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This article presents contributions in the field of path planning for industrial robots 
with 6 degrees of freedom. This work presents the results of our research in the last 
4 years at the Institute for Process Control and Robotics at the University of 
Karlsruhe. The path planning approach we present works in an implicit and 
discretized C-space. Collisions are detected in the Cartesian workspace by a 
hierarchical distance computation. The method is based on the A* search algorithm 
and needs no essential off-line computation. A new optimal discretization method 
leads to smaller search spaces, thus speeding up the planning. For a further 
acceleration, the search was parallelized. With a static load distribution good 
speedups can be achieved. By extending the algorithm to a bidirectional search, the 
planner is able to automatically select the easier search direction. The new dynamic 
switching of start and goal leads finally to the multi-goal path planning, which is 
able to compute a collision-free path between a set of goal poses (e.g., spot welding 
points) while minimizing the total path length.  

Keywords: industrial robots, path planning, on-line algorithms, search algorithms, 
graph search, bidirectional search, discretization, distributed and 
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1. Introduction 
Today’s production lines usually consist of multiple robots, interacting with a wide range of 
equipment and fixtures. Programming these capital intensive installations can be done off-line 
in powerful robot simulation systems. Off-line programming is still a complex task and the 
resulting programs strongly depend on the programmer’s capabilities.1 Let us, for instance, 
consider a spot welding task in which a robot has to reach several spot welding points. In this 
scenario, the main goal of the programmer is to generate a collision-free robot path, which 
can be executed as quickly as possible to achieve short cycle times, thus increasing the total 
throughput.  Depending on the problem complexity, even an experienced programmer needs a 
significant amount of time to find a solution, and the solution most likely is suboptimal.  
It is difficult to choose an optimal sequence and, at the same time, find a collision-free path 
between two spot welding points. Yet, neither in the current state of the art nor in the existing 
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robot simulation tools, like ROBCAD, IGRIP or CATIA, are tools available to solve the 
multi-goal path planning problem. 

The main part of the multi-goal path planning is finding a collision-free path. The issue 
of robot path planning has been studied for several decades and many important contributions 
have been made to the problem.2 Point-to-point (PTP) path planning algorithms, which can 
find a collision-free path from a start configuration (point) to a goal configuration (point) are 
of great theoretical interest, but are rarely used in practice because of their computational 
complexity.4 In the last 2 years a few new PTP path planning approaches have been 
published, which promise good results (see, e.g., Baginski5 and Chen and Hwang6). 

The multi-goal (MTP) path planning problem, which computes a collision-free path as 
well as the optimal sequence, has not yet been considered. In our opinion, solving the MTP 
problem can improve the programs generated off-line and, therefore, reduce the total 
programming time. 
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Figure 1. (a) Illustration of a MTP problem in a two-dimensional C-space with one static 
obstacle (star) and several different goal configurations (dots). Dots with the same first index 
belong to the same pose, the arrows indicate the optimal sequence, (b) Screenshot of the MTP 
problem GRINDING in ROBCAD with 21 different goal poses (grinding points). 

In this article, we present contributions to the field of PTP and MTP path planning, which 
are the results of our research in the last 4 years at the Institute for Process Control and 
Robotics at the University of Karlsruhe. More precisely, we assume we are given an industrial 
robot, usually with 6 degrees of freedom (DOF), and a set of static obstacles. Both, the robot 
and the obstacles are provided as computer-assisted design (CAD) models. Additionally, a set 
Q of different goal poses representing the position and orientation of the robot’s tool center 
point in the work space (W-space) is given. Because of ambiguous inverse kinematics of the 
robot, a pose can be reached by several different configurations in the configuration space (C-
space).  The MTP problem is stated as follows: compute a collision-free path between these 
poses and  find the optimal pose sequence, thus reaching every pose at least once while 
minimizing the total path length. If Q has only two elements, then the problem represents a 
standard PTP path planning problem (Figure 1). 

The remainder of the article discusses the following questions: which point-to-point path 
planning method will work reasonably fast in industrial applications (Section 2)? How can 
this basic approach be accelerated (Section 3)? What advantages does a multi-goal path 
planning method have in contrast to a point-to-point path planning method (Section 4)? And 
finally, what conclusions can be drawn (Section 5)? 

2. Point-to-Point path planning 
Most off-line path planners are based on some explicit representation of the free C-space. 
This representation can either be retrieved by transforming the obstacle into the C-space and 
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approximating the free space or by randomly sampling the C-space and interconnecting the 
samples by collision-free links. Both approaches are  time consuming and not suited for on-
line calculations, especially if a full geometric CAD model for the robot and the obstacles is 
used. To avoid these time consuming calculations, one can search in an implicitly represented 
C-space and detect collisions in the workspace. For searching in the implicit C-space, any 
best-first search mechanism can be applied. We choose a variation of the well known A* 
search algorithm.3 The C-space is discretized and all the robot configurations are represented 
by nodes building up the search space. 

2.1. Benchmark problems 
As a basis for an objective evaluation of the path planner, a set of test environments with 
corresponding problem specification (benchmark problem) is used.  Because the planner 
might use different robots and the robots might differ in their construction (e.g., geometry and 
kinematics), one cannot compare a problem specification for a robot A in a test environment 
with the same problem specification for a robot B in the same test environment. Therefore, the 
test environments are not specified in the workspace but schematically in a two-dimensional 
(2D) C-space with increasing level of difficulty. 

The levels of difficulty called SIMPLE, STAR, TRAP, and BOTTLENECK were 
presented in Hwang.7 A new level of difficulty, called DETOUR, is introduced, which 
includes a shorter path near to obstacles and a longer path away from obstacles. This enables 
us to investigate the path planner’s ability to find a reasonable tradeoff between finding a long 
path that can be executed fast, and a short path that requires moving at a lower speed. 

(a) 
 

(b) (c) 

(d) 
 

(e) 

Figure 2. The 3-dimensional 
test environments for a 
Puma260 with 6 DOF: (a) 
SIMPLE, (b) STAR, (c) TRAP, 
(d) BOTTLENECK, and (e) 
DETOUR. 

Based on these schemes, the corresponding test environments together with their problem 
specification have to be prepared for each type of robot.† Examples for the 6 DOF robot 
Puma260 in the robot simulation tool ROBCAD are shown in Figure 2.8 

To evaluate the performance of the PTP approach for industrial conditions, three 
additional applications (SORT, TRANSFER, and PRESS) have been investigated (Fig. 3). In 
all three problems, the work cell contains more obstacles and more complex robot models 

                                                 
†  The data for these benchmark problems can be downloaded from the Web page at 

http://wwwipr.ira.uka.de/~paro/skalp/. 
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(Kuka KR 15 and Kuka KR 100P), thus, increasing the computational demand for the 
collision detection. 

(a)  (b)  

(c)  

Figure 3. Screenshot of three industrial 
applications: SORT (a), TRANSFER (b), and 
PRESS (c). 

2. 2. C-Space Discretization 
As the path is planned in the discretized C-space, deciding the level of resolution for the 
discretization is an important issue. A too fine discretization will increase the search space; a 
too coarse discretization may result in failing to find a path even if one exists. Formally, for 
the ith coordinate qi of the C-space, let Ni be the number of intervals along qi. Then we can 
determine Ni by‡ 
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where qi
max and qi

min are the limits of joint motions and ∆qi is the resolution of joint i. The 
complete search space size, N, is then the product of all Ni. The question is now how to 
determine the ∆qi. 
We have investigated three different methods to determine the discretization resolution.9 In 
the simplest method, the user specifies a uniform discretization for all joints, thus ∆q = c for 
some constant c. With a reasonable joint resolution of 1°, the uniform discretization results in 
huge C-spaces. To avoid the huge search space produced by the uniform discretization, 
usually a heuristic discretization is applied. Here, reasonable ∆qi are estimated by the user to 
balance the resulting Cartesian movement ∆xi in W-space when different joints i are moved 
for ∆qi in C-space (Fig. 4a).  

                                                 
‡  Here, �x� denotes the next smaller integer of x. 
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∆xi  = ∆xj Figure 4. (a) The uniform discretization (∆qi = ∆qj) 
results in different Cartesian movements ∆ ∆x xi j≠  
when different joints i, and  j are moved. (b) The 
optimal discretization results in equal maximum 
Cartesian movement ∆xi = ∆xj when different joints 
are moved 

Instead of having a uniform or a heuristic resolution, an optimal discretization can be 
calculated. Therefore, the resolution along each coordinate is set according to the maximum 
movement of the robot’s end-effector  (Fig. 4b). Analytically, this can be achieved by setting  
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where li is the distance between the center of joint i to the farthest point the end-effector can 
reach, and ∆xmax is a preset user defined distance the robot may move in one step along the 
coordinate.10 Altogether, the optimal discretization results in a Cartesian movement ∆xi of 
joint i which meets the condition ∆ ∆x xi ≤ max . 
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Figure 5. Size N of discrete C-space versus 
maximal Cartesian movement ∆xmax  for the 
different discretization methods. 

Figure 6. A 2D illustration of the A* search 
in the implicit C-space from the start 
configuration qS to the goal configuration 
qG. The dots indicate the configurations  
examined (stored in CLOSED) and the 
arrows point to the corresponding 
successors (stored in OPEN). 

The resulting search space sizes depending on the maximal Cartesian movement ∆xmax  
are shown in Figure 5. Compared with the homogeneous discretization, the search space with 
the optimal discretization is about 100 times smaller. Additionally, the minimum W-space 
resolution can be improved, without changing the size of the search space (C-space). 

2.3. Sequential Search 
The search algorithm maintains a CLOSED list of the nodes that have been expanded and an 
OPEN list of the nodes that have been generated but not yet expanded. The algorithm begins 
with the start node qS  in the OPEN list. At each iteration, a node in the OPEN list with the 
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minimum heuristic evaluation is expanded, generating all of its successors and is placed on 
the CLOSED list. An evaluation function f(n) is applied to all collision-free successors n, and 
they are placed on the OPEN list sorted by their heuristic values f. The search continues until 
a goal node qG  is chosen for expansion or the OPEN list is empty. In the latter case, the 
algorithm stops with no solution. Contrasting to the original A*, here  no reopening of nodes 
in CLOSED is performed. Also,  colliding successors may be inserted in OPEN. But both 
modifications lead to an enormous acceleration of the search (Figure 6). 
An evaluation function f(n) = (1–w) g(n) + wh(n) is used, where g(n) is the number of nodes 
of the path from the start node qS  to node n, and h(n) is the distance in C-space from node n 
to the goal node qG . Increasing the weight w ∈  [0, 1] beyond 0.5 generally decreases the 
number of investigated nodes while increasing the cost of the solutions generated. To improve 
the on-line capabilities of the path planner, our search is strongly directed to the goal by 
setting w = 0.99.11 Of cause, this is equivalent to ignoring the measure g(n) of accumulated 
path distance, which in its turn amounts to leaving out optimal paths in favor of efficiency. 
But in our experience, the paths found are still sufficiently short. 

2.4. Collision Detection 
Collisions are detected by a fast, hierarchical distance computation in the 3D workspace, 
based on the convex polyhedral model of the obstacles and the robot.12 To avoid unnecessary 
calculations, the polyhedrons of the obstacles and the robot are divided into two classes 
(Figure 7).§ All polyhedrons in each class are additionally approximated by bounding-boxes 
and are hierarchically combined (Figure 8). 

A4

A2 A3

B1
B2

C1

A1

Figure 7. Collision detection in the workspace by 
computing the minimum distances di between the robot 
segment i and the obstacles. 

Figure 8. Four basic objects A1 through 
A4 and their hierarchical compositions 
B1, B2 and C1.  

During the collision detection between two collision classes the minimal distance needs 
to be computed. Therefore the two topmost hierarchy levels containing only one composition 
will be considered. At each level the minimal distance between all composition pairs is 
computed. If the distance between a pair is smaller than a desired threshold, then the members 
of that pair are substituted by their more precise representation at the level underneath. With 
these new pairs the computation is continued. The recursive algorithm terminates if either the 
distance among all viewed pairs is greater than the threshold or one pair at the lowest (most 
accurate) representation level of both classes is colliding. 

Because the robot’s configuration will change, the position and orientation of all objects 
in the robot’s class and their compositions have to be computed at the beginning of every 

                                                 
§  To detect robot self-collisions between segments, the possible colliding segment pairs are determined off-line 

and treated on-line in the same way as the robot-obstacle polyhedron pairs. 
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distance calculation. To speed up this precalculation, the bounding-boxes of the robot’s arm 
segments are computed based on the transformed r-cylinder approximations.** Only if a 
calculation at the lowest level is necessary, do the corresponding convex polyhedrons have to 
be transformed.13 

As the Cartesian distance between the total robot and the obstacles cannot be efficiently 
used during the path planning, the robot-based distance calculation is extended to a segment-
based one. In this case, for a robot with n DOF, the distance calculation results in n different 
minimal distances [ ]T

nddd ,,1 �= between the n arm segments and the obstacles.14 
To denote a configuration q in the C-space as “free”, the half distance to the neighboring 

configurations must be free, which can formally be expressed by the n-dimensional vector 
[ ]T

nqq ∆∆⋅=ϕ ,,5.0 1 � . For small ϕ i , this free space in joint space can be transformed into 
the maximum robot movement  in W-space using  the worst-case estimation†† 
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Here, the lengths li  denote the distances between the joints θi and θi+1 , and rS d,  specifies 
the outer hull radius of the tool. To obtain a worst-case approximation of the maximum robot 
movement, the li  are computed for a stretched arm configuration (Figure 9). 

If, and only if, all calculated Cartesian distances di  between the segments and the 
obstacles are larger than the maximum robot movement ∆di , then the considered 
configuration is collision-free. To save further time-consuming distance calculations, every 
A*-node buffers the corresponding segment distances di . Before a new distance computation, 
the buffered distance vector is compared with the required robot movement necessary to reach 
the successor configuration. The new distance computation can then be omitted, if the 
segment distances are larger than the necessary maximum robot movement. With this 
segment-based distance buffering, the number of distance calculations can be reduced by 
about 65% on average, thus speeding up the path planning. 

li rS,dli+1

θi θi+1

si

ϕi

∆di

  
Figure 9. Length si of a stretched robot configuration for computing the maximum robot 
movement ∆di  for a rotation of joint θi  about ϕ i . 

In addition to the fact that the distance calculation can terminate if a segment is colliding, 
a further acceleration is possible by calculating the distances of the single robot segments in a 
specific order. Experiments have shown that the initial segment order 4-6-3-5-2-1 for the 
benchmark problems described in Section 2 combined with an online reordering according to 

                                                 
** An r-cylinder consists of a cylinder with radius r, which is closed at its ends by two half-spheres. The two 

describing points can be transformed very quickly and r-cylinders are good approximations for arm segments. 
††  Please note that ii ϕ=ϕ )sin( holds true for small || iϕ . 
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the “last-hit-first” strategy leads to 1.5 to 3 times faster planning times for the Puma 260. 

3. Extensions 
To accelerate the planning, we have parallelized the basic search algorithm (Section 2). As the 
planning time may depend on the search direction (start to goal or goal to start), the extension 
to a bidirectional search enables the planner to automatically choose the easier direction. If the 
goal is specified in the W-space, it may be represented by several configurations in the C-
space. By applying dynamic goal switching the search algorithm can automatically choose the 
easiest goal configuration. 

3.1. Parallel Search 
For parallelizing the A* algorithm, the configurations in OPEN and CLOSED must be 

accessible to all processors to distribute the work. Either these  lists can be managed by one 
dedicated processor or each processor can maintain local lists. In a message passing system, 
each access to a global list would amount to an enormous communication effort. Thus the 
local method was preferred.11 

The work distribution is the key aspect of parallelization. Therefore, for a robot with n 
DOF, the C-space is decomposed into n-dimensional hypercubes of size b in each dimension. 
For parallel processing, the hypercubes are cyclically mapped onto the p available processors 

by the following function: ( ) p
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According to the automatically computed discretization ∆qi, every configuration 
q = (q1, …, q

n
) is mapped uniquely to one hypercube or to one processor. Thus the OPEN list 

of each processor contains configurations of the multiply mapped hypercubes (Figure 10). 

P1b P2 P3 P4

P2

P2

P2

P3

P3

P3

P4
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P4

P1
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P1

Figure 10. 2D illustration of the C-space 
decomposition in hypercubes of size b = 4 
and the  mapping of the hypercubes onto four 
processing units P1, …, P4 mapping function 
M(q).  

 

P2b

P4P3

P3qS

Figure 11. 2D illustration of the parallel 
search in four neighboring hypercubes taking 
the C-space decomposition of Figure 10 and 
according starting at qS.  

Each processor runs a local A* search beginning with the hypercube containing qS. After 
the search has reached the hypercube boundaries, the expanded successors are sent to their 
corresponding processors. The configurations received are then inserted in a local OPEN list. 
As in the sequential version, at each iteration  every processor expands the best configuration 
of OPEN until the list is empty or a goal node is chosen for expansion. In the former case, if 
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the OPEN lists of all processors are empty, the algorithm reports that there is no solution. In 
the latter case, the solution path is retraced across the hypercubes involved (Figure 11). 

The performance of the parallel algorithm essentially depends on the load balancing 
mechanism, which can be influenced by modifying the cube size b. Considering the C-space 
decomposition, small sizes result in more cubes being mapped onto a single processor, thus 
implicating a good load distribution. In contrast, larger sizes worsen the load balance. On the 
other hand, smaller cubes leads to more messages, which may worsen the planning time 
according to the network capability. Thus, the specification of b will always be a tradeoff 
between a good load distribution and a minimum number of messages. Additionally, b 
influences behavior of search space exploration. For the benchmark problems considered, the 
best results are achieved with 6 16≤ ≤b  since few processors are idle and overall work load is 
small (Figure 12). 

Based on a load distribution with b = 16, the parallel planning times for P = [1,2,4,8] 
processors show how efficient the parallelization is. The planning times decrease with 
increasing numbers of processors (Pentium processor 133 MHz, 128 Mbytes).15 With P = 8 
processors, most planning times are under T = 20 s and the resulting speedup is linear (Figure 
13). 
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Figure 12. Number of expanded nodes E on 
the processors P1 to P8 versus the cube size 

b for the benchmark problem 
BOTTLENECK. 

Figure 13. Parallel runtime T versus number P 
of processors for all benchmark and industrial 

problems. 

3.2. Bidirectional Search 
Path planning is a special type of search problem, where the start and the goal configuration 
are known in advance. Therefore, it is possible to search not only from the start to the goal 
(forward search), but also from the goal to the start (backward search). The bidirectional 
search performs both search directions simultaneously. The search task is finished as soon as 
the two search fronts meet each other. Bidirectional search offers two main advantages. First, 
the backward search can be much simpler than the forward search. Second, if the search 
fronts meet each other, the run-time can be reduced. 

For implementing the bidirectional search, there are basically two ways: using one or two 
OPEN-lists. In the first way, the nodes of both search fronts are stored in a common OPEN-
list. In each search iteration, the current best node is selected from this list regardless of which 
search direction it belongs to. This has the advantage that there is little additional effort. On 
the other hand, often only one search direction is pushed ahead. This is caused by the weight 
w of the h cost. The successor of the current best node usually has a better rating than the 
node itself, because it is located nearer to the goal. Thus, once a search direction is chosen, it 
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will hardly be changed again. As a disadvantage, the planning system may choose the wrong 
direction due to the uninformed heuristic. Finally, it is unlikely that the two search fronts will 
meet in the middle, thus the run-time improvement of the bidirectional search is lost. For the 
parallel version of the bidirectional search with domain decomposition, all these effects occur 
if parts of the two search fronts are located in hypercubes which are mapped on the same 
processor. 

In the second way, two separate OPEN-lists are used for the forward and the backward 
search.16 In each search iteration, the current best node is selected alternatively from the two 
lists processing both searches simultaneously. The overall run-time is at most twice the run-
time of the fastest version of the forward and backward search processed separately. If the 
search fronts meet each other before finishing their task, the run-time decreases. 
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Figure 14. Run-times T using the forward search to goal G (light gray) and using the 
backward search from goal G (dark gray) for benchmark problems SIMPLE (a) and STAR 
(b); run-time T for bidirectional search with one (dark gray) and two (light gray) OPEN-lists 
for different goals G of benchmark problems SIMPLE (c) and STAR (d). 

Experimental results with the run-times for the separate search for two benchmark 
problems are given in Figure 14 (a and b).17 The forward direction of benchmark SIMPLE can 
usually be solved faster than the backward direction. For benchmark STAR, the results are 
mixed. For some search directions of both benchmark problems, no solution could be found 
by unidirectional search due to memory overflow (indicated by arrows in the figures). These 
results form the basis for the following comparisons concerning bidirectional search. 

Experimental results for the bidirectional search with one and two OPEN-lists are shown 
in Figure 14 (c and d). For almost all goal configurations of both benchmark problems, the 
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use of only one OPEN-list is faster than the use of two lists. The search was able to select the 
favorable search direction. As an exception, one OPEN-list for goal 7 of benchmark STAR 
fails because the planning method pushes the unfavorable direction. Here, two OPEN-lists are 
successful by simultaneously processing both directions. Compared with the unidirectional 
search in Figure 14 (a and b), the bidirectional search could solve one additional problem. The 
expected run-time reductions caused by meeting both search fronts could not be validated; 
this is certainly caused by  the high weight w of the heuristic h(). 
 

3.3. Dynamic Start and Goal Switching 
 

Experiments have shown that the planning times are quite different for different start or goal 
configurations. They fluctuate between fractions of seconds up to the insolubility of the task. 
However, it is impossible for the user to recognize beforehand which start or goal is favorable 
and which is not. To provide the user with an automatic selection, the goal switching method 
can be applied.  

Here, a single search is accomplished as in the original algorithm. If the planning system 
detects that another goal is more favorable while searching, it will switch its search direction 
to the new goal. Thus, the search always selects the current best goal. This switching can be 
implemented very simply by a small modification in the heuristic evaluation h(n) of the 
current node n: Instead of using the C-space distance of n to one goal, the minimum distance 
of n to all goals is used if it is smaller than the former one. With this, the search space is 
divided in different areas with nodes that are nearer to one goal than to all other goals.  

In a C-space with no obstacles, goal switching will have no effect. Due to the best-first 
paradigm, the search will choose one goal and runs directly toward it. The other goals are no 
longer considered. The goal switching occurs first, if an obstacle blocks the direct way to the 
goal. In this case, the best-first search tries to surround the obstacle. During this operation, it 
can happen that a node lying in the area of another goal is expanded. The prior goal is 
dropped and the search switches to the new goal (Figure 15).  

(a)   (b) (c)  

Figure 15. Example in the two-dimensional C-space with two goals: (a and b) planning from 
start qS  to the goals qG1

 and qG2
, (c) planning with dynamic goal switching from one start to 

the two goals. The white, gray, and black dots represent nodes in OPEN, in CLOSED, and on  
the solution path, respectively. 

Analogue to goal switching, the start switching can automatically select the simplest start 
and goal pair, if multiple start configurations exist. As the OPEN-list is by definition able to 
maintain multiple nodes, all start configurations are added to OPEN at the beginning. During 
the search it may happen that the next best node of OPEN belongs to a different start 
configuration, thus, a dynamic start switching takes place.18 
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4. Multi-Goal path planning 
The combination of bidirectional search together with a dynamic start and goal switching 
leads to a MTP search solving the MTP path planning problem.18 The MTP path planning 
problem is to find a collision-free path connecting a set of goal configurations minimizing 
some criterion function such as the total path length. 

To solve this MTP path planning problem, every configuration represents a node in an 
initial graph (Figure 16a). In each iteration, one collision-free path between a set of start 
configurations and a set of goal configurations is computed. The start and goal configurations 
are specified by different selection strategies, which will be presented in Section 4.10. The 
solution path is then inserted as the corresponding edge in the graph (Figure 16b). In this 
iteratively growing MTP graph a shortest sequence planning mechanism tries to find the 
shortest sequence to solve the given MTP problem (Figure 16c). The shortest sequence 
planning will be presented in Section 4.2. 

  (a)

q1 q4 q5

q2 q3

q6

 (b)

q1 q4 q5

q2 q3
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 (c)
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q2 q3
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Figure 16. (a) Initial MTP graph.(b) Inserted solution edge ( )q q1 4, after one call of the MTP 
path planning, (c) Solution sequence after 13 runs.  

In the worst case, the maximal number ( )R N NMax = −* /1 2  of planning runs might be 
necessary for N configurations to find the optimal sequence. But by applying the MTP path 
planning the total number of runs as well as the total solving-time can be reduced 
significantly. 
 

4.1. Goal Selection Strategies 
Its main task consists of selecting the suitable start and goal configuration pair for the MTP 
path planning in every iteration. We have investigated random and deterministic selection 
strategies, which can be summarized as follows. 

In the simplest case, the randomized pair selection P0, two not yet connected 
configurations qi and qj are randomly selected. As this method has no knowledge about the 
distance between the configurations, many unnecessary planning runs have to be made to find 
a valid sequence. 

In contrast, the nearest pair selection strategy P1 selects the configuration pairs according 
to a specified order, e.g., the Euclidean distance between start and goal. In some MTP 
problems, an easy planning task (short distance at the beginning) may need a long time until a 
collision-free path can be found, because the direct way is blocked by an obstacle. 

While P0 and P1 can be solved with any PTP path planning approach, the nearest goal 
selection P2 needs at least a dynamic goal switching. Beginning at the specified start 
configuration, the path planner receives all the other N – 1 configurations as possible goals. 
As the path planner will find the shortest path at first, the nearest configuration will be 
selected automatically. In the next run, the planner continues with the previous goal and tries 
to find a collision-free path to all remaining configurations. After N – 1 runs, a valid sequence 
is found. 
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If the path planner is additionally able to cope with multiple start configurations, thus 
selecting automatically the easiest start and goal pair, then the adaptive pair selection P3 can 
be applied. In this strategy, the planning system receives all configurations including a list of 
edges (representing the missing collision-free paths) which still have to be computed. 

4.2. Shortest Sequence Planning 
Finding the shortest sequence is similar to the traveling salesman problem (TSP).19 There, the 
objective is to find an optimal tour through n towns, visiting each town at least once. Adapted 
to the MTP here, an industrial robot has to reach N configurations at least once. In contrast to 
the TSP, the robot rarely has to return to its starting pose. Therefore, we call this problem the 
shortest sequence problem (SSP). 

The input of a TSP or SSP (xSP) is usually a graph with nodes and edges. In our 
application, this is the MTP graph. As a given pose may be reached by several different 
configurations, the graph contains groups of nodes. In this case, a valid sequence consists of 
one node of each group, in order to reach every pose at least once. The similar TSP scenario 
would provide different suburbs for each town, and the salesman has to visit only one suburb 
of every town. We call these extended problems TSP++ and SSP++. 

For solving the sequence planning, the MTP graph must contain as many edges as 
possible. As the graph is iteratively growing,  missing edges between node qi and qj via qk can 
be added virtually if edges between qi and qk and qk and qj exist. Graph completing can 
simply  be done by applying a standard “shortest-path-algorithm” as, e.g., the Dijkstra 
Algorithm20 as soon as the MTP graph is connected. 

While in the basic xSP cases the standard connectivity19 test is sufficient, it has to be 
extended for xSP++. For these cases, the standard test can be applied, but a feasible xSP++ 
solution may not be recognized as soon as possible. In Figure 17 17 (a and b) two different 
examples are shown, each with one start configuration, two middle poses with three 
alternative configurations, and one goal configuration. After four planning runs, in both cases 
a standard connectivity test would fail, although the example in Figure 17b is “xSP++ 
connected.” 
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Figure 17. (a and b) MTP graph for two different MTP problems, (c and d) Connected 
components ZHi.  

To avoid this disadvantage, the xSP++ connectivity is checked in the following way: At 
first, a standard algorithm computes the connected components19 ZHi in the MTP graph. Then 
it will be tested to see whether one component contains (1) the start configuration, (2) at least 
one configuration of every pose , and (3) at least one configuration of the final pose. If one 
component fulfills these conditions, the MTP graph is called xSP++ connected. 

The example in Figure 17a contains three connected components, but none of them 
fulfills the three conditions, thus this example is not xSP++ connected. In the second 
example,  the connected component ZH1 fulfills all three conditions, so this example is 
xSP++ connected. 

Based on this completed graph, a xSP solver can find the shortest tour or sequence. 
While solution methods for TSPs have already been thoroughly investigated (see, e.g., 120 
cities21, 532 cities22, 666 cities23, and 13.509 cities24), no methods for xSP++ tasks have yet 
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been considered to our knowledge. By extending the available implementation of a TSP 
solver (Pederson25), we have developed a new xSP++ solver.  

Pederson has used genetic algorithms (GA)26 to solve the traveling salesman problem. 
Adapted to MTP problems, a gene stands for a goal configuration, a chromosome represents a 
valid sequence, and a population is a set of multiple chromosomes. Every chromosome in one 
population is rated by a fitness evaluation function, thus the best chromosome representing 
the best sequence can be found. 
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Figure 18. New exchange function for our genetic algorithm: (a) One gene is randomly 
selected (dashed rectangle). If the gene contains more than one allele, the currently selected 
allele is exchanged by another randomly selected allele (arrow). (b) The resulting 
chromosome.  

A population can grow by applying the standard GA functions crossover and mutation. 
To handle also a group of nodes (multiple configurations of a TCP), the meaning of a gene 
must be extended. Here, a gene contains different values, denoted as alleles. As a 
chromosome represents a valid sequence, every gene selects one allele as the current member 
of the sequence. 

(a)  (b)

(c)  

Figure 19. (a) MTP problem PIN ASSEMBLY 
with one start configuration, 20 subgoal 
configurations, and one final goal 
configuration. (b) MTP problem SPOT 
WELDING with one start configuration, 16 
subgoal configurations and one final goal 
configuration. (c) MTP problem 
DEBURRING with one start configuration, 
11 subgoal configurations, and one final goal 
configuration. 

Crossover as well as mutation can therefore still be applied on these new chromosomes. 
The new function exchange was added to exchange a randomly selected allele of a randomly 
selected gene, thus modifying a chromosome. As this function is applied only on one 
chromosome, it is very similar to the mutation function and could of course be integrated in it 
(Figure 18). 

For each problem, we have solved the maximum number of planning runs (PIN 
ASSEMBLY: 231, SPOT WELDING: 153, DEBURRING: 148) 10 times, to show the 
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averaged performance of the different strategies. In all problems, the randomized strategy P0 
shows the worst results (Figure 20).  

 

4.3. Experimental Results 
We have implemented this MTP approach on a workstation (Pentium PC with 350 MHz 
processor and 128 MB memory) running under the LINUX operating system.15 The MTP path 
planner is implemented in C language and runs as a server process. 

The MTP control unit is written in C++ using LEDA27 and communicates via the parallel 
virtual machine interface with the path planner. For comparing the four goal selection 
methods, we have tested the MTP approach on several industrial MTP problems (Figure 19). 
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Figure 20. Total sequence length P depending 
on the running time T for the four different 
strategies P0 to P3 for the MTP problem PIN 
ASSEMBLY (a), SPOT WELDING (b), and 
DEBURRING (c). 

5. Conclusion 
With the help of a path planner the off-line programming of robots can be accelerated, thus 
reducing the setup cost of the capital intensive installations in production companies. Yet, 
path planning approaches are virtually nonexistent in industry. To the best of our knowledge 
only one such system exists.28 

We have presented a planning approach for industrial robots with 6 DOF which works in 
the implicit and discretized C-space. Via the discretization, the search space size can be 
limited. Experiments have shown that all the benchmark problems we have considered can be 
solved with a size of N < 1010. If the search space is larger (finer discretization), a collision-
free path could of course be planned, but slight changes to the benchmark problem, e.g., 
different obstacle locations or modified start or goal configurations, soon lead to memory 
overflow. These results point out the great challenge of path planning approaches.  
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In contrast to other existing grid-based planning methods, we use distance computation 
for collision detection. On the one hand, the distance information can be buffered and 
efficiently used for the evaluation of neighboring configurations. Hence a lot of time  
consuming calculations can be saved. On the other hand, the distance can be used for 
hierarchical search, enabling the planner to make steps as large as possible (see, e.g., Henrich 
et al.29 and Autere and Lehtinne30). In our future work we will concentrate on improving the 
hierarchical search. 

To accelerate the basic approach, we have investigated several extensions. The  
parallelization with static load balancing results in a balanced load distribution and shows 
very good speedups. The main problem of introducing these promising results into industrial 
applications is the low industrial interest in investing in expensive robot simulation software 
and in parallel computing architectures. Thus, powerful graphic workstations with more than 
4 processors are needed, which are supported by simulation systems. The bidirectional search 
leads at least to an automatic selection of the easier search direction, but a run-time reduction 
caused by a meeting of the search fronts in the middle could not be achieved. A wave shaping 
approach, which is difficult to integrate in a parallel search, may improve the results. 
Dynamic start and goal switching enable the planning system to automatically select a 
favorable start and goal pair. Thus it is no longer necessary that the user select the start or goal 
configurations. 

Based on these extensions, we have finally developed the new multi-goal search to solve 
MTP problems. We have introduced four different goal selection methods and compared them 
for three industrial MTP problems. With P2 and P3 the simplest path segment are solved first. 
With every additional path planning, the total sequence path length can be further reduced, 
thus the MTP can be interrupted at any time after a first sequence is available. With all other 
existing path planners, the MTP problem can only be solved with random pair or nearest pair 
selection. To find the shortest sequences, a new GA based xSP++ solver and a modified MTP 
graph connectivity test have been developed. 

For the future, we are focusing on developing a path planner which is able to cope with 
moving objects and gripped workpiece. With some modifications, our approach is also 
suitable for tasks in the area of virtual engineering. Instead of planning the path for robots, we 
are able to search a trajectory for the components which have to be assembled obtain the final 
object. Additionally, we are developing a path smoothing method for executing the computed 
trajectories with a real robot. 
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