2.139(3)		Si(11)-C(111)	1.864(4)	
Fe(1) - P(1)	2.2562(11)		Si(12) - C(121)	1.855(4)	
Fe(1) - P(4)	2.2619(9)		Si(12)-C(122)	1.862(4)	
Fe(1) - P(3)	2.3133(10)		Si(12)-C(13)	1.870(3)	
Fe(1) - P(2)	2.3233(10)		Si(12)-C(123)	1.851(4)	
Fe(1)-Fe(2)	2.6027(6)		Si(21)-C(21)	1.861(3)	
Fe(2) - C(24)	2.086(3)		Si(21)-C(212)	1.847(5)	
Fe(2)-C(22)	2.091(3)		Si(21)-C(213)	1.858(4)	
Fe(2)-C(23)	2.118(2)		Si(21)-C(211)	1.839(5)	
Fe(2)-C(25)	2.113(3)		Si(22)-C(23)	1.864(3)	
Fe(2)-C(21)	2.140(3)		Si(22)-C(223)	1.845(5)	
Fe(2) - P(4)	2.2477(9)		Si(22)-C(222)	1.854(3)	
Fe(2)-P(1)	2.2696(10)		Si(22)-C(221)	1.856(4)	
Fe(2)-P(2)	2.3040(10)		C(11)-C(15)	1.413(5)	
Fe(2)-P(3)	2.3250(11)		C(11) - C(12)	1.429(4)	
P(1) - P(2)	2.0854(16)		C(12) - C(13)	1.435(4)	
P(2)-P(3)	2.4344(17)		C(13)-C(14)	1.422(4)	
Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil	5		

C(14)-C(15) C(21)-C(22) C(21)-C(25)	1.416(4) 1.427(4) 1.432(5)		C(22)-C(23) C(23)-C(24) C(24)-C(25)	1.431(4) 1.415(4) 1.411(5)	
C(14)-Fe(1)-C(15) 39	.56(12)	C(24)-Fe(2)-P(2)	95.47(10)
C(14)-Fe(1)-C(12 C(15)-Fe(1)-C(12) 65) 65	.45(13) .00(12)	C(22)-Fe(2)-P(2 C(23)-Fe(2)-P(2	2) 2)	152.48(9) 113.00(9)
C(14)-Fe(1)-C(13 C(15)-Fe(1)-C(13)) 39) 66	.46(12) 52(12)	C(25)-Fe(2)-P(2) C(21)-Fe(2)-P(2)	2) 2)	112.96(10) 151.45(10)
C(12)-Fe(1)-C(13) 39	.80(11)	P(4)-Fe(2)-P(2))	104.13(4)
C(14) - Fe(1) - C(11) C(15) - Fe(1) - C(11)) 66	.44(12) .96(12)	P(1) - Fe(2) - P(2) C(24) - Fe(2) - P(2)) 3)	54.25(4) 122.90(10)
C(12)-Fe (1) -C (11)) 39) 67	.45(11) 47(11)	C(22)-Fe(2)-P(2)	3)	109.35(10) 98.11(9)
C(13) $Pe(1)$ $C(11)C(14)$ - $Pe(1)$ - $P(1)$, 149	.44(10)	C(25) - Fe(2) - P(2)	3)	162.12(10)
C(15)-Fe(1)-P(1) C(12)-Fe(1)-P(1)	143 88	.24(10) .86(9)	C(21)-Fe(2)-P(2) P(4)-Fe(2)-P(3)	3))	144.74(10) 54.09(4)
C(13)-Fe(1)-P(1)	110	.03(9)	P(1) - Fe(2) - P(3))	103.45(4)
C(11) - Fe(1) - P(1) C(14) - Fe(1) - P(4)	104	.39(10)	C(24)-Fe(2)-Fe(3)) (1)	150.37(9)
C(15)-Fe (1) -P $(4)C(12)$ -Fe (1) -P (4)	86 142	.26(9) 77(8)	C(22)-Fe(2	(1)	144.27(9) 153 65(9)
C(12) $PC(1)$ $P(1)C(13)$ -Fe(1)-P(4)	146	.85(9)	C(25)-Fe(2)-Fe	(1)	138.80(9)
C(11)-Fe(1)-P(4) P(1)-Fe(1)-P(4)	103 103	.39(9) .10(4)	C(21)-Fe(2)-Fe P(4)-Fe(2)-Fe(2)	(1) 1)	134.68(8) 55.00(2)
C(14) - Fe(1) - P(3)	95	.30(9)	P(1)-Fe(2)-Fe(2)	1)	54.65(3)
C(12) - Fe(1) - P(3) C(12) - Fe(1) - P(3)	109	.13(9)	P(2) - Fe(2) - Fe(2) P(3) - Fe(2) - Fe(2)	1)	55.65(2)
C(13)-Fe(1)-P(3) C(11)-Fe(1)-P(3)	116 146	.33(9)	P(2)-P(1)-Fe(1) P(2)-P(1)-Fe(2))	64.57(4) 63.72(4)
P(1)-Fe(1)-P(3)	104	.26(4)	Fe(1) - P(1) - Fe(2)	2)	70.21(3)
P(4) - Fe(1) - P(3) C(14) - Fe(1) - P(2)	54 118	.08(4) .93(9)	P(1)-P(2)-Fe(2) P(1)-P(2)-Fe(1))	62.04(4) 61.28(4)
C(15)-Fe(1)-P(2) C(12)-Fo(1)-P(2)	158 112	.39(10)	Fe(2)-P(2)-Fe(2)	1)	68.45(3)
C(12)-Fe(1)-P(2) C(13)-Fe(1)-P(2)	97	.28(8)	Fe(2)-P(2)-P(3) Fe(2)-P(2)-P(3))	58.69(4)
C(11)-Fe(1)-P(2) P(1)-Fe(1)-P(2)	149 54	.40(10)	Fe(1)-P(2)-P(3 P(4)-P(3)-Fe(1)	58.13(3) 61.70(4)
P(4) - Fe(1) - P(2)	103	.06(3)	P(4) - P(3) - Fe(2))	61.06(4)
P(3)-Fe(1)-P(2) C(14)-Fe(1)-Fe(2)	63) 151	.34(4) .08(9)	Fe(1)-P(3)-Fe(2) P(4)-P(3)-P(2)	2)	68.27(3) 105.08(5)
C(15)-Fe(1)-Fe(2 C(12)-Fe(1)-Fe(2) 139	.96(9)	Fe(1)-P(3)-P(2))	58.53(3) 57.85(4)
C(12)-Fe(1)-Fe(2 C(13)-Fe(1)-Fe(2) 152	.66(8)	P(3)-P(4)-Fe(2))	64.85(4)
C(11)-Fe(1)-Fe(2) P(1)-Fe(1)-Fe(2)) 134 55	.96(9) .14(3)	P(3)-P(4)-Fe(1 Fe(2)-P(4)-Fe(1) 1)	64.22(4) 70.50(3)
P(4)-Fe(1)-Fe(2)	54	.50(3)	C(11)-Si(11)-C	(112)	109.86(18)
P(3) - Fe(1) - Fe(2) P(2) - Fe(1) - Fe(2)	56 55	.08(3) .42(3)	C(11)-Si(11)-C C(112)-Si(11)-C	(113) C(113)	108.81(17) 112.6(2)
C(24)-Fe (2) -C $(22)C(24)$ -Fe (2) -C (23)) 65) 39	.19(12)	C(11)-Si(11)-C C(112)-Si(11)-C	(111)	107.47(18) 108.6(2)
C(22)-Fe(2)-C(23) 39	.74(11)	C(112) SI(11) -(C(111)	109.3(2)
C(24) - Fe(2) - C(25) C(22) - Fe(2) - C(25)) 39) 65	.27(13) .06(13)	C(121)-Si(12)- C(121)-Si(12)-	C(122) C(13)	110.0(2) 109.81(16)
C(23)-Fe(2)-C(25	66	.43(12)	C(122) - Si(12) - C(121) - Si(12) - C(121) - Si(12) - S	C(13)	106.20(17)
C(24)-Fe(2)-C(21) C(22)-Fe(2)-C(21)) 39	.39(12)	C(121) - SI(12) - C(122) - SI(12) - C(122) - SI(12) - C(122) - SI(12) - C(12) - C(12	C(123)	108.7(2)
C(23)-Fe (2) -C $(21)C(25)$ -Fe (2) -C (21)) 67) 39	.51(11) .34(13)	C(13)-Si(12)-C C(21)-Si(21)-C	(123) (212)	110.44(17) 109.58(19)
C(24) - Fe(2) - P(4)	, 152	.73(10)	C(21)-Si(21)-C	(213)	106.98(19)
C(22)-Fe(2)-P(4) C(23)-Fe(2)-P(4)	89 114	.51(9)	C(212)-Si(21)-C C(21)-Si(21)-C	C(213) (211)	110.4(3) 109.0(2)
C(25)-Fe(2)-P(4)	139	.19(11)	C(212)-Si(21)-(C(211)	111.6(2)
C(24) - Fe(2) - P(4) C(24) - Fe(2) - P(1)	103	.69(10)	C(213) - SI(21) - C(23) - SI(22) - C	(223)	109.51(17)
C(22)-Fe(2)-P(1) C(23)-Fe(2)-P(1)	146 142	.08(10) .77(9)	C(23)-Si(22)-C C(223)-Si(22)-C	(222) C(222)	106.00(16) 109.4(2)
C(25)-Fe(2)-P(1)	85	.95(9)	C(23)-Si(22)-C	(221)	110.91(19)
C(21)-Fe(2)-P(1) P(4)-Fe(2)-P(1)	106 103	.12(3)	C(223)-Si(22)- C(222)-Si(22)-	C(221) C(221)	111.3(3) 109.5(2)
Einleitung Problemstellung	Eigene Ergebnisse	Experimenteller Teil	Zusammenfassung	Literatur	Anhang

$\begin{array}{c} C(15)-C(11)-C(12)\\ C(15)-C(11)-Si(11)\\ C(12)-C(11)-Fe(1)\\ C(12)-C(11)-Fe(1)\\ C(12)-C(11)-Fe(1)\\ C(11)-C(12)-C(13)\\ C(11)-C(12)-Fe(1)\\ C(13)-C(12)-Fe(1)\\ C(13)-C(12)-Fe(1)\\ C(14)-C(13)-Si(12)\\ C(14)-C(13)-Si(12)\\ C(14)-C(13)-Fe(1)\\ C(12)-C(13)-Fe(1)\\ C(12)-C(13)-Fe(1)\\ C(12)-C(13)-Fe(1)\\ C(13)-C(14)-Fe(1)\\ C(13)-C(14)-Fe(1)\\ C(15)-C(14)-Fe(1)\\ C(15)-C(14)-Fe(1)\\ C(11)-C(15)-Fe(1)\\ C(14)-C(15)-Fe(1)\\ C(12)-C(21)-Fe(2)\\ C(22)-C(21)-Fe(2)\\ C(22)-C(21)-Fe(2)\\ C(23)-C(22)-Fe(2)\\ C(23)-C(22)-Fe(2)\\ C(24)-C(23)-Fe(2)\\ C(22)-C(23)-Fe(2)\\ C(23)-C(24)-C(25)\\ \end{array}$	$\begin{array}{c} 104.8(3)\\ 127.3(2)\\ 127.0(3)\\ 68.87(16)\\ 68.87(16)\\ 68.56(15)\\ 134.87(16)\\ 111.4(3)\\ 71.99(16)\\ 71.12(15)\\ 104.7(3)\\ 128.3(2)\\ 126.6(2)\\ 69.09(16)\\ 69.08(15)\\ 131.16(14)\\ 109.2(3)\\ 71.45(17)\\ 70.44(17)\\ 110.0(3)\\ 72.18(17)\\ 70.00(16)\\ 104.5(3)\\ 128.7(3)\\ 126.0(3)\\ 68.46(17)\\ 69.30(18)\\ 133.64(15)\\ 111.8(3)\\ 72.15(17)\\ 71.13(15)\\ 104.5(3)\\ 126.1(2)\\ 128.8(2)\\ 69.13(15)\\ 69.13(14)\\ 132.22(15)\\ 110.2(3)\\ \end{array}$
C(24)-C(23)-Fe(2) C(22)-C(23)-Fe(2) Si(22)-C(23)-Fe(2) C(23)-C(24)-C(25) C(23)-C(24)-Fe(2) C(25)-C(24)-Fe(2) C(25)-C(24)-Fe(2) C(24)-C(25)-C(21) C(24)-C(25)-Fe(2) C(21)-C(25)-Fe(2)	69.13(15) 69.13(14) 132.22(15) 110.2(3) 71.54(16) 71.38(17) 109.0(3) 69.34(18) 71.35(19)

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Tabelle A.7.4 Anisotrope Auslenkungsparameter [Å ²	x 10 ³]
Der Exponent des anisotropen Auslenkungsfaktors hat di	e Form: $-2\pi^2 [(ha^*)^2 U_{11} + + 2hka^*b^*U_{12}]$

	U ₁₂	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃
	20(1)	21 (1)		2 (1)		0(1)
Fe(I)	38(1)	$3 \perp (\perp)$	4/(1)	-3(1)	$-\perp(\perp)$	-9(1)
Fe(2)	34(1)	33(1)	49(1)	$-\perp(\perp)$	$-\perp(\perp)$	-9(1)
P(I)	39(1)	44(1)	103(1)	5(1)	$-\perp(\perp)$	-18(1)
P(2)	86(I) 70(1)	49(1) 20(1)	58(1)	3(1)	23(1)	3(1)
P(3)	70(1)	38(1)	88(1)	-11(1)	-35(1)	-6(1)
P(4)	37(1)	41(1)	88(1)	4(1)	9(1)	-12(1)
S1(11)	85(1)	56(1)	50(1)	-13(1)	8(1)	-19(1)
Si(12)	73(1)	44(1)	47(1)	2(1)	-9(1)	-15(1)
Si(21)	111(1)	60(1)	60(1)	-2(1)	-27(1)	-9(1)
Si(22)	55(1)	40(1)	68(1)	-12(1)	-7(1)	-3(1)
C(11)	55(2)	37(1)	51(2)	-9(1)	3(2)	-9(1)
C(12)	52(2)	34(1)	49(2)	-5(1)	-1(2)	-13(1)
C(13)	49(2)	29(1)	52(2)	-2(1)	-4(2)	-7(1)
C(14)	43(2)	36(2)	70(2)	-7(1)	-11(2)	-2(1)
C(15)	48(2)	34(1)	65(2)	-6(1)	9(2)	-4(1)
C(21)	53(2)	40(2)	60(2)	1(1)	-14(2)	-8(1)
C(22)	42(2)	36(1)	58(2)	5(1)	-5(2)	-9(1)
C(23)	36(2)	33(1)	58(2)	-4(1)	-1(2)	-5(1)
C(24)	37(2)	44(2)	71(2)	0(2)	2(2)	-2(1)
C(25)	34(2)	46(2)	92(3)	-2(2)	-16(2)	-9(1)
C(111)	154(5)	77(3)	86(3)	-36(2)	6(3)	2(3)
C(112)	136(4)	94(3)	69(3)	-2(2)	19(3)	-45(3)
C(113)	115(4)	107(3)	73(3)	-14(2)	-13(3)	-55(3)
C(121)	83(3)	91(3)	63(2)	5(2)	3(2)	-41(2)
C(122)	141(5)	64(2)	96(3)	27(2)	1(3)	3(3)
C(123)	125(4)	103(3)	63(3)	-24(2)	-13(2)	-48(3)
C(211)	161(6)	121(4)	78(3)	-2(3)	21(3)	-42(4)
C(212)	162(6)	95(3)	110(4)	-33(3)	-29(4)	-42(3)
C(213)	203(6)	104(4)	106(4)	-8(3)	-79(4)	23(4)
C(221)	190(6)	90(3)	67(3)	-9(2)	-16(3)	-33(3)
C(222)	87(3)	47(2)	117(4)	-26(2)	-14(3)	1(2)
C(223)	67(3)	95(3)	179(5)	-58(3)	2(3)	-26(2)

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Anhang A.8 : Strukturdaten von [{ $Cp^{=}Fe$ }₂(μ_3 - $\eta^{4:4:1:1}$ -P₄){ $Cp^{=}Co$ }] (14)

	Ť.
Tabelle A.8.1 Kristalldaten und	Strukturverfeinerung
Second on formula	
Molmasse	$C_{33}\Pi_{63}C_{0}\Gamma e_{2}\Gamma_{4}S_{16}$
Temperatur	202(2) K
Strahlung	
Wallanlänga	
Seenmodus	0.71073 A Si
Vristallaystom	Trillin
Paumgruppe	
Zalldimansionan	$a = 11 4441(0)$ Å $\alpha = 70 102(0)^{0}$
Zenamensionen	a = 11.4441(9) A $a = -19.193(9)b = 14.7220(11) \text{ Å} B = 95.965(0)^{0}$
	$b = 14.7530(11) \text{ A}$ $\beta = 65.803(9)$
Zellereleneen	$c = 14.8482(12) \text{ A}$ $\gamma = 72.784(9)^{2}$
Zenvolumen	2348.3(3) A
Porcebnote Dichte	$\frac{2}{1.305}$ Mg/m ³
Absorptionskooffizient	1.303 Mg/III 1.270 mm ⁻¹
Kristallaröße	$0.65 \times 0.45 \times 0.12 \text{ mm}$
Comassanar O Darajah	$2.70 \text{ bis } 26.02^{\circ}$
Anzahl dar gamassanan Baflaya	2.79 018 20.02
Unabhängiga Daflava	9575 (Dint = 0.0595)
Absorptionskorrektur	A nelytisch (ABST/DLATON 08)
Max und min Transmission	0 86110 und 0 57028
Diffraktometer	Stoe IPDS
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SHELXS-97 (Sheldrick 1990)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F^2
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick 1997)
Daten / Restraints / Parameter	8575 / 0 / 433
Endgültige R-Werte $[I > 2\sigma(I)]$	$R_1 = 0.0303$, $wR_2 = 0.0724$
R-Werte (alle Daten)	R1 = 0.0398, $wR2 = 0.0756$
Wichtungsschema	$w=1/[\sigma^{2}(Fo^{2})+(0.0470P)^{2}+0.0000P]$ mit P=(Fo^{2}+2Fc^{2})/3
GooF (alle Daten)	0.966
Größtes Maximum und Minimum	0.390 und -0.258 eÅ ⁻³

Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) bzw. der 1.2-fache Wert (Cp-H) des äquivalenten isotropen Temperaturfaktors desjenigen C- Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Tabelle A.8.2
Atomkoordinaten [x 10^4] und äquivalente isotrope Auslenkungsparameter [Å ² x 10^3]
U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	x	У	Z	U(eq)	
$G_{2}(1)$	E001/1\	6100/1)	2146/1)	22(1)	
CO(1) Eo(1)	5881(1) 4015(1)	6190(1) 7007(1)	2146(1) 2767(1)	33(1)	
Fe(1) Fo(2)	4013(1) 1000(1)	7007(1)	2707(1) 745(1)	25(1)	
P(1)	3936(1)	6872(1)	2075(1)	37(1)	
P(2)	3362(1)	8444(1)	1589(1)	44(1)	
D(3)	5002(1)	8833(1)	1357(1)	44(1)	
P(4)	6466(1)	7465(1)	1712(1)	38(1)	
Si(11)	6771(1)	8991(1)	3708(1)	56(1)	
Si(12)	1892(1)	8455(1)	4030(1)	60(1)	
Si(21)	2105(1)	8089(1)	-563(1)	52(1)	
Si(22)	7390(1)	7731(1)	-901(1)	48(1)	
Si(31)	9066(1)	5255(1)	3015(1)	50(1)	
Si(32)	4404(1)	4303(1)	3049(1)	43(1)	
C(11)	4288(2)	8831(2)	3645(2)	43(1)	
C(12)	5569(2)	8350(2)	3749(1)	42(1)	
C(13)	5660(2)	7357(2)	4033(1)	43(1)	
C(14)	4471(2)	7237(2)	4116(1)	43(1)	
C(15)	3596(2)	8149(2)	3883(2)	44(1)	
C(21)	4701(2)	8127(2)	-635(1)	42(1)	
C(22)	3797(2)	7624(2)	-389(1)	44(1)	
C(23)	4469(2)	6642(2)	-85(1)	45(1)	
C(24)	5740(2)	6553(2)	-166(1)	42(1)	
C(25)	5909(2)	7474(2)	-510(1)	42(1)	
C(31)	6550(2)	5015(2)	3196(1)	39(1)	
C(32)	7560(2)	5201(2)	2650(2)	41(1)	
C(33)	7328(2)	5103(2)	1742(2)	43(1)	
C(34)	6231(2)	4858(2)	1750(2)	42(1)	
C(35)	5/21(2)	4/91(2)	2661(1)	39(1)	
C(111)	7496(4)	8616(3) 10201(2)	4850(2)	100(1)	
C(112)	0013(4) 7095(2)	10301(3)	3484(4)	$\pm 37(2)$	
C(121)	1552(1)	0/U9(3) 8558(1)	2029(2) 5256(2)	シン(エ) 115(2)	
C(122)	1151(3)	9624(3)	2200(2)	97(1)	
C(123)	1320(3)	7483(3)	3779(3)	100(1)	
C(211)	1573(3)	9406(3)	-594(3)	88(1)	
C(212)	1809(3)	7837(3)	-1692(2)	85(1)	
C(213)	1311(3)	7442(4)	357(3)	105(2)	
C(221)	7652(3)	8711(2)	-401(2)	70(1)	
C(222)	7316(3)	8110(3)	-2175(2)	80(1)	
C(223)	8647(2)	6596(2)	-609(2)	67(1)	
C(311)	9799(3)	5902(3)	2053(2)	77(1)	
C(312)	10006(3)	3975(3)	3333(3)	88(1)	
C(313)	8913(3)	5850(3)	4032(2)	77(1)	
C(321)	3308(3)	4581(2)	2107(2)	63(1)	
C(322)	5041(3)	2968(2)	3367(2)	73(1)	
C(323)	3631(3)	4816(2)	4056(2)	62(1)	

Tabelle A.8.3 Bindungslängen [Å] und -winkel [°]

$\begin{array}{c} Co(1)-C(34)\\ Co(1)-C(33)\\ Co(1)-C(31)\\ Co(1)-C(35)\\ Co(1)-C(32)\\ Co(1)-P(4)\\ Co(1)-P(1) \end{array}$	2.072(2) 2.077(2) 2.095(2) 2.117(2) 2.124(2) 2.1489(7) 2.1555(6)		Co(1)-Fe(2) Co(1)-Fe(1) Fe(1)-C(13) Fe(1)-C(14) Fe(1)-C(11) Fe(1)-C(15) Fe(1)-C(12)	2.6009(5) 2.6379(5) 2.080(2) 2.078(2) 2.103(2) 2.123(2) 2.129(2)	
Einleitung Problemstellung	Eigene Ergebnisse	Experimenteller Teil	Zusammenfassung	Literatur	Anhang

$\begin{array}{l} {\rm Fe}(1) - {\rm P}(1) \\ {\rm Fe}(1) - {\rm P}(2) \\ {\rm Fe}(1) - {\rm P}(3) \\ {\rm Fe}(2) - {\rm C}(23) \\ {\rm Fe}(2) - {\rm C}(24) \\ {\rm Fe}(2) - {\rm C}(21) \\ {\rm Fe}(2) - {\rm C}(22) \\ {\rm Fe}(2) - {\rm C}(22) \\ {\rm Fe}(2) - {\rm C}(22) \\ {\rm Fe}(2) - {\rm P}(1) \\ {\rm Fe}(2) - {\rm P}(4) \\ {\rm Fe}(2) - {\rm P}(2) \\ {\rm Fe}(2) - {\rm P}(3) \\ {\rm P}(1) - {\rm P}(2) \\ {\rm P}(3) - {\rm P}(4) \\ {\rm Si}(11) - {\rm C}(112) \\ {\rm Si}(11) - {\rm C}(111) \\ {\rm Si}(11) - {\rm C}(112) \\ {\rm Si}(12) - {\rm C}(123) \\ {\rm Si}(12) - {\rm C}(123) \\ {\rm Si}(12) - {\rm C}(121) \\ {\rm Si}(21) - {\rm C}(213) \\ {\rm Si}(21) - {\rm C}(213) \\ {\rm Si}(21) - {\rm C}(211) \\ {\rm Si}(21) - {\rm C}(211) \\ {\rm Si}(21) - {\rm C}(212) \\ $	2.3376(6) 2.3640(7) 2.3631(7) 2.076(2) 2.079(2) 2.091(2) 2.115(2) 2.124(2) 2.3544(7) 2.3615(6) 2.3641(7) 2.3030(9) 2.1185(9) 2.2017(9) 1.843(4) 1.847(4) 1.857(3) 1.877(2) 1.846(4) 1.872(2) 1.846(4) 1.872(2) 1.846(4) 1.872(2) 1.846(4) 1.872(2) 1.846(4) 1.859(3)		$\begin{array}{c} \mathrm{Si}(22) - \mathrm{C}(221)\\ \mathrm{Si}(22) - \mathrm{C}(223)\\ \mathrm{Si}(22) - \mathrm{C}(22)\\ \mathrm{Si}(22) - \mathrm{C}(222)\\ \mathrm{Si}(31) - \mathrm{C}(32)\\ \mathrm{Si}(31) - \mathrm{C}(312)\\ \mathrm{Si}(31) - \mathrm{C}(313)\\ \mathrm{Si}(31) - \mathrm{C}(313)\\ \mathrm{Si}(32) - \mathrm{C}(321)\\ \mathrm{Si}(32) - \mathrm{C}(321)\\ \mathrm{Si}(32) - \mathrm{C}(323)\\ \mathrm{Si}(32) - \mathrm{C}(322)\\ \mathrm{C}(11) - \mathrm{C}(12)\\ \mathrm{C}(11) - \mathrm{C}(12)\\ \mathrm{C}(11) - \mathrm{C}(15)\\ \mathrm{C}(12) - \mathrm{C}(13)\\ \mathrm{C}(13) - \mathrm{C}(14)\\ \mathrm{C}(14) - \mathrm{C}(15)\\ \mathrm{C}(21) - \mathrm{C}(25)\\ \mathrm{C}(21) - \mathrm{C}(25)\\ \mathrm{C}(21) - \mathrm{C}(25)\\ \mathrm{C}(23) - \mathrm{C}(24)\\ \mathrm{C}(24) - \mathrm{C}(25)\\ \mathrm{C}(31) - \mathrm{C}(35)\\ \mathrm{C}(31) - \mathrm{C}(32)\\ \mathrm{C}(32) - \mathrm{C}(34)\\ \mathrm{C}(34) - \mathrm{C}(35)\\ \end{array}$	$\begin{array}{c} 1.848(3)\\ 1.857(3)\\ 1.874(2)\\ 1.870(3)\\ 1.872(2)\\ 1.865(3)\\ 1.857(3)\\ 1.856(3)\\ 1.852(3)\\ 1.852(3)\\ 1.866(2)\\ 1.851(3)\\ 1.436(3)\\ 1.436(3)\\ 1.436(3)\\ 1.419(3)\\ 1.417(3)\\ 1.417(3)\\ 1.417(3)\\ 1.427(3)\\ 1.427(3)\\ 1.427(3)\\ 1.425(3)\\ 1.422(3)\\ 1.432(3)\\ 1.432(3)\\ \end{array}$	
C(34)-Co(1)-C(33) C(34)-Co(1)-C(31) C(33)-Co(1)-C(31) C(33)-Co(1)-C(35) C(31)-Co(1)-C(35) C(31)-Co(1)-C(32) C(31)-Co(1)-C(32) C(31)-Co(1)-C(32) C(31)-Co(1)-C(32) C(31)-Co(1)-C(32) C(34)-Co(1)-P(4) C(33)-Co(1)-P(4) C(32)-Co(1)-P(4) C(32)-Co(1)-P(4) C(32)-Co(1)-P(4) C(32)-Co(1)-P(4) C(32)-Co(1)-P(4) C(32)-Co(1)-P(1) C(33)-Co(1)-P(1) C(32)-Co(1)-P(1) C(32)-Co(1)-P(1) C(33)-Co(1)-P(1) C(33)-Co(1)-Fe(2) C(31)-Co(1)-Fe(2) C(32)-Co(1)-Fe(2) P(4)-Co(1)-Fe(2) C(32)-Co(1)-Fe(2) P(4)-Co(1)-Fe(2) C(32)-Co(1)-Fe(2) P(4)-Co(1)-Fe(2) P(4)-Co(1)-Fe(2) P(4)-Co(1)-Fe(1) C(32)-Co(1)-Fe(1) C(32)-Co(1)-Fe(1) C(32)-Co(1)-Fe(1) C(32)-Co(1)-Fe(1) C(32)-Co(1)-Fe(1) C(33)-Co(1)-Fe(1) C(32)-Co(1)-Fe(1) C(33)-Co(1)-Fe(1) C(3	$ \begin{vmatrix} & 39 \\ & 65 \\ & 65 \\ & 39 \\ & 67 \\ & 39 \\ & 66 \\ & 39 \\ & 39 \\ & 136 \\ & 103 \\ & 129 \\ & 167 \\ & 136 \\ & 103 \\ & 129 \\ & 167 \\ & 199 \\ & 103 \\ & 129 \\ & 103 \\ & 129 \\ & 103 \\ & 129 \\ & 103 \\ & 103 \\ & 103 \\ & 103 \\ & 103 \\ & 103 \\ & 103 \\ & 103 \\ & 103 \\ & 103 \\ & 103 \\ & 103 \\ & 111 \\ & $.58(9) .94(9) .96(8) .95(8) .02(9) .55(8) .92(9) .88(9) .55(8) .41(9) .38(6) .40(7) .54(6) .11(6) .70(7) .86(7) .34(7) .67(6) .73(6) .21(6) .83(3) .46(6) .29(6) .33(6) .87(6) .97(6) .708(18) .45(2) .50(6) .55(7) .86(6) .32(6) .60(7) .094(18) .320(19) .112(14) .84(9) .78(9) .82(9) .71(9) .40(9)	$\begin{array}{c} C(11) - Fe(1) - C(\\ C(13) - Fe(1) - C(\\ C(14) - Fe(1) - C(\\ C(15) - Fe(1) - C(\\ C(15) - Fe(1) - P(\\ C(12) - Fe(1) - P(\\ C(13) - Fe(1) - P(\\ C(14) - Fe(1) - P(\\ C(15) - Fe(1) - P(\\ C(15) - Fe(1) - P(\\ C(12) - Fe(1) - P(\\ C(13) - Fe(1) - P(\\ C(13) - Fe(1) - P(\\ C(13) - Fe(1) - P(\\ C(15) - Fe(1) - P(\\ C(15) - Fe(1) - P(\\ C(12) - Fe(1) - P(\\ C(12) - Fe(1) - P(\\ C(13) - Fe(1) - P(\\ C(14) - Fe(1) - P(\\ C(15) - Fe(1) - P(\\ C(15) - Fe(1) - P(\\ C(12) - Fe(1) - P(\\ C(12) - Fe(1) - P(\\ C(12) - Fe(1) - P(\\ C(13) - Fe(1) - C(\\ C(14) - Fe(1) - C(\\ C(15) - Fe(1) - C(\\ C(15) - Fe(1) - C(\\ P(4) - Fe(1) - C(\\ P(3) - Fe(1) - C(\\ P(3) - Fe(1) - C(\\ C(23) - Fe(2) - C(\\ \end{array}$	15) 12) 12) 12) 12) 11) 1) 1) 1) 1) 1) 1) 1) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2	$\begin{array}{c} 39.71(9)\\ 39.39(9)\\ 66.67(9)\\ 39.56(8)\\ 67.20(8)\\ 124.47(7)\\ 96.66(7)\\ 138.65(6)\\ 102.96(6)\\ 162.83(7)\\ 163.97(6)\\ 126.11(7)\\ 103.03(7)\\ 97.31(6)\\ 136.99(7)\\ 55.88(2)\\ 103.36(6)\\ 135.32(7)\\ 132.08(7)\\ 168.55(6)\\ 101.59(6)\\ 87.29(2)\\ 92.66(2)\\ 137.62(7)\\ 165.71(7)\\ 99.99(7)\\ 127.92(7)\\ 103.92(7)\\ 93.22(2)\\ 53.04(2)\\ 55.31(2)\\ 95.41(7)\\ 99.41(7)\\ 161.16(7)\\ 133.45(7)\\ 125.15(6)\\ 50.908(17)\\ 95.16(2)\\ 50.531(18)\\ 94.83(2)\\ 39.96(9)\\ \end{array}$
Einleitung Problemstellung	Eigene Ergebnisse	Experimenteller Teil	Zusammenfassung	Literatur	Anhang

$\begin{array}{l} C(23) - Fe(2) - C(21) \\ C(24) - Fe(2) - C(25) \\ C(24) - Fe(2) - C(25) \\ C(21) - Fe(2) - C(22) \\ C(24) - Fe(2) - C(22) \\ C(24) - Fe(2) - C(22) \\ C(23) - Fe(2) - C(22) \\ C(23) - Fe(2) - C(11) \\ C(24) - Fe(2) - P(1) \\ C(25) - Fe(2) - P(1) \\ C(25) - Fe(2) - P(1) \\ C(25) - Fe(2) - P(4) \\ C(24) - Fe(2) - P(4) \\ C(25) - Fe(2) - P(2) \\ C(24) - Fe(2) - P(2) \\ C(24) - Fe(2) - P(2) \\ C(25) - Fe(2) - P(3) \\ C(25) - Fe(2) - Co(1) \\ C(21) - F(2) - Fe(2) \\ P(3) - F(2) - Fe(1) \\ P(2) - P(3) - Fe(1) \\ P(3) - P(2) - Fe(2) \\ Fe(1) - P(2) - Fe(2) \\ Fe(1) - P(2) - Fe(2) \\ Fe(1) - P(3) - Fe(2) \\ Fe(1) - F(3) - Fe(2) \\ F$.11(9) .98(9) .13(9) .59(9) .83(9) .72(9) .96(9) .68(9) .56(8) .45(7) .77(7) .56(6) .36(7) .75(6) .35(7) .37(6) .97(6) .77(6) .31(6) .94(2) .34(7) .18(6) .23(7) .85(7) .66(7) .66(2) .69(2) .70(7) .04(7) .32(7) .04(7) .32(7) .04(7) .33(2) .04(2) .10(7) .85(7) .64(7) .69(6) .32(7) .274(17) .042(18) .13(2) .810(19) .03(3) .77(2) .67(2) .28(2) .39(2) .37(2) .00(3) .88(2) .45(2) .95(2) .60(2) .62(4) .09(3) .94(2) .09(2) .48(3) .25(2)	C(112)-Si(11)- C(113)-Si(11)- C(111)-Si(11)- C(123)-Si(12)- C(123)-Si(12)- C(15)-Si(12)-C C(122)-Si(12)- C(12)-Si(12)-C C(22)-Si(21)-C C(22)-Si(21)-C C(21)-Si(21)- C(21)-Si(21)- C(21)-Si(22)- C(21)-Si(22)- C(22)-Si(22)- C(22)-Si(22)- C(22)-Si(22)- C(22)-Si(22)- C(22)-Si(22)- C(22)-Si(22)- C(22)-Si(22)- C(22)-Si(22)- C(22)-Si(22)- C(22)-Si(22)- C(22)-Si(31)- C(32)-Si(31)- C(312)-Si(31)- C(312)-Si(31)- C(312)-Si(31)- C(312)-Si(32)- C(321)-Si(32)- C(321)-Si(32)- C(321)-Si(32)- C(321)-Si(32)- C(321)-Si(32)- C(321)-Si(32)- C(321)-Si(32)- C(321)-Si(32)- C(321)-Si(32)- C(12)-C(11)-C(12)- C(12)-C(11)-Fe C(13)-C(12)-Fe C(13)-C(12)-Fe C(11)-C(12)-Fe C(11)-C(12)-Fe C(11)-C(12)-Fe C(11)-C(12)-Fe C(11)-C(12)-Fe C(11)-C(12)-Fe C(11)-C(12)-Fe C(11)-C(12)-Fe C(11)-C(12)-Fe C(11)-C(12)-Fe C(11)-C(12)-Fe C(12)-C(11)-Fe C(12)-C(11)-Fe C(12)-C(11)-Fe C(12)-C(12)-Fe C(12)-C(22)-Fe C(22)-C(21)-Fe C(22)-C(21)-Fe C(22)-C(21)-Fe C(22)-C(22)-Fe C(22)-C(21)-Fe C(22)-C(22)-Fe C(22)-C(22)-Fe C(22)-C(22)-Fe	C(12) C(12) C(12) C(12) C(12) C(12) C(121) C(121) C(121) C(211) C(211) C(211) C(212) C(212) C(222) C(222) C(222) C(222) C(222) C(222) C(222) C(222) C(312) C(313) C(311) C(311) C(311) C(311) C(311) C(311) C(32) C(32) C(32) C(3) C(108.26(15) 114.85(13) 106.59(15) 111.04(13) 111.5(2) 100.45(15) 108.3(2) 109.59(14) 109.59(14) 110.37(14) 111.6(2) 107.02(13) 109.47(19) 108.64(18) 110.92(15) 113.07(12) 108.09(12) 108.41(16) 109.45(16) 109.45(16) 109.45(16) 109.45(16) 109.45(16) 105.62(15) 112.41(12) 108.49(18) 109.92(12) 105.62(15) 110.47(11) 100.9(12) 109.06(15) 106.91(13) 10.04(15) 100.3(2) 71.20(12) 70.90(12) 105.6(2) 129.60(17) 123.97(19) 68.42(12) 69.24(12) 109.3(2) 72.18(12) 70.03(12) 109.3(2) 72.18(12) 109.3(2) 109.3(2) 109.3(2) 109.3(2) 109.3(2) 109.3(2) 109.3(2) 109.3(2) 109.3(2)
P(2)-P(3)-Fe(2) P(4)-P(3)-Fe(2) Fe(1)-P(3)-Fe(2) Co(1)-P(3)-Fe(2)	63 61 81	.09(2) .90(2) .90(2)	C(21)-C(22)-S1 C(23)-C(22)-Fe C(21)-C(22)-Fe Si(21)-C(22)-Fe	(2) (2) (2) (2)	68.30(12) 68.89(12)
Co(1)-P(4)-P(3) Co(1)-P(4)-Fe(2) P(3)-P(4)-Fe(2)	70 62	.48(3) .25(2) .77(2)	C(24)-C(23)-F C(24)-C(23)-C C(24)-C(23)-Fe	e(2) 22) 2(2)	132.08(12) 109.1(2) 70.15(12)
Co(1)-P(4)-Fe(1) P(3)-P(4)-Fe(1) Fe(2)-P(4)-Fe(1)	62 82	.37(2) .75(2) .67(2)	C(22)-C(23)-Fe C(25)-C(24)-C(C(25)-C(24)-Fe	23) 23) 2(2)	71.98(13) 109.3(2) 71.58(13)
C(112)-Si(11)-C(C(112)-Si(11)-C(C(113)-Si(11)-C(113) 108 111) 110 111) 108	.3(2) .7(2) .09(18)	C(23)-C(24)-Fe C(24)-C(25)-C(25)-C(24)-C(25)	e(2) 21) (22)	69.89(12) 105.4(2) 126.55(17)
Einleitung	Eigene Frgebnisse	Experimenteller	Zusammenfassung	Literatur	Anhang

C(21)-C(25)-Si(22)	127.31(18)
C(24)-C(25)-Fe(2)	68.83(12)
C(21)-C(25)-Fe(2)	69.15(12)
Si(22)-C(25)-Fe(2)	133.68(11)
C(35)-C(31)-C(32)	111.18(18)
C(35)-C(31)-Co(1)	71.07(12)
C(32)-C(31)-Co(1)	71.35(12)
C(33)-C(32)-C(31)	105.06(19)
C(33)-C(32)-Si(31)	123.80(16)
C(31)-C(32)-Si(31)	129.54(17)
C(33)-C(32)-Co(1)	68.27(12)
C(31)-C(32)-Co(1)	69.11(12)
Si(31)-C(32)-Co(1)	137.53(13)
C(34)-C(33)-C(32)	109.23(19)
C(34)-C(33)-Co(1)	70.03(13)
C(32)-C(33)-Co(1)	71.84(12)
C(33)-C(34)-C(35)	109.45(19)
C(33)-C(34)-Co(1)	70.40(13)
C(35)-C(34)-Co(1)	71.72(12)
C(34)-C(35)-C(31)	105.07(19)
C(34)-C(35)-Si(32)	125.03(17)
C(31)-C(35)-Si(32)	129.12(16)
C(34)-C(35)-Co(1)	68.33(12)
C(31)-C(35)-Co(1)	69.37(13)
Si(32)-C(35)-Co(1)	133.97(12)

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Tabelle A.8.4	Anisotrope Auslenkungsparameter $[Å^2 \times 10^3]$	
Der Exponent	des anisotropen Auslenkungsfaktors hat die Form:	$-2\pi^{2} [(ha^{*})^{2}U_{11} + + 2hka^{*}b^{*}U_{12}]$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-7(1) -8(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -10(1)\\ -11(1)\\ -2(1)\\ -12(1)\\ -12(1)\\ -24(1)\\ -12(1)\\ -14(1)\\ -18(1)\\ -18(1)\\ -18(1)\\ -7(1)\\ -18(1)\\ -7(1)\\ -15(1)\\ -11(1)\\ -15(1)\\ -15(1)\\ -15(1)\\ -15(1)\\ -15(1)\\ -15(1)\\ -15(1)\\ -15(1)\\ -15(1)\\ -15(1)\\ -15(1)\\ -15(1)\\ -15(1)\\ -15(1)\\ -15(1)\\ -15(1)\\ -15(1)\\ -12(1)\\ -15(1)\\ -12(1)\\ -15(1)\\ -12(1)\\ -15(1)\\ -12(1)\\ -15(1)\\ -12(1)\\ -1$

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

<u>Anhang A.9</u> : Strukturdaten von $[{Cp}^{=}Fe]_{2}{Cp}^{=}Co]_{2}P_{4}]$ (15)

Tabelle A.9.1 Kristalldaten und Strukturverfeinerung

Summenformel C44H84Co2Fe2P4Si8 1191.27 Molmasse Temperatur 293(2) K Strahlung ΜοΚα 0.71073 Å Wellenlänge Scanmodus Phi-Oszillation Kristallsystem Monoklin Raumgruppe $P2_1/c$ $\alpha = 90^{\circ}$ Zelldimensionen a = 13.272(2) Å b = 21.862(3) Å $\beta = 95.702(17)^{\circ}$ c = 21.958(3) Å $\gamma = 90^{\circ}$ 6339.8(15) Å³ Zellvolumen Formeleinheiten pro Zelle Z 4 Berechnete Dichte 1.248 Mg/m^3 1.242 mm⁻¹ Absorptionskoeffizient 0.40 x 0.24 x 0.13 mm Kristallgröße Gemessener θ-Bereich 2.95 bis 25.68° Anzahl der gemessenen Reflexe 88323 Unabhängige Reflexe 11419 (Rint = 0.1109) Absorptionskorrektur Analytisch (ABST/PLATON 98) Max. und min. Transmission 0.84201 und 0.70127 Diffraktometer Stoe IPDS Strukturlösung Direkte Methoden SIR97 (Giacovazzo et al., 1997) Strukturlösungsprogramm Vollmatrix Least-Squares gegen F² Strukturverfeinerung Strukturverfeinerungsprogramm SHELXL-97 (Sheldrick, 1997) Daten / Restraints / Parameter 11419 / 0 / 565 Endgültige R-Werte $[I \ge 2\sigma(I)]$ R1 = 0.0365, wR2 = 0.0660 R1 = 0.0829, wR2 = 0.0744R-Werte (alle Daten) $w=1/[\sigma^{2}(Fo^{2})+(0.0314P)^{2}+0.0000P]$ mit $P=(Fo^{2}+2Fc^{2})/3$ Wichtungsschema GooF (alle Daten) 0.798 Größtes Maximum und Minimum 0.345 und -0.328 eÅ-3

Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) bzw. der 1.2-fache Wert (Cp-H) des äquivalenten isotropen Temperaturfaktors desjenigen C- Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Tabelle A.9.2
Atomkoordinaten [x 10^4] und äquivalente isotrope Auslenkungsparameter [Å ² x 10^3]
U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	x	У	Z	U(eq)
Co(1)	3022(1)	2419(1)	3065(1)	37(1)
CO(2) Fe(1)	3161(1) 1231(1)	2961(1) 2507(1)	463⊥(⊥) 3440(1)	34(⊥) 39(1)
Fe(2)	2143(1)	1950(1)	4501(1)	34(1)
P(1)	1498(1)	2878(1)	4395(1)	37(1)
P(2)	2579(1)	3177(1) 2198(1)	3644(1)	39(1)
P(4)	2198(1)	1686(1)	3515(1)	40(1)
Si(11)	4651(1)	1202(1)	2522(1)	60(1)
Si(12)	3972(1)	3850(1)	2409(1)	64(1)
SI(21) Si(22)	5913(1)	4583(1) 2704(1)	5006(1)	57(1) 52(1)
Si(31)	-650(1)	3774(1)	3528(1)	75(1)
Si(32)	-389(1)	1231(1)	2696(1)	74(1)
S1(41) Si(42)	2805(1) 1(1)	2//(1) 1990(1)	4546(1) 5509(1)	/3(1) 59(1)
C(11)	3967(3)	1945(2)	2468(2)	47(1)
C(12)	4374(3)	2538(2)	2642(2)	49(1)
C(13)	3703(3)	3015(2)	2425(2)	49(1)
C(14) C(15)	2032(3) 2991(3)	2069(2)	2129(2)	50(1)
C(21)	3397(3)	3824(2)	5102(2)	44(1)
C(22)	4292(3)	3631(2)	4843(2)	43(1)
C(23) C(24)	4667(3) 3967(3)	3068(2) 2901(2)	5105(2) 5524(2)	42(⊥) 43(1)
C(25)	3213(3)	3350(2)	5528(2)	42(1)
C(31)	-134(3)	3050(2)	3234(2)	55(1)
C(32)	-400(3) -13(3)	2431(2) 2030(2)	3332(2) 2902(2)	55(1) 54(1)
C(34)	535(3)	2420(2)	2535(2)	59(1)
C(35)	480(3)	3028(2)	2736(2)	60(1)
C(41)	2294(3) 1275(3)	1013(2) 1202(2)	4818(2) 4808(2)	48(1) 46(1)
C(43)	1173(3)	1709(2)	5208(2)	43(1)
C(44)	2177(3)	1836(2)	5462(2)	46(1)
C(45)	2855(3)	1427(2)	5223(2)	50(1)
C(112)	5621(4)	1209(2)	3197(2)	90(2)
C(113)	5316(4)	1121(2)	1819(2)	82(2)
C(121)	4702(5)	3977(3)	1741(3)	116(2)
C(122) C(123)	4763(4)	4082(2)	3119(2)	82(2)
C(211)	3500(4)	5093(2)	5596(3)	85(2)
C(212)	2878(4)	4902(2)	4255(2)	83(2)
C(213) C(221)	6866(3)	3112(2)	5210(3) 5535(2)	84(2)
C(222)	6241(3)	2803(2)	4214(2)	79(1)
C(223)	5875(3)	1887(2)	5212(3)	87(2)
C(311) C(312)	-1069(4) -1773(5)	3005(Z) 3970(3)	4300(2) 2979(3)	83(2) 141(3)
C(313)	327(4)	4384(2)	3536(3)	99(2)
C(321)	-667(5)	786(2)	3380(3)	116(2)
C(322) C(323)	602(4) -1572(4)	875(2) 1294(3)	2278(3) 2173(3)	⊥⊥4(2) 115(2)
C(411)	1992(5)	-38(2)	3878(3)	113(2)
C(412)	2791(5)	-250(2)	5216(3)	128(3)
C(413)	4121(4)	393(2)	4354(3)	98(2)
C(422)	-1092(3)	1926(3)	4917(3)	94(2)
C(423)	182(4)	2786(2)	5802(2)	77(1)

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

(-, (1), (2, 10))	0 110/4)				1 00015	
Co(1) - C(12) Co(1) - C(15)	2.117(4) 2.129(4)			Si(12)-C(122) Si(21)-C(21)	1.850(3)	
$C_0(1) - C(14)$	2.143(4)			Si(21)-C(212)	1.855(5)	
Co(1) - C(11) Co(1) - C(13)	2.166(4) 2.177(4)			S1(21)-C(213) S1(21)-C(211)	1.856(5) 1.861(4)	
Co(1) - P(2)	2.2035(11)			Si(22)-C(223)	1.845(5)	
Co(1) - P(4)	2.2270(11)			Si(22)-C(222)	1.847(5)	
Co(1) - Fe(1)	2.5985(8)			Si(22)-C(221) Si(22)-C(23)	1.867(4)	
$C_{0}(2) - C(22)$	2.116(3)			Si(31)-C(311)	1.852(5)	
Co(2) - C(25) Co(2) - C(24)	2.141(4) 2.143(4)			S1(31) - C(313) Si(31) - C(31)	1.859(5) 1.866(4)	
Co(2) - C(21)	2.161(3)			Si(31)-C(312)	1.872(5)	
$C_0(2) - C(23)$ $C_0(2) - P(3)$	2.172(3)			Si(32)-C(322) Si(32)-C(323)	1.848(6) 1.856(5)	
Co(2) - P(1)	2.2248(10)			Si(32)-C(33)	1.859(4)	
Co(2) - P(2)	2.2764(12)			Si(32)-C(321)	1.859(6)	
Fe(1) - C(35)	2.092(4)			Si(41)-C(413) Si(41)-C(411)	1.865(6)	
Fe(1) - C(34)	2.114(4)			Si(41)-C(41)	1.867(4)	
Fe(1) - C(32) Fe(1) - C(31)	2.161(4) 2.175(4)			S1(41) - C(412) S1(42) - C(43)	1.870(5) 1.854(4)	
Fe(1)-C(33)	2.197(3)			Si(42)-C(422)	1.855(5)	
Fe(1) - P(4) Fe(1) - P(1)	2.2038(11)			S1(42)-C(421) S1(42)-C(423)	1.858(5) 1.862(4)	
Fe(1) - P(2)	2.3200(10)			C(11)-C(15)	1.427(5)	
Fe(1)-Fe(2) Fe(2)-C(45)	2.7964(8)			C(11)-C(12) C(12)-C(13)	1.440(5) 1 423(5)	
Fe(2) - C(44)	2.120(4)			C(12) - C(13)	1.434(5)	
Fe(2)-C(42)	2.147(3)			C(14)-C(15)	1.416(5) 1 432(5)	
Fe(2) - C(43)	2.178(4)			C(21) - C(22)	1.434(5)	
Fe(2) - P(1)	2.2049(10)			C(22)-C(23)	1.428(5)	
Fe(2) - P(3)	2.3153(11)			C(23) - C(24) C(24) - C(25)	1.402(5)	
P(1) - P(2)	2.3819(14)			C(31)-C(32)	1.422(5)	
P(2) - P(3) P(3) - P(4)	2.3781(13)			C(31) - C(35) C(32) - C(33)	1.420(0) 1.422(5)	
Si(11)-C(111)	1.853(5)			C(33) - C(34)	1.422(6)	
Si(11) - C(11) Si(11) - C(113)	1.859(4) 1.862(5)			C(34) - C(35) C(41) - C(42)	1.406(6) 1.413(5)	
Si(11)-C(112)	1.864(5)			C(41) - C(45)	1.424(5)	
Si(12)-C(121) Si(12)-C(13)	1.857(6) 1.861(4)			C(42) - C(43) C(43) - C(44)	1.429(5) 1.420(5)	
Si(12)-C(123)	1.862(5)			C(44)-C(45)	1.407(5)	
C(12)-Co(1)-C(15) 6	4.66(15)		C(13)-Co(1)-P(4)	166.13(10)
C(12)-Co(1)-C(14)) 6	4.33(15)		P(2)-Co(1)-P(4)	() ()	96.52(4)
C(12)-Co(1)-C(11)) 3	9.27(13)		C(12)-Co(1)-P(C(1)-P(1))	3)	141.91(11)
C(15)-Co(1)-C(11)) 3	8.81(14)		C(14)-Co(1)-P(3)	166.64(11)
C(14)-Co(1)-C(11) C(12)-Co(1)-C(13)) 3	3.67(14)		C(11)-CO(1)-P(C(1))-	3)	128.38(10)
C(15)-Co(1)-C(13)) 6	5.31(14)		P(2)-Co(1)-P(3)	3)	72.13(4)
C(14)-CO(1)-C(13) C(11)-CO(1)-C(13)) 3) 6	5.99(14)		P(4)-Co(1)-P(3 C(12)-Co(1)-Fe	5) 2(1)	63.71(4) 166.35(11)
C(12)-Co(1)-P(2)	, 11	5.61(10)		C(15)-Co(1)-Fe	2(1)	112.93(11)
C(15)-Co(1)-P(2) C(14)-Co(1)-P(2)	14 10	5.96(11) 3.61(11)		C(14)-Co(1)-Fe C(11)-Co(1)-Fe	≥(⊥) ≥(1)	104.92(11) 146.11(10)
C(11)-Co(1)-P(2)	15	5.88(10)		C(13)-Co(1)-Fe	2(1)	127.68(11)
C(13)-Co(1)-P(2) C(12)-Co(1)-P(4)	9 13	4.30(10) 9.31(11)		P(2)-Co(1)-Fe(P(4)-Co(1)-Fe(1) 1)	57.07(3) 53.68(3)
C(15)-Co(1)-P(4)	10	1.03(10)		P(3)-Co(1)-Fe(1)	86.80(3)
C(14)-Co(1)-P(4) C(11)-Co(1)-P(4)	12	B.50(11) 5.30(10)		C(22)-Co(2)-C(2)-C(2)-C(2)-C(2)-C(2)-C(2)-C(2)-C	25) 24)	64.24(15) 64.04(14)
Einleitung	Eigene	Experin	nenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	T T	eil	Ũ		

Tabelle A.9.3 Bindungslängen [Å] und -winkel [°]

C(25)-Co(2)-C(24)	38	.20(13)	C(34) - Fe(1) - Fe	2)	148.84(12)
C(22)-Co(2)-C(21)	39	.11(13)	C(32)-Fe(1)-Fe	e(2) 1	113.76(12)
C(25)-Co(2)-C(21)	38	.94(13)	C(31)-Fe(1)-Fe	2)	133.90(12)
$C(24) - C_0(2) - C(21)$	65	.12(13)	C(33)-Fe(1)-Fe	(2)	118.74(11)
C(22) = Co(2) = C(22)	38	87(13)	$D(4) = F_0(1) = F_0(1)$	2)	51 80(3)
C(22) CO(2) - C(23)	30	67(14)	F(T) = FC(T) = FC(T)	4) 2)	ST.00(S)
C(25) - CO(2) - C(23)	64	.67(14)	P(1) - Fe(1) - Fe(1)	2)	50.44(3)
C(24)-Co(2)-C(23)	38	.37(13)	P(2)-Fe(1)-Fe(2)	81.50(3)
C(21)-Co(2)-C(23)	66	.05(13)	Co(1)-Fe(1)-Fe	e(2)	84.14(2)
C(22)-Co(2)-P(3)	115	.44(10)	C(45)-Fe(2)-C(44)	38.94(14)
C(25) - Co(2) - P(3)	147	48(10)	C(45) - Fe(2) - C(2)	42)	64 13(14)
$C(24) = C_0(2) = P(3)$	110	21(10)	$C(44) = F_{\Theta}(2) = C(44)$	42)	63 73(14)
C(21) CO(2) T(3)	154	.21(10)	Q(4E) = Q(2) Q(2)	12)	20 0E(14)
C(21) = CO(2) = P(3)	104	.44(10)	C(45) - Fe(2) - C(4⊥) 41)	30.95(14)
C(23) - CO(2) - P(3)	94	.39(10)	C(44) - Fe(2) - C(41)	64.99(15)
C(22)-Co(2)-P(1)	140	.70(10)	C(42)-Fe(2)-C(41)	38.24(13)
C(25)-Co(2)-P(1)	100	.81(10)	C(45)-Fe(2)-C(43)	65.42(14)
C(24)-Co(2)-P(1)	127	.01(10)	C(44)-Fe(2)-C(43)	38.57(13)
C(21)-Co(2)-P(1)	106	.03(10)	C(42) - Fe(2) - C(43)	38.57(13)
$C(23) = C_0(2) = P(1)$	164	79(11)	$C(41) = F_{\Theta}(2) = C($	43)	65.46(14)
D(2) = (2) D(1)	104	$-7 J (\pm \pm)$	C(4E) = C(2) C(1)	126 16(12)
P(3) = CO(2) = P(1)	90	.04(4)	C(45) - Fe(2) - P(⊥) 1)	100.15(12)
C(22) - Co(2) - P(2)	103	.42(11)	C(44) - Fe(2) - P(1) -	100.51(11)
C(25)-Co(2)-P(2)	140	.41(10)	C(42)-Fe(2)-P(1)	121.26(10)
C(24)-Co(2)-P(2)	167	.24(10)	C(41)-Fe(2)-P(1) 1	157.88(11)
C(21)-Co(2)-P(2)	107	.11(11)	C(43)-Fe(2)-P(1)	92.69(10)
C(23) - Co(2) - P(2)	130	.02(11)	C(45)-Fe(2)-P(4)	122.09(12)
$P(3) = C_0(2) = D(2)$	100 70	09(4)	$C(44) = F_{P}(2) = D($	4)	158 19(10)
$P(1) = C_0(2) = (2)$	۲۵ دی	89(4)	$C(42) = E_{C(2)} = C(2)$	4)	100.20(11)
P(1) = CO(2) = P(2)	103	.09(4)	C(42) - Fe(2) - P(2)	(±)	100.20(11)
C(2Z) = CO(Z) = Fe(2)	164	.92(1U)	C(4L) - Fe(2) - P((4)	93.23(11)
C(25)-Co(2)-Fe(2)	114	.14(10)	C(43) - Fe(2) - P(4)	134.64(10)
C(24)-Co(2)-Fe(2)	104	.87(9)	P(1)-Fe(2)-P(4	l)	100.59(4)
C(21)-Co(2)-Fe(2)	147	.88(11)	C(45)-Fe(2)-P(3)	96.70(11)
C(23)-Co(2)-Fe(2)	126	.13(9)	C(44) - Fe(2) - P(3)	120.90(10)
$P(3) = C_0(2) = F_0(2)$	57	00(3)	C(42) - Fe(2) - P(3)	143 87(10)
D(1) - Co(2) - Fo(2)	57	Q2(2)	$C(11) - F_{O}(2) - D(2)$	2)	107 67(10)
P(1) = CO(2) = Fe(2)	23	.03(3)	C(42) = Fe(2) = F(2)	- J)	107.07(10)
P(2) = CO(2) = Fe(2)	87	.00(3)	C(43) - Fe(2) - P(2)	3) -	159.40(10)
C(35) - Fe(1) - C(34)	39	.04(16)	P(1) - Fe(2) - P(3)	3)	94.05(4)
C(35)-Fe(1)-C(32)	64	.06(17)	P(4) - Fe(2) - P(3)	3)	62.79(4)
C(34)-Fe(1)-C(32)	63	.31(17)	C(45)-Fe(2)-Cc	o(2) 1	100.97(10)
C(35)-Fe(1)-C(31)	39	.04(16)	C(44) - Fe(2) - Cc	(2)	91.74(10)
C(34) - Fe(1) - C(31)	64	98(16)	C(42) - Fe(2) - Cc	(2)	154 81(11)
$C(32) = E_{0}(1) = C(31)$	38	28(14)	$C(41) = F_{\Theta}(2) = C_{\Theta}$	(2)	137 73(11)
C(32) - Fe(1) - C(31)	50	20(14)	C(41) - Fe(2) - CC	·(2) ·	117 70(10)
C(35) - Fe(1) - C(33)	20	.38(10)	C(43) - Fe(2) - CC)(Z)	117.79(10)
C(34) - Fe(1) - C(33)	38	.45(15)	P(1) - Fe(2) - Co(2)	54.54(3)
C(32)-Fe(1)-C(33)	38	.07(14)	P(4)-Fe(2)-Co(2) .	104.98(3)
C(31)-Fe(1)-C(33)	65	.25(15)	P(3)-Fe(2)-Co(2)	53.10(3)
C(35)-Fe(1)-P(4)	136	.94(13)	C(45)-Fe(2)-Fe	e(1) 1	172.19(11)
C(34) - Fe(1) - P(4)	101	16(12)	C(44) - Fe(2) - Fe	(1)	147 68(11)
$C(32) = E_{\Theta}(1) = D(4)$	120	95(12)	$C(42) = F_{0}(2) = F_{0}(2)$	(1)	113 13(11)
C(21) = C(1) = D(1)	157	02(11)	C(12) FC(2) FC(2)	·(⊥) ·	$124 \ 24(11)$
$C(J_{2}) = FE(T) = F(4)$	107	10(11)	$C(\pm I) = FE(Z) = FE$	-(⊥) - 	117 = 4(0)
C(33) - Fe(1) - P(4)	93	.10(11)	C(43) - Fe(2) - Fe(2)	2(I) -	117.54(9)
C(35) - Fe(1) - P(1)	120	.93(13)	P(⊥)-Fe(2)-Fe(1)	5⊥.66(3)
C(34)-Fe(1)-P(1)	157	.61(12)	P(4)-Fe(2)-Fe(1)	50.38(3)
C(32)-Fe(1)-P(1)	101	.14(12)	P(3)-Fe(2)-Fe(1)	81.57(3)
C(31)-Fe(1)-P(1)	92	.76(12)	Co(2)-Fe(2)-Fe	e(1)	84.13(2)
C(33)-Fe(1)-P(1)	135	.60(12)	Fe(2)-P(1)-Ch(2)	71.64(3)
$P(4) - F_{P}(1) - D(1)$	100	79(4)	$F_{P}(2) = D(1) = F_{P}(2)$	1)	77 90(3)
$C(2E) = E_{C}(1) = C(2)$	T00	9/(10)	$C_{O}(2) = D(1) = \overline{C}(2)$	-/ 1) ·	107 95/5)
C(33) = Fe(1) = P(2)	95	·04(12)	U(Z) = F(T) = Fe(T)	· 土/ -	TO1.90(0)
C(34) - Fe(1) - P(2)	119	./1(13)	Fe(Z) - F(I) - F(Z)	5 <i>)</i>	94.09(4)
C(32) - Fe(1) - P(2)	144	.58(11)	CO(2) - P(1) - P(2)	()	59.11(4)
C(31)-Fe(1)-P(2)	107	.84(11)	Fe(1)-P(1)-P(2	2)	60.12(4)
C(33)-Fe(1)-P(2)	158	.11(12)	Co(1)-P(2)-Co(2)	108.00(4)
P(4) - Fe(1) - P(2)	93	.88(4)	Co(1)-P(2)-Fe(1)	70.07(3)
P(1) - Fe(1) - P(2)	62	.90(4)	$C_{O}(2) - P(2) - F_{O}(2)$	1) -	103.66(4)
$C(35) = F_{2}(1) = C_{2}(1)$	100	98(13)	$C_{0}(1) = 0(2) = 10(2)$)	$114 \ 01(4)$
$C(34) = E_{0}(1) C_{0}(1)$	100	36(12)	$C_{O}(2) = (2) = (1)$	-/ -	57 00(1)
C(3+) - FE(1) - CO(1)	91	· JU(12)	U(Z) - P(Z) - P(1)	- /	57.00(4)
C(3Z)-Fe(I)-Co(1)	153	.85(12)	Fe(1)-P(2)-P(1	-)	50.97(3)
C(31)-Fe(1)-Co(1)	138	.06(12)	Co(1)-P(2)-P(3	5)	55.25(3)
C(33)-Fe(1)-Co(1)	117	.19(12)	Co(2)-P(2)-P(3	3)	52.75(3)
P(4) - Fe(1) - Co(1)	54	.51(3)	Fe(1)-P(2)-P(3	3)	85.01(4)
P(1) - Fe(1) - Co(1)	104	.99(3)	P(1) - P(2) - P(3)		82.26(4)
P(2) - Fe(1) - Co(1)	±01 ۲0	86(3)	$C_{O}(2) = D(2) = C_{O}(2)$	1)	107 78(4)
$C(25) = E_{2}(1) = E_{2}(2)$	ے 171	22(13)	$C_{0}(2) = D(2) = \overline{D}(2)$	-/ -	EQ 20/21
C(33) $TC(1)$ $TC(2)$	1/1	·	CO(2) = F(3) = Fe(<u>~</u>)	(2)(0)
Finlaituna	Figure	Evnorimentallar	7.100mmonforcer =	Litorotur	Anhone
Einleitung	Eigene	Experimenteller	Lusammentassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

C(222)-Si(22)-C	2(23) 110 2(22) 106	.75(19)	C(32)-C(31)-Fe	(1)	70.3(2)
C(222)-Si(22)-C C(221)-Si(22)-C	2(23) 110 2(23) 106	.75(19) .26(18)	C(32)-C(31)-Fe C(35)-C(31)-Fe	e(1) e(1)	70.3(2) 67.3(2)
C(311)-Si(31)-C	(313) 110 (21) 111	.9(3)	Si(31)-C(31)-F	(1)	135.9(2)
C(313)-Si(31)-C C(313)-Si(31)-C	2(31) 109	.2(2)	C(33)-C(32)-C(32)-Fe	si) (1)	72.3(2)
C(311)-Si(31)-C C(313)-Si(31)-C	2(312) 109 2(312) 110	.1(3) .6(3)	C(31)-C(32)-Fe C(32)-C(33)-C((1) 34)	71.4(2) 104.2(4)
C(31)-Si(31)-C(312) 105	.5(2)	C(32)-C(33)-Si	(32)	129.4(3)
C(322)-Si(32)-C C(322)-Si(32)-C	2(323) 108 2(33) 109	.9(3) .3(2)	C(34)-C(33)-Si C(32)-C(33)-Fe	(32) (1)	124.4(3) 69.6(2)
C(323)-Si(32)-C	(33) 105 (221) 112	.8(2)	C(34)-C(33)-Fe	(1)	67.6(2)
C(322)-Si(32)-C C(323)-Si(32)-C	(321) 112 (321) 108	.9(3)	C(35)-C(34)-C(34)	e(1) 33)	138.3(2) 110.1(4)
C(33)-Si(32)-C(321) 111 (411) 110	.4(2)	C(35)-C(34)-Fe C(32)-C(34)-Fe	(1)	69.6(2)
C(413)-SI(41)-C C(413)-SI(41)-C	2(41) 110 2(41) 109	.6(2)	C(33)-C(34)-Fe C(34)-C(35)-C(31)	108.9(4)
C(411)-Si(41)-C C(413)-Si(41)-C	2(41) 111 2(412) 110	.7(2) .3(3)	C(34)-C(35)-Fe C(31)-C(35)-Fe	(1) (1)	71.3(2) 73.6(2)
C(411)-Si(41)-C	2(412) 110	.0(3)	C(42) - C(41) - C(41) - C(42) - C(41) - C(41	45)	105.3(3)
C(41)-Si(41)-C(C(43)-Si(42)-C(43))	412) 104 422) 110	.3(2) .5(2)	C(42)-C(41)-S1 C(45)-C(41)-S1	(41) (41)	128.7(3) 124.3(3)
C(43)-Si(42)-C(C(422)-Si(42)-C(421) 104 (421) 109	.5(2)	C(42)-C(41)-Fe	(2)	70.15(19) 68.05(19)
C(43)-Si(42)-C(423) 110	.42(18)	Si(41)-C(41)-F	e(2)	137.5(2)
C(422)-Si(42)-C C(421)-Si(42)-C	2(423) 112 2(423) 109	.2(2) .3(2)	C(41)-C(42)-C(C(41)-C(42)-Fe	43) (2)	111.5(3) 71.61(19)
C(15)-C(11)-C(1)	2) 104	.7(3)	C(43)-C(42)-Fe C(44)-C(42)	(2)	71.88(19)
C(12)-C(11)-Si(C(12)-C(11)-Si(11) 127 11) 127	.0(3)	C(44) - C(43) - C(43	42) (42)	104.5(3) 125.7(3)
C(15)-C(11)-Co(C(12)-C(11)-Co(C(12)-C(11)-Co(C(12)-C(11)-Co(C(12)-C(11)-Co(C(12)-C(11)-Co(C(12)-C(12	1) 69 1) 68	.2(2) .5(2)	C(42)-C(43)-Si C(44)-C(43)-Fe	(42) (2)	127.6(3) 68.5(2)
Si(11) - C(11) - Cc	(1) 133	.4(2)	C(42)-C(43)-Fe	(2)	69.5(2)
C(13)-C(12	1) 111 1) 73	.4(3) .0(2)	S1(42)-C(43)-F C(45)-C(44)-C(e(2) 43)	138.60(19) 109.8(3)
C(11)-C(12)-Co(1) 72	.2(2)	C(45)-C(44)-Fe	(2)	69.8(2)
Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	I e11			

C(43)-C(44)-Fe(2)	72.9(2)
C(44)-C(45)-C(41)	108.9(3)
C(44)-C(45)-Fe(2)	71.3(2)
C(41)-C(45)-Fe(2)	73.0(2)

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

° 2 – 2	
Tabelle A.9.4 Anisotrope Auslenkungsparameter [A ² x 10 ³]	
Der Exponent des anisotropen Auslenkungsfaktors hat die Form:	$-2\pi^{2} [(ha^{*})^{2} U_{11} + + 2hka^{*}b^{*}U_{12}]$

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
$\begin{array}{c} Co(1)\\ Co(2)\\ Fe(1)\\ Fe(2)\\ P(1)\\ P(2)\\ P(3)\\ P(4)\\ Si(11)\\ Si(12)\\ Si(21)\\ Si(22)\\ Si(31)\\ Si(42)\\ C(11)\\ C(12)\\ C(12)\\ C(13)\\ C(14)\\ C(15)\\ C(21)\\ C(22)\\ C(23)\\ C(24)\\ C(25)\\ C(31)\\ C(25)\\ C(31)\\ C(32)\\ C(33)\\ C(35)\\ C(41)\\ C(42)\\ C(43)\\ C(44)\\ C(45)\\ C(411)\\ C(122)\\ C(43)\\ C(44)\\ C(45)\\ C(111)\\ C(122)\\ C(211)\\ C(122)\\ C(213)\\ C(211)\\ C(122)\\ C(213)\\ C(211)\\ C(221)\\ C(223)\\ C(211)\\ C(222)\\ C(223)\\ C(221)\\ C(223)\\ C(221)\\ C(223)\\ C(221)\\ C(223)\\ C(221)\\ C(223)\\ C(211)\\ C(222)\\ C(223)\\ C(211)\\ C(222)\\ C(223)\\ C(211)\\ C(222)\\ C(223)\\ C(221)\\ C(223)\\ C(223)\\ C(221)\\ C(223)\\ C(22$	$\begin{array}{c} U_{11} \\ & 43(1) \\ & 34(1) \\ & 37(1) \\ & 36(1) \\ & 35(1) \\ & 49(1) \\ & 47(1) \\ & 66(1) \\ & 93(1) \\ & 59(1) \\ & 37(1) \\ & 59(1) \\ & 59(1) \\ & 59(1) \\ & 59(1) \\ & 59(1) \\ & 59(1) \\ & 59(1) \\ & 59(1) \\ & 59(1) \\ & 59(1) \\ & 59(1) \\ & 59(1) \\ & 59(1) \\ & 59(1) \\ & 59(1) \\ & 59(1) \\ & 59(1) \\ & 59(1) \\ & 59(2) \\ & 58(2) \\ & 60(3) \\ & 57(2) \\ & 54(2) \\ & 50(2) \\ & 54(2) \\ & 43(2) \\ & 43(2) \\ & 43(2) \\ & 43(2) \\ & 43(2) \\ & 43(2) \\ & 43(2) \\ & 43(2) \\ & 43(2) \\ & 54(2) \\ & 44(2) \\ & 56(2) \\ & 44(2) \\ & 56(2) \\ & 44(2) \\ & 56(2) \\ & 44(2) \\ & 56(2) \\ & 44(2) \\ & 56(2) \\ & 44(2) \\ & 56(2) \\ & 44(2) \\ & 56(3) \\ & 69(3) \\ & 51(3) \\ & 69(3) \\ & 51(3) \\ & 69(3) \\ & 51(3) \\ & 69(3) \\ & 51(3) \\ & 69(3) \\ & 51(3) \\ & 69(3) \\ & 51(3) \\ & 69(3) \\ & 51(3) \\ & 69(3) \\ & 51($	$\begin{array}{c} U_{22} \\ 37(1) \\ 33(1) \\ 42(1) \\ 32(1) \\ 32(1) \\ 41(1) \\ 32(1) \\ 37(1) \\ 35(1) \\ 60(1) \\ 51(1) \\ 35(1) \\ 60(1) \\ 51(1) \\ 38(1) \\ 59(1) \\ 72(1) \\ 78(1) \\ 37(1) \\ 76(1) \\ 54(2) \\ 58(2) \\ 52(2) \\ 60(2) \\ 54(2) \\ 58(2) \\ 52(2) \\ 60(2) \\ 54(2) \\ 38(2) \\ 40(2) \\ 45(2) \\ 52(2) \\ 60(3) \\ 70(3) \\ 90(3) \\ 60(3) \\ 39(2) \\ 48(2) \\ 53(2) \\ 54(2) \\ 52(3) \\ 105(4) \\ 97(4) \\ 12(4) \\ 69(3) \\ 79(3) \\ 54(3) \\ 59(3) \\ 74(3) \\ 123(4) \\ 15(4) \\ 77(3) \\ 81(3) \\ \end{array}$	U_{33} $32(1)$ $35(1)$ $37(1)$ $35(1)$ $36(1)$ $36(1)$ $37(1)$ $36(1)$ $50(1)$ $72(1)$ $59(1)$ $92(1)$ $70(1)$ $94(1)$ $52(1)$ $41(3)$ $39(3)$ $39(3)$ $31(3)$ $39(3)$ $47(3)$ $45(3)$ $42(3)$ $40(3)$ $35(2)$ $55(3)$ $50(3)$ $49(3)$ $34(3)$ $59(3)$ $55(3)$ $50(3)$ $49(3)$ $34(3)$ $59(3)$ $55(3)$ $50(3)$ $49(3)$ $34(3)$ $59(3)$ $55(3)$ $50(3)$ $49(3)$ $34(3)$ $59(3)$ $55(3)$ $50(3)$ $49(3)$ $34(3)$ $59(3)$ $50(3)$ $49(3)$ $34(3)$ $59(3)$ $50(3)$ $49(3)$ $34(4)$ $59(3)$ $51(3)$ $50(3)$ $40(3)$ $29(2)$ $50(3)$ $10(5)$ $77(4)$ $64(4)$ $60(4)$ $125(6)$ $56(4)$ $105(5)$ $88(4)$ $118(5)$ $82(4)$ $73(4)$ $124(5)$ $99(5)$	$\begin{array}{c} U_{23} \\ & -3(1) \\ & -4(1) \\ & -5(1) \\ & -1(1) \\ & -2(1) \\ & 0(1) \\ & -4(1) \\ & -4(1) \\ & -4(1) \\ & -4(1) \\ & -4(1) \\ & -4(1) \\ & -4(1) \\ & -4(1) \\ & -2(1) \\ & -2(1) \\ & -2(1) \\ & -2(1) \\ & -2(1) \\ & -2(1) \\ & -4(2) \\ & -5(2) \\ & 0(2) \\ & -11(2) \\ & -4(2) \\ & -5(2) \\ & 0(2) \\ & -11(2) \\ & -9(2) \\ & -11(2) \\ & -10(3) \\ & -11(3) \\ & -4(3) \\ & -8(3) \\ & 21(3) \\ & -6(2) \\ & -30(3) \\ & -25(3) \\ & -35(3) \\ & -11(3) \\ & -17(3) \\$	$\begin{array}{c} U_{13} \\ \hline \\ 7(1) \\ 4(1) \\ 1(1) \\ 6(1) \\ 4(1) \\ 7(1) \\ 4(1) \\ 3(1) \\ 21(1) \\ 14(1) \\ 3(1) \\ 2(1) \\ -6(1) \\ -11(1) \\ 29(1) \\ 20(2) \\ 17(2) \\ 15(2) \\ 12(2) \\ 14(2) \\ 5(2) \\ 2(2) \\ 14(2) \\ 5(2) \\ 2(2) \\ -1(2) \\ 12(2) \\ 14(2) \\ 5(2) \\ 2(2) \\ -1(2) \\ 12(2) \\ 14(2) \\ 5(2) \\ 2(2) \\ 12($	$\begin{array}{c} U_{12} \\ & -3(1) \\ & -2(1) \\ & -1(1) \\ & -3(1) \\ & 4(1) \\ & -3(1) \\ & 1(1) \\ & -7(1) \\ & 11(1) \\ & -20(1) \\ & 2(1) \\ & 2(1) \\ & 2(1) \\ & 2(1) \\ & 2(1) \\ & 2(1) \\ & 2(1) \\ & 2(1) \\ & 2(1) \\ & 2(2) \\ & -1(2) \\ & -9(2) \\ & -1(2) \\ & -9(2) \\ & -1(2) \\ & -9(2) \\ & -1(2) \\ & -9(2) \\ & -1(2) \\ & -9(2) \\ & -1(2) \\ & -9(2) \\ & -1(2) \\ & -9(2) \\ & -1(2) \\ & -9(2) \\ & -1(2) \\ & -9(2) \\ & -1(2) \\ & -2(2) \\ & -4(2) \\ & -2(2) \\ & -5(2) \\ & -1(2) \\ & -2(2) \\ & -1(2) \\ & -5(2) \\ & -1(2) \\ & -3(2) \\ & -5(2) \\ & -1(2) \\ & -5($
C(223) C(311) C(312) C(313) C(321) C(322) C(323) C(411) C(412) C(412) C(413) C(421) C(422)	60(3) 73(3) 108(5) 104(4) 147(6) 126(5) 85(4) 137(5) 176(6) 92(4) 128(5) 53(3)	77(3) 81(3) 165(6) 62(3) 99(4) 84(4) 155(5) 66(3) 66(3) 87(4) 109(4) 141(5)	124(5) 99(5) 141(7) 131(6) 96(5) 134(6) 97(5) 138(6) 152(7) 120(5) 73(4) 89(4)	7(3) -17(3) -6(5) 4(3) -3(3) -61(4) -11(4) -34(3) 51(4) 3(3) 3(3) -27(4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (5) (5) (5) (5) (6) (6) (6) (6) (7)	8(3)24(3)-34(5)8(4)-10(4)16(4)-29(4)20(4)66(5)36(4)44(4)10(3)	19(2) 16(3) 76(4) 6(3) -57(4) -23(3) -44(4) -13(3) 31(4) 28(3) -38(4) 4(3)

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

<u>Anhang A.10</u> : Strukturdaten von $[{Cp}^{=}Fe]_4(P_2)_2]$ (16)

Tabelle A.10.1 Kristalldaten und Strukturverfeinerung

1185.11

ΜοΚα

Triklin

ΡĪ

Summenformel Molmasse Temperatur Strahlung Wellenlänge Scanmodus Kristallsystem Raumgruppe Zelldimensionen

Zellvolumen 3076.9(5) Å² Formeleinheiten pro Zelle Z 2 Berechnete Dichte 1.279 Mg/m^3 1.211 mm⁻¹ Absorptionskoeffizient Kristallgröße 0.70 x 0.50 x 0.10 mm Gemessener θ-Bereich 2.73 bis 25.68° Anzahl der gemessenen Reflexe 42304 Unabhängige Reflexe 10952 (Rint = 0.0666) Absorptionskorrektur Max. und min. Transmission 0.603922 und 0.515777 Diffraktometer Stoe IPDS Direkte Methoden Strukturlösung Strukturlösungsprogramm Strukturverfeinerung Strukturverfeinerungsprogramm Daten / Restraints / Parameter 10952 / 0 / 565 Endgültige R-Werte $[I > 2\sigma(I)]$ R1 = 0.0448, wR2 = 0.1080R-Werte (alle Daten) R1 = 0.0690, wR2 = 0.1169 $w=1/[\sigma^{2}(Fo^{2})+(0.0590P)^{2}+1.5200P]$ mit $P=(Fo^{2}+2Fc^{2})/3$ Wichtungsschema GooF (alle Daten) 1.034 Größtes Maximum und Minimum 0.629 und -0.483 eÅ-3

C44H84Fe4P4Si8 293(2) K 0.71073 Å Phi-Oszillation a = 12.2004(11) Å $\alpha = 83.099(12)^{\circ}$ b = 12.7826(13) Å $\beta = 88.418(11)^{\circ}$ c = 22.489(2) Å $\gamma = 62.149(10)^{\circ}$ Empirisch (MULABS/PLATON 98) SIR97 (Giacovazzo et al., 1997) Vollmatrix Least-Squares gegen F² SHELXL-97 (Sheldrick, 1997)

Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) bzw. der 1.2-fache Wert (Cp-H) des äquivalenten isotropen Temperaturfaktors desjenigen C- Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Tabelle A.10.2 Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

Problemstellung Ergebnisse Teil	Einleitung Problemstellung	Eigene Ergebnisse	Experimenteller Teil	Zusammenfassung	Literatur	Anhang
---------------------------------	-------------------------------	----------------------	-------------------------	-----------------	-----------	--------

Fe(1) - C(13)	2.117(4)		Si(12) - C(123)	1.855(6)	
Fe(1)-C(14)	2.120(4)		Si(21)-C(22)	1.869(5)	
Fe(1)-C(11)	2.140(4)		Si(21)-C(221)	1.858(5)	
Fe(1) = C(15) Fe(1) = C(12)	2.1/8(4) 2 186(4)		S1(21) - C(222) Si(21) - C(223)	1.851(5) 1.849(6)	
Fe(1) - P(1)	2.1916(11)		Si(22)-C(212)	1.838(7)	
Fe(1)-P(3)	2.2680(11)		Si(22)-C(213)	1.857(6)	
Fe(1) - P(2)	2.2804(12)		Si(22)-C(25)	1.870(5)	
Fe(1) - Fe(2) Fe(1) - Fe(3)	2.7085(8)		S1(22) - C(211) Si(31) - C(32)	1.848(7) 1.869(4)	
Fe(2) - C(23)	2.111(4)		Si(31) - C(312)	1.853(5)	
Fe(2)-C(24)	2.118(4)		Si(31)-C(313)	1.864(5)	
Fe(2) - C(21)	2.133(4)		Si(31)-C(311)	1.859(6)	
Fe(2) = C(22) Fe(2) = C(25)	2.156(4) 2.175(4)		S1(32) - C(321) S1(32) - C(35)	1.846(6) 1.869(4)	
Fe(2) - P(2)	2.1983(11)		Si(32)-C(323)	1.850(6)	
Fe(2) - P(4)	2.2673(11)		Si(32)-C(322)	1.866(6)	
Fe(2) - P(1)	2.2783(12)		Si(41) - C(413)	1.864(8)	
Fe(2) - Fe(4) Fe(3) - C(33)	2.7274(8) 2.097(4)		SI(41) = C(42) Si(41) = C(411)	1.878(4) 1.850(6)	
Fe(3)-C(34)	2.112(4)		Si(41) - C(412)	1.875(7)	
Fe(3)-C(31)	2.132(4)		Si(42)-C(421)	1.856(5)	
Fe(3) - C(32)	2.149(4)		Si(42) - C(423)	1.851(5)	
Fe(3) - P(3)	2.1956(11)		Si(42) - C(422) Si(42) - C(45)	1.830(5) 1.882(4)	
Fe(3) - P(4)	2.2644(11)		C(11)-C(15)	1.421(6)	
Fe(3)-P(1)	2.2735(11)		C(11)-C(12)	1.436(6)	
Fe(3) - Fe(4)	2.6953(8)		C(12)-C(13)	1.422(6)	
Fe(4) - C(43)	2.123(4) 2.128(4)		C(14) - C(14) C(14) - C(15)	1.411(6) 1.414(6)	
Fe(4) - C(41)	2.150(4)		C(21)-C(25)	1.431(6)	
Fe(4) - C(45)	2.174(4)		C(21)-C(22)	1.436(6)	
Fe(4) - C(42) Fe(4) - D(4)	2.188(4) 2.1998(12)		C(22)-C(23) C(23)-C(24)	1.433(6) 1 404(7)	
Fe(4) - P(2)	2.2683(11)		C(24) - C(24)	1.421(6)	
Fe(4) - P(3)	2.2861(11)		C(31)-C(35)	1.425(6)	
P(1) - P(4)	2.3316(15)		C(31)-C(32)	1.424(6)	
P(2) - P(3) si(11) - C(113)	2.3301(15) 1.851(6)		C(32)-C(33) C(33)-C(34)	1.422(6) 1.403(6)	
Si(11)-C(12)	1.864(4)		C(34) - C(35)	1.431(6)	
Si(11)-C(112)	1.859(6)		C(41)-C(42)	1.425(6)	
Si(11)-C(111)	1.860(6)		C(41) - C(45)	1.426(5)	
Si(12) - C(121) Si(12) - C(122)	1.858(5)		C(42) - C(43) C(43) - C(44)	1.420(0) 1.413(6)	
Si(12)-C(15)	1.873(4)		C(44)-C(45)	1.426(6)	
C(12) = C(1) C(14)	٥ ک	90(16)	C(12) = C(1) D(2)	• •	101 00/10)
C(13)-Fe(1)- $C(14)C(13)$ -Fe(1)- $C(11)$) 50	.02(16)	P(1) - Fe(1) - P(3))	101.45(4)
C(14)-Fe(1)-C(11) 63	.82(16)	C(13)-Fe(1)-P(2	?)	123.44(12)
C(13)-Fe(1)-C(15) 64	.93(15)	C(14)-Fe(1)-P(2	2)	93.42(12)
C(14) - Fe(1) - C(15) C(11) - Fe(1) - C(15)) 38	.38(15) 41(15)	C(11) - Fe(1) - P(2) C(15) - Fe(1) - P(2)	())	132.16(12) 97 53(12)
C(13)-Fe(1)-C(12) 38	.55(16)	C(12) - Fe(1) - P(2)	?)	158.44(11)
C(14)-Fe(1)-C(12) 65	.04(16)	P(1)-Fe(1)-P(2)		101.68(4)
C(11)-Fe(1)-C(12) 38	.77(15)	P(3) - Fe(1) - P(2)	2)	61.63(4)
C(15) - Fe(1) - C(12) C(13) - Fe(1) - P(1)	20 (20	.4/(15) 75(11)	C(13) - Fe(1) - Fe(1	∠) 2)	103.90(12) 105.68(12)
C(14)-Fe(1)-P(1)	127	.11(12)	C(11)-Fe(1)-Fe(2)	167.72(11)
C(11)-Fe(1)-P(1)	125	.86(12)	C(15)-Fe(1)-Fe(2)	136.24(12)
C(15)-Fe(1)-P(1)	157	.04(11)	C(12)-Fe(1)-Fe(1)	2)	132.47(11)
C(12) - Fe(1) - P(1) C(13) - Fe(1) - P(3)	92 162	.69(12)	P(3) - Fe(1) - Fe(2)	· / ?)	91.80(3)
C(14)-Fe(1)-P(3)	129	.82(12)	P(2)-Fe(1)-Fe(2	2)	51.42(3)
C(11)-Fe(1)-P(3)	99	.92(11)	C(13)-Fe(1)-Fe(3)	138.84(12)
C(15)-Fe(1)-P(3)	98	.6/(11)	C(14)-Fe(1)-Fe(3)	175.55(12)
Einleitung Problemstellung	Eigene Ergebnisse	Experimenteller Teil	Zusammentassung	Literatur	Anhang

Tabelle A.10.3 Bindungslängen [Å] und -winkel [°]

Einleitung Problemstellung	Eigene Ergebnisse	Experimenteller Teil	Zusammenfassung	Literatur	Anhang
C(32)-Fe(3)-P(4)	90	.85(12)	Fe(3)-Fe(4)-Fe	(2)	78.67(2)
C(31)-Fe(3)-P(4)	107	.51(11)	P(3)-Fe(4)-Fe(2	2)	90.92(3)
C(34)-Fe(3)-P(4)	151	.66(12)	P(2)-Fe(4)-Fe(2)	2)	51.21(3)
C(35) - Fe(3) - P(3) C(33) - Fe(3) - D(4)	89 112	$.24(\perp \perp)$ 72(12)	C(42)-Fe(4)-Fe P(4)-Fe(4)-Fe((∠) 2)	110.82(11) 53 50(3)
C(32)-Fe(3)-P(3)	149	.73(12)	C(45)-Fe(4)-Fe	(2)	138.04(11)
C(31)-Fe(3)-P(3)	110	.89(12)	C(41)-Fe(4)-Fe	(2)	111.22(11)
C(34) - Fe(3) - P(3)	105	.92(12)	C(43) - Fe(4) - Fe	(2)	139.26(12)
C(32)-Fe(3)-C(35)	65	.81(15)	P(3) - Fe(4) - Fe(3)	3)	51.51(3)
C(31)-Fe(3)-C(35)	38	.63(15)	P(2)-Fe(4)-Fe(2)	3)	91.84(4)
C(34) - Fe(3) - C(35)	38	.98(16)	P(4) - Fe(4) - Fe(3)	3)	53.96(3)
C(31)-Fe(3)-C(32) C(33)-Eo(3) $C(35)$	38	.84(16)	C(45) - Fe(4) - Fe C(42) - Fe(4) - Fe	(3)	136.98(11)
C(34)-Fe(3)-C(32)	65	.75(16)	C(41)-Fe(4)-Fe	(3)	167.64(11)
C(33)-Fe(3)-C(32)	39	.12(17)	C(43)-Fe(4)-Fe	(3)	103.85(13)
C(33)-Fe(3)-C(31) C(34)-Fo(3) $C(31)$	64	.52(17)	P(2)-Fe(4)-P(3)) (3)	61.54(4)
C(33)-Fe(3)-C(34)	38	.94(16)	P(4)-Fe(4)-P(3)	101.47(4)
Fe(1)-Fe(2)-Fe(4)	78	.75(2)	C(42) - Fe(4) - P(1)	3)	158.21(11)
P(4) - Fe(2) - Fe(4) P(1) - Fe(2) - Fe(4)	51 01	.26(3)	C(41) - Fe(4) - P(2)	<i>५)</i> २)	132.86(11) 97.84(11)
P(2)-Fe(2)-Fe(4)	53	.54(3)	C(43)-Fe(4)-P(3)	122.96(12)
C(25)-Fe(2)-Fe(4)	118	.78(12)	C(44)-Fe(4)-P(2)	, 3)	93.09(11)
C(21)-Fe(2)-Fe(4) C(22)-Fe(2)-Fe(4)	156 155	.43(13) .40(11)	C(42) - Fe(4) - P(2) P(4) - Fe(4) - D(2)	∠))	131.57(12) 101.25(4)
C(24)-Fe(2)-Fe(4)	102	.35(13)	C(45) - Fe(4) - P(2)	2)	98.12(11)
C(23)-Fe(2)-Fe(4)	118	.11(12)	C(41)-Fe(4)-P(2)	2)	100.16(11)
P(4) - Fe(2) - Fe(1) P(1) - Fe(2) - Fe(1)	91 51	./2(4) 26(3)	C(44) - Fe(4) - P(2) C(43) - Fe(4) - P(2)	∠) 2)	129.18(11) 162 40(13)
P(2)-Fe(2)-Fe(1)	54	.19(3)	C(42) - Fe(4) - P(4)	4)	93.01(11)
C(25)-Fe(2)-Fe(1)	120	.18(12)	C(45)-Fe(4)-P(4)	4)	157.45(11)
C(21) - Fe(2) - Fe(1) C(22) - Fe(2) - Fe(1)	105 121	.19(12)	C(43) - Fe(4) - P(4) C(41) - Fe(4) - P(4)	±) 4)	34.51(12) 125.34(11)
C(24)-Fe(2)-Fe(1) C(21)-Fe(2) Fe(1)	156	.49(13)	C(44) - Fe(4) - P(4)	4)	127.85(11)
C(23)-Fe(2)-Fe(1)	158	.64(14)	C(45)-Fe(4)-C(4	42)	65.30(15)
P(4)-Fe(2)-P(1)	61	.72(4)	C(41)-Fe(4)-C(4)	42)	38.35(15)
C(25) - Fe(2) - P(1) P(2) - Fe(2) - D(1)	148 101	.⊥U(⊥3) 55(4)	C(44) - Fe(4) - C(43) - C(43) - C(43) - C(43) - C(43) - C(43) - Fe(4) - Fe(4) - C(43) - Fe(4) - Fe(4	4∠) 42)	65.12(15) 38 61(16)
C(22)-Fe(2)-P(1)	91	.66(13)	C(41)-Fe(4)-C(4)	45)	38.52(15)
C(21)-Fe(2)-P(1)	109	.81(13)	C(43)-Fe(4)-C(4)	45)	64.94(16)
C(23) - Fe(2) - P(1) C(24) - Fe(2) - P(1)	112	.11(14) .84(14)	C(43) - Fe(4) - C(4) C(44) - Fe(4) - C(4)	4⊥) 45)	53.86(17) 38.74(15)
P(2)-Fe(2)-P(4)	101	.33(4)	C(44)-Fe(4)-C(4)	41)	64.13(16)
C(25)-Fe(2)-P(4)	145	.69(13)	C(44)-Fe(4)-C(4	43)	38.82(15)
C(21) - Fe(2) - P(4) C(22) - Fe(2) - P(4)	148 109	.9/(12) .86(12)	F(1) - Fe(3)	1) (1)	50.91(3) 78.87(2)
C(24)-Fe(2)-P(4)	107	.40(13)	P(4) - Fe(3) - Fe(3)	1)	91.15(3)
C(23)-Fe(2)-P(4)	89	.93(12)	P(3)-Fe(3)-Fe(3)	1)	53.45(3)
C(22) - Fe(2) - P(2) C(25) - Fe(2) - P(2)	148 89	.25(12)	C(32) - Fe(3) - Fe C(35) - Fe(3) - Fe	(1)	121.07(11)
C(21)-Fe(2)-P(2) C(22)-Fo(2) P(2)	109	.69(12)	C(31)-Fe(3)-Fe	(1) (1)	158.71(11)
C(24)-Fe(2)-P(2)	107	.28(14)	C(34)-Fe(3)-Fe	(1)	103.37(11)
C(23)-Fe(2)-P(2)	145	.84(14)	C(33)-Fe(3)-Fe	(1)	118.15(12)
C(21)-Fe(2)-C(25) C(22)-Fe(2)-C(25)	38	.78(17) 08(17)	P(4) - Fe(3) - Fe(4) P(1) - Fe(3) - Fe(4)	4) 4)	51.77(3) 92.06(4)
C(24)-Fe(2)-C(25)	38	.62(17)	P(3)-Fe(3)-Fe(4)	4)	54.58(3)
C(23)-Fe(2)-C(25)	65	.24(17)	C(35)-Fe(3)-Fe	(4)	118.00(12)
C(24) - Fe(2) - C(22) C(21) - Fe(2) - C(22)	30	12(16)	C(31) - Fe(3) - Fe(3	(4)	104.37(12) 121 25(12)
C(23)-Fe(2)-C(22)	39	.23(17)	C(34)-Fe(3)-Fe	(4)	154.46(12)
C(24)-Fe(2)-C(21)	64	.38(18)	C(33)-Fe(3)-Fe	(4)	159.22(12)
C(23) = Fe(2) = C(24) C(23) = Fe(2) = C(21)	38 64	.78(18)	P(3) - Fe(3) - P(1) P(4) - Fe(3) - P(1))	101.15(4) 61.83(4)
Fe(2)-Fe(1)-Fe(3)	78	.34(2)	C(35)-Fe(3)-P(2)	1)	148.09(12)
P(2)-Fe(1)-Fe(3)	90	.60(3)	C(32)-Fe(3)-P(2	1)	109.08(12)
P(1) - Fe(1) - Fe(3) P(3) - Fe(1) - Fe(3)	53 51	.05(3)	C(34) - Fe(3) - P(3) C(31) - Fe(3) - P(3)	1)	109.25(12) 147.87(12)
C(12)-Fe(1)-Fe(3)	110	.90(11)	C(33)-Fe(3)-P(3)	1)	90.67(12)
C(15)-Fe(1)-Fe(3)	139	.05(11)	P(3)-Fe(3)-P(4)	102.29(4)
$C(11) = F_0(1) = F_0(3)$	111	96(11)	$C(35) = F_{2}(3) = D(3)$	4)	145 39(11)

Einleitung Problemstellung	Eigene Ergebnisse	Experimenteller Teil	Zusammenfassung	Literatur	Anhang
C(423)-S1(42)-C	(45) 110	J./(2)	C(41)-C(42)-Fe	.(4)	69.4(2)
C(421) - Si(42) - C	106	5.9(2)	C(43)-C(42)-Si	(41)	125.1(3)
C(423)-Si(42)-C	(422) 111	L.1(3)	C(41)-C(42)-Si	(41)	126.6(3)
C(421) - Si(42) - C	(422) 107	7.6(3)	C(41) - C(41) - C(42) - C(41) - C(42) - C(42	43)	104.9(3)
C(411)-S1(41)-C C(421)-S1(42)-C	(412) 106 (423) 109	5.8(3) 3.2(3)	C(42)-C(41)-Fe C(45)-C(41)-Fe	2(4) 2(4)	71.3(2)
C(42)-Si(41)-C(412) 105	5.3(3)	C(42)-C(41)-C(41)	45)	111.2(4)
C(413)-Si(41)-C	(412) 111	L.2(5)	Si(32)-C(35)-F	'e(3)	140.6(2)
C(42)-Si(41)-C(41)	411) 118	3.3(2)	C(34)-C(35)-Fe	(3)	68.1(2)
C(413) - Si(41) - C	(42) 107	(.2(3))	C(34)-C(35)-Si	.(32)	123.8(3)
C(323)-Si(32)-C	109	9.4(3)	C(31)-C(35)-Si	(32)	128.5(3)
C(35)-Si(32)-C(322) 104	1.8(2)	C(31)-C(35)-C(34)	105.2(4)
C(321)-Si(32)-C(32)-C(32)-C(32)-Si(32)-C(32)-Si(32)-C(32)-	(322) 108	3.0(3)	C(35)-C(34)-Fe	(3)	72.9(2)
C(321)-Si(32)-C C(35)-Si(32)-C	(323) 111 323) 100	L.4(3) 9 7(2)	C(33)-C(34)-C(3)	35) (3)	108.8(4) 70 0(2)
C(321)-Si(32)-C	(35) 113	3.3(2)	C(32)-C(33)-Fe	25)	72.4(3)
C(313)-Si(31)-C	(311) 108	3.7(3)	C(34)-C(33)-Fe	(3)	71.1(2)
C(32) - SI(31) - C(312) - Si(31) - C(312) - Si(31) - C(312) - Si(31) - C(312) - C(ـــــــــــــــــــــــــــــــــــــ	L.0(3)	C(34)-C(33)-C(33)	e(s) 32)	109.9(4)
C(312)-Si(31)-C	2(313) 109 211) 111	9.6(3)	C(33)-C(32)-Fe	(3)	68.5(2)
C(32)-Si(31)-C(313) 104	1.8(2)	C(31)-C(32)-Fe	(3)	69.9(2)
C(32)-Si(31)-C(312) 111	L.0(2)	C(33)-C(32)-Si	(31)	126.3(3)
C(213) - SI(22) - C(25) - SI(22) - C(25)	211) 109	9.7(3)	C(31) - C(32) - C(32) - Si	.(31)	127.3(3)
C(212)-Si(22)-C	(211) 112 (211) 107	2.2(4)	C(32)-C(31)-Fe	23) 23)	71.2(2)
C(213)-Si(22)-C	105	5.7(3)	C(35)-C(31)-Fe	(3)	72.3(2)
C(212)-Si(22)-C	(25) 112	2.2(3)	C(35)-C(31)-C(32)	111.1(4)
C(222) - SI(21) - C C(212) - SI(22) - C	(213) 109	9.2(4)	Si(22)-C(25)-F	:(∠) 'e(2)	139.8(2)
C(221)-S1(21)-C	(223) 109 (223) 110	9.8(3) 2.1(3)	C(24) - C(25) - Fe	(2)	68.5(2) 69.0(2)
C(22)-Si(21)-C(223) 110	(2)	C(21)-C(25)-Si	(22)	126.7(3)
C(221)-Si(21)-C	108	3.7(3)	C(24)-C(25)-Si	(22)	125.8(4)
C(22)-Si(21)-C(222) 112	2.3(3)	C(24)-C(25)-C(21)	105.2(4)
C(15) - SI(12) - C(C(22) - Si(21) - C(22))	109 221) 103	7.0(∠) 3.5(2)	C(23) - C(24) - Fe C(25) - C(24) - Fe	:(∠) :(2)	70.3(3)
C(122)-Si(12)-C	(123) 110	1.9(3)	C(23)-C(24)-C(24)	25) (2)	109.8(4)
C(121)-Si(12)-C	2(123) 110	0.6(3)	C(22)-C(23)-Fe	2(2)	72.1(2)
C(122)-Si(12)-C	104	1.2(2)	C(24)-C(23)-Fe	(2)	70.9(2)
C(121)-Si(12)-C	(15) 114	1.1(2)	C(24)-C(23)-C(22)	109.4(4)
C(121) - Si(12) - C	(122) 105	7.1(3)	C(23) - C(22) - FC Si(21) - C(22) - FC	:(∠) 'e(2)	138.5(2)
C(12)-Si(11)-C((111) 110	J.9(3) J.5(3)	C(21)-C(22)-Fe	(2)	69.6(2) 68 7(2)
C(113)-Si(11)-C	2(111) 110	0.0(3)	C(23)-C(22)-Si	(21)	124.7(3)
C(12)-Si(11)-C(112) 103	3.5(2)	C(21)-C(22)-Si	(21)	128.4(3)
C(113) - Si(11) - C	(112) 107	7.5(3)	C(22) - C(21) - Fe C(21) - C(22) - C(21)	23)	104.7(4)
Fe(2) - P(4) - P(1)	(12) 59	9.38(4)	C(25)-C(21)-Fe	(2)	72.2(2)
Fe(3)-P(4)-P(1)	59	9.28(4)	C(25)-C(21)-C(22)	110.9(4)
Fe(4) - P(4) - P(1)	104	1.68(5)	Si(12)-C(15)-F	'e(1)	138.9(2)
Fe(3) - P(4) - Fe(2)) 98	3.66(4)	C(11)-C(15)-Fe	(1)	69.4(2)
Fe(4) - P(4) - Fe(3) Fe(4) - P(4) - Fe(7)) 74) 75	$\pm .20(4)$	C(11) - C(15) - S1 C(14) - C(15) - Fe	·(1)	125.9(3) 68.6(2)
Fe(4) - P(3) - P(2)	58	3.85(4)	C(14)-C(15)-Si	(12)	126.8(3)
Fe(1)-P(3)-P(2)	59	9.45(4)	C(14)-C(15)-C(11)	105.2(3)
Fe(3)-P(3)-P(2)	104	1.44(5)	C(13)-C(14)-Fe	(1)	70.4(2)
Fe(1) - P(3) - Fe(4)) 98	3.44(4)	C(15)-C(14)-Fe	±3) e(1)	73.0(2)
Fe(3) - P(3) - Fe(1) Fe(3) - P(3) - Fe(4)) 75) 73	3.50(4)	C(12) - C(13) - Fe C(15) - C(14) - C(14)	*(⊥) 13)	13.3(2) 109.4(4)
Fe(1)-P(2)-P(3)	58	3.92(4)	C(14)-C(13)-Fe	e(1)	70.7(2)
Fe(4) - P(2) - P(3)	59	9.60(4)	C(14)-C(13)-C(12)	109.6(4)
Fe(2) - P(2) - P(3)	104	1.72(5)	Si(11)-C(12)-F	'e(1)	144.8(2)
Fe(4)-P(2)-Fe(1)) 98	3.59(4)	C(11)-C(12)-Fe	2(1)	68.9(2)
Fe(2) - P(2) - Fe(4)) 74	1.40(4)	C(12) - C(12) - S1 C(13) - C(12) - Fe	·(++) •(1)	-27.2(3) 68.1(2)
Fe(2) - P(1) - P(4) Fe(2) - D(2) - Fe(4)	.) 58 ar	3.9⊥(4) 5.25(4)	C(13)-C(12)-Si	.(⊥⊥) (11)	124.2(3)
Fe(3)-P(1)-P(4)	58	3.89(4)	C(13)-C(12)-C(11)	104.3(4)
Fe(1)-P(1)-P(4)	104	1.78(5)	C(12)-C(11)-Fe	(1)	72.3(2)
re(1) - P(1) - Fe(2) Fe(3) - P(1) - Fe(2)) /4 () 98	3.07(4)	C(15) - C(11) - Fe	12) (1)	72.2(2)
Fe(1)-P(1)-Fe(3)) 75	5.46(4)	C(422)-Si(42)-	C(45)	112.0(2)
- (1) - (1) - (2)	、	- 46(4)	a(100) al (10)		110 0(0)

C(43)-C(42)-Fe(4)	68.4(2)
Si(41)-C(42)-Fe(4)	142.1(2)
C(44)-C(43)-C(42)	109.5(4)
C(44)-C(43)-Fe(4)	70.4(2)
C(42)-C(43)-Fe(4)	73.0(2)
C(43)-C(44)-C(45)	108.9(3)
C(43)-C(44)-Fe(4)	70.8(2)
C(45)-C(44)-Fe(4)	72.6(2)
C(44)-C(45)-C(41)	105.4(3)
C(44)-C(45)-Si(42)	126.2(3)
C(41)-C(45)-Si(42)	127.5(3)
C(44)-C(45)-Fe(4)	68.7(2)
C(41)-C(45)-Fe(4)	69.8(2)
Si(42)-C(45)-Fe(4)	134.2(2)

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Tabelle A.10.4 Anisotrope Auslenkungsparameter [Å ² x 10 ³]	
Der Exponent des anisotropen Auslenkungsfaktors hat die Form:	$-2\pi^{2} [(ha^{*})^{2} U_{11} + + 2hka^{*}b^{*}U_{12}]$

U	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃
$\begin{array}{c c} U_{12} \\ \hline \\ Fe(1) & 27(1) \\ Fe(2) & 29(1) \\ Fe(3) & 24(1) \\ Fe(4) & 27(1) \\ P(1) & 31(1) \\ P(2) & 27(1) \\ P(3) & 32(1) \\ P(4) & 30(1) \\ Si(11) & 41(1) \\ Si(12) & 51(1) \\ Si(21) & 46(1) \\ Si(22) & 29(1) \\ Si(21) & 46(1) \\ Si(22) & 29(1) \\ Si(31) & 35(1) \\ Si(32) & 45(1) \\ Si(41) & 89(1) \\ Si(42) & 42(1) \\ C(11) & 36(2) \\ C(12) & 33(2) \\ C(13) & 41(2) \\ C(14) & 32(2) \\ C(13) & 41(2) \\ C(14) & 32(2) \\ C(21) & 37(2) \\ C(22) & 39(2) \\ C(23) & 48(3) \\ C(24) & 49(3) \\ C(25) & 35(2) \\ C(31) & 26(2) \\ C(32) & 22(2) \\ C(33) & 26(2) \\ C(44) & 35(2) \\ C(112) & 86(5) \\ C(112) & 86(5) \\ C(112) & 86(5) \\ C(112) & 86(5) \\ C(112) & 56(4) \\ C(221) & 69(4) \\ C(222) & 51(3) \\ C(223) & 99(5) \\ C(311) & 74(4) \\ C(323) & 116(6) \\ C(411) & 149(7) \\ C(412) & 231(11) \\ \end{array}$	$\begin{array}{c} U_{11} \\ 29(1) \\ 31(1) \\ 30(1) \\ 30(1) \\ 30(1) \\ 33(1) \\ 34(1) \\ 33(1) \\ 34(1) \\ 49(1) \\ 57(1) \\ 50(1) \\ 57(1) \\ 50(1) \\ 50(1) \\ 50(1) \\ 50(1) \\ 50(1) \\ 74(1) \\ 44(1) \\ 38(2) \\ 41(2) \\ 27(2) \\ 32(2) \\ 36(2) \\ 35(2) \\ 40(2) \\ 42(2) \\ 48(2) \\ 40(2) \\ 42(2) \\ 48(2) \\ 40(2) \\ 42(2) \\ 48(2) \\ 40(2) \\ 34(2) \\ 34(2) \\ 38(2) \\ 44(2) \\ 39(2) \\ 44(2) \\ 40(2) $	$\begin{array}{c} U_{22} \\ 31(1) \\ 33(1) \\ 33(1) \\ 31(1) \\ 34(1) \\ 35(1) \\ 31(1) \\ 31(1) \\ 59(1) \\ 41(1) \\ 42(1) \\ 77(1) \\ 46(1) \\ 43(1) \\ 34(2) \\ 43(2) \\ 43(2) \\ 47(2) \\ 46(2) \\ 37(2) \\ 49(2) \\ 34(2) \\ 47(2) \\ 46(2) \\ 37(2) \\ 49(2) \\ 38(2) \\ 34(2) \\ 44(2) \\ 55(3) \\ 47(2) \\ 46(2) \\ 55(3) \\ 47(2) \\ 46(2) \\ 55(3) \\ 47(2) \\ 46(2) \\ 55(3) \\ 47(2) \\ 44(2) \\ 55(3) \\ 40(2) \\ 55(3) \\ 72(4) \\ 63(3) \\ 79(4) \\ 12(5) $	$\begin{array}{c} U_{33} \\ \hline \\ -2(1) \\ -6(1) \\ -3(1) \\ -2(1) \\ -5(1) \\ -2(1) \\ -4(1) \\ -3(1) \\ 1(1) \\ 5(1) \\ -18(1) \\ -16(1) \\ -3(1) \\ -14(1) \\ 2(1) \\ -14(1) \\ 0(2) \\ 7(2) \\ -1(2) \\ 7(2) \\ -1(2) \\ 7(2) \\ -1(2) \\ -2(2) \\ -1(2) \\ -16(2) \\ -8(2) \\ -11(2) \\ -16(2) \\ -8(2) \\ -11(2) \\ -16(2) \\ -8(2) \\ -11(2) \\ -16(2) \\ -8(2) \\ -11(2) \\ -16(2) \\ -8(2) \\ -11(2) \\ -6(2) \\ -11(2) \\ -6(2) \\ -3(4) \\ 29(4) \\ -5(3) \\ 8(4) \\ 16(3) \\ -24(3) \\ -24(4) \\ 23(5) \\ -60(5) \\ -31(3) \\ -43(4) \\ -11(3) \\ 6(2) \\ -14(3) \\ -3(4) \\ -44(3) \\ -44(3) \\ -49(4) \\ -7(3) \\ -3(3) \\ 18(3) \\ \end{array}$	$\begin{array}{c} U_{23} \\ \hline \\ -2(1) \\ 1(1) \\ -1(1) \\ 0(1) \\ -2(1) \\ -1(1) \\ -1(1) \\ -3(1) \\ -4(1) \\ -1(1) \\ -1(1) \\ 1(1) \\ -1(1) \\ 1(1) \\ -1(2) \\ -8(2) \\ -5(2) \\ -7(2) \\ -9(2) \\ 5(2) \\ 8(2) \\ -5(2) \\ -7(2) \\ -9(2) \\ 5(2) \\ 8(2) \\ 5(2) \\ 15(2) \\ 8(2) \\ -3(2$	$\begin{array}{c} U_{13} \\ \hline \\ -15(1) \\ -13(1) \\ -14(1) \\ -16(1) \\ -17(1) \\ -16(1) \\ -17(1) \\ -16(1) \\ -17(1) \\ -15(1) \\ -31(1) \\ -34(1) \\ -19(1) \\ -15(1) \\ -12(1) \\ -21(1) \\ -21(1) \\ -27(1) \\ -16(2) \\ -25(2) \\ -18(2) \\ -14(2) \\ -20(2) \\ -13(2) \\ -14(2) \\ -20(2) \\ -13(2) \\ -14(2) \\ -20(2) \\ -13(2) \\ -14(2) \\ -20(2) \\ -13(2) \\ -14(2) \\ -21(2) \\ -13(2) \\ -14(2) \\ -7(2) \\ -14(2) \\ -7(2) \\ -14(2) \\ -24(2) \\ -17(2) \\ -14(2) \\ -24(2) \\ -30(2) \\ -13(2) \\ -14(2) \\ -24(2) \\ -30(2) \\ -13(2) \\ -14(2) \\ -24(2) \\ -30(2) \\ -14(2) \\ -24(2) \\ -16(4) \\ -31(3) \\ -40(3) \\ -27(4) \\ -39(4) \\ -37(5) \\ -73(6) \\ \end{array}$
C(413) 137(8) C(421) 106(5) C(422) 74(4)	319(15) 67(4) 96(4) 77(4)	66(4) 78(4) 51(3)	-19(6) 2(3) -12(3) -8(3)	36(5) -22(3) -5(3)	-162(10) -61(4) -56(3) -27(3)

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Anhang A.11 : Strukturdaten von [(Cp⁻Co}₄(P=O)₄] (17)

Tabelle A.11.1 Kristalldaten und Strukturverfeinerung

	Q
	0-q
Tabelle A.11.1 Kristalldaten und	l Strukturverfeinerung
Summenformel	C ₃₂ H ₅₂ Co ₄ O ₄ P ₄ Si ₄
Molmasse	928.70
Temperatur	293(2) K
Strahlung	ΜοΚα
Wellenlänge	0.71073 Å
Scanmodus	Phi-Oszillation
Kristallsystem	Monoklin
Raumgruppe	C2/c
Zelldimensionen	$a = 19.7656(11) \text{ Å}$ $\alpha = 90^{\circ}$
	$b = 19.7850(16)$ Å $\beta = 102.503(7)^{\circ}$
	$c = 215388(14) \text{ Å}$ $\gamma = 90^{\circ}$
Zellvolumen	8223.3(10) Å ³
Formeleinheiten pro Zelle Z	8
Berechnete Dichte	1.500 Mg/m^3
Absorptionskoeffizient	1.884 mm ⁻¹
Kristallgröße	0.33 x 0.10 x 0.08 mm
Gemessener θ-Bereich	2.61 bis 25.68°
Anzahl der gemessenen Reflexe	57020
Unabhängige Reflexe	7593 (Rint = 0.1648)
Absorptionskorrektur	Numerisch (ABST/PLATON 98)
Max. und min. Transmission	0.86837 und 0.78978
Diffraktometer	Stoe IPDS
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SHELXS-97 (Sheldrick, 1990)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F ²
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	7593 / 0 / 449
Endgültige R-Werte $[I \ge 2\sigma(I)]$	R1 = 0.0358, WR2 = 0.0473
R-Werte (alle Daten)	R1 = 0.1326, $wR2 = 0.0605$
Wichtungsschema	$w=1/[\sigma^{2}(Fo^{2})+(0.0150P)^{2}+0.0000P]$ mit $P=(Fo^{2}+2Fc^{2})/3$
GooF (alle Daten)	0.663
Größtes Maximum und Minimum	$0.425 \text{ und } -0.241 \text{ e}\text{\AA}^{-3}$

Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) bzw. der 1.2-fache Wert (Cp-H) des äquivalenten isotropen Temperaturfaktors desjenigen C-Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist. Die Sauerstoffpositionen sind jeweils nur partiell populiert. Der SOF für diese Atome wurde in die Verfeinerung mit einbezogen.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			
Tabelle A.11.2					

Atomkoordinaten [x 10^4] und äquivalente isotrope Auslenkungsparameter [Å ² x 10^3]					
U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.					

	x	У	Z	U(eq)
$\begin{array}{c} \text{Co(1)}\\ \text{Co(2)}\\ \text{Co(3)}\\ \text{Co(4)}\\ \text{P(1)}\\ \text{P(2)}\\ \text{P(3)}\\ \text{P(4)}\\ \text{O(1)}\\ \text{O(1)}\\ \text{O(2)}\\ \text{O(3)}\\ \text{O(4)}\\ \text{si(11)}\\ \text{si(21)}\\ \text{si(21)}\\ \text{si(31)}\\ \text{si(41)}\\ \text{C(11)}\\ \text{C(12)}\\ \text{C(12)}\\ \text{C(13)}\\ \text{C(14)}\\ \text{C(15)}\\ \text{C(22)}\\ \text{C(23)}\\ \text{C(24)}\\ \text{C(25)}\\ \text{C(21)}\\ \text{C(22)}\\ \text{C(23)}\\ \text{C(24)}\\ \text{C(25)}\\ \text{C(31)}\\ \text{C(32)}\\ \text{C(34)}\\ \text{C(35)}\\ \text{C(41)}\\ \text{C(42)}\\ \text{C(44)}\\ \text{C(45)}\\ \text{C(111)}\\ \text{C(112)}\\ \text{C(112)}\\ \text{C(113)}\\ \text{C(211)}\\ \text{C(211)}\\ \text{C(211)}\\ \text{C(212)}\\ \text{C(213)}\\ \text{C(311)}\\ \text{C(312)}\\ \text{C(311)}\\ \text{C(312)}\\ \text{C(313)}\\ \end{array}$	$ x \\ 3345(1) \\ 2323(1) \\ 2074(1) \\ 2398(1) \\ 2567(1) \\ 1666(1) \\ 2654(1) \\ 3257(1) \\ 2645(4) \\ 896(5) \\ 2620(10) \\ 3931(5) \\ 4379(1) \\ 3610(1) \\ 1153(1) \\ 865(1) \\ 4173(3) \\ 3826(3) \\ 3835(3) \\ 4211(3) \\ 4414(3) \\ 2713(3) \\ 2826(3) \\ 3835(3) \\ 4211(3) \\ 4414(3) \\ 2713(3) \\ 2330(4) \\ 1648(4) \\ 1582(3) \\ 2226(3) \\ 1460(3) \\ 2047(3) \\ 2047(3) \\ 2049(4) \\ 1462(4) \\ 1106(3) \\ 1738(3) \\ 2391(4) \\ 1940(4) \\ 5273(3) \\ 4370(4) \\ 3733(4) \\ 3921(4) \\ 4175(3) \\ 3573(4) \\ 1822(4) \\ 319(4) \\ 969(4) \\ $	$\begin{array}{c} y\\ 3121(1)\\ 3727(1)\\ 3043(1)\\ 2457(1)\\ 3043(1)\\ 2457(1)\\ 3878(1)\\ 3042(1)\\ 2288(1)\\ 3126(1)\\ 4599(3)\\ 3078(5)\\ 1551(8)\\ 3085(6)\\ 1669(1)\\ 4604(1)\\ 4453(1)\\ 1419(1)\\ 2584(3)\\ 2979(3)\\ 3666(3)\\ 3724(3)\\ 3071(3)\\ 4411(3)\\ 4746(3)\\ 4517(3)\\ 4029(3)\\ 3724(3)\\ 3071(3)\\ 4411(3)\\ 4746(3)\\ 4517(3)\\ 4029(3)\\ 3965(3)\\ 3564(3)\\ 3269(3)\\ 3564(3)\\ 3269(3)\\ 2571(3)\\ 2396(3)\\ 3003(3)\\ 1719(2)\\ 1435(3)\\ 1735(3)\\ 2218(3)\\ 2210(3)\\ 1590(3)\\ 1315(4)\\ 1241(3)\\ 3886(3)\\ 4733(3)\\ 5404(3)\\ 4422(4)\\ 4800(3) \end{array}$	$\begin{array}{c} \\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3$	U(eq) 42(1) 41(1) 42(1) 43(1) 40(1) 42(1) 42(1) 59(4) 62(4) 75(9) 54(5) 62(1) 60(1) 60(1) 60(1) 60(1) 60(2) 51(2) 60(2) 51(2) 60(2) 51(2) 62(2) 63(2) 51(2) 62(2) 63(2) 51(2) 62(2) 63(2) 51(2) 62(2) 63(2) 51(2) 62(2) 63(2) 51(2) 62(2) 63(2) 51(2) 62(2) 63(2) 51(2) 62(2) 63(2) 51(2) 63(2) 51(2) 62(2) 63(2) 51(2) 63(2) 51(2) 62(2) 63(2) 51(2) 63(2) 51(2) 63(2) 51(2) 63(2) 51(2) 63(2) 51(2) 63(2) 51(2) 63(2) 51(2) 63(2) 51(2) 63(2) 51(2) 63(2) 51(2) 63(2) 51(2) 63(2) 51(2) 63(2) 51(2) 63(2) 51(2) 63(2) 51(2) 63(2) 51(2) 62(2) 63(2) 51(2) 62
C(412) C(443)	781(4)	531(3)	10947(4) 12078(3)	106(3)

Tabelle A.11.3 Bindungslängen [Å] und -winkel [°]

$\begin{array}{c} \text{Co}(1)-\text{C}(15)\\ \text{Co}(1)-\text{C}(14)\\ \text{Co}(1)-\text{C}(13)\\ \text{Co}(1)-\text{C}(11)\\ \text{Co}(1)-\text{C}(12)\\ \text{Co}(1)-\text{P}(1)\\ \text{Co}(1)-\text{P}(3)\\ \text{Co}(1)-\text{P}(4) \end{array}$	2.064(5) 2.088(6) 2.104(5) 2.142(5) 2.141(5) 2.1959(16) 2.2132(17) 2.2428(14)		$\begin{array}{c} Co(1)-Co(3)\\ Co(2)-C(22)\\ Co(2)-C(23)\\ Co(2)-C(24)\\ Co(2)-C(25)\\ Co(2)-C(25)\\ Co(2)-C(21)\\ Co(2)-P(2)\\ Co(2)-P(2)\\ Co(2)-P(4) \end{array}$	2.5168(10) 2.069(5) 2.084(6) 2.111(5) 2.138(5) 2.153(5) 2.1991(17) 2.2158(16)	
Einleitung Problemstellung	Eigene Ergebnisse	Experimenteller Teil	Zusammenfassung	Literatur	Anhang

Einleitung Problemstellung	Eigene Ergebnisse	Experimenteller Teil	Zusammenfassung	Literatur	Anhang
	-, ;			T : 4	. ,
C(15) - CO(1) - C(1) C(14) - CO(1) - C(1)	∠) 2)	04.4(∠) 64.3(2)	C(35)-Co(3)-C(31)	39	.6(2)
C(13)-Co(1)-C(1)	1) 2)	66.0(2)	C(34) - CO(3) - C(32) C(33) - CO(3) - C(32)	64 22	.4(∠) 6(2)
C(14)-Co(1)-C(1)	1)	66.8(2)	C(35)-Co(3)-C(32)	64	(4(2))
C(15)-Co(1)-C(1)	1)	40.1(2)	C(34)-Co(3)-C(33)	38	.3(2)
C(14)-Co(1)-C(1)	3)	38.3(2)	C(35)-Co(3)-C(33)	65	.2(2)
C(15) - CO(1) - C(1) C(15) - CO(1) - C(1)	±/ 3)	55.2(2)	C(35)-Co(3)-C(34)	39	.7(2)
$O(1E) O_{2}(1) O(1)$	1)	20 5(2)	P(4) = CO(2) = CO(4) P(1) = CO(2) = CO(4)	54	.03(5) 43(5)
C(44)-C(45)	1.396(8)		P(2)-Co(2)-Co(4)	55	.42(5)
C(43)-C(44)	1.393(7)		C(21)-Co(2)-Co(4)	126	.10(16)
C(42)-C(43)	1.390(8)		C(25)-Co(2)-Co(4)	101	.54(16)
C(41) - C(42)	1.449(8)		C(24)-Co(2)-Co(4)	107	.68(19)
C(34) = C(35) C(41) = C(45)	1,414(7)		C(22) = CO(2) = CO(4) C(23) = CO(2) = CO(4)	105 141	.2(2)
C(33) - C(34)	1.378(8)		P(4) - Co(2) - P(1)	71	.44(6)
C(32) - C(33)	1.393(7)		P(2)-Co(2)-P(1)	71	.61(6)
C(31)-C(35)	1.431(7)		C(21)-Co(2)-P(1)	120	.97(14)
C(31)-C(32)	1.404(7)		C(25)-Co(2)-P(1)	158	.35(16)
C(24) - C(25)	1.406(8)		C(24)-Co(2)-P(1)	139	.7(2)
C(22) - C(23) C(23) - C(24)	1.391(8) 1.385(8)		C(22) = CO(2) = P(1) C(23) = CO(2) = D(1)	94. 102	.9∠(⊥0) 91(19)
C(21) - C(22)	1.431(7)		P(2)-Co(2)-P(4)	91	.02(6)
C(21)-C(25)	1.413(7)		C(21)-Co(2)-P(4)	102	.07(16)
C(14)-C(15)	1.405(7)		C(25)-Co(2)-P(4)	114	.09(19)
C(13)-C(14)	1.375(8)		C(24)-Co(2)-P(4)	148	.8(2)
C(12) - C(13)	1.407(7)		C(23) - CO(2) - P(4) C(23) - CO(2) - P(4)	163 153	.6(2)
C(11)-C(12)	1.404(7) 1 4/2(7)		C(21) - Co(2) - P(2)	164	.09(15)
Si(41)-C(443)	1.852(6)		C(25)-Co(2)-P(2)	127	.38(17)
Si(41)-C(412)	1.864(6)		C(24)-Co(2)-P(2)	98	.53(18)
Si(41)-C(41)	1.847(6)		C(23)-Co(2)-P(2)	102	.6(2)
Si(41) - C(411)	1.842(6)		C(22) - CO(2) - C(21) C(22) - CO(2) - P(2)		.4(2)
SI(3I) - C(3I2) Si(3I) - C(3I)	⊥.ʊ/5(/) 1 856(6)		C(24) - CO(2) - C(21) C(25) - CO(2) - C(21)	20	.v(∠) 45(18)
S1(31) - C(311) S1(31) - C(311)	1,85U(6)		C(23) - Co(2) - C(21)	66 65	.2(2) 6(2)
Si(31)-C(313)	1.857(6)		C(22)-Co(2)-C(21)	39	.6(2)
Si(21)-C(213)	1.871(6)		C(24)-Co(2)-C(25)	38	.6(2)
Si(21)-C(211)	1.851(6)		C(23)-Co(2)-C(25)	64	.6(2)
Si(21)-C(21)	1.849(6)		C(22)-Co(2)-C(25)	64	.4(2)
Si(21)-C(212)	1.854(5)		C(23)-Co(2)-C(24)	38	.6(2)
$S_1(11) - C(11)$	1.875(6)		C(22) = CO(2) = C(23) C(22) = CO(2) = C(24)	39 64	· ± (∠) . 9(2)
$S_1(11) - C(112)$ $S_1(11) - C(11)$	1.852(6)		P(4) - Co(1) - Co(3)	98	.20(5)
Si(11)-C(113)	1.842(7)		P(3)-Co(1)-Co(3)	55	.20(5)
P(4)-O(4)	1.507(11)		P(1)-Co(1)-Co(3)	55	.43(5)
P(3)-P(4)	2.583(2)		C(12)-Co(1)-Co(3)	102	.77(17)
P(3)-O(3)	1.532(16)		C(11)-Co(1)-Co(3)	126	.84(17)
P(2)-D(2) P(2)-P(3)	1.490(9) 2.590(2)		C(13) - CO(1) - CO(3)	102 102	$. \mathfrak{I}(2)$
P(1) - P(4) P(2) - O(2)	2.598(2)		C(15)-Co(1)-Co(3)	166	.38(16)
P(1) - P(2)	2.594(2)		P(3)-Co(1)-P(4)	70	.85(6)
P(1)-O(1)	1.512(7)		P(1)-Co(1)-P(4)	71	.65(6)
Co(4) - P(3)	2.2467(17)		C(12)-Co(1)-P(4)	157	.30(17)
Co(4) - P(2)	2.2113(17)		C(11) - Co(1) - P(4)	120	.19(15)
CO(4) - C(41) CO(4) - P(4)	∠.145(5) 2 1959/17)		C(14) - CO(1) - P(4) C(13) - CO(1) - P(4)	103 120	.//(19) 6(2)
Co(4) - C(45)	2.125(5)		C(15)-Co(1)-P(4)	93	.92(15)
Co(4) - C(44)	2.110(5)		P(1)-Co(1)-P(3)	91	.22(5)
Co(4) - C(43)	2.108(6)		C(12)-Co(1)-P(3)	114	.82(17)
Co(4) - C(42)	2.077(5)		C(11)-Co(1)-P(3)	102	.01(16)
$C_{O}(3) - P(2)$	2.2100(17) 2.2437(14)		C(13) - CO(1) - P(3)	149	.7(4)
CO(3) - P(3) CO(3) - P(1)	Z.ZU/9(18) 2 2100/17)		C(15) - CO(1) - P(3) C(14) - CO(1) - P(3)	124	.3/(18) 7(2)
Co(3) - C(31)	2.151(5)		C(12)-Co(1)-P(1)	128	13(15)
Co(3) - C(32)	2.110(5)		C(11)-Co(1)-P(1)	164	.50(15)
Co(3)-C(33)	2.102(5)		C(13)-Co(1)-P(1)	98	.51(16)
Co(3) - C(34)	2.101(6)		C(14)-Co(1)-P(1)	101	.79(17)
Co(3) - C(35)	2.068(5)		C(11) - CO(1) - C(12) C(15) - Co(1) - P(1)	135	.48(19)
Co(2) - P(1) Co(2) - Co(4)	2.2347(16)		C(13)-Co(1)-C(12) C(11)-Co(1)-C(12)	38	.7(2) 28(18)
(2, 2) $D(1)$	2,2247(10)		$a(12) = a_2(1) = a(12)$	20	7(2)

$\begin{array}{c} 1 & 130 \\ 1 & 59 \\ 1 & 59 \\ 1 & 59 \\ 3) & 54 \\ 1 & 59 \\ 5) & 54 \\ 5) & 54 \\ 5 & 50 \\ 5 & 64 \\ 5) & 64 \\ 5) & 64 \\ 5) & 64 \\ 5) & 64 \\ 5) & 64 \\ 5) & 64 \\ 5) & 64 \\ 5) & 64 \\ 1 & 66 \\ 1 $	5.40(5) 1.90(5) 3.01(5) 3.8(2) 1.5(2) 3.6(2) 1.7(2) 1.9(2) 3.5(2) 1.1(2) 5.6(2) 3.6(2) 3.6(2) 3.6(2) 3.6(2) 3.6(2) 3.3(19) 2.77(17) 5.78(17) 3.3(2) 3.0(2)	O(3) - P(3) - Co(3) O(3) - P(3) - Co(1) Co(3) - P(3) - Co(1) O(3) - P(3) - Co(4) Co(1) - P(3) - Co(4) Co(1) - P(3) - Co(4) Co(1) - P(3) - P(4) Co(3) - P(3) - P(4) Co(1) - P(3) - P(4) Co(3) - P(3) - P(2) Co(3) - P(3) - P(2) Co(1) - P(3) - P(2) Co(4) - P(3) - P(2) Co(4) - P(3) - P(2) Co(4) - P(3) - P(2) Co(4) - P(4) - Co(2) O(4) - P(4) - Co(2) O(4) - P(4) - Co(1) Co(4) - P(4) - P(3) Co(2) - P(4) - P(3) Co(2) - P(4) - P(3) Co(1) - P(4) - P(3) Co(1) - P(4) - P(1) Co(1) - Si(11) - C(1) C(112) - Si(11) - C(1) C(112) - Si(11) - C(1) C(112) - Si(11) - C(1) C(212) - Si(21) - C(2) C(212) - Si(21) - C(2) C(211) - Si(21) - C(2) C(211) - Si(31) - C(3) C(313) - Si(31) - C(3) C(313) - Si(31) - C(3) C(313) - Si(31) - C(3) C(311) - Si(31) - C(3) C(3	130 69 115 107 107 107 144 97 55 53 128 55 96 53 75 119 128 69 115 108 106 131 55 96 54 57 12) 10 1) 108 1) 100 1) 100 1) 100 1) 100 1) 100 1) 100 1) 100 1) 100 1) 100 11) 110 12) 107 12) 111 1) 108 11) 110 12) 107 12) 111 1)	.40(5) .1(5) .69(7) .36(7) .9(7) .20(7) .11(5) .54(5) .6(7) .08(5) .70(7) .85(5) .02(6) .3(4) .2(4) .60(5) .8(4) .10(7) .79(7) .7(4) .37(5) .7(47) .04(5) .7(5) .10(7) .62(5) .34(4) .90(5) .6(4) .6(3) .2(3) .4(3) .3(4) .7(3) .8(3) .3(3) .8(3) .7(3) .8(3) .7(3) .8(3) .7(3) .8(3) .2(3)
$\begin{array}{c} 1 & 130 \\ 1 & 59 \\ 1 & 59 \\ 1 & 59 \\ 3 & 38 \\ 4 & 64 \\ 4 & 38 \\ 5 & 64 \\ 5 & 64 \\ 5 & 64 \\ 5 & 64 \\ 5 & 64 \\ 5 & 64 \\ 5 & 64 \\ 5 & 64 \\ 5 & 64 \\ 5 & 64 \\ 5 & 64 \\ 5 & 64 \\ 5 & 64 \\ 1 & 66 \\ 1 & $	5.40(5) 1.90(5) 3.01(5) 3.8(2) 1.5(2) 3.6(2) 1.7(2) 1.9(2) 3.5(2) 1.1(2) 5.6(2) 5.6(2) 5.6(2) 1.3(19) 2.77(17) 5.78(17) 3.3(2) 3.0(2) 3.4(2) 1.52(19) 2.63(17) 1.22(6) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(3) 5.7(5) 1.96(5) 7.81(5) 9.6(3) 5.2(3) 9.67(5) 5.8(3) 7.77(7) 7.37(6)	O(3) - P(3) - Co(3) O(3) - P(3) - Co(1) Co(3) - P(3) - Co(1) O(3) - P(3) - Co(4) Co(3) - P(3) - Co(4) Co(1) - P(3) - Co(4) Co(1) - P(3) - P(4) Co(3) - P(3) - P(4) Co(1) - P(3) - P(4) Co(3) - P(3) - P(4) Co(3) - P(3) - P(2) Co(3) - P(3) - P(2) Co(4) - P(3) - P(2) Co(4) - P(3) - P(2) O(4) - P(4) - Co(2) O(4) - P(4) - Co(2) O(4) - P(4) - Co(2) O(4) - P(4) - Co(1) Co(4) - P(4) - P(3) Co(2) - P(4) - P(3) Co(2) - P(4) - P(3) Co(2) - P(4) - P(3) Co(1) - P(4) - P(1) Co(2) - P(4) - P(1) Co(1) - Si(11) - C(1) C(113) - Si(11) - C(1) C(113) - Si(11) - C(1) C(113) - Si(11) - C(1) C(112) - Si(21) - C(2) C(21) - Si(21) - C(3) C(31) - Si(31) - C(3) C(31) - Si(31) - C(3) C(31) - Si($\begin{array}{c} 130\\ 69\\ 115\\ 107\\ 107\\ 107\\ 144\\ 97\\ 55\\ 53\\ 128\\ 55\\ 96\\ 53\\ 75\\ 129\\ 128\\ 69\\ 115\\ 108\\ 106\\ 131\\ 55\\ 96\\ 54\\ 142\\ 97\\ 54\\ 53\\ 74\\ 12)\\ 108\\ 106\\ 131\\ 108\\ 106\\ 131\\ 101\\ 11)\\ 110\\ 110$.40(5) .1(5) .69(7) .36(7) .9(7) .20(7) .11(5) .54(5) .6(7) .08(5) .70(7) .85(5) .02(6) .3(4) .2(4) .60(5) .8(4) .10(7) .7(4) .37(5) .7(4) .7(5) .7(4) .7(5) .10(7) .62(5) .3(4) .90(5) .6(4) .6(3) .2(3) .4(3) .3(4) .7(3) .8(3) .3(3) .8(3) .7(3) .8(3) .7(3) .8(3) .7(3) .8(3) .7(3) .8(3) .7(3) .8(3) .7(3) .2(3) .1(3) .2(3) .2(3)
$\begin{array}{c} 1 & 130 \\ 1 & 59 \\ 1 & 59 \\ 1 & 59 \\ 3 & 38 \\ 4 & 64 \\ 4 & 38 \\ 5 & 64 \\ 5 & 64 \\ 5 & 64 \\ 5 & 64 \\ 5 & 64 \\ 5 & 64 \\ 5 & 64 \\ 5 & 64 \\ 5 & 64 \\ 5 & 64 \\ 5 & 64 \\ 5 & 64 \\ 5 & 64 \\ 1 & 66 \\ 1 & $	5.40(5) 1.90(5) 3.01(5) 3.8(2) 1.5(2) 3.6(2) 1.7(2) 1.9(2) 3.5(2) 1.1(2) 5.6(2) 5.6(2) 3.66(18) 0.7(2) 0.90(19) 1.33(19) 2.77(17) 5.78(17) 0.3(2) 3.0(2) 3.4(2) 0.52(19) 2.63(17) 1.22(6) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(16) 5.27(15) 1.09(6) 1.02(6) 7.76(17) 5.0(2) 5.16(18) 3.21(16) 1.02(16) 5.57(5) 1.96(5) 7.81(5) 0.6(3) 5.2(3) 0.67(5) 5.8(3) 7.77(7)	O(3)-P(3)-Co(3) O(3)-P(3)-Co(1) Co(3)-P(3)-Co(1) O(3)-P(3)-Co(4) Co(3)-P(3)-Co(4) Co(1)-P(3)-Co(4) Co(1)-P(3)-P(4) Co(3)-P(3)-P(4) Co(1)-P(3)-P(4) Co(4)-P(3)-P(4) Co(4)-P(3)-P(2) Co(3)-P(3)-P(2) Co(4)-P(3)-P(2) Co(4)-P(3)-P(2) O(4)-P(4)-Co(2) O(4)-P(4)-Co(2) O(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(4)-P(4)-P(3) Co(2)-P(4)-P(3) Co(2)-P(4)-P(3) Co(2)-P(4)-P(3) Co(2)-P(4)-P(3) Co(2)-P(4)-P(1) Co(2)-P(4)-P(1) Co(2)-P(4)-P(1) Co(1)-P(4)-P(1) Co(1)-P(4)-P(1) Co(1)-P(4)-P(1) Co(1)-P(4)-P(1) Co(1)-P(4)-P(1) Co(1)-P(4)-P(1) Co(1)-Si(11)-C(1) C(112)-Si(11)-C(1) C(112)-Si(11)-C(1) C(112)-Si(11)-C(1) C(112)-Si(21)-C(2) C(21)-Si(21)-C(2) C(21)-Si(21)-C(2) C(21)-Si(21)-C(2) C(21)-Si(31)-C(3) C(313)-Si(31)-C(3) C(31)-Si(31)-C(3) C(31)-Si(31)-C(3)	$\begin{array}{c} 130\\ 69\\ 115\\ 107\\ 107\\ 107\\ 144\\ 97\\ 55\\ 53\\ 128\\ 55\\ 96\\ 53\\ 75\\ 119\\ 128\\ 69\\ 115\\ 108\\ 106\\ 131\\ 55\\ 96\\ 54\\ 142\\ 97\\ 54\\ 53\\ 74\\ 12)\\ 110\\ 11\\ 11\\ 108\\ 11\\ 11\\ 109\\ 11\\ 100\\ 100$.40(5) .1(5) .69(7) .36(7) .9(7) .20(7) .11(5) .54(5) .6(7) .08(5) .70(7) .85(5) .02(6) .3(4) .2(4) .60(5) .8(4) .10(7) .74(7) .04(5) .7(5) .10(7) .62(5) .3(4) .90(5) .6(4) .6(3) .2(3) .4(3) .3(3) .8(3) .3(3) .8(3) .7(3) .8(3) .1
$\begin{array}{c} 1 & 130 \\ 1 & 59 \\ 1 & 59 \\ 1 & 59 \\ 3) & 54 \\ 1 & 59 \\ 5) & 64 \\ 5) & 64 \\ 5) & 64 \\ 5) & 64 \\ 5) & 64 \\ 5) & 64 \\ 5) & 64 \\ 5) & 64 \\ 1 & 66 \\ 1 & $	5.40(5) 1.90(5) 3.01(5) 3.8(2) 1.5(2) 3.6(2) 1.7(2) 1.9(2) 3.5(2) 1.1(2) 5.6(2) 5.6(2) 5.6(2) 3.66(18) 0.7(2) 0.90(19) 1.33(19) 2.77(17) 5.78(17) 0.3(2) 3.0(2) 3.4(2) 0.52(19) 2.63(17) 1.22(6) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 5.7(5) 1.96(5) 7.81(5) 0.6(3) 5.27(5) 5.9(2) 3.1(2) 5.6(3) 5.7(5) 5.9(2) 3.6(3) 5.7(5) 5.9(2) 3.6(3) 5.7(5) 5.9(2) 3.6(3) 5.7(5) 5.9(2) 3.6(3) 5.7(5) 5.9(2) 3.6(3) 5.7(5) 5.9(2) 3.6(3) 3.6(3) 5.7(5) 5.9(2) 3.6(3) 3.6(3) 3.6(3) 5.7(5) 5.9(2) 3.6(3) 3.6	O(3)-P(3)-Co(3) O(3)-P(3)-Co(1) Co(3)-P(3)-Co(1) Co(3)-P(3)-Co(4) Co(3)-P(3)-Co(4) Co(1)-P(3)-Co(4) Co(1)-P(3)-Co(4) Co(1)-P(3)-P(4) Co(1)-P(3)-P(4) Co(1)-P(3)-P(4) Co(4)-P(3)-P(2) Co(3)-P(3)-P(2) Co(4)-P(3)-P(2) Co(4)-P(3)-P(2) Co(4)-P(3)-P(2) Co(4)-P(4)-Co(4) O(4)-P(4)-Co(2) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(2)-P(4)-Co(1) Co(2)-P(4)-P(3) Co(2)-P(4)-P(3) Co(2)-P(4)-P(3) Co(1)-P(4)-P(3) Co(1)-P(4)-P(1) Co(2)-P(4)-P(1) Co(1)-P(4)-P(1)	$\begin{array}{c} 130\\ 69\\ 115\\ 107\\ 107\\ 107\\ 144\\ 97\\ 55\\ 53\\ 128\\ 55\\ 96\\ 53\\ 75\\ 119\\ 128\\ 69\\ 115\\ 108\\ 106\\ 131\\ 155\\ 96\\ 54\\ 142\\ 97\\ 54\\ 53\\ 74\\ 122\\ 110\\ 11\\ 112\\ 110\\ 110\\ 111\\ 110\\ 110$.40(5) .1(5) .69(7) .36(7) .9(7) .20(7) .11(5) .54(5) .6(7) .08(5) .70(7) .85(5) .02(6) .3(4) .2(4) .60(5) .8(4) .10(7) .74(7) .04(5) .7(5) .10(7) .62(5) .34(4) .90(5) .6(4) .6(3) .2(3) .4(3) .3(4) .7(3) .8(3) .7(3) .7(3) .8(3) .7(3) .7(3) .8(3) .7(3) .
$\begin{array}{c} 1 & 130 \\ 1 & 59 \\ 1 & 59 \\ 1 & 59 \\ 3) & 54 \\ 3) & 54 \\ 3 & 59 \\ 3) & 38 \\ 4) & 64 \\ 41 & 38 \\ 55 & 64 \\ 55 & 64 \\ 55 & 64 \\ 55 & 64 \\ 55 & 64 \\ 55 & 64 \\ 51 $	5.40(5) 1.90(5) 3.01(5) 3.8(2) 1.5(2) 3.6(2) 1.7(2) 1.9(2) 3.5(2) 1.1(2) 5.6(2) 5.6(2) 5.6(2) 3.66(18) 1.7(2) 0.90(19) 1.33(19) 2.77(17) 5.78(17) 0.3(2) 3.0(2) 3.4(2) 0.52(19) 2.63(17) 1.22(6) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(16) 5.27(15) 1.09(6) 1.02(6) 7.76(17) 5.0(2) 5.16(18) 3.21(16) 1.02(16) 5.57(5) 1.96(5) 7.81(5) 0.6(3) 5.2(3) 0.6(7)	O(3)-P(3)-Co(3) O(3)-P(3)-Co(1) Co(3)-P(3)-Co(1) Co(3)-P(3)-Co(4) Co(3)-P(3)-Co(4) Co(1)-P(3)-Co(4) Co(1)-P(3)-Co(4) Co(1)-P(3)-P(4) Co(1)-P(3)-P(4) Co(4)-P(3)-P(2) Co(3)-P(3)-P(2) Co(3)-P(3)-P(2) Co(4)-P(3)-P(2) Co(4)-P(3)-P(2) Co(4)-P(3)-P(2) Co(4)-P(3)-P(2) O(4)-P(4)-Co(4) O(4)-P(4)-Co(2) O(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(2)-P(4)-Co(1) Co(2)-P(4)-P(3) Co(2)-P(4)-P(3) Co(1)-P(4)-P(3) Co(1)-P(4)-P(3) Co(1)-P(4)-P(1) Co(2)-P(4)-P(1) Co(1)-P(4)-P(1) Co(1)-P(4)-P(1) Co(1)-P(4)-P(1) Co(1)-P(4)-P(1) Co(1)-Si(11)-C(1) C(112)-Si(11)-C(1) C(112)-Si(11)-C(1) C(112)-Si(11)-C(1) C(112)-Si(21)-C(2) C(21)-Si(2)-C(2) C(21)-Si(2)-C(2) C(2	$\begin{array}{c} 130\\ 69\\ 115\\ 107\\ 107\\ 144\\ 97\\ 55\\ 53\\ 128\\ 55\\ 96\\ 53\\ 75\\ 119\\ 128\\ 69\\ 115\\ 108\\ 106\\ 131\\ 155\\ 96\\ 54\\ 142\\ 97\\ 54\\ 53\\ 74\\ 12)\\ 110\\ 11\\ 11)\\ 108\\ 11\\ 11\\ 11)\\ 109\\ 11\\ 100\\ 11\\ 110\\ 110\\ 110\\ 110\\ $.40(5) .1(5) .69(7) .36(7) .9(7) .20(7) .11(5) .54(5) .6(7) .08(5) .70(7) .85(5) .02(6) .3(4) .2(4) .60(5) .8(4) .10(7) .74(7) .04(5) .74(7) .04(5) .7(5) .10(7) .62(5) .34(4) .90(5) .6(4) .6(3) .2(3) .4(3) .3(3) .8(3) .3(3) .8(3) .7(3) .9(2)
$\begin{array}{c} 1 & 130 \\ 1 & 59 \\ 1 & 59 \\ 1 & 59 \\ 3) & 36 \\ 4) & 64 \\ 4) & 36 \\ 5) & 64 \\ 5) & 64 \\ 5) & 64 \\ 5) & 64 \\ 5) & 64 \\ 5) & 64 \\ 5) & 64 \\ 5) & 64 \\ 1 & 66 \\ 1 $	5.40(5) 1.90(5) 3.01(5) 3.8(2) 1.5(2) 3.6(2) 1.7(2) 1.9(2) 3.5(2) 1.1(2) 5.6(2) 5.5(2) 3.66(18) 1.7(2) 1.90(19) 1.33(19) 2.77(17) 5.78(17) 2.33(2) 3.0(2) 3.4(2) 1.22(6) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(16) 5.27(15) 1.09(6) 1.02(6) 7.76(17) 5.0(2) 5.16(18) 3.21(16) 1.02(16) 5.57(5) 1.96(5) 7.81(5) 1.6(3)	O(3)-P(3)-Co(3) O(3)-P(3)-Co(1) Co(3)-P(3)-Co(1) O(3)-P(3)-Co(4) Co(3)-P(3)-Co(4) Co(1)-P(3)-Co(4) Co(1)-P(3)-Co(4) Co(1)-P(3)-P(4) Co(1)-P(3)-P(4) Co(4)-P(3)-P(2) Co(3)-P(3)-P(2) Co(3)-P(3)-P(2) Co(4)-P(3)-P(2) Co(4)-P(3)-P(2) Co(4)-P(3)-P(2) O(4)-P(4)-Co(4) O(4)-P(4)-Co(2) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(2)-P(4)-Co(1) Co(2)-P(4)-Co(1) Co(2)-P(4)-Co(1) Co(2)-P(4)-P(3) Co(2)-P(4)-P(3) Co(1)-P(4)-P(3) Co(1)-P(4)-P(3) Co(1)-P(4)-P(1) Co(2)-P(4)-P(1) Co(1)-P(4)-P(1) Co(1)-P(4)-P(1) Co(1)-P(4)-P(1) Co(1)-P(4)-P(1) Co(1)-Si(11)-C(1) C(112)-Si(11)-C(1) C(112)-Si(11)-C(1) C(112)-Si(21)-C(2) C(21)-Si(21)-C(2)	$\begin{array}{c} 130\\ 69\\ 115\\ 107\\ 107\\ 144\\ 97\\ 55\\ 53\\ 128\\ 55\\ 96\\ 53\\ 75\\ 119\\ 128\\ 69\\ 115\\ 108\\ 106\\ 131\\ 55\\ 96\\ 54\\ 142\\ 97\\ 54\\ 53\\ 74\\ 12)\\ 110\\ 11\\ 110\\ 108\\ 1)\\ 110\\ 11\\ 110\\ 110\\ 11\\ 110\\ 110\\ 1$.40(5) .1(5) .69(7) .36(7) .9(7) .20(7) .11(5) .54(5) .6(7) .08(5) .70(7) .85(5) .02(6) .3(4) .2(4) .60(5) .8(4) .10(7) .74(7) .04(5) .74(7) .04(5) .74(7) .04(5) .74(7) .04(5) .74(7) .04(5) .74(3) .3(4) .2(3) .4(3) .3(3) .8(3) .7(3) .8(3) .7(3)
$\begin{array}{c} 1 & 130 \\ 1 & 59 \\ 0 & 59 \\ 0 & 59 \\ 0 & 59 \\ 3) & 36 \\ 4) & 64 \\ 4) & 36 \\ 50 & 64 \\ 5) & 64 \\ 5) & 64 \\ 5) & 64 \\ 5) & 64 \\ 5) & 64 \\ 5) & 64 \\ 5) & 64 \\ 1) & 66 \\ 1) & 40 \\ 1) & 66 \\ 10 & 66 \\ 10 $	5.40(5) 1.90(5) 3.01(5) 3.8(2) 1.5(2) 3.6(2) 1.7(2) 3.5(2) 3.5(2) 3.5(2) 3.5(2) 3.5(2) 3.5(2) 3.66(18) 3.7(2) 3.90(19) 2.77(17) 5.78(17) 3.3(2) 3.0(2) 3.4(2) 3.2(2) 3.0(2) 3.4(2) 3.2(2) 3.1(2) 5.6(2) 1.39(17) 5.0(2) 5.16(18) 3.21(16) 5.57(5) 1.96(5) 7.81(5)	O(3)-P(3)-Co(3) O(3)-P(3)-Co(1) Co(3)-P(3)-Co(1) O(3)-P(3)-Co(4) Co(3)-P(3)-Co(4) Co(1)-P(3)-Co(4) O(3)-P(3)-P(4) Co(1)-P(3)-P(4) Co(1)-P(3)-P(4) Co(4)-P(3)-P(2) Co(1)-P(3)-P(2) Co(4)-P(3)-P(2) Co(4)-P(3)-P(2) Co(4)-P(3)-P(2) O(4)-P(4)-Co(2) O(4)-P(4)-Co(2) O(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(2)-P(4)-Co(1) Co(2)-P(4)-Co(1) Co(2)-P(4)-P(3) Co(1)-P(4)-P(3) Co(2)-P(4)-P(3) Co(1)-P(4)-P(3) Co(1)-P(4)-P(3) Co(1)-P(4)-P(1) Co(2)-P(4)-P(1) Co(1)-P(4)-P(1) Co(1)-P(4)-P(1) Co(1)-P(4)-P(1) Co(1)-Si(11)-C(1) C(112)-Si(11)-C(1) C(112)-Si(11)-C(1) C(112)-Si(21)-C(2) C(21)-Si(2)-C(2) C(21)-Si(2)-C(2) C(2	$\begin{array}{c} 130\\ 69\\ 115\\ 107\\ 107\\ 144\\ 97\\ 55\\ 53\\ 128\\ 55\\ 96\\ 53\\ 75\\ 119\\ 128\\ 69\\ 115\\ 108\\ 106\\ 131\\ 55\\ 96\\ 54\\ 142\\ 97\\ 54\\ 53\\ 74\\ 12)\\ 110\\ 11\\ 110\\ 110\\ 11\\ 110\\ 110\\ 11\\ 11$.40(5) .1(5) .69(7) .36(7) .9(7) .20(7) .11(5) .54(5) .6(7) .08(5) .70(7) .85(5) .02(6) .3(4) .2(4) .60(5) .8(4) .10(7) .79(7) .74(7) .04(5) .74(7) .04(5) .74(7) .04(5) .74(7) .04(5) .74(7) .04(5) .37(5) .37(4) .37(5) .34(4) .90(5) .6(4) .6(3) .2(3) .4(3) .3(3) .8(3)
$\begin{array}{c} 1 & 130 \\ 1 & 59 \\ 2 & 59 \\ 2 & 59 \\ 3) & 54 \\ 2 & 99 \\ 3) & 54 \\ 2 & 99 \\ 3) & 36 \\ 4) & 64 \\ 4) & 36 \\ 50 & 64 \\ 5) & 64 \\ 50 & 64 \\ 50 & 64 \\ 50 & 64 \\ 50 & 64 \\ 50 & 64 \\ 51 &$	5.40(5) 1.90(5) 3.01(5) 3.8(2) 1.5(2) 3.6(2) 1.7(2) 3.5(2) 3.5(2) 3.5(2) 3.5(2) 3.5(2) 3.66(18) 0.7(2) 3.90(19) 2.77(17) 3.3(2) 3.0(2) 3.4(2) 3.2(2) 3.4(2) 3.2(2) 3.4(2) 3.2(2) 3.4(2) 3.2(2) 3.4(2) 3.52(19) 2.63(17) 3.22(6) 1.39(17) 3.1(2) 5.6(2) 1.89(16) 5.27(15) 09(6) 02(6) 7.76(17) 5.0(2) 5.16(18) 3.21(16) 02(16) 5.57(5) 1.96(5)	O(3)-P(3)-Co(3) O(3)-P(3)-Co(1) Co(3)-P(3)-Co(1) O(3)-P(3)-Co(4) Co(3)-P(3)-Co(4) Co(1)-P(3)-Co(4) Co(1)-P(3)-P(4) Co(3)-P(3)-P(4) Co(1)-P(3)-P(4) Co(4)-P(3)-P(2) Co(3)-P(3)-P(2) Co(4)-P(3)-P(2) Co(4)-P(3)-P(2) Co(4)-P(3)-P(2) Co(4)-P(4)-Co(2) Co(4)-P(4)-Co(2) O(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(2)-P(4)-Co(1) Co(2)-P(4)-Co(1) Co(2)-P(4)-Co(1) Co(2)-P(4)-P(3) Co(1)-P(4)-P(3) Co(1)-P(4)-P(3) Co(1)-P(4)-P(3) Co(1)-P(4)-P(1) Co(2)-P(4)-P(1) Co(2)-P(4)-P(1) Co(1)-P(4)-P(1) C	$\begin{array}{c} 130\\ 69\\ 115\\ 107\\ 107\\ 144\\ 97\\ 55\\ 53\\ 128\\ 55\\ 96\\ 53\\ 75\\ 119\\ 128\\ 69\\ 115\\ 108\\ 106\\ 131\\ 55\\ 96\\ 54\\ 142\\ 97\\ 54\\ 53\\ 74\\ 12)\\ 110\\ 11\\ 110\\ 11\\ 109\\ 1)\\ 106\\ 1)\\ 110\\ 110\\ 110\\ 110\\ 110\\ 110\\ 110\\$.40(5) .1(5) .69(7) .36(7) .9(7) .20(7) .11(5) .54(5) .6(7) .08(5) .70(7) .85(5) .02(6) .3(4) .2(4) .60(5) .8(4) .10(7) .74(7) .74(7) .04(5) .74(7) .04(5) .7(5) .10(7) .62(5) .34(4) .90(5) .6(4) .6(3) .2(3) .4(3) .8(3) .8(3) .4(3) .3(3)
$\begin{array}{c} 1 & 130 \\ 1 & 59 \\ 2 & 59 \\ 2 & 59 \\ 3 & 36 \\ 4 & 64 \\ 4 & 36 \\ 5 & 64 \\ 64 \\ 1 & 64 \\ 64 \\ 1 & 64 \\ 1 & 64 \\ 1 & 66 \\ 1 & 64 \\ 1 & 66 \\ 1 & 64 \\ 1 & 66 \\ 1 & 64 \\ 1 & 66 \\ 1 & 64 \\ 1 & 66 \\ 1 & 64 \\ 1 &$	5.40(5) 1.90(5) 3.01(5) 3.8(2) 1.5(2) 3.6(2) 1.7(2) 3.6(2) 1.7(2) 3.5(2) 3.1(2) 5.6(2) 3.66(18) 0.7(2) 9.90(19) 1.33(19) 2.77(17) 3.3(2) 3.0(2) 3.4(2) 3.2(2) 3.4(2) 3.2(2) 3.4(2) 3.2(2) 3.4(2) 3.5(2) 3.1(2) 5.6(2) 1.39(17) 5.27(15) 1.09(6) 1.02(16) 3.21(16) 1.02(16) 5.57(5)	O(3)-P(3)-Co(3) O(3)-P(3)-Co(1) Co(3)-P(3)-Co(1) O(3)-P(3)-Co(4) Co(3)-P(3)-Co(4) Co(1)-P(3)-Co(4) O(3)-P(3)-P(4) Co(1)-P(3)-P(4) Co(1)-P(3)-P(4) Co(1)-P(3)-P(2) Co(3)-P(3)-P(2) Co(3)-P(3)-P(2) Co(4)-P(3)-P(2) Co(4)-P(3)-P(2) Co(4)-P(3)-P(2) O(4)-P(4)-Co(2) Co(4)-P(4)-Co(2) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(2)-P(4)-Co(1) Co(2)-P(4)-Co(1) Co(2)-P(4)-Co(1) Co(2)-P(4)-Co(1) Co(2)-P(4)-P(3) Co(1)-P(4)-P(3) Co(1)-P(4)-P(3) Co(1)-P(4)-P(3) Co(1)-P(4)-P(1) Co(2)-P(4)-P(1) Co(1)-P(4)-P(1) Co(1)-P(4)-P(1) Co(1)-P(4)-P(1) Co(1)-P(4)-P(1) Co(1)-Si(11)-C(1) C(112)-Si(11)-C(1) C(112)-Si(11)-C(1) C(112)-Si(21)-C(2) C(21)-Si(21)-C(2) C(21)-Si(21)-C(2) C(21)-Si(21)-C(2)	$\begin{array}{c} 130\\ 69\\ 115\\ 107\\ 107\\ 144\\ 97\\ 55\\ 53\\ 128\\ 55\\ 96\\ 53\\ 75\\ 119\\ 128\\ 69\\ 115\\ 108\\ 106\\ 131\\ 55\\ 96\\ 142\\ 97\\ 54\\ 142\\ 97\\ 54\\ 142\\ 97\\ 54\\ 142\\ 97\\ 54\\ 142\\ 97\\ 54\\ 142\\ 97\\ 54\\ 142\\ 97\\ 142\\ 110\\ 110\\ 110\\ 110\\ 110\\ 110\\ 110\\ 11$.40(5) .1(5) .69(7) .36(7) .9(7) .20(7) .11(5) .54(5) .6(7) .08(5) .70(7) .85(5) .02(6) .3(4) .2(4) .60(5) .8(4) .10(7) .79(7) .7(4) .37(5) .74(7) .04(5) .7(5) .10(7) .62(5) .34(4) .90(5) .6(4) .6(3) .2(3) .4(3) .8(3) .8(3) .4(3)
$\begin{array}{c} 1 & 130 \\ 1 & 59 \\ 1 & 59 \\ 1 & 59 \\ 3) & 54 \\ 1 & 59 \\ 5) & 64 \\ 5) & 64 \\ 5) & 64 \\ 5) & 64 \\ 5) & 64 \\ 5) & 64 \\ 5) & 64 \\ 5) & 64 \\ 5) & 64 \\ 5) & 64 \\ 1 & 69 \\ 1) & 40 \\ 1) & 69 \\ 1) & 130 \\ 1) & 69 \\ 1) & 130 \\ 1) & 130 \\ 1) & 130 \\ 1) & 130 \\ 1) & 130 \\ 1) & 130 \\ 1) & 130 \\ 1) & 130 \\ 1) & 130 \\ 1) & 130 \\ 1) & 130 \\ 1) & 130 \\ 1) & 100 \\ 1) & 100 \\ 1) & 100 \\ 1) & 100 \\ 1) & 100 \\ 1) & 100 \\ 1) & 100 \\ 1) & 100 \\ 1) & 100 \\ 1) & 100 \\ 1) & 100 \\ 10$	5.40(5) 1.90(5) 3.01(5) 3.8(2) 1.5(2) 3.6(2) 1.7(2) 3.6(2) 1.7(2) 3.5(2) 3.1(2) 5.6(2) 3.66(18) 0.7(2) 3.90(19) 1.33(19) 2.77(17) 3.3(2) 3.0(2) 3.4(2) 3.2(2) 3.1	O(3)-P(3)-Co(3) O(3)-P(3)-Co(1) Co(3)-P(3)-Co(1) O(3)-P(3)-Co(4) Co(3)-P(3)-Co(4) Co(1)-P(3)-Co(4) O(3)-P(3)-P(4) Co(1)-P(3)-P(4) Co(1)-P(3)-P(4) Co(4)-P(3)-P(2) Co(3)-P(3)-P(2) Co(4)-P(3)-P(2) Co(4)-P(3)-P(2) Co(4)-P(3)-P(2) O(4)-P(4)-Co(2) Co(4)-P(4)-Co(2) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(2)-P(4)-Co(1) Co(2)-P(4)-Co(1) Co(2)-P(4)-Co(1) Co(2)-P(4)-P(3) Co(1)-P(4)-P(3) Co(1)-P(4)-P(3) Co(1)-P(4)-P(3) Co(1)-P(4)-P(1) Co(2)-P(4)-P(1) Co(1)-P(4)-P(1) Co(1)-P(4)-P(1) Co(1)-P(4)-P(1) Co(1)-Si(11)-C(1) C(112)-Si(11)-C(1) C(112)-Si(11)-C(1) C(112)-Si(21)-C(2) C(212)-Si(21)-C(2	$\begin{array}{c} 130\\ 69\\ 115\\ 107\\ 107\\ 144\\ 97\\ 55\\ 53\\ 128\\ 55\\ 96\\ 53\\ 75\\ 119\\ 128\\ 69\\ 115\\ 108\\ 106\\ 131\\ 55\\ 96\\ 54\\ 142\\ 97\\ 54\\ 53\\ 74\\ 12)\\ 110\\ 11\\ 109\\ 1)\\ 100\\ 11\\ 110\\ 110\\ 110\\ 110\\ 110\\ $.40(5) .1(5) .69(7) .36(7) .9(7) .20(7) .11(5) .54(5) .6(7) .08(5) .70(7) .85(5) .02(6) .3(4) .2(4) .60(5) .8(4) .10(7) .79(7) .7(4) .77(5) .74(7) .04(5) .7(5) .10(7) .62(5) .34(4) .90(5) .6(4) .6(3) .2(3) .4(3) .3(4) .7(3) .8(3) .8(3)
$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	5.40(5) 1.90(5) 3.01(5) 3.8(2) 1.5(2) 3.6(2) 1.7(2) 1.9(2) 3.5(2) 1.1(2) 5.6(2) 5.5(2) 3.66(18) 0.7(2) 9.90(19) 1.33(19) 2.77(17) 5.78(17) 3.3(2) 3.0(2) 3.4(2) 3.2(2) 3.2(2) 3.4(2) 3.2(2) 3.2(2) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 5.7(15) 1.09(6) 1.02(6) 7.76(17) 5.0(2) 5.16(18) 3.21(16)	O(3)-P(3)-Co(3) O(3)-P(3)-Co(1) Co(3)-P(3)-Co(1) O(3)-P(3)-Co(4) Co(3)-P(3)-Co(4) Co(1)-P(3)-Co(4) O(3)-P(3)-P(4) Co(1)-P(3)-P(4) Co(1)-P(3)-P(4) Co(4)-P(3)-P(2) Co(4)-P(3)-P(2) Co(4)-P(3)-P(2) Co(4)-P(3)-P(2) Co(4)-P(3)-P(2) Co(4)-P(4)-Co(2) Co(4)-P(4)-Co(2) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(2)-P(4)-Co(1) Co(2)-P(4)-Co(1) Co(2)-P(4)-P(3) Co(4)-P(4)-P(3) Co(1)-P(4)-P(3) Co(2)-P(4)-P(3) Co(1)-P(4)-P(3) Co(1)-P(4)-P(1) Co(1)-P(4)-P(1) Co(1)-P(4)-P(1) Co(1)-P(4)-P(1) Co(1)-P(4)-P(1) Co(1)-P(4)-P(1) Co(1)-P(4)-P(1) Co(1)-Si(11)-C(1) Co(1)-Si(11)-C(1) Co(1)-Si(11)-C(1) Co(1)-Si(11)-C(1) Co(1)-Si(1)-C(1) Co(1	$\begin{array}{c} 130\\ 69\\ 115\\ 107\\ 107\\ 144\\ 97\\ 55\\ 53\\ 128\\ 55\\ 96\\ 53\\ 75\\ 119\\ 128\\ 69\\ 115\\ 108\\ 106\\ 131\\ 55\\ 96\\ 54\\ 142\\ 97\\ 54\\ 53\\ 74\\ 122\\ 110\\ 11\\ 112\\ 110\\ 110\\ 110\\ 111\\ 111$.40(5) .1(5) .69(7) .36(7) .9(7) .20(7) .11(5) .54(5) .6(7) .08(5) .70(7) .85(5) .02(6) .3(4) .2(4) .60(5) .8(4) .10(7) .79(7) .7(4) .77(5) .74(7) .04(5) .7(5) .10(7) .62(5) .3(4) .90(5) .6(4) .6(3) .2(3) .4(3) .3(4) .7(3) .8(3)
$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	5.40(5) 1.90(5) 3.01(5) 3.8(2) 1.5(2) 3.6(2) 1.7(2) 1.9(2) 3.5(2) 3.1(2) 5.6(2) 5.6(2) 3.66(18) 0.7(2) 9.90(19) 1.33(19) 2.77(17) 5.78(17) 3.3(2) 3.0(2) 3.4(2) 3.63(17) 1.22(6) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.77(15) 1.09(6) 1.02(6) 7.76(17) 5.0(2) 5.16(18)	O(3) - P(3) - Co(3) O(3) - P(3) - Co(1) Co(3) - P(3) - Co(1) O(3) - P(3) - Co(4) Co(3) - P(3) - Co(4) Co(3) - P(3) - Co(4) Co(3) - P(3) - Co(4) Co(3) - P(3) - P(4) Co(3) - P(3) - P(4) Co(4) - P(3) - P(4) Co(4) - P(3) - P(2) Co(3) - P(3) - P(2) Co(3) - P(3) - P(2) Co(4) - P(3) - P(2) Co(4) - P(3) - P(2) Co(4) - P(3) - P(2) Co(4) - P(4) - Co(2) Co(4) - P(4) - Co(2) Co(4) - P(4) - Co(1) Co(4) - P(4) - Co(1) Co(4) - P(4) - Co(1) Co(2) - P(4) - Co(1) Co(4) - P(4) - Co(1) Co(2) - P(4) - Co(1) Co(2) - P(4) - P(3) Co(1) - P(4) - P(3) Co(1) - P(4) - P(3) Co(1) - P(4) - P(1) Co(1) - Co(1) - Co(1) Co(1) - Co(1) -	$\begin{array}{c} 130\\ 69\\ 115\\ 107\\ 107\\ 107\\ 144\\ 97\\ 55\\ 53\\ 128\\ 55\\ 96\\ 53\\ 75\\ 119\\ 128\\ 69\\ 131\\ 108\\ 106\\ 131\\ 55\\ 96\\ 54\\ 142\\ 97\\ 54\\ 53\\ 74\\ 12)\\ 110\\ 11\\ 108\\ 1)\\ 110\\ 11\\ 11)\\ 108\\ 1)\\ 110\\ 11)\\ 110\\ 11)\\ 110\\ 11)\\ 106\\ 1)\\ 106\\ 106\\ 106\\ 106\\ 106\\ 106\\ 106\\ 106$.40(5) .1(5) .69(7) .36(7) .9(7) .20(7) .11(5) .54(5) .6(7) .08(5) .70(7) .85(5) .02(6) .3(4) .2(4) .60(5) .8(4) .10(7) .79(7) .7(4) .37(5) .74(7) .04(5) .7(5) .10(7) .62(5) .34(4) .90(5) .6(4) .6(3) .2(3) .4(3) .3(4) .7(3)
$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	5.40(5) 1.90(5) 3.01(5) 3.8(2) 4.5(2) 3.6(2) 4.7(2) 4.9(2) 3.5(2) 3.5(2) 3.6(2) 5.6(2) 5.6(2) 5.6(2) 3.66(18) 0.7(2) 9.90(19) 33(19) 2.77(17) 5.78(17) 9.3(2) 3.0(2) 3.4(2) 0.52(19) 2.63(17) 22(6) 4.39(17) 3.1(2) 5.6(2) 4.39(17) 3.1(2) 5.6(2) 4.39(17) 3.1(2) 5.6(2) 4.39(17) 3.1(2) 5.6(2) 4.39(17) 3.1(2) 5.6(2) 4.39(17) 3.1(2) 5.6(2) 4.39(17) 5.78(17) 5.77(15) 09(6) 02(6) 7.76(17) 5.72(1	O(3)-P(3)-Co(3) O(3)-P(3)-Co(1) Co(3)-P(3)-Co(1) O(3)-P(3)-Co(4) Co(3)-P(3)-Co(4) Co(1)-P(3)-Co(4) O(3)-P(3)-P(4) Co(1)-P(3)-P(4) Co(1)-P(3)-P(4) Co(4)-P(3)-P(2) Co(3)-P(3)-P(2) Co(3)-P(3)-P(2) Co(4)-P(3)-P(2) Co(4)-P(3)-P(2) Co(4)-P(3)-P(2) Co(4)-P(3)-P(2) Co(4)-P(4)-Co(2) Co(4)-P(4)-Co(2) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(2)-P(4)-Co(1) Co(2)-P(4)-P(3) Co(2)-P(4)-P(3) Co(2)-P(4)-P(3) Co(1)-P(4)-P(3) Co(1)-P(4)-P(1) C	$\begin{array}{c} 130\\ 69\\ 115\\ 107\\ 107\\ 107\\ 144\\ 97\\ 55\\ 53\\ 128\\ 55\\ 96\\ 53\\ 75\\ 119\\ 128\\ 69\\ 131\\ 106\\ 131\\ 55\\ 96\\ 54\\ 142\\ 97\\ 54\\ 142\\ 97\\ 54\\ 142\\ 97\\ 54\\ 142\\ 97\\ 54\\ 142\\ 110\\ 11\\ 108\\ 11\\ 101\\ 11)$.40(5) .1(5) .69(7) .36(7) .9(7) .20(7) .11(5) .54(5) .6(7) .08(5) .70(7) .85(5) .02(6) .3(4) .2(4) .60(5) .8(4) .10(7) .74(7) .04(5) .7(5) .10(7) .62(5) .34(4) .90(5) .62(4) .62(5) .34(4) .90(5) .62(3) .2(3) .2(3) .2(3) .2(4)
$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	5.40(5) 1.90(5) 3.01(5) 3.8(2) 4.5(2) 3.6(2) 4.7(2) 4.9(2) 3.5(2) 3.5(2) 3.6(2) 5.6(2) 5.6(2) 5.6(2) 5.6(2) 3.66(18) 0.7(2) 9.90(19) 33(19) 2.77(17) 5.78(17) 9.3(2) 3.0(2) 3.4(2) 0.52(19) 2.63(17) 22(6) 4.39(17) 3.1(2) 5.6(2) 1.39(17) 1.22(6) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 1.29(17) 3.1(2) 5.6(2) 1.39(17) 1.29(17) 1	O(3)-P(3)-Co(3) O(3)-P(3)-Co(1) Co(3)-P(3)-Co(1) Co(3)-P(3)-Co(4) Co(3)-P(3)-Co(4) Co(1)-P(3)-Co(4) Co(1)-P(3)-Co(4) Co(1)-P(3)-P(4) Co(3)-P(3)-P(4) Co(1)-P(3)-P(4) Co(4)-P(3)-P(2) Co(3)-P(3)-P(2) Co(4)-P(3)-P(2) Co(4)-P(3)-P(2) Co(4)-P(3)-P(2) Co(4)-P(3)-P(2) O(4)-P(4)-Co(2) Co(4)-P(4)-Co(2) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(2)-P(4)-Co(1) Co(2)-P(4)-P(3) Co(2)-P(4)-P(3) Co(1)-P(4)-P(3) Co(1)-P(4)-P(1) Co(2)-P(4)-P(1) Co(1)-P(4)-P(1)	$\begin{array}{c} 130\\ 69\\ 115\\ 107\\ 107\\ 107\\ 144\\ 97\\ 55\\ 53\\ 128\\ 55\\ 96\\ 53\\ 75\\ 119\\ 128\\ 69\\ 115\\ 108\\ 106\\ 131\\ 55\\ 96\\ 54\\ 142\\ 97\\ 54\\ 53\\ 74\\ 12)\\ 110\\ 1\\ 108\\ 1)\\ 108\\ 1\end{pmatrix}$.40(5) .1(5) .69(7) .36(7) .9(7) .20(7) .11(5) .54(5) .6(7) .08(5) .70(7) .85(5) .02(6) .3(4) .2(4) .60(5) .8(4) .10(7) .7(4) .7(5) .7(4) .7(5) .10(7) .62(5) .34(4) .90(5) .6(4) .6(3) .2(3)
$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	5.40(5) 1.90(5) 3.01(5) 3.8(2) 4.5(2) 3.6(2) 4.7(2) 4.9(2) 3.5(2) 3.1(2) 5.6(2) 5.5(2) 3.66(18) 0.7(2) 9.90(19) 1.33(19) 2.77(17) 5.78(17) 9.3(2) 3.0(2) 3.4(2) 0.52(19) 2.63(17) 1.22(6) 4.39(17) 3.1(2) 5.6(2) 4.39(17) 3.1(2) 5.6(2) 4.39(17) 3.1(2) 5.6(2) 4.39(17) 3.1(2) 5.6(2) 4.39(17) 3.1(2) 5.6(2) 4.39(17) 3.1(2) 5.6(2) 4.39(17) 3.1(2) 5.6(2) 4.39(17) 3.1(2) 5.6(2) 4.39(17) 3.1(2) 5.6(2) 4.39(17) 3.1(2) 5.6(2) 4.39(17) 3.1(2) 5.6(2) 4.39(17) 5.7(15) 1.09(6) 5.27(15) 5.09(6) 5.27(15) 5.09(19) 5.27(15) 5.2	O(3)-P(3)-Co(3) O(3)-P(3)-Co(1) Co(3)-P(3)-Co(1) O(3)-P(3)-Co(4) Co(3)-P(3)-Co(4) Co(1)-P(3)-Co(4) O(3)-P(3)-P(4) Co(1)-P(3)-P(4) Co(1)-P(3)-P(4) Co(1)-P(3)-P(4) Co(3)-P(3)-P(2) Co(3)-P(3)-P(2) Co(4)-P(3)-P(2) Co(4)-P(3)-P(2) O(4)-P(3)-P(2) O(4)-P(4)-Co(2) O(4)-P(4)-Co(2) O(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(4)-P(4)-P(3) Co(4)-P(4)-P(3) Co(4)-P(4)-P(3) Co(1)-P(4)-P(3) Co(2)-P(4)-P(1) Co(2)-P(4)-P(1) Co(1)	$ \begin{array}{c} 130\\ 69\\ 115\\ 107\\ 107\\ 144\\ 97\\ 55\\ 53\\ 128\\ 55\\ 96\\ 53\\ 75\\ 119\\ 128\\ 69\\ 115\\ 108\\ 106\\ 131\\ 55\\ 96\\ 54\\ 142\\ 97\\ 54\\ 53\\ 74\\ 12)\\ 110\\ 1 08 \end{array} $.40(5) .1(5) .69(7) .36(7) .9(7) .20(7) .11(5) .54(5) .6(7) .08(5) .70(7) .85(5) .02(6) .3(4) .2(4) .60(5) .8(4) .10(7) .79(7) .7(4) .37(5) .7(4) .37(5) .7(5) .10(7) .62(5) .34(4) .90(5) .6(4) .6(3) .0(7) .6(3)
$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	5.40(5) 1.90(5) 3.01(5) 3.8(2) 1.5(2) 3.6(2) 1.7(2) 1.9(2) 3.5(2) 1.1(2) 5.6(2) 3.66(18) 0.7(2) 0.90(19) 33(19) 2.77(17) 5.78(17) 0.3(2) 3.0(2) 3.0(2) 3.4(2) 1.52(19) 2.63(17) 1.22(6) 1.39(17) 3.1(2) 5.6(2) 1.39(17) 3.1(2) 5.6(2) 1.39(15) 3.1(2) 5.6(2) 1.39(15) 3.1(2) 5.6(2) 1.39(15) 3.1(2) 5.6(2) 1.39(15) 3.1(2) 5.6(2) 1.39(15) 3.1(2) 5.78(15)	O(3)-P(3)-Co(3) O(3)-P(3)-Co(1) Co(3)-P(3)-Co(1) O(3)-P(3)-Co(4) Co(3)-P(3)-Co(4) Co(1)-P(3)-Co(4) Co(1)-P(3)-P(4) Co(1)-P(3)-P(4) Co(1)-P(3)-P(4) Co(4)-P(3)-P(2) Co(3)-P(3)-P(2) Co(4)-P(3)-P(2) Co(4)-P(3)-P(2) O(4)-P(3)-P(2) O(4)-P(4)-Co(4) O(4)-P(4)-Co(2) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(2)-P(4)-Co(1) Co(2)-P(4)-P(3) Co(1)-P(4)-P(3) Co(2)-P(4)-P(3) Co(1)-P(4)-P(1) Co(2)-P(4)-P(1) Co(2)-P(4)-P(1) Co(1)-P(4)-P(1) Co($\begin{array}{c} 130\\ 69\\ 115\\ 107\\ 107\\ 144\\ 97\\ 55\\ 53\\ 128\\ 55\\ 96\\ 53\\ 75\\ 119\\ 128\\ 69\\ 115\\ 108\\ 106\\ 131\\ 55\\ 96\\ 54\\ 142\\ 97\\ 54\\ 53\\ 74\\ 12) 110\\ \end{array}$.40(5) .1(5) .69(7) .36(7) .9(7) .20(7) .11(5) .54(5) .6(7) .08(5) .70(7) .85(5) .02(6) .3(4) .2(4) .60(5) .8(4) .10(7) .79(7) .7(4) .37(5) .74(7) .04(5) .7(5) .10(7) .62(5) .34(4) .90(5) .6(4)
$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	5.40(5) 4.90(5) 3.01(5) 3.8(2) 4.5(2) 3.6(2) 4.7(2) 4.9(2) 3.5(2) 0.1(2) 5.6(2) 5.5(2) 3.66(18) 0.7(2) 0.90(19) 33(19) 2.77(17) 5.78(17) 0.3(2) 3.0(2) 3.4(2) 0.52(19) 2.63(17) 22(6) 1.39(17) 3.1(2) 5.6(2) 1.89(16)	O(3)-P(3)-Co(3) O(3)-P(3)-Co(1) Co(3)-P(3)-Co(1) O(3)-P(3)-Co(4) Co(3)-P(3)-Co(4) Co(1)-P(3)-Co(4) O(3)-P(3)-P(4) Co(1)-P(3)-P(4) Co(1)-P(3)-P(4) Co(4)-P(3)-P(2) Co(3)-P(3)-P(2) Co(3)-P(3)-P(2) Co(4)-P(3)-P(2) O(4)-P(3)-P(2) O(4)-P(3)-P(2) O(4)-P(4)-Co(4) O(4)-P(4)-Co(2) O(4)-P(4)-Co(1) Co(2)-P(4)-Co(1) Co(2)-P(4)-Co(1) Co(2)-P(4)-Co(1) Co(2)-P(4)-P(3) Co(1)-P(4)-P(3) Co(1)-P(4)-P(3) Co(1)-P(4)-P(1) Co(2)-P(4)-P(1) Co(2)-P(4)-P(1) Co(1)-P(130 69 115 107 107 144 97 55 53 128 55 96 53 75 119 128 69 115 108 106 131 55 96 54 142 97 54 53 74	.40(5) .1(5) .69(7) .36(7) .9(7) .20(7) .11(5) .54(5) .6(7) .08(5) .70(7) .85(5) .02(6) .3(4) .2(4) .60(5) .8(4) .10(7) .7(4) .37(5) .7(5) .7(5) .7(5) .10(7) .62(5) .34(4) .90(5)
$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	5.40(5) 1.90(5) 3.01(5) 3.8(2) 4.5(2) 3.6(2) 4.7(2) 4.9(2) 3.5(2) 0.1(2) 5.6(2) 5.5(2) 3.66(18) 0.7(2) 0.90(19) 33(19) 2.77(17) 5.78(17) 0.3(2) 3.0(2) 3.4(2) 0.52(19) 2.63(17) 22(6) 4.39(17) 3.1(2) 5.6(2) 5.6(2) 5.6(2) 5.7(17) 5.7(2) 5.7(17) 5.7(2) 5.7(17) 5.7(2) 5.7(2) 5.7(2) 5.7(2) 5.7(2) 5.7(17) 5.7(2) 5.7(17) 5.7(2) 5.7	O(3)-P(3)-Co(3) O(3)-P(3)-Co(1) Co(3)-P(3)-Co(1) O(3)-P(3)-Co(4) Co(3)-P(3)-Co(4) Co(1)-P(3)-Co(4) Co(1)-P(3)-Co(4) Co(1)-P(3)-P(4) Co(1)-P(3)-P(4) Co(4)-P(3)-P(4) Co(4)-P(3)-P(2) Co(3)-P(3)-P(2) Co(4)-P(3)-P(2) Co(4)-P(3)-P(2) O(4)-P(4)-Co(2) Co(4)-P(4)-Co(2) O(4)-P(4)-Co(1) Co(2)-P(4)-Co(1) Co(2)-P(4)-P(3) Co(2)-P(4)-P(3) Co(2)-P(4)-P(3) Co(2)-P(4)-P(3) Co(2)-P(4)-P(3) Co(2)-P(4)-P(3) Co(2)-P(4)-P(3) Co(2)-P(4)-P(3) Co(2)-P(4)-P(1) Co(2)	130 69 115 107 107 144 97 55 53 128 55 96 53 75 119 128 69 115 108 106 131 55 96 54 142 97 54 53	.40(5) .1(5) .69(7) .36(7) .9(7) .20(7) .11(5) .54(5) .6(7) .08(5) .70(7) .85(5) .02(6) .3(4) .2(4) .60(5) .8(4) .10(7) .7(4) .7(5) .74(7) .04(5) .7(5) .10(7) .62(5) .34(4)
$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	5.40(5) 1.90(5) 3.01(5) 3.8(2) 4.5(2) 3.6(2) 4.7(2) 4.9(2) 3.5(2) 0.1(2) 5.6(2) 5.5(2) 3.66(18) 0.7(2) 0.90(19) 1.33(19) 2.77(17) 5.78(17) 0.3(2) 3.0(2) 3.4(2) 0.52(19) 2.63(17) 1.22(6) 4.39(17) 3.1(2)	O(3)-P(3)-Co(3) O(3)-P(3)-Co(1) Co(3)-P(3)-Co(1) O(3)-P(3)-Co(4) Co(3)-P(3)-Co(4) Co(1)-P(3)-Co(4) Co(1)-P(3)-P(4) Co(3)-P(3)-P(4) Co(1)-P(3)-P(4) Co(4)-P(3)-P(4) Co(3)-P(3)-P(2) Co(3)-P(3)-P(2) Co(4)-P(3)-P(2) Co(4)-P(3)-P(2) O(4)-P(4)-Co(2) Co(4)-P(4)-Co(2) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(4)-P(4)-P(3) Co(4)-P(4)-P(3) Co(4)-P(4)-P(3) Co(4)-P(4)-P(3) Co(4)-P(4)-P(3) Co(4)-P(4)-P(3) Co(4)-P(4)-P(1) Co(4)-P(4)-P(1) Co(2)-P(4)-P(1)	$ \begin{array}{c} 130\\ 69\\ 115\\ 107\\ 107\\ 144\\ 97\\ 55\\ 53\\ 128\\ 55\\ 96\\ 53\\ 75\\ 119\\ 128\\ 69\\ 115\\ 108\\ 106\\ 131\\ 55\\ 96\\ 54\\ 142\\ 97\\ 54 \end{array} $.40(5) .1(5) .69(7) .36(7) .9(7) .20(7) .11(5) .54(5) .6(7) .08(5) .70(7) .85(5) .02(6) .3(4) .2(4) .60(5) .8(4) .10(7) .79(7) .7(4) .37(5) .74(7) .04(5) .7(5) .10(7) .62(5)
$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	5.40(5) 1.90(5) 3.01(5) 3.8(2) 4.5(2) 3.6(2) 4.7(2) 4.9(2) 3.5(2) 0.1(2) 5.6(2) 5.5(2) 3.66(18) 0.7(2) 9.90(19) 33(19) 2.77(17) 5.78(17) 0.3(2) 3.0(2) 3.4(2) 0.52(19) 2.63(17) 22(6) 4.39(17)	O(3)-P(3)-Co(3) O(3)-P(3)-Co(1) Co(3)-P(3)-Co(1) O(3)-P(3)-Co(4) Co(3)-P(3)-Co(4) Co(1)-P(3)-Co(4) Co(1)-P(3)-P(4) Co(1)-P(3)-P(4) Co(1)-P(3)-P(4) Co(4)-P(3)-P(2) Co(3)-P(3)-P(2) Co(4)-P(3)-P(2) Co(4)-P(3)-P(2) O(4)-P(4)-Co(4) O(4)-P(4)-Co(2) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(4)-P(4)-P(3) Co(4)-P(4)-P(3) Co(4)-P(4)-P(3) Co(2)-P(4)-P(3) Co(2)-P(4)-P(3) Co(4)-P(4)-P(3) Co(4)-P(4)-P(3) Co(4)-P(4)-P(3) Co(4)-P(4)-P(3) Co(4)-P(4)-P(1) Co(4)-P(4)-P(1) Co(4)-P(4)-P(1)	130 69 115 107 144 97 55 53 128 55 96 53 75 119 128 69 115 108 106 131 55 96 54 142	.40(5) .1(5) .69(7) .36(7) .9(7) .20(7) .11(5) .54(5) .6(7) .08(5) .70(7) .85(5) .02(6) .3(4) .2(4) .60(5) .8(4) .10(7) .7(4) .37(5) .74(7) .04(5) .7(5) .10(7)
$\begin{array}{c} 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	5.40(5) 4.90(5) 3.01(5) 3.8(2) 4.5(2) 3.6(2) 4.7(2) 4.9(2) 3.5(2) 0.1(2) 5.6(2) 5.5(2) 3.66(18) 0.7(2) 9.90(19) 33(19) 2.77(17) 5.78(17) 0.3(2) 3.0(2) 3.4(2) 0.52(19) 2.63(17) 2.26(6)	O(3)-P(3)-Co(3) O(3)-P(3)-Co(1) Co(3)-P(3)-Co(1) O(3)-P(3)-Co(4) Co(3)-P(3)-Co(4) Co(1)-P(3)-Co(4) O(3)-P(3)-P(4) Co(1)-P(3)-P(4) Co(1)-P(3)-P(4) Co(4)-P(3)-P(4) Co(4)-P(3)-P(2) Co(4)-P(3)-P(2) Co(4)-P(3)-P(2) O(4)-P(4)-Co(2) O(4)-P(4)-Co(2) O(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(4)-P(4)-Co(1) Co(2)-P(4)-Co(1) Co(2)-P(4)-Co(1) Co(2)-P(4)-P(3) Co(2)-P(4)-P(3) Co(2)-P(4)-P(3) Co(1)-P(4)-P(3) Co(4)-P(4)-P(3) Co	$ \begin{array}{c} 130\\ 69\\ 115\\ 107\\ 107\\ 144\\ 97\\ 55\\ 53\\ 128\\ 55\\ 96\\ 53\\ 75\\ 119\\ 128\\ 69\\ 115\\ 108\\ 106\\ 131\\ 55\\ 96\\ 54\\ 142 \end{array} $.40(5) .1(5) .69(7) .36(7) .9(7) .20(7) .11(5) .54(5) .6(7) .08(5) .70(7) .85(5) .02(6) .3(4) .2(4) .60(5) .8(4) .10(7) .79(7) .7(4) .37(5) .74(7) .04(5) .7(5)
$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	5.40(5) 4.90(5) 3.01(5) 3.8(2) 4.5(2) 3.6(2) 4.7(2) 4.9(2) 3.5(2) 0.1(2) 5.6(2) 5.5(2) 3.66(18) 0.7(2) 9.90(19) 33(19) 2.77(17) 5.78(17) 9.3(2) 3.0(2) 3.4(2) 5.5(15)	O(3)-P(3)-Co(3) O(3)-P(3)-Co(1) Co(3)-P(3)-Co(1) O(3)-P(3)-Co(4) Co(3)-P(3)-Co(4) Co(1)-P(3)-Co(4) O(3)-P(3)-P(4) Co(1)-P(3)-P(4) Co(1)-P(3)-P(4) Co(4)-P(3)-P(4) Co(3)-P(3)-P(2) Co(4)-P(3)-P(2) Co(4)-P(3)-P(2) Co(4)-P(3)-P(2) O(4)-P(4)-Co(2) Co(4)-P(4)-Co(2) Co(4)-P(4)-Co(1) Co(2)-P(4)-Co(1) Co(2)-P(4)-Co(1) Co(2)-P(4)-P(3) Co(2)	$ \begin{array}{c} 130\\ 69\\ 115\\ 107\\ 107\\ 144\\ 97\\ 55\\ 53\\ 128\\ 55\\ 96\\ 53\\ 75\\ 119\\ 128\\ 69\\ 115\\ 108\\ 106\\ 131\\ 55\\ 96\\ 69\\ 53\\ 75\\ 119\\ 128\\ 69\\ 106\\ 131\\ 55\\ 96\\ 69\\ 106\\ 131\\ 55\\ 96\\ 60\\ 131\\ 55\\ 96\\ 96\\ 53\\ 108\\ 106\\ 131\\ 55\\ 96\\ 108\\ 106\\ 131\\ 55\\ 96\\ 108\\ 106\\ 131\\ 55\\ 96\\ 108\\ 106\\ 131\\ 55\\ 96\\ 108\\ 106\\ 131\\ 55\\ 96\\ 108\\ 106\\ 131\\ 55\\ 96\\ 108\\ 106\\ 131\\ 55\\ 96\\ 108\\ 106\\ 131\\ 108\\ 106\\ 131\\ 108\\ 106\\ 131\\ 108\\ 106\\ 131\\ 108\\ 106\\ 131\\ 108\\ 106\\ 131\\ 108\\ 106\\ 131\\ 108\\ 106\\ 131\\ 108\\ 106\\ 131\\ 108\\ 106\\ 131\\ 108\\ 106\\ 131\\ 108\\ 106\\ 131\\ 108\\ 106\\ 131\\ 108\\ 106\\ 131\\ 108\\ 106\\ 131\\ 108\\ 106\\ 131\\ 108\\ 106\\ 131\\ 108\\ 106\\ 108\\ 106\\ 108\\ 106\\ 108\\ 106\\ 108\\ 106\\ 108\\ 106\\ 108\\ 106\\ 108\\ 106\\ 108\\ 106\\ 108\\ 106\\ 108\\ 106\\ 108\\ 106\\ 108\\ 106\\ 108\\ 106\\ 108\\ 108\\ 106\\ 108\\ 106\\ 108\\ 106\\ 108\\ 106\\ 108\\ 106\\ 108\\ 106\\ 108\\ 106\\ 108\\ 106\\ 108\\ 106\\ 108\\ 106\\ 108\\ 106\\ 108\\ 106\\ 108\\ 106\\ 108\\ 106\\ 108\\ 106\\ 108\\ 106\\ 108\\ 106\\ 108\\ 108\\ 106\\ 108\\ 108\\ 108\\ 108\\ 108\\ 108\\ 108\\ 108$.40(5) .1(5) .69(7) .36(7) .9(7) .20(7) .11(5) .54(5) .6(7) .08(5) .70(7) .85(5) .02(6) .3(4) .2(4) .60(5) .8(4) .10(7) .79(7) .7(4) .37(5) .74(7) .24(7)
$\begin{array}{c} 1 & 130 \\ 1 & 55 \\ 2 & 54 \\ 2 & 54 \\ 2 & 54 \\ 3 & 54 \\ 3 & 54 \\ 3 & 54 \\ 3 & 54 \\ 4 & 64 \\ 4 & 36 \\ 5 & 64 \\ 64 \\ 1 & 64 \\$	5.40(5) 1.90(5) 3.01(5) 3.8(2) 1.5(2) 3.6(2) 1.7(2) 3.5(2) 3.5(2) 3.5(2) 3.5(2) 3.66(18) 0.7(2) 9.90(19) 33(19) 2.77(17) 5.78(17) 9.3(2) 3.0(2) 3.4(2)	$\begin{array}{l} O(3) - P(3) - Co(3) \\ O(3) - P(3) - Co(1) \\ Co(3) - P(3) - Co(1) \\ O(3) - P(3) - Co(4) \\ Co(3) - P(3) - Co(4) \\ Co(1) - P(3) - Co(4) \\ O(3) - P(3) - P(4) \\ Co(3) - P(3) - P(4) \\ Co(1) - P(3) - P(4) \\ Co(4) - P(3) - P(4) \\ O(3) - P(3) - P(2) \\ Co(3) - P(3) - P(2) \\ Co(4) - P(3) - P(2) \\ Co(4) - P(3) - P(2) \\ O(4) - P(4) - Co(2) \\ O(4) - P(4) - Co(2) \\ Co(4) - P(4) - Co(1) \\ Co(2) - P(4) - Co(1) \\ Co(2) - P(4) - Co(1) \\ Co(4) - P(4) - P(3) \\ Co(4) - $	$ \begin{array}{c} 130\\ 69\\ 115\\ 107\\ 107\\ 144\\ 97\\ 55\\ 53\\ 128\\ 55\\ 96\\ 53\\ 75\\ 119\\ 128\\ 69\\ 115\\ 108\\ 106\\ 131\\ 55\\ \end{array} $.40(5) .1(5) .69(7) .36(7) .9(7) .20(7) .11(5) .54(5) .6(7) .08(5) .70(7) .85(5) .02(6) .3(4) .2(4) .60(5) .8(4) .10(7) .79(7) .7(4) .37(5)
$\begin{array}{c} 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	5.40(5) 1.90(5) 3.01(5) 3.8(2) 1.5(2) 3.6(2) 1.7(2) 1.9(2) 3.5(2) 0.1(2) 5.6(2) 5.6(2) 3.66(18) 0.7(2) 9.90(19) 33(19) 2.77(17) 5.78(17) 9.3(2) 3.0(2)	$\begin{array}{l} O(3) - P(3) - Co(3) \\ O(3) - P(3) - Co(1) \\ Co(3) - P(3) - Co(1) \\ O(3) - P(3) - Co(4) \\ Co(3) - P(3) - Co(4) \\ Co(1) - P(3) - Co(4) \\ O(3) - P(3) - P(4) \\ Co(3) - P(3) - P(4) \\ Co(1) - P(3) - P(4) \\ Co(4) - P(3) - P(4) \\ O(3) - P(3) - P(2) \\ Co(4) - P(3) - P(2) \\ Co(4) - P(3) - P(2) \\ Co(4) - P(3) - P(2) \\ O(4) - P(4) - Co(2) \\ O(4) - P(4) - Co(2) \\ O(4) - P(4) - Co(1) \\ Co(2) - P(4) - Co(1) \\ Co(2) - P(4) - Co(1) \\ Co(2) - P(4) - Co(1) \\ O(4) - P(4) - Co(1) \\ Co(2) - P(4) - Co(1) \\ O(4) - P(4) - P(3) \\ \end{array}$	130 69 115 107 144 97 55 53 128 55 96 53 75 119 128 69 115 108 106 131	.40(5) .1(5) .69(7) .36(7) .9(7) .20(7) .11(5) .54(5) .6(7) .08(5) .70(7) .85(5) .02(6) .3(4) .2(4) .60(5) .8(4) .10(7) .79(7) .7(4)
$\begin{array}{c} 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	5.40(5) 1.90(5) 3.01(5) 3.8(2) 1.5(2) 3.6(2) 1.7(2) 1.9(2) 3.5(2) 0.1(2) 5.6(2) 5.5(2) 3.66(18) 0.7(2) 9.90(19) 33(19) 2.77(17) 5.78(17) 9.3(2)	$\begin{array}{l} O(3) - P(3) - Co(3) \\ O(3) - P(3) - Co(1) \\ Co(3) - P(3) - Co(1) \\ O(3) - P(3) - Co(4) \\ Co(3) - P(3) - Co(4) \\ Co(1) - P(3) - Co(4) \\ O(3) - P(3) - P(4) \\ Co(3) - P(3) - P(4) \\ Co(1) - P(3) - P(4) \\ Co(4) - P(3) - P(4) \\ O(3) - P(3) - P(2) \\ Co(3) - P(3) - P(2) \\ Co(4) - P(3) - P(2) \\ Co(4) - P(3) - P(2) \\ O(4) - P(3) - P(2) \\ O(4) - P(4) - Co(2) \\ O(4) - P(4) - Co(2) \\ O(4) - P(4) - Co(1) \\ Co(4) - P(4) - Co(1) \\ Co(2) - P(4) - Co(1) \\ Co(2) - P(4) - Co(1) \\ \end{array}$	130 69 115 107 144 97 55 53 128 55 96 53 75 119 128 69 115 108 106	.40(5) .1(5) .69(7) .36(7) .9(7) .20(7) .11(5) .54(5) .6(7) .08(5) .70(7) .85(5) .02(6) .3(4) .2(4) .60(5) .8(4) .10(7) .79(7)
$\begin{array}{c} 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	5.40(5) 1.90(5) 3.01(5) 3.8(2) 4.5(2) 3.6(2) 4.7(2) 4.9(2) 3.5(2) 0.1(2) 5.6(2) 5.6(2) 3.66(18) 0.7(2) 0.90(19) 33(19) 2.77(17) 5.78(17)	$\begin{array}{l} O(3) - P(3) - Co(3) \\ O(3) - P(3) - Co(1) \\ Co(3) - P(3) - Co(1) \\ O(3) - P(3) - Co(4) \\ Co(3) - P(3) - Co(4) \\ Co(1) - P(3) - Co(4) \\ O(3) - P(3) - P(4) \\ Co(3) - P(3) - P(4) \\ Co(1) - P(3) - P(4) \\ Co(4) - P(3) - P(4) \\ O(3) - P(3) - P(2) \\ Co(3) - P(3) - P(2) \\ Co(4) - P(3) - P(2) \\ Co(4) - P(3) - P(2) \\ O(4) - P(3) - P(2) \\ O(4) - P(4) - Co(4) \\ O(4) - P(4) - Co(2) \\ Co(4) - P(4) - Co(1) \\ \end{array}$	$ \begin{array}{r} 130\\ 69\\ 115\\ 107\\ 107\\ 144\\ 97\\ 55\\ 53\\ 128\\ 55\\ 96\\ 53\\ 75\\ 119\\ 128\\ 69\\ 115\\ 108 \end{array} $.40(5) .1(5) .69(7) .36(7) .9(7) .20(7) .11(5) .54(5) .6(7) .08(5) .70(7) .85(5) .02(6) .3(4) .2(4) .60(5) .8(4) .10(7)
$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	5.40(5) 1.90(5) 3.01(5) 3.8(2) 1.5(2) 3.6(2) 1.7(2) 1.9(2) 3.5(2) 3.1(2) 5.6(2) 5.5(2) 3.66(18) 0.7(2) 9.90(19) 33(19) 2.77(17)	$\begin{array}{c} O(3) - P(3) - Co(3) \\ O(3) - P(3) - Co(1) \\ Co(3) - P(3) - Co(1) \\ O(3) - P(3) - Co(4) \\ Co(3) - P(3) - Co(4) \\ Co(1) - P(3) - Co(4) \\ O(3) - P(3) - P(4) \\ Co(3) - P(3) - P(4) \\ Co(1) - P(3) - P(4) \\ Co(4) - P(3) - P(4) \\ O(3) - P(3) - P(2) \\ Co(3) - P(3) - P(2) \\ Co(4) - P(3) - P(2) \\ Co(4) - P(3) - P(2) \\ O(4) - P(3) - P(2) \\ O(4) - P(4) - Co(4) \\ O(4) - P(4) - Co(2) \\ Co(4) - P(4) - Co(1) \\ \end{array}$	130 69 115 107 107 144 97 55 53 128 55 96 53 75 119 128 69 115	.40(5) .1(5) .69(7) .36(7) .9(7) .20(7) .11(5) .54(5) .6(7) .08(5) .70(7) .85(5) .02(6) .3(4) .2(4) .60(5) .8(4)
$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	5.40(5) 1.90(5) 3.01(5) 3.8(2) 1.5(2) 3.6(2) 1.7(2) 1.9(2) 3.5(2) 0.1(2) 5.6(2) 5.5(2) 3.66(18) 0.7(2) 9.90(19) 3.3(19)	O(3)-P(3)-Co(3) O(3)-P(3)-Co(1) Co(3)-P(3)-Co(1) O(3)-P(3)-Co(4) Co(3)-P(3)-Co(4) Co(1)-P(3)-Co(4) O(3)-P(3)-P(4) Co(1)-P(3)-P(4) Co(4)-P(3)-P(4) Co(3)-P(3)-P(2) Co(3)-P(3)-P(2) Co(1)-P(3)-P(2) Co(4)-P(3)-P(2) O(4)-P(4)-Co(4) O(4)-P(4)-Co(2) Co(4)-P(4)-Co(2)	130 69 115 107 107 144 97 55 53 128 55 96 53 75 119 128	.40(5) .1(5) .69(7) .36(7) .9(7) .20(7) .11(5) .54(5) .6(7) .08(5) .70(7) .85(5) .02(6) .3(4) .2(4) .60(5)
$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	5.40(5) 1.90(5) 3.01(5) 3.8(2) 4.5(2) 3.6(2) 4.7(2) 4.9(2) 3.5(2) 0.1(2) 5.6(2) 5.5(2) 3.66(18) 0.7(2) 0.0(10)	O(3)-P(3)-Co(3) O(3)-P(3)-Co(1) Co(3)-P(3)-Co(1) O(3)-P(3)-Co(4) Co(3)-P(3)-Co(4) Co(1)-P(3)-Co(4) O(3)-P(3)-P(4) Co(1)-P(3)-P(4) Co(4)-P(3)-P(4) Co(3)-P(3)-P(2) Co(3)-P(3)-P(2) Co(1)-P(3)-P(2) Co(4)-P(3)-P(2) P(4)-P(3)-P(2) O(4)-P(4)-Co(4) O(4)-P(4)-Co(4)	130 69 115 107 107 144 97 55 53 128 55 96 53 75 119	.40(5) .1(5) .69(7) .36(7) .9(7) .20(7) .11(5) .54(5) .6(7) .08(5) .70(7) .85(5) .02(6) .3(4)
$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	5.40(5) 1.90(5) 3.01(5) 3.8(2) 4.5(2) 3.6(2) 4.7(2) 4.9(2) 3.5(2) 0.1(2) 5.6(2) 5.5(2) 3.66(18) 5.5(2)	O(3)-P(3)-Co(3) O(3)-P(3)-Co(1) Co(3)-P(3)-Co(1) O(3)-P(3)-Co(4) Co(3)-P(3)-Co(4) Co(1)-P(3)-Co(4) O(3)-P(3)-P(4) Co(1)-P(3)-P(4) Co(1)-P(3)-P(4) Co(3)-P(3)-P(2) Co(3)-P(3)-P(2) Co(1)-P(3)-P(2) Co(4)-P(3)-P(2) P(4)-P(3)-P(3)-P(2) P(4)-P(3)-P(3)-P(2) P(4)-P(3)-P(3)-P(3)-P(3) P(4)-P(3)-P(3)-P(3)-P(3)-P(3) P(4)-P(3)-P(3)-P(3)-P(3)-P(3)-P(3)-P(3)-P(3	130 69 115 107 107 144 97 55 53 128 55 96 53 75	.40(5) .1(5) .69(7) .36(7) .9(7) .20(7) .11(5) .54(5) .6(7) .08(5) .70(7) .85(5) .02(6)
$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	5.40(5) 1.90(5) 3.01(5) 3.8(2) 4.5(2) 3.6(2) 4.7(2) 4.9(2) 3.5(2) 0.1(2) 5.6(2) 5.5(2)	O(3)-P(3)-Co(3) O(3)-P(3)-Co(1) Co(3)-P(3)-Co(1) O(3)-P(3)-Co(4) Co(3)-P(3)-Co(4) Co(1)-P(3)-Co(4) O(3)-P(3)-P(4) Co(1)-P(3)-P(4) Co(4)-P(3)-P(4) O(3)-P(3)-P(2) Co(1)-P(3)-P(2) Co(1)-P(3)-P(2) Co(4)-P(3)-P(3)-P(2) Co(4)-P(3)-P(3)-P(3)-P(2) Co(4)-P(3)-P(3)-P(3)-P(3)-P(3)-P($ \begin{array}{r} 130\\69\\115\\107\\107\\144\\97\\55\\53\\128\\55\\96\\53\end{array} $.40(5) .1(5) .69(7) .36(7) .9(7) .20(7) .11(5) .54(5) .6(7) .08(5) .70(7) .85(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.40(5) 1.90(5) 3.01(5) 3.8(2) 4.5(2) 3.6(2) 4.7(2) 4.9(2) 3.5(2) 0.1(2) 5.6(2)	$\begin{array}{c} O(3)-P(3)-Co(3)\\ O(3)-P(3)-Co(1)\\ Co(3)-P(3)-Co(1)\\ O(3)-P(3)-Co(4)\\ Co(3)-P(3)-Co(4)\\ Co(1)-P(3)-Co(4)\\ O(3)-P(3)-P(4)\\ Co(3)-P(3)-P(4)\\ Co(1)-P(3)-P(4)\\ Co(4)-P(3)-P(4)\\ O(3)-P(3)-P(2)\\ Co(3)-P(3)-P(2)\\ Co(1)-P(3)-P(2)\\ Co(1)-P(3)-P(2)\\ \end{array}$	130 69 115 107 107 144 97 55 53 128 55 96	.40(5) .1(5) .69(7) .36(7) .9(7) .20(7) .11(5) .54(5) .6(7) .08(5) .70(7)
$\begin{array}{ccccccc} 1 & 130 \\ 1 & 55 \\ 1 & 54 \\ 1 & 54 \\ 2 & 54 \\ 3 & 36 \\ 4 & 64 \\ 4 & 36 \\ 5 & 64 \\ 5 & 64 \\ 5 & 64 \\ 5 & 36 \\ 1 & 40 \\ \end{array}$	5.40(5) 1.90(5) 3.01(5) 3.8(2) 1.5(2) 3.6(2) 1.7(2) 1.9(2) 3.5(2) 0.1(2)	$\begin{array}{c} O(3) - P(3) - Co(3) \\ O(3) - P(3) - Co(1) \\ Co(3) - P(3) - Co(1) \\ O(3) - P(3) - Co(4) \\ Co(3) - P(3) - Co(4) \\ Co(1) - P(3) - Co(4) \\ O(3) - P(3) - P(4) \\ Co(3) - P(3) - P(4) \\ Co(1) - P(3) - P(4) \\ Co(4) - P(3) - P(4) \\ O(3) - P(3) - P(2) \\ Co(3) - P(3) - P(2) \\ Co(3) - P(3) - P(2) \end{array}$	130 69 115 107 107 144 97 55 53 128 55	.40(5) .1(5) .69(7) .36(7) .9(7) .20(7) .11(5) .54(5) .6(7) .08(5)
$\begin{array}{ccccccc} 1 & 130 \\ 0 & 55 \\ 0 & 54 \\ 0 & 98 \\ 3) & 38 \\ 4) & 64 \\ 4) & 38 \\ 5) & 64 \\ 5) & 64 \\ 5) & 64 \\ 5) & 38 \\ 5) & 38 \\ 64 \\ 64 \\ 64 \\ 64 \\ 64 \\ 64 \\ 64 \\ 6$	5.40(5) 1.90(5) 3.01(5) 3.8(2) 1.5(2) 3.6(2) 1.7(2) 1.9(2) 3.5(2)	$\begin{array}{c} O(3) - P(3) - Co(3) \\ O(3) - P(3) - Co(1) \\ Co(3) - P(3) - Co(1) \\ O(3) - P(3) - Co(4) \\ Co(3) - P(3) - Co(4) \\ Co(1) - P(3) - Co(4) \\ O(3) - P(3) - P(4) \\ Co(3) - P(3) - P(4) \\ Co(1) - P(3) - P(4) \\ Co(4) - P(3) - P(4) \\ O(3) - P(3) - P(2) \end{array}$	130 69 115 107 107 144 97 55 53 128	.40(5) .1(5) .69(7) .36(7) .9(7) .20(7) .11(5) .54(5) .6(7)
$\begin{array}{cccccccc} 1 & 130 \\ 1 & 55 \\ 2 & 54 \\ 2 & 54 \\ 3 & 56 \\ 4 & 64 \\ 4 & 38 \\ 5 & 64 \\ 5 & 64 \\ 5 & 64 \\ \end{array}$	5.40(5) 1.90(5) 3.01(5) 3.8(2) 1.5(2) 3.6(2) 1.7(2) 1.9(2)	$\begin{array}{c} O(3) - P(3) - Co(3) \\ O(3) - P(3) - Co(1) \\ Co(3) - P(3) - Co(1) \\ O(3) - P(3) - Co(4) \\ Co(3) - P(3) - Co(4) \\ Co(1) - P(3) - Co(4) \\ O(3) - P(3) - P(4) \\ Co(3) - P(3) - P(4) \\ Co(1) - P(3) - P(4) \\ Co(4) - P(3) - P(4) \end{array}$	130 69 115 107 107 144 97 55 53	.40(5) .1(5) .69(7) .36(7) .9(7) .20(7) .11(5) .54(5)
$\begin{array}{cccc} 1) & 130 \\) & 55 \\) & 54 \\) & 96 \\ 3) & 36 \\ 4) & 64 \\ 4) & 36 \\ 5) & 64 \\ \end{array}$	5.40(5) 1.90(5) 3.01(5) 3.8(2) 1.5(2) 3.6(2) 1.7(2)	$\begin{array}{c} O(3) - P(3) - Co(3) \\ O(3) - P(3) - Co(1) \\ Co(3) - P(3) - Co(1) \\ O(3) - P(3) - Co(4) \\ Co(3) - P(3) - Co(4) \\ Co(1) - P(3) - Co(4) \\ O(3) - P(3) - P(4) \\ Co(3) - P(3) - P(4) \\ Co(1) - P(3) - P(4) \\ Co(1) - P(3) - P(4) \end{array}$	130 69 115 107 107 144 97 55	.40(5) .1(5) .69(7) .36(7) .9(7) .20(7) .11(5)
$\begin{array}{cccc} 1) & 130 \\) & 55 \\) & 54 \\) & 96 \\ 3) & 36 \\ 4) & 64 \\ 4) & 20 \\ \end{array}$	5.40(5) 1.90(5) 3.01(5) 3.8(2) 1.5(2) 3.6(2)	$\begin{array}{c} O(3) - P(3) - Co(3) \\ O(3) - P(3) - Co(1) \\ Co(3) - P(3) - Co(1) \\ O(3) - P(3) - Co(4) \\ Co(3) - P(3) - Co(4) \\ Co(1) - P(3) - Co(4) \\ O(3) - P(3) - P(4) \\ O(3) - P(3) - P(4) \end{array}$	130 69 115 107 107 144 07	.40(5) .1(5) .69(7) .36(7) .9(7) 20(7)
1) 130) 55) 54) 98 3) 38 4) 67	5.40(5) 4.90(5) 3.01(5) 3.8(2)	$\begin{array}{c} O(3) - P(3) - Co(3) \\ O(3) - P(3) - Co(1) \\ Co(3) - P(3) - Co(1) \\ O(3) - P(3) - Co(4) \\ Co(3) - P(3) - Co(4) \\ Co(1) - P(3) - Co(4) \\ Co(1) - P(3) - Co(4) \\ O(3) - Co($	130 69 115 107 107	.40(5) .1(5) .69(7) .36(7)
L) 130) 55) 54) 98 2) 20	5.40(5) 4.90(5) 3.01(5)	O(3)-P(3)-Co(3) O(3)-P(3)-Co(1) Co(3)-P(3)-Co(1) O(3)-P(3)-Co(4) Co(3)-P(3)-Co(4) Co(3)-P(3)-Co(4)	130 69 115 107	.40(5) .1(5) .69(7)
1) 130) 55) 54	5.40(5) 4.90(5)	O(3) - P(3) - Co(3) O(3) - P(3) - Co(1) Co(3) - P(3) - Co(1) O(3) - P(3) - Co(4) O(3) - P(3) - Co(4)	130 69 115	.40(5) .1(5)
1) 130) 55	5.40(5)	O(3)-P(3)-Co(3) O(3)-P(3)-Co(1) Co(3)-P(3)-Co(1)	130 69	.40(5)
1) 130		O(3) - P(3) - CO(3) O(3) - P(3) - CO(1)	130	· · · ·
a .).93(16)	O(3) - P(3) - CO(3)		.4(6)
1) 102	2.91(17)	$-(\alpha) = (\alpha) = (\alpha)$	117	.4(7)
1) 104	1.1(2)	P(3)-P(2)-P(1)	74	.87(5)
1) 134	1.9(2)	Co(3) - P(2) - P(1)	53	.77(4)
1) 16	.23(15)	Co(4) - P(2) - P(1)	96	.83(7)
7- 71		$C_0(2) - P(2) - P(1)$	±32 54	.83(5)
) <u>11</u> 0 71	14(6)	O(2) - P(2) - P(3)	53 122	6(4)
154	E.95(⊥/) 5 51(15)	CO(4) - P(2) - P(3) CO(3) - P(2) - P(3)	55 55	.⊥3(5) 79(5)
	D.1(2)	Co(2) - P(2) - P(3)	96	.97(7)
) 109	0.1(2)	O(2) - P(2) - P(3)	142	.9(4)
) 94	1.69(16)	Co(4)-P(2)-Co(3)	107	.67(7)
90	.99(6)	Co(2)-P(2)-Co(3)	107	.44(7)
) 102	2.91(15)	O(2) - P(2) - Co(3)	116	.9(3)
) 110).25(17)	Co(2) - P(2) - Co(4)	69	.63(5)
) 142	2.6(2)	O(2) - P(2) - Co(4)	126	.6(4)
) 168	3.6(2)	O(2) - P(2) - Co(2)	118	.9(4)
) 120	3(2)	P(2) - P(1) - P(4)	74	68(6)
) 160	$5.75(\pm 5)$	$C_{O}(2) - P(1) - P(4)$	96 52	94(5)
) 100	J.9/(⊥/)) 75(15)	CO(1) - P(1) - P(4) CO(3) - D(1) - D(4)	55	.UL(5) 70(7)
) 99	9.95(19)	O(1) - P(1) - P(4)	133	.6(3)
) 131	.32(19)	Co(2)-P(1)-P(2)	53	.56(4)
1) 38	3.47(19)	O(3) - P(1) - P(2)	54	.98(5)
1) 65	5.7(2)	$C_{2}(2) \cup (1) \cup (2)$	97	.01(6)
1) 66	$\Delta \Delta (2)$	Co(1) - P(1) - P(2) Co(2) - P(1) - P(2)	1 I Z	
3333311111)22222))(((($\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31) $65.7(2)$ $Co(1)-P(1)-P(2)$ 31) $38.47(19)$ $Co(3)-P(1)-P(2)$ 31) $131.32(19)$ $Co(2)-P(1)-P(2)$ 31) $99.95(19)$ $O(1)-P(1)-P(4)$ 31) $100.97(17)$ $Co(1)-P(1)-P(4)$ 31) $132.75(15)$ $Co(3)-P(1)-P(4)$ 31) $132.75(15)$ $Co(2)-P(1)-P(4)$ 31) $165.64(15)$ $Co(2)-P(1)-P(4)$ 31) $165.64(15)$ $Co(2)-P(2)-Co(2)$ 11) $129.3(2)$ $P(2)-P(1)-P(4)$ 11) $168.6(2)$ $O(2)-P(2)-Co(4)$ 11) $10.25(17)$ $Co(2)-P(2)-Co(4)$ 11) $102.91(15)$ $O(2)-P(2)-Co(3)$ 21) $94.69(16)$ $Co(4)-P(2)-Co(3)$ 22) $94.69(16)$ $Co(2)-P(2)-P(3)$ 23) $16.51(15)$ $Co(3)-P(2)-P(3)$ 24) $16.51(15)$ $Co(3)-P(2)-P(3)$ 25) $116.51(15)$ $Co(2)-P(2)-P(1)$ 26) $116.51(15)$ $Co(2)-P(2)-P(1)$ 27) $114.6()$ $O(2)-P(2)-P(1)$ 28) $116.51(15)$ $Co(3)-P(2)-P(1)$ 29) $116.51(15)$ $Co(3)-P(2)-P(1)$ 20) $116.51(15)$ $Co(2)-P(2)-P(1)$ 21) $114.6()$ $O(2)-P(2)-P(1)$ 22) $116.51(15)$ $Co(3)-P(2)-P(1)$ 23) $116.51(15)$ $Co(3)-P(2)-P(1)$ 24) $104.1(2)$ $P(3)-P(2)-P(1)$	31) $65.7(2)$ $Co(1)-P(1)-P(2)$ 97 31) $38.47(19)$ $Co(3)-P(1)-P(2)$ 54 3) $131.32(19)$ $Co(2)-P(1)-P(2)$ 53 3) $99.95(19)$ $O(1)-P(1)-P(4)$ 133 3) $100.97(17)$ $Co(1)-P(1)-P(4)$ 55 3) $132.75(15)$ $Co(3)-P(1)-P(4)$ 96 3) $165.64(15)$ $Co(2)-P(1)-P(4)$ 74 1) $129.3(2)$ $P(2)-P(1)-P(4)$ 74 1) $168.6(2)$ $O(2)-P(2)-Co(2)$ 118 1) $142.6(2)$ $O(2)-P(2)-Co(4)$ 126 1) $110.25(17)$ $Co(2)-P(2)-Co(4)$ 69 1) $102.91(15)$ $O(2)-P(2)-Co(3)$ 116 1) $90.99(6)$ $Co(2)-P(2)-Co(3)$ 107 2) $94.69(16)$ $Co(4)-P(2)-P(3)$ 142 2) $146.1(2)$ $Co(2)-P(2)-P(3)$ 142 2) $16.51(15)$ $Co(3)-P(2)-P(3)$ 55 2) $116.51(15)$ $Co(3)-P(2)-P(3)$ 53 1) $71.24(6)$ $Co(2)-P(2)-P(1)$ 132 1) $167.23(15)$ $Co(4)-P(2)-P(1)$ 53 1) $134.9(2)$ $Co(3)-P(2)-P(1)$ 53 1) $104.1(2)$ $P(3)-P(2)-P(1)$ 74

$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$C(12)^{-}C(13)^{-}CO(1) \qquad 12.1(3)$

1)-C(43)-Co(4)	70.8(3)
2)-C(43)-Co(4)	69.4(3)
5)-C(44)-C(43)	109.0(6)
5)-C(44)-Co(4)	71.3(3)
3)-C(44)-Co(4)	70.6(3)
1)-C(45)-C(41)	110.1(6)
1)-C(45)-Co(4)	70.2(3)
-C(45)-Co(4)	71.4(3)

Anhang

Literatur

	U ₁₂	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	
Co(1)	44(1)	44(1)	34(1)	0(1)	2(1)	5(1)
Co(2)	41(1)	46(1)	35(1)	8(1)	6(1)	-2(1)
CO(3)	50(1) 47(1)	44(1 46(1)	34(1) 34(1)	4(1) -3(1)	12(1) 9(1)	2(1) -4(1)
P(1)	46(1)	39(1)	34(1)	3(1)	6(1)	4(1)
P(2)	43(1)	48(1)	35(1)	1(1)	9(1)	-5(1)
P(3)	52(1)	42(1)	35(1)	1(1)	7(1)	5(1)
P(4)	40(1)	50(1)	34(1)	2(1)	6(1)	-1(1)
O(1)	/2(/) 50(8)	40(5)	61(6) 56(6)	-13(4)	9(5)	-5(4)
O(2)	111(18)	74(1	4)	33(10)	3(8)	-2(10)	27(11)
0(4)	49(9)	66(8)	53(7)	20(7)	22(6)	-8(7)
Si(11)	73(1)	56(1)	51(1)	-6(1)	-1(1)	22(1)
Si(21)	55(1)	74(1)	49(1)	13(1)	4(1)	-17(1)
S1(31)	61(1)	67(1)	55(1)	12(1)	19(1)	21(1)
C(11)	73(1) 45(4)	55(1 60(4)	04(1) 28(3)	-9(1)	∠5(⊥) -2(3)	-21(1) 18(3)
C(11)	62(4)	55(4)	28(3)	-4(3)	-9(3)	15(3)
C(13)	66(5)	54(4)	48(4)	-18(3)	-12(3)	17(3)
C(14)	58(5)	47(4)	63(4)	5(3)	-13(3)	-15(3)
C(15)	37(4)	74(4)	53(3)	-4(4)	-5(3)	5(4)
C(21)	51(4)	4/(3)	30(3) E4(4)	$\perp \perp (2)$ 1 E (2)	7(3)	-9(3)
C(22) C(23)	65(5)	66(4)	54(4) 56(4)	26(3)	14(4)	26(4)
C(24)	49(5)	86(5)	44(4)	32(3)	-13(3)	-14(4)
C(25)	49(5)	74(4)	28(3)	6(3)	4(3)	-15(3)
C(31)	38(4)	60(4)	39(3)	-1(3)	15(3)	8(3)
C(32)	59(5)	61(4 64(4)	35(3)	0(3)	$\pm 3(3)$	16(3)
C(33)	108(7)	54(4)	43(3) 71(5)	$\frac{23(3)}{6(4)}$	55(5)	-14(4)
C(35)	44(4)	88(5)	61(3)	-2(4)	30(3)	-6(4)
C(41)	65(5)	39(3)	41(3)	-6(2)	10(3)	-10(3)
C(42)	87(6)	44(4)	55(4)	-17(3)	18(4)	2(4)
C(43)	56(5) 77(6)	/6(5 92(5)	/0(4)	-2/(4)	20(4)	4(4) -29(4)
C(45)	55(5)	61(4)	37(3)	-27(3)	12(3)	-15(3)
C(111)	79(6)	88(5)	120(6)	-12(4)	-27(5)	41(4)
C(112)	142(8)	112(6)	67(4)	-31(4)	13(5)	47(5)
C(113)	113(7)	59(4)	84(5)	12(4)	14(4)	-3(4)
C(211)	68(5) 77(5)	106(5)	70(4) 66(4)	-3(4)	24(4)	-1(4)
C(212) C(213)	87(6)	117(6)	115(6)	-10(4) 66(5)	-0(4)	-39(5)
C(311)	106(7)	68(4)	97(5)	-7(4)	20(5)	3(4)
C(312)	83(6)	111(6)	110(6)	28(5)	56(5)	39(5)
C(313)	97(6)	116(6)	77(5)	44(4)	22(4)	50(5)
C(411)	67(5) 124(7)	109(5)	112(5)	3(5)	22(4)	11(5) EQ(E)
C(412) C(443)	142(8)	04(5 115(6)	±39(7) 86(5)	-30(4) -9(4)	65(5)	-50(5) -62(6)
-()			/		- (-)		02(0)

Tabelle A.11.4Anisotrope Auslenkungsparameter [Ų x 10³] für 9921.Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2$ [(ha*)²U₁₁ + ... + 2hka*b*U₁₂]

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

<u>Anhang A.12</u> : Strukturdaten von $[(Cp^{=}Co)_4(P=O)_2P_2]$ (18d)

Tabelle A.12.1 Kristalldaten und	l Strukturverfeinerung
Summenformel	$C_{44}H_{84}Co_4O_2P_4Si_8$
Molmasse	1229.43
Temperatur	293(2) K
Strahlung	ΜοΚα
Wellenlänge	0.71073 Å
Scanmodus	Phi-Oszillation
Kristallsystem	Triklin 1 00
Raumgruppe	PĪ O
Zelldimensionen	$a = 11.5308(11) \text{ Å}$ $\alpha = 99.568(13)^{\circ}$
	$b = 11.8768(15) \text{ Å}$ $\beta = 99.577(11)^{\circ}$
	$c = 23.866(2) \text{ Å}$ $\gamma = 101.480(13)^{\circ}$
Zellvolumen	3090.5(6) Å ³
Formeleinheiten pro Zelle Z	2
Berechnete Dichte	1.321 Mg/m ³
Absorptionskoeffizient	1.345 mm^{-1}
Kristallgröße	0.20 x 0.16 x 0.12 mm
Gemessener θ-Bereich	2.75 bis 25.68°
Anzahl der gemessenen Reflexe	25821
Unabhängige Reflexe	10995 (Rint = 0.1596)
Absorptionskorrektur	Analytisch (ABST/PLATON 98)
Max. und min. Transmission	0.88349 und 0.76556
Diffraktometer	Stoe IPDS
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SHELXS-97 (Sheldrick, 1990)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F ²
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	10995 / 0 / 583
Endgültige R-Werte $[I > 2\sigma(I)]$	R1 = 0.0637, WR2 = 0.1389
R-Werte (alle Daten)	R1 = 0.1611, $wR2 = 0.1698$
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.0620P)^2+0.0000P]$ mit $P=(Fo^2+2Fc^2)/3$
GooF (alle Daten)	0.742
Größtes Maximum und Minimum	$0.564 \text{ und } -0.547 \text{ e}\text{\AA}^{-3}$

Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) bzw. der 1.2-fache Wert (Cp-H) des äquivalenten isotropen Temperaturfaktors desjenigen C- Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Tabelle A.12.2 Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

$\begin{array}{c} \text{Co}(1)-\text{C}(15)\\ \text{Co}(1)-\text{C}(14)\\ \text{Co}(1)-\text{C}(11)\\ \text{Co}(1)-\text{C}(12)\\ \text{Co}(1)-\text{P}(2)\\ \text{Co}(1)-\text{P}(2)\\ \text{Co}(1)-\text{P}(3)\\ \text{Co}(1)-\text{P}(3)\\ \text{Co}(1)-\text{P}(3)\\ \text{Co}(2)-\text{C}(24)\\ \text{Co}(2)-\text{C}(25)\\ \text{Co}(2)-\text{C}(22)\\ \text{Co}(2)-\text{C}(22)\\ \text{Co}(2)-\text{C}(23)\\ \text{Co}(2)-\text{P}(2)\\ \text{Co}(2)-\text{P}(2)\\ \text{Co}(2)-\text{P}(4)\\ \text{Co}(2)-\text{Co}(4)\\ \text{Co}(3)-\text{C}(32)\\ \text{Co}(3)-\text{C}(32)\\ \text{Co}(3)-\text{C}(31)\\ \text{Co}(3)-\text{C}(32)\\ \text{Co}(3)-\text{C}(33)\\ \text{Co}(3)-\text{P}(2)\\ \text{Co}(3)-\text{C}(33)\\ \text{Co}(3)-\text{P}(2)\\ \text{Co}(3)-\text{C}(33)\\ \text{Co}(3)-\text{P}(4)\\ \text{Co}(4)-\text{C}(42)\\ \text{Co}(4)-\text{C}(42)\\ \text{Co}(4)-\text{C}(42)\\ \text{Co}(4)-\text{C}(42)\\ \text{Co}(4)-\text{C}(42)\\ \text{Co}(4)-\text{C}(43)\\ \text{Co}(4)-\text{P}(1)\\ \text{Co}(4)-\text{P}(3)\\ \text{P}(1)-\text{O}(1)\\ \text{P}(1)-\text{P}(3)\\ \text{P}(1)-\text{O}(1)\\ \text{P}(1)-\text{P}(2)\\ \text{P}(2)-\text{O}(2)\\ \text{P}(2)-\text{P}(4)\\ \text{Si}(11)-\text{C}(113)\\ \text{Si}(11)-\text{C}(111)\\ \text{Si}(11)-\text{C}(112)\\ \text{Si}($	2.070(11) 2.092(11) 2.153(10) 2.151(9) 2.189(3) 2.186(9) 2.214(2) 2.264(3) 2.5445(19) 2.074(10) 2.060(9) 2.167(8) 2.186(8) 2.192(3) 2.208(9) 2.220(2) 2.253(3) 2.207(10) 2.113(8) 2.095(8) 2.095(8) 2.095(8) 2.076(10) 2.117(3) 2.179(8) 2.207(2) 2.273(2) 2.079(7) 2.117(8) 2.079(7) 2.117(8) 2.099(9) 2.147(8) 2.099(9) 2.147(8) 2.209(3) 2.271(2) 1.487(6) 2.556(3) 2.669(3) 1.491(7) 2.568(4) 2.555(3) 1.833(11) 1.844(11) 1.887(10)		$\begin{array}{c} \mathrm{Si}(12) - \mathrm{C}(122)\\ \mathrm{Si}(12) - \mathrm{C}(123)\\ \mathrm{Si}(21) - \mathrm{C}(21)\\ \mathrm{Si}(21) - \mathrm{C}(211)\\ \mathrm{Si}(21) - \mathrm{C}(212)\\ \mathrm{Si}(21) - \mathrm{C}(213)\\ \mathrm{Si}(22) - \mathrm{C}(223)\\ \mathrm{Si}(22) - \mathrm{C}(223)\\ \mathrm{Si}(22) - \mathrm{C}(221)\\ \mathrm{Si}(31) - \mathrm{C}(311)\\ \mathrm{Si}(31) - \mathrm{C}(311)\\ \mathrm{Si}(31) - \mathrm{C}(312)\\ \mathrm{Si}(31) - \mathrm{C}(312)\\ \mathrm{Si}(31) - \mathrm{C}(312)\\ \mathrm{Si}(32) - \mathrm{C}(322)\\ \mathrm{Si}(32) - \mathrm{C}(322)\\ \mathrm{Si}(32) - \mathrm{C}(322)\\ \mathrm{Si}(32) - \mathrm{C}(321)\\ \mathrm{Si}(41) - \mathrm{C}(411)\\ \mathrm{Si}(41) - \mathrm{C}(411)\\ \mathrm{Si}(41) - \mathrm{C}(411)\\ \mathrm{Si}(41) - \mathrm{C}(412)\\ \mathrm{Si}(42) - \mathrm{C}(421)\\ \mathrm{C}(11) - \mathrm{C}(15)\\ \mathrm{C}(11) - \mathrm{C}(15)\\ \mathrm{C}(11) - \mathrm{C}(15)\\ \mathrm{C}(21) - \mathrm{C}(25)\\ \mathrm{C}(21) - \mathrm{C}(25)\\ \mathrm{C}(21) - \mathrm{C}(25)\\ \mathrm{C}(21) - \mathrm{C}(25)\\ \mathrm{C}(31) - \mathrm{C}(32)\\ \mathrm{C}(33) - \mathrm{C}(34)\\ \mathrm{C}(34) - \mathrm{C}(35)\\ \mathrm{C}(31) - \mathrm{C}(35)\\ \mathrm{C}(41) - \mathrm{C}(45)\\ \mathrm{C}(42) - \mathrm{C}(45)\\ \mathrm{C}(42)\\ $	$\begin{array}{c} 1.856(12)\\ 1.882(10)\\ 1.830(10)\\ 1.860(11)\\ 1.857(12)\\ 1.890(11)\\ 1.855(11)\\ 1.856(11)\\ 1.856(11)\\ 1.852(14)\\ 1.886(14)\\ 1.886(14)\\ 1.889(10)\\ 1.872(13)\\ 1.864(11)\\ 1.889(10)\\ 1.856(16)\\ 1.846(10)\\ 1.857(12)\\ 1.899(10)\\ 1.835(10)\\ 1.835(10)\\ 1.832(10)\\ 1.835(10)\\ 1.832(10)\\ 1.832(10)\\ 1.837(12)\\ 1.839(13)\\ 1.873(14)\\ 1.873(10)\\ 1.388(12)\\ 1.427(12)\\ 1.414(12)\\ 1.440(12)\\ 1.427(13)\\ 1.440(13)\\ 1.386(14)\\ 1.418(12)\\ 1.408(13)\\ 1.399(13)\\ 1.405(12)\\ 1.462(12)\\ 1.46$	
Si(12)-C(13) Si(12)-C(121)	1.877(9) 1.853(14)		C(42) - C(44) C(44) - C(45)	1.445(12) 1.380(14)	
$\begin{array}{c} C(15)-C_0(1)-C(14)\\ C(15)-C_0(1)-C(11)\\ C(14)-C_0(1)-C(12)\\ C(14)-C_0(1)-C(12)\\ C(14)-C_0(1)-C(12)\\ C(14)-C_0(1)-C(12)\\ C(15)-C_0(1)-P(2)\\ C(14)-C_0(1)-P(2)\\ C(14)-C_0(1)-P(2)\\ C(12)-C_0(1)-P(2)\\ C(15)-C_0(1)-C(13)\\ C(14)-C_0(1)-C(13)\\ C(14)-C_0(1)-C(13)\\ C(12)-C_0(1)-C(13)\\ C(12)-C_0(1)-C(13)\\ C(15)-C_0(1)-C(13)\\ C(15)-C_0(1)-P(1)\\ C(14)-C_0(1)-P(1)\\ C(14)-C_0(1)-P(1)\\ C(12)-C_0(1)-P(1)\\ C(12)-C_0(1)-$	4) 40 .) 38 .) 65 2) 64 2) 64 2) 64 2) 64 2) 64 2) 64 2) 64 2) 38 115 155 99 116 8) 66 8) 65 8) 38 93 153 94 97 124 158	2.4(4) 3.3(3) 5.5(4) 4.7(3) 4.4(3) 5.6(3) 5.1(3) 5.5(4)	$\begin{array}{c} P(2)-Co(1)-P(1)\\ C(13)-Co(1)-P(1)\\ C(15)-Co(1)-P(1)\\ C(15)-Co(1)-P(1)\\ C(11)-Co(1)-P(1)\\ C(12)-Co(1)-P(1)\\ C(12)-Co(1)-P(1)\\ C(13)-Co(1)-P(1)\\ C(15)-Co(1)-P(1)\\ C(15)-Co(1)-$) 1) 3) 3) 3) 3)) 3)) (3) (3) (74.62(9) 131.7(2) 145.9(3) 110.0(3) 164.6(2) 125.9(3) 89.50(10) 101.5(3) 69.58(9) 159.8(3) 150.6(3) 122.1(3) 102.8(3) 53.97(7) 114.3(3) 98.71(9) 54.27(7) 39.2(4) 63.6(3)
Einleitung Problemstellung	Eigene Ergebnisse	Experimenteller Teil	Zusammenfassung	Literatur	Anhang

Tabelle A.12.3 Bindungslängen [Å] und -winkel [°]

C(25)-Co(2)-C(22)	63	.8(4)	C(45)-Co(4)-C(4)	44)	38.6(4)
C(24)-Co(2)-C(21)	65	.7(4)	C(42) - Co(4) - C(4)	44)	64.4(4)
C(25) - Co(2) - C(21)	38	.7(3)	C(45) - Co(4) - C(4)	41)	40.5(3)
$C(22) - C_{0}(2) - C(21)$	30	2(1)	C(42) - Co(4) - C(4)	11)	10.1(2)
C(22) = C(2) = C(21)	1 - 1	$\cdot 2(\pi)$	C(42) - CO(4) - C(4)	±⊥) 41 \	40.1(3)
C(24) - CO(2) - P(1)	151	.8(3)	C(44) - CO(4) - C(4)	±⊥)	66.7(4)
C(25)-Co(2)-P(1)	113	.9(3)	C(45) - Co(4) - P(1)	1) 1	102.8(3)
C(22)-Co(2)-P(1)	118	.5(3)	C(42)-Co(4)-P(2)	1) :	133.7(3)
C(21) - Co(2) - P(1)	97	.8(3)	C(44) - CO(4) - P(7)	1)	133.8(3)
$C(24) = C_{0}(2) = C(23)$	20	2(4)	C(A1) - Co(A) - D(C)	1)	
C(24) = C(2) = C(23)	59	-2(-1)	C(41) - CO(4) - P(1)	L) . 10 \	101.0(3)
C(25) - CO(2) - C(23)	65	.8(4)	C(45) - CO(4) - C(4)	±3)	66.3(4)
C(22)-Co(2)-C(23)	38	.1(3)	C(42) - Co(4) - C(4)	43)	39.2(3)
C(21)-Co(2)-C(23)	66	.5(4)	C(44) - Co(4) - C(4)	43)	39.0(3)
P(1)-Co(2)-C(23)	155	.9(2)	C(41) - Co(4) - C(4)	43)	68.1(4)
C(24) - CO(2) - P(2)	95	9(3)	$P(1) - C_0(4) - C(4)$	۲) [`]	168 3(2)
$C(25) - C_{O}(2) - D(2)$	0/	2(2)	C(45) - Co(4) - D(4)	1)	1/1 / (2)
C(23) = CO(2) = P(2)	21 1 F D	.2(2)	C(43) - CO(4) - P(4)	±) .	141.4(3)
C(22) - CO(2) - P(2)	157	.2(3)	C(42) - CO(4) - P(4)	±) _	126.6(3)
C(21)-Co(2)-P(2)	125	.1(3)	C(44) - Co(4) - P(4)	4) .	108.1(3)
P(1)-Co(2)-P(2)	74	.45(9)	C(41) - Co(4) - P(4)	4) .	166.6(3)
C(23)-Co(2)-P(2)	129	.3(3)	P(1)-Co(4)-P(4))	91.38(10)
C(24) - Co(2) - P(4)	112	.1(3)	C(43) - Co(4) - P(4)	4)	99.9(3)
C(25) - Co(2) - P(4)	147	3(3)	C(45) - Co(4) - D(2)	2)	149 0(3)
C(23) = CO(2) = P(4)	105	.3(3)	C(43) - CO(4) - P(3)	<i>ב</i> ן כ	149.0(3)
C(22) - CO(2) - P(4)	125	.3(3)	C(42) - CO(4) - P(.	5 <i>)</i>	90.9(Z)
C(21) - Co(2) - P(4)	164	.4(3)	C(44) - Co(4) - P(3)	3) .	155.9(3)
P(1)-Co(2)-P(4)	89	.87(10)	C(41)-Co(4)-P(3)	3) 2	109.7(3)
C(23)-Co(2)-P(4)	101	.6(3)	P(1)-Co(4)-P(3))	70.07(9)
P(2) - Co(2) - P(4)	70	.05(9)	C(43) - Co(4) - P(2)	3) .	116.8(2)
C(24) = Co(2) = Co(4)	152	6(3)	$P(4) = C_0(4) = D(2)$)	69 55(9)
C(24) $CO(2)$ $CO(4)$	155	1(2)	P(4) = CO(4) P(3)	/ ())	104,0(2)
C(25) = CO(2) = CO(4)	158	.1(3)	C(45) - CO(4) - CO(4)	(2)	104.0(3)
C(22) - Co(2) - Co(4)	103	.6(3)	C(42) - Co(4) - Co(4)	(2) .	166.6(2)
C(21)-Co(2)-Co(4)	120	.2(2)	C(44) - Co(4) - Co(4)	(2) .	102.2(3)
P(1)-Co(2)-Co(4)	54	.27(8)	C(41)-Co(4)-Co(4)	(2)	136.0(3)
C(23)-Co(2)-Co(4)	116	.4(3)	P(1) - Co(4) - Co(2)	2)	54.74(8)
$P(2) = C_0(2) = C_0(4)$	99	14(7)	C(43) - Co(4) - Co(4)	(2)	130 1(3)
P(4) Co(2) Co(4)	55	(-1)	D(4) Co(4) Co(7)	(2)))	56.17(7)
P(4) = CO(2) = CO(4)	24	$(1) \Delta(1)$	P(4) = CO(4) = CO(2)	2 <i>)</i>	30.17(7)
C(32) - CO(3) - C(31)	39	.6(3)	P(3) - CO(4) - CO(4)	2)	96.12(7)
C(32) - Co(3) - C(35)	65	.7(4)	O(1) - P(1) - Co(4)) .	121.5(3)
C(31)-Co(3)-C(35)	39	.7(4)	O(1) - P(1) - Co(2))	125.6(3)
C(32)-Co(3)-C(34)	64	.3(4)	Co(4) - P(1) - Co(2)	2)	70.98(9)
C(31) - CO(3) - C(34)	65	7(4)	O(1) - P(1) - CO(1)) ·	114 8(3)
C(35) - Co(3) - C(34)	30	2(3)	$C_{O}(4) - P(1) - C_{O}(1)$, 1)	111 20(11)
C(33) - C(3) - C(34)	122	.2(3)	CO(4) - P(1) - CO(1)	L)	111.20(11)
C(32) = CO(3) = P(2)	133	.0(3)	CO(2) - P(1) - CO(1)	L) -	105.19(10)
C(31) - Co(3) - P(2)	101	.6(3)	O(1) - P(1) - P(3)		134.9(3)
C(35)-Co(3)-P(2)	101	.7(3)	Co(4) - P(1) - P(3))	56.65(8)
C(34)-Co(3)-P(2)	133	.4(3)	Co(2) - P(1) - P(3))	97.65(11)
C(32)-Co(3)-C(33)	38	.6(4)	Co(1) - P(1) - P(3))	56.13(8)
$C(31) = C_{0}(3) = C(33)$	66	0(3)	O(1) - P(1) - P(2)		140 5(3)
C(35) - Co(3) - C(33)	65	5(2)	$C_{0}(1) = D(1) = D(2)$		06 26(11)
C(33) $C(3)$ $C(33)$	20	1(2)	CO(4) F(1) F(2))	50.30(11)
C(34) = CO(3) = C(33)	38	.1(3)	CO(2) - P(1) - P(2))	53.20(8)
P(2) - Co(3) - C(33)	166	.5(2)	Co(1) - P(1) - P(2))	52.25(7)
C(32)-Co(3)-P(3)	126	.4(3)	P(3)-P(1)-P(2)		73.72(9)
C(31)-Co(3)-P(3)	165	.9(3)	O(2) - P(2) - Co(3))	121.3(3)
C(35)-Co(3)-P(3)	142	.7(3)	O(2) - P(2) - Co(1))	126.4(3)
C(34) - CO(3) - P(3)	108	.9(3)	$C_{O}(3) - P(2) - C_{O}(2)$	1)	71,41(8)
$D(2) = C_0(2) = U(2)$	 	46(9)	O(2) = D(2) = CO(2)	-,)	114 6(3)
r(2) = O(2) = r(2)	101	E(2)	O(2) = F(2) = O(2)	י - רכ	110 E7/11)
C(33) = CO(3) = P(3)	TOT	.5(2)	CO(3) - P(2) - CO(2)	Z) .	110.5/(11)
C(32) - Co(3) - P(4)	96	.3(3)	CO(1) - P(2) - CO(2)	2)	TO2.03(TO)
C(31)-Co(3)-P(4)	109	.6(3)	O(2) - P(2) - P(4)	-	133.8(4)
C(35)-Co(3)-P(4)	147	.8(3)	Co(3)-P(2)-P(4))	56.58(8)
C(34)-Co(3)-P(4)	155	.6(3)	Co(1)-P(2)-P(4))	97.99(11)
$P(2) - C_0(3) - P(4)$	70	.55(9)	$C_{O}(2) - P(2) - P(4)$)	55,58(8)
$C(33) = C_{O}(3) = D(A)$	70 117	5(3)	O(2) = D(2) = D(1)		141 2(3)
$(3) (3) (3)^{-r(4)}$	11/	· J (J)	$O(2) = (2)^{-r}(1)$		06 10/10)
r(3) - CO(3) - P(4)	69	.54(9)	CO(3) - P(2) - P(1))	-10(1U)
C(32) - CO(3) - CO(1)	T66	.0(3)	CO(1) - P(2) - P(1))	53.13(/)
C(31)-Co(3)-Co(1)	136	.5(3)	Co(2)-P(2)-P(1))	52.29(7)
C(35)-Co(3)-Co(1)	104	.1(3)	P(4)-P(2)-P(1)		73.65(9)
C(34)-Co(3)-Co(1)	102	.5(3)	Co(3)-P(3)-Co(3)	1)	69.36(8)
P(2) - Co(3) - Co(1)	54	.62(8)	$C_{O}(3) - P(3) - C_{O}(4)$	4)	109.18(11)
$C(33) - C_{0}(3) - C_{0}(1)$	120	7(3)	$C_{0}(1) = P(3) = C_{0}(1)$	4)	106 14(10)
$D(3) = C_{0}(3) = C_{0}(1)$	±30	37(8)	$C_{O}(2) = 0(2) = 0(1)$	-, .)	98 57/101
$D(1) C_{2}(2) C_{1}(1)$	00		$C_{O}(1) = r(3) = r(1)$)	20.37(IU)
F(4) = CO(3) = CO(1)	96	.49(0)	CO(1) - P(3) - P(1))	54.3U(8)
C(45) - Co(4) - C(42)	65	.5(3)	Co(4) - P(3) - P(1))	53.28(8)
			· _ · ·		
Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil	Ĵ		

Einleitung	Eigene Frgebnisse	Experimenteller Teil	Zusammenfassung	Literatur	Anhang
		· ·	, _, _, _,,		x - 7
C(11)-C(12)-Co(1) 70	.7(5)	C(45) - C(44) - CC	(4)	69.9(5)
C(13) - C(12) - C(1) C(13) - C(12) - C(1)	エノ 111 1) 72	⊥(/) 3(5)	S1(42)-C(43)-C C(45)-C(44)-C	2O(4) 43)	140.4(4)
Si(11)-C(11)-Co	(1) 137	1(7)	C(42)-C(43)-Cc	(4)	66.8(5)
C(12)-C(11)-Co(1) 70	.6(5)	C(44)-C(43)-Cc	0(4)	66.2(5)
C(15)-C(11)-Co(1) 67	.6(6)	C(42)-C(43)-Si	(42)	125.9(7)
C(12)-C(11)-Si(11) 123	7.7(6)	C(44) - C(43) - Si	.(42)	130.7(9)
C(15) - C(11) - C(1)	ム) 105 11) 103	9(7)	C(43)-C(42)-CC C(44)-C(43)-CC	42) ·	101 5(9)
C(421)-Si(42)-C	2(422) 109	.5(7)	C(41)-C(42)-Cc	(4)	71.1(5)
C(423)-Si(42)-C	107	.3(6)	C(41)-C(42)-C(43)	113.7(8)
C(43)-Si(42)-C(422) 117	.4(5)	Si(41)-C(41)-C	lo(4)	134.5(5)
C(423)-Si(42)-C	(421) 111	.0(8)	C(45)-C(41)-Cc	(4)	67.3(5)
C(43) - Si(42) - C(43) - Si(42) - C(43) - Si(42) - C(43) - C	421) 104	.9(6)	$C(42) - C(41) - C_{C}$.(4)	68.8(4)
C(411) - S1(41) - C C(43) - S1(42) - C	(412) 109 (423) 106	-0(5)	C(42) - C(41) - S1 C(45) - C(41) - S1	.(41) . (41)	125./(/)
C(413)-Si(41)-C	110	.1(5)	C(42)-C(41)-C(41)-C(41)	45)	101.8(9)
C(41)-Si(41)-C(412) 106	.3(5)	C(31)-C(35)-Cc	(3)	70.8(5)
C(413)-Si(41)-C	(411) 111	.8(6)	C(34)-C(35)-Cc	b(3)	70.4(5)
C(41)-Si(41)-C(411) 110	.6(5)	C(34)-C(35)-C(31)	107.3(9)
C(41)-Si(41)-C(413) 108	.8(5)	C(35) - C(34) - CC	(3)	70.4(4)
C(322) - S1(32) - C C(321) - Si(32) - C	.(33) 112 (33) 109	.0(4) 6(5)	C(33)-C(34)-C(C(33)-C(34)-C	ວວ) . 	111.2(9) 74 1(5)
C(323)-Si(32)-C	106	.0(5)	Si(32)-C(33)-C	20(3)	136.7(4)
C(322)-Si(32)-C	111	.5(6)	C(34)-C(33)-Cc	b(3)	67.7(5)
C(323)-Si(32)-C	108	.6(7)	C(32)-C(33)-Cc	(3)	66.8(5)
C(323)-Si(32)-C	109	.3(7)	C(34)-C(33)-Si	(32)	129.6(7)
C(312)-Si(31)-C	(31) 105	.7(5)	C(32)-C(33)-Si	.(32)	125.1(8)
C(313) - St(31) - C	.(31) III (31) 110		C(32)-C(32)-CC C(32)-C(32)-CC	34)	104.5(8)
C(313) - S1(31) - C	(312) 108 (31) 111	3(4)	C(31) - C(32) - CC	(<i>≾</i>)	/⊥.6(5) 74 6(6)
C(311)-Si(31)-C	109	.1(6)	C(31)-C(32)-C(32)	33)	111.5(9)
C(311)-Si(31)-C	2(313) 112	.2(6)	Si(31)-C(31)-C	20(3)	133.5(4)
C(222)-Si(22)-C	105	.2(8)	C(35)-C(31)-Cc	b(3)	69.5(5)
C(23)-Si(22)-C(221) 107	.4(6)	C(32)-C(31)-Cc	(3)	68.8(5)
C(223)-Si(22)-C	(221) 112	.5(8)	C(35)-C(31)-Si	(31)	128.4(7)
C(23)-Si(22)-C(23)	222) 115	.2(6)	C(32) - C(31) - Si	.(31)	125.6(8)
C(223) - SI(22) - C(223) - C	LU/ (222) 108	.8(8)	C(21) - C(25) - CC C(32) - C(31) - CC	(∠) (25)	105 2(8)
C(212) - S1(21) - C	$(2 \downarrow 3)$ 111 (23) 107	.9(b) 8(5)	C(24) - C(25) - CC	$\mathcal{O}(\mathcal{Z})$	70.9(6) 75 5(5)
C(211)-Si(21)-C	108	.9(5)	C(24)-C(25)-C(25)-C(25)-C(25)-C(25)-C(25)-C(25)-C(25))	21)	111.6(9)
C(21)-Si(21)-C(213) 113	.3(5)	C(23)-C(24)-Cc	(2)	75.4(5)
C(211)-Si(21)-C	109	.0(6)	C(25)-C(24)-Cc	0(2)	69.9(6)
C(21)-Si(21)-C(212) 110	.3(5)	C(25)-C(24)-C(23)	110.5(8)
C(21)-Si(21)-C(211) 102	.9(5)	Si(22)-C(23)-C	2o(2)	138.6(5)
C(122) - SI(12) - C C(122) - SI(12) - C	(123) 109 (123) 109	(.2(6))	C(22) - C(23) - CC C(24) - C(23) - CC	v(∠) (2)	65.4(5)
C(13)-S1(12)-C(123) 108 1(123) 100	-0(5)	C(24) - C(23) - Si	(22)	127.4(8) 69 4(5)
C(121)-Si(12)-C	106	.8(7)	C(22)-C(23)-Si	.(22)	128.5(7)
C(13)-Si(12)-C(122) 116	.3(5)	C(22)-C(23)-C(24)	102.5(9)
C(13)-Si(12)-C(121) 106	.7(5)	C(21)-C(22)-Cc	(2)	71.1(5)
C(11)-Si(11)-C(112) 103	.8(5)	C(23)-C(22)-Cc	, o(2)	72.5(5)
C(111)-Si(11)-C	(112) 109	.9(6)	C(23)-C(22)-C(21)	113.1(8)
C(113) - Si(11) - C	(112) 108	.5(6)	Si(21) - C(21) - CC	(∠) to(2)	139.8(5)
C(113)-S1(11)-C C(111)-Si(11)-C	(11) 112 112	1(5)	C(25)-C(21)-Cc C(22)-C(21)-Cc	(2)	65.8(5)
C(113)-Si(11)-C	109	.9(7)	C(22)-C(21)-Si	.(21)	127.3(6)
P(3)-P(4)-P(2)	75	.47(11)	C(25)-C(21)-Si	.(21)	128.2(8)
Co(3)-P(4)-P(2)	52	.87(8)	C(25)-C(21)-C(22)	102.3(9)
Co(2) - P(4) - P(2)	54	.37(8)	C(14)-C(15)-Cc	(1)	70.6(6)
Co(4) - P(4) - P(2)	98	.55(12)	C(11)-C(15)-Cc	(1)	74.1(6)
Co(3) - P(4) - P(3)	54	.02(7)	C(11)-C(15)-C(14)	108.7(7)
Co(2) - P(4) - P(3)	96	.07(11)	C(15) - C(14) - C(14)	(1)	69.0(6)
$C_0(2) - P(4) - CO(3)$	7) 105 56	()	C(13) - C(14) - C(14) - C(13) - C(14) - C(14	10) (1)	73.9(6)
$C_{0}(4) - P(4) - C_{0}(3)$) 105 105	(12)	SI(12) - C(13) - C(13) - C(13) - C(13) - C(13) - C(14) - C(1	.U(1) . 15) .	108 5(8)
Co(4) - P(4) - Co(2)	69	.31(8)	C(14)-C(13)-Cc	(\perp)	66.8(5)
P(1)-P(3)-P(4)	75	.81(10)	C(12)-C(13)-Cc	0(1)	69.6(5)
Co(4) - P(3) - P(4)	54	.08(7)	C(14)-C(13)-Si	.(12)	125.6(7)
Co(1)-P(3)-P(4)	96	.40(10)	C(12)-C(13)-Si	.(12)	128.6(6)
$C_{O}(3) - P(3) - P(4)$	56	44(8)	C(12) - C(13) - C(13)	14)	104 8(8)

C(43)-C(44)-Co(4)	74.8(5)
C(44)-C(45)-C(41)	110.4(9)
C(44)-C(45)-Co(4)	71.5(5)
C(41)-C(45)-Co(4)	72.3(4)

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Tabelle A.12.4 Anisotrope Auslenkungsparameter [Å ² x 10 ³]	
Der Exponent des anisotropen Auslenkungsfaktors hat die Form:	$-2\pi^{2} [(ha^{*})^{2} U_{11} + + 2hka^{*}b^{*}U_{12}]$

	U ₁₂	U_1	U ₂₂	U ₃₃	U ₂₃	U ₁₃
	12				23	13
Co(1)	50(1) 55(1)	46(1) 43(1)	28(1) 32(1)	9(1) 13(1)	7(1)	13(1) 18(1)
Co(3)	54(1)	47(1)	28(1)	12(1)	11(1)	16(1)
Co(4) P(1)	52(1) 49(2)	45(1) 48(1)	26(1) 29(1)	8(1) 12(1)	8(1) 10(1)	16(1) 17(1)
P(2)	57(2)	44(1)	29(1)	5(1)	9(1)	16(1)
P(3) P(4)	51(2)	46(1)	32(1)	12(1)	11(1)	14(1)
Si(11) Si(12)	83(3) 65(2)	51(2) 64(2)	47(1) 47(1)	7(1) 10(1)	-2(1) 7(1)	13(2) 28(2)
Si(21)	65(2)	51(2)	51(1)	19(1)	18(1)	11(2)
Si(31)	76(2)	66(2)	38(1)	11(1)	22(1)	31(2)
Si(32) Si(41)	87(3) 63(2)	47(2) 63(2)	67(2) 38(1)	18(1) 10(1)	24(2) 19(1)	18(2) 19(2)
Si(42)	64(2)	70(2)	65(2)	1(2) 12(3)	13(2)	3(2)
0(1)	93(6)	66(5)	43(3)	0(3)	13(4)	26(4)
C(11) C(12)	65(8) 59(8)	53(6) 61(6)	41(5) 36(4)	12(4) 15(4)	8(5) 10(4)	21(5) 16(5)
C(13)	48(7) 71(9)	57(6) 81(8)	40(4) 39(5)	11(4) 18(5)	6(4) 22(5)	23(5)
C(15)	67(8)	59(6)	40(5)	21(4)	8(5)	11(5)
C(21) C(22)	63(8)	36(5) 59(6)	39(4) 48(5)	12(4) 28(5)	12(5) 21(5)	20(5) 33(6)
C(23)	48(7) 85(10)	53(6) 52(6)	56(5) 47(5)	23(5) 15(4)	12(5) 28(5)	16(5) 22(6)
C(25)	44(7)	48(6)	56(5)	17(4)	9(5)	18(5)
C(31) C(32)	45(7) 61(8)	58(6) 52(6)	38(4) 43(5)	10(4)	18(5)	10(5) 14(5)
C(33) C(34)	74(8) 60(8)	45(5) 51(6)	35(4) 42(5)	18(4) 19(4)	17(5) 16(5)	19(5) 21(5)
C(35)	66(8)	53(6)	33(4)	11(4)	11(4)	21(5)
C(41) C(42)	60(7)	36(5)	33(4)	0(4)	5(4)	11(5)
C(43) C(44)	76(9) 74(9)	49(6) 55(6)	38(4) 28(4)	2(4) 5(4)	19(5) 3(5)	20(5) 19(6)
C(45)	70(8) 102(11)	57(6) 75(8)	24(4) 63(6)	11(4) 5(6)	4(4) 15(7)	26(5) 23(7)
C(112)	89(11)	82(9)	73(7)	-10(6)	-19(7)	6(7)
C(113) C(121)	116(13) 117(15)	54(7) 113(12)	117(10) 156(14)	23(7) 28(10)	-25(9) 76(11)	-1(7) 69(11)
C(122) C(123)	103(11) 121(13)	51(7) 102(10)	85(8) 64(7)	10(6) 31(7)	11(7) 3(7)	26(7) 53(9)
C(211)	105(12)	76(8)	94(8)	47(7)	31(8) 13(7)	28(8)
C(212) C(213)	125(13)	90(9)	66(7)	15(6)	56(8)	23(8)
C(221) C(222)	68(12) 104(14)	189(17) 134(14)	145(13) 126(12)	-32(12) 49(11)	28(10) 25(10)	60(12) -6(11)
C(223)	72(11) 110(12)	215(19) 106(9)	81(9) 59(6)	64(11) 34(6)	6(8) 25(7)	31(11) 66(8)
C(312)	77(10)	111(10)	69(7)	22(7)	44(6)	47(8)
C(313) C(321)	184(16)	70(8) 75(8)	82(8) 66(7)	43(6)	28(8) 14(8)	28(8) 48(9)
C(322) C(323)	118(12) 136(16)	51(7) 68(9)	73(7) 147(13)	10(5) 26(9)	16(7) 62(11)	31(7) 9(9)
C(411)	109(12) 101(10)	76(8)	67(7)	22(6)	52(7)	22(7)
C(412) C(413)	88(11)	107(10)	54(6)	21(6)	26(6)	29(8)
C(421) C(422)	69(12) 87(11)	205(19) 88(9)	117(12) 70(7)	58(12) 30(6)	8(9) 23(7)	21(11) 16(7)
C(423)	102(14)	72(9)	155(13)	x - 7	. ,	· · /

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

2. Anhang B

Pos.	Nr.	Summenformel
1	Ι	[CpCo(CO) ₂]
2	Π	$[{CpCo}_4P_4]$
3	III	$[\{Cp^{R}Co\}_{3}P_{7}](Cp^{R}=Cp^{\prime\prime\prime},Cp^{=})$
4	IV	$[\{Cp^{R}Co\}_{3}P_{12}](Cp^{R} = Cp^{\prime\prime\prime}, Cp^{=})$
5	V	$[\{Cp^{R'}Co\}_{3}P_{12}](Cp^{R'}=Cp^{\prime\prime}, Cp^{\prime\prime}, Cp^{=}, Cp^{*}, Cp^{*\prime}, Cp^{=}, Cp)$
6	VI	$[{Cp*Fe(CO)_2}_2]$
7	VII	$[Cp*Fe(\eta^5-P_5)]$
8	VIII	$[{Cp^{R}Co}_{3}(\mu_{3}-P)_{2}] (Cp^{R} = Cp'(\mathbf{a}), Cp''(\mathbf{b}))$
9	IX	$[{Cp^{R}Co}_{4}P_{4}] (Cp^{R} = Cp' (a), Cp'' (b))$
10	Х	$[{Cp*Fe} {Cp''Co}_2P_4P]$
11	XI	$[\{Cp^*Fe\}_2(\mu_3,\eta^{4:4:1:1}-P_4)\{Cp'Co\}]$
12	XII	$[{CpFe}_4(P_2)_2]$
13	XIII	$[\{Cp^{R}Fe\}_{2}(\mu-\eta^{4:4}P_{4})](Cp^{R}=Cp^{\prime\prime\prime}, {}^{4}Cp)$
14	XIV	$[(triphos)M(\eta^3-P_3)]$ (M = Co (a), Rh (b), Ir (c))
15	XV	$[(triphos)M(\eta^{3}-P_{2}PCH_{3})]^{+}$ (M = Co (a), Rh (b), Ir (c))
16	XVI	$[\{Cp^{R}Co\}_{3}P_{4}(CO)](Cp^{R}=Cp^{-}(\mathbf{a}), Cp^{=}(\mathbf{b}))$
17	XVII	$[{Cp^{R}Co}_{2}P_{4}] (Cp^{R} = Cp^{-}(\mathbf{a}), Cp^{=}(\mathbf{b}))$
18	1	$HCp^{R} ((Cp^{R} = Cp^{-'}(\mathbf{a}), Cp^{='}(\mathbf{b}), Cp^{=}(\mathbf{d}) Cp^{'}(\mathbf{f}))$
19	2	$[Cp^{R}Co(CO)_{2}] (Cp^{R} = Cp^{-\prime}(\mathbf{a}), Cp^{=\prime}(\mathbf{b}), Cp^{-}(\mathbf{c}), Cp^{=}(\mathbf{d}), Cp^{=}(\mathbf{e}))$
20	3	$[\{Cp^{R}Fe(CO)_{2}\}_{2}]((Cp^{R} = Cp^{-\prime}(\mathbf{a}), Cp^{=\prime}(\mathbf{b}), Cp^{-}(\mathbf{c}), Cp^{=}(\mathbf{d}), Cp^{\prime\prime}(\mathbf{g}),$
		Cp''' (h))

Verzeichnis aller Verbindungen

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

- 219 -	-
---------	---

Pos.	Nr.	Summenformel			
22	5	$[Cp^{R}Fe(\eta^{5}-P_{5}){FeCp}]PF_{6}(Cp^{R}=Cp^{=}(\mathbf{d}), Cp^{\prime\prime\prime}(\mathbf{h}), Cp^{*}(\mathbf{i}))$			
23	6	$[\{Cp^{R}Co\}_{3}(\mu_{3}-P)_{2}](Cp^{R}=Cp^{-}(\mathbf{c}), Cp^{=}(\mathbf{d}))$			
24	7	$[\{Cp^{R}Co\}_{4}P_{4}](Cp^{R}=Cp^{-}(\mathbf{c}), Cp^{=}(\mathbf{d}))$			
25	8	$[{Cp*Fe} {Cp^{R}Co}_{2}P_{4}P]$			
26	9	$[{Cp*Fe}_2(\mu_3,\eta^{4:4:1:1}-P_4){Cp^RCo}]$			
27	10	$[{Cp^{R}Co}_{2}(P_{2})_{2}] (Cp^{R} = Cp^{=\prime} (\mathbf{b}), Cp^{\equiv} (\mathbf{e}), Cp^{\prime\prime\prime} (\mathbf{h}))$			
28	11	Unbekannt			
29	12	$[Cp^{R}_{2}Fe] (Cp^{R} = Cp^{-\prime}(\mathbf{a}), Cp^{=}(\mathbf{d}),)$			
30	13	$[\{Cp^{R}Fe\}_{2}(\mu-\eta^{4:4}-P_{4})](Cp^{R}=Cp^{-\prime}(\mathbf{a})Cp^{-}(\mathbf{c}),Cp^{=}(\mathbf{d}),Cp^{\prime\prime}(\mathbf{g}),Cp^{\prime\prime\prime}(\mathbf{c}),Cp^{\prime\prime\prime}(\mathbf{d}),Cp^{\prime\prime\prime}(\mathbf{c}),Cp^{\prime\prime\prime}(\mathbf{c}),Cp^{\prime\prime\prime}(\mathbf{c}),Cp^{\prime\prime\prime}(\mathbf{c}),Cp^{\prime\prime\prime}(\mathbf{c}),Cp^{\prime\prime\prime}(\mathbf{c}),Cp^{\prime\prime\prime}(\mathbf{c}),Cp^{\prime\prime\prime}(\mathbf{c}),Cp^{\prime\prime\prime}(\mathbf{c}),Cp^{\prime\prime\prime}(\mathbf{c}),Cp^{\prime\prime\prime}(\mathbf{c}),Cp^{\prime\prime\prime}(\mathbf{c}),Cp^{\prime\prime\prime}(\mathbf{c}),Cp^{\prime\prime\prime}(\mathbf{c}),Cp^{\prime\prime\prime}(\mathbf{c}),Cp^{\prime\prime\prime}(\mathbf{c}),Cp^{\prime\prime\prime}(\mathbf{c}),Cp^{\prime\prime\prime}(\mathbf{c}),Cp^{\prime\prime\prime}(\mathbf{c}),Cp^{\prime\prime}(\mathbf{c}),Cp^{\prime\prime\prime}(\mathbf{c}),Cp^{\prime\prime\prime}(\mathbf{c}),Cp^{\prime\prime\prime}(\mathbf{c}),Cp^{\prime\prime\prime}(\mathbf{c}),Cp^{\prime\prime\prime}(\mathbf{c}),Cp^{\prime\prime\prime}(\mathbf{c}),Cp^{\prime\prime\prime}(\mathbf{c}),Cp^{\prime\prime\prime}(\mathbf{c}),Cp^{\prime\prime\prime}(\mathbf{c}),Cp^{\prime\prime\prime}(\mathbf{c}),Cp^{\prime\prime\prime}(\mathbf{c}),Cp^{\prime\prime\prime}(\mathbf{c}),Cp^{\prime\prime\prime}(\mathbf{c}),Cp^{\prime\prime\prime}(\mathbf{c}),Cp^{\prime\prime}(c$			
31	14	$[\{Cp^{=}Fe\}_{2}(\mu_{3}-\eta^{4:4:1:1}-P_{4})\{Cp^{=}Co\}]$			
32	15	$[{Cp}^{=}Fe}_{2}{Cp}^{=}Co}_{2}P_{4}]$			
33	16	$[\{Cp^{=}Fe\}_4(P_2)_2]$			
34	17	[{Cp ⁻ Co} ₄ (P=O) ₄]			
35	18	$[\{Cp^{R}Co\}_{4}(P=O)_{2}P_{2}](Cp^{R}=Cp^{=}(\mathbf{d}), Cp^{\prime\prime}(\mathbf{g}))$			
36	19	$[{Cp^{-}Co}_{4}(PCH_{3}) P_{3}]PF_{6}$			

Einleitung	Eigene	Experimenteller	Zusammenfassung	Literatur	Anhang
Problemstellung	Ergebnisse	Teil			

Dank

Mein Dank gilt all denen, die zum Gelingen dieser Arbeit beigetragen haben. Besonders danken möchte ich :

- Herrn Dr. G. Wolmershäuser für die Anfertigung der Röntgenstrukturanalysen und seine stete Hilfs- und Diskussionsbereitschaft.
- Herrn Dipl.-Chem. J. Steinbach für die Aufnahme der Massenspektren.
- Frau Dipl.-Chem. C. Eichhorn, Herrn Dr. J. Meiers, Herrn Dr. G. Schmitt, Herrn Dipl.-Chem. T. Sögding und Herrn Dipl.-Chem. J. Ertl für die Aufnahme der NMR-Spektren.
- Herrn Dipl.-Chem. U. Gumsheimer, Herrn Dipl.-Chem. C. Färber, Herrn Dipl.-Chem. J.
 Ertl, Herrn Dipl.-Inf. T. Redenbach und Herrn Dr. J. Meiers für das gewissenhafte Korrekturlesen dieser Arbeit.
- Den Mitarbeitern der Arbeitskreise Scherer und Sitzmann für die gute Mitarbeit.

Lebenslauf

Persönliche Angaben

Name :	Frank Fuchs
Geburtsdatum :	23.09.1974
Geburtsort :	Alzey
Nationalität :	deutsch

Schulbildung

17.06.1994	Allgemeine Hochschulreife
9/1991-6/1994	Staatliches Aufbaugymnasium Alzey
8/1985-6/1991	Staatliche Realschule Rockenhausen
8/1981-6/1985	Grundschule Rockenhausen

<u>Studium</u>

10/1994-3/1997	Grundstudium	Diplom	Chemie	an	der	Universität	
	Kaiserslautern						
13.03.1997	Abgeschlossene	Abgeschlossene Diplomvorprüfung					
4/1997-1/1999	Hauptstudium	Diplom	Chemie	an	der	Universität	
	Kaiserslautern						
25.01.1999	Abgeschlossene	Abgeschlossene Diplomhauptprüfung					
3/1999-9/1999	Diplomarbeit im Arbeitskreis von Prof. Dr. O. J. Scherer, FB						
	Chemie						
29.09.1999	Diplom in Cher	Diplom in Chemie					
10/1999- 9/2001	Promotion im Arbeitskreis von Prof. Dr. O. J. Scherer, FB						
	Chemie						
18.09.2001	Tag der wissens	schaftlichen	Aussprach	e			