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Abstract

By means of the limit and jump relations of classical potential theory the
framework of a wavelet approach on a regular surface is established. The
properties of a multiresolution analysis are verified, and a tree algorithm
for fast computation is developed based on numerical integration. As ap-
plications of the wavelet approach some numerical examples are presented,
including the zoom—in property as well as the detection of high frequency
perturbations. At the end we discuss a fast multiscale representation of
the solution of (exterior) Dirichlet’s or Neumann’s boundary—value prob-
lem corresponding to regular surfaces.
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1 Introduction

Wavelets are known as mathematical means for breaking up a complicated func-
tion (signal) into many simple pieces at different scales and positions. Thus
wavelets have become a powerful and flexible tool for scientific computation
and data handling. Basically, wavelet analysis is done by convolving the func-
tion under consideration against ’dilated’ and ’shifted’ versions of one fixed
function, viz. the 'mother wavelet’. Traditionally, applications of wavelets have
been signal analysis, image processing, noise cancellation, etc, but there is also
a growing interest in the numerical treatment of partial differential equations.
However, wavelet methods are known for unfolding their computational econ-
omy and efficiency when applied to problems on Euclidian space, the sphere
or the torus. Strategies of extending the applicability of wavelet techniques to
boundary—value problems corresponding to (general) regular surfaces have only
rarely been attempted. The usual procedure is to transform the partial differen-
tial equation problem into an integral equation over a parametrizable boundary
surface such that standard techniques of the (iterated one-dimensional) wavelet
concept for solving this integral equation become applicable (see e.g. [1]). An-
other approach is motivated by the Runge—Walsh theorem of constructive ap-
proximation. The wavelet concept (see [8]) established in this way naturally
arises as a result of scale discretization of wavelets on e.g. a sphere in con-
nection with approximate integration techniques relating an integrand over the
sphere to the boundary values on the regular surface.

In this paper we follow the standard procedure in potential theory by trans-
forming a boundary—value problem corresponding to a general (regular) surface
(like sphere, ellipsoid, spheroid, Earth’s surface, etc) into a Fredholm integral
equation of the second kind. More explicitly, we choose the double layer poten-
tial for the Dirichlet problem and the single layer potential for the Neumann
problem. However, instead of applying conventional wavelet constructions ori-
ented on Euclidian theory for discretizing the integral equations in accordance
with a collocational, Galerkin or least squares procedure we use the kernels of
the layer potentials themselves to establish a new class of wavelets on (general)
regular surfaces. In other words, a new wavelet theory will be developed on
(general) regular surfaces that arises naturally as a result of scale discretization
of the limit and jump relations of potential theory.

The outline of this paper is as follows: First we introduce the notations and pre-
liminaries that are needed for our wavelet approach. We define regular surfaces
on which our whole theory is established. Moreover, we recapitulate the Fourier
theory of square—integrable scalar fields in terms of spherical (outer) harmonics
on the sphere as well as on regular surfaces. Then we introduce potential opera-
tors which are the main ingredients of this work. We develop the limit and jump
relations of the potential operators formulated in the framework of the Hilbert
space of square—integrable functions. The setup of a multiresolution analysis
(i.e. scaling functions, scale spaces, wavelets, detail spaces) is defined by inter-
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preting the kernel functions of the limit and jump integral operators as scaling
functions on regular surfaces. The distance to the parallel surfaces of the regular
surface under consideration thereby represents the scale level in the scaling func-
tion. After scale discretizing the continuous theory we show that our wavelet
setup fulfills the properties of a multiresolution analysis. As a significant aspect
of scientific computing we present a pyramid scheme (tree algorithm) providing
fast wavelet transform (FWT). Furthermore, we dicuss some numerical exam-
ples. In particular we are concerned with the zoom—in property, the detection
of a high frequency perturbation and the technique of data compression which
are typical applications within a wavelet framework. At the end we deal with
the already mentioned discretization of Fredholm integral equations in order to
give a multiscale representation of the solution of boundary—value problems in
three dimensions corresponding to regular surfaces.

2 Preliminaries

At first we want to introduce some basic notations which we need for our wavelet
approach. As usual, R® denotes three-dimensional Euclidian space. For z,y €
R,z = (z1,20,23)T,y = (y1,y2,y3)" the inner product is defined by

3
roy=zly= Zwlyl (1)
i=1

For elements » € R*, 2 = (1,22, 23)7, different from the origin, we have

r=rf r=lzr|=Vz -z=/27+23+22, (2)

where & = (£1,&,&)7 is the uniquely determined directional unit vector of
z. The unit sphere in R? is denoted by Q. If the vectors €', €2, €3 form the
canonical orthonormal basis in R?, the points £ € € may be represented in
polar coordinates by

€ =te® + V1 — 12 (cos e + sin pe?) 3)
t=cosd,d €[0,7],p €10,2m) .

The spherical harmonics Y, of degree n are defined as the everywhere on (2 in-
finitely differentiable eigenfunctions of the Beltrami operator A* corresponding
to the eigenvalues (A*)"(n) = —n(n +1),n = 0,1,..., where the Beltrami op-
erator is the angular part of the Laplace operator A in R3. As it is well-known,
the functions H, : R® — R defined by H,(z) = r"Y,(§), z = r, £ € Q, are
homogeneous polynomials in rectangular coordinates which satisfy the Laplace
equation A, H,(z) = 0, z € R®. Conversely, every homogeneous harmonic poly-
nomial of degree n when restricted to {2 is a spherical harmonic of degree n.
The Legendre polynomials P, : [—1,+1] — [—1, +1] are the only everywhere in
[—1, +1] infinitely differentiable eigenfunctions of the Legendre operator L; =
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(d/dt)(1 — t?)(d/dt), which satisfy P,(1) = 1. Apart from a multiplicative con-
stant, the ’e3-Legendre function’ P, (€3-) : Q — [—1,+1], £ = P, (e - &), £ € Q,
is the only spherical harmonic of degree n which is invariant under orthogonal
transformations leaving € fixed. The linear space Harm,, () of all spherical har-
monics of degree n is of dimension dim(Harm,,(Q2)) = 2n + 1. Thus, there exist
2n+ 1 linearly independent spherical harmonics Y5, 1, ..., Yy 241 in Harm,, ().
Throughout the remainder of this paper we assume this system to be orthonor-
mal in the sense of the £2(Q2)-inner product

Voss Vo) 2(s) = / Y ()Y (1) deo (1) = Ot (4)

(dw denotes the surface element). An outstanding result of the theory of spher-
ical harmonics is the addition theorem

2n+1

S Var@Vur ) = 25 p e, emyeax . (5)

4dn

The connection between the orthogonal invariance and the addition theorem is
established by the Funk-Hecke formula

/QH(§ ) Pa(Cm) dw(n) = (H(E ), Pa(C) e2) = HNn)Pa(€-C),  (6)
H e L[-1,+1],&,¢ € Q, where the Legendre transform LT : H — (LT)(H), H €
L'[-1,1], is given by

(LT)(H)(n) = H(n) = 27r/H(t)Pn(t) dt, n=0,1,... .

The sequence {H"(n)}nen, is called the symbol of H. For more details about
the theory of spherical harmonics the reader is referred, for example, to [7], [20].
In accordance with the notation used in [7] we let

Harmg, .= span (Yo ).

Moreover,
Harmo,...m = @ Harm,,
n=0
so that
m
dim(Harmg, . m) = Z(Qn +1) = (m+ 1)~

n=0

As it is well known, Krarm, : 0 x Q — R defined by

m 2n+1

m
KHarmg ,,,,, m () § 77 Z Z Ynk Z

n=0 k=1

Po(&-m)  (7)
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is the only reproducing kernel of the space Harmo,... ., with respect to (-, -)r2(q)-
For later use it is worth mentioning that

Y(©) = /Q Ketarmo mosn(@ (&MY (1) do(n)

forall ¢ € Qand all Y € Harmyg, . -

By L?(Q) we denote the Hilbert space of all square-integrable functions on
the unit sphere () equipped with the inner product (-,-)r2(q). L2(Q) is the
completion of C(®)(Q) with respect to the norm || - llLz(q)- Any function of class
L2(Q) of the form He : @ = R, n — He(n) = H(E-n), n € Q, is called a
&—zonal function on Q). Zonal functions are constant on the sets of all n € ,
with £ - = h, h € [-1,+1]. The set of all £&—zonal functions is isomorphic to
the set of functions H : [-1,+1] — R. This gives rise to interpret the space
L?[—1,+1] with norm defined correspondingly by

41 1/2

1H |l2(—1,41) = 27r/IH(t)l2 dt | =[H(E ) z@), HeL-1,+1].
21
as subspace of L2((2).
The spherical Fourier transform H — (FT)(H), H € L?(Q), is given by
((FT)(H)) (n,k) = H"(n,k) = (H, Yordiz, n=0,1,...;k=1,...,2n+ 1.

F'T forms a mapping from L?(Q) onto the space I*(N') of all sequences {W & } (n,k)enr
satisfying

oo 2n+1
S wL=Y Y W<,
(n,k)EN n=0 k=1

where we have used the abbreviation

N={(nk)n=0,1,...;k=1,....2n+ 1} .

The series
oo 2n+1
Z FA(nvk)Yn,k = Z Z FA(nvk)Yn,k
(n,k)EN n=0 k=1

is called the spherical Fourier expansion of F' (with Fourier coefficients F\(n, k),
(n,k) € N). For all F € L?(Q2) we have

N 2n+1
- _ A —
A}gr(l)o F E E Fn, k)Y, i =0.
n=0 k=1 L2(Q)



3 BASIC CONCEPTS 5

The system {Hi’nflyk(-)} ,(n,k) € N, of outer harmonics is defined by
n+tl
ey ue) =+ (%) Y (%) c R0}, a>0  (8)
The system defined above satisfies the following properties:
o H*, |, isof class C(®) (R*\{0}),
e H® |, satisfies the Laplace equation AIHi'nflyk(:r) =0 for z € R3\{0},
LYok,

° f\z\:a Hgnfl,k(m)Hgmfl,l(m) dw () = 0p,mOk1-

* an—l,k |Qa =

Clearly the addition theorem for outer harmonics reads as follows:
2n+1

I;H%Lm)ff“nl,k(y):w( o )an(”“” L),

dma® \[al[y] BNl
(#,9) € (R\{0}) x (R\{0}).

3 Basic Concepts

Next we introduce some settings which are standard in potential theory (see,
for example, [13], [17], [22], [23]).

3.1 Regular Surfaces

We begin our considerations by introducing the notation of a regular surface:

DEFINITION 3.1. A surface ¥ C R? is called regular, if it satisfies the following
properties:

(i) ¥ divides the three-dimensional Euclidean space R® into the bounded
region Yiny (inner space) and the unbounded region Y.y (outer space)
defined by Eext = R3\Eint; Eint = Eint 9] E)

(ii) Xin contains the origin,
(iii) ¥ is a closed and compact surface free of double points,

(iv) X has a continuously differentiable unit normal field v pointing into the
outer space Yexs.
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Geoscientifically regular surfaces ¥ are, for example, sphere, ellipsoid, spheroid,
geoid, (regular) Earth’s surface.
Given a regular surface, then there exist positive constants «, 8 such that

a < o™ = inf |z| < sup |z]| = P < B. (10)
TEX zEY

As usual, Ajng, Bing (resp. Aext, Bext) denote the inner (resp. outer) space of
the sphere A (resp. B) around the origin with radius a (resp. ). Zinf wup

" ‘int? int
(resp. ¥t ¥°'Py denote the inner (resp. outer) space of the sphere Y™ (resp.
inf (

extr “ext
YsuP) around the origin with radius o

The set

resp. o'P).

N

l
|

,/

Figure 1: Regular surface (geometrical illustration)

Y(r)={zeRz=y+1v(y),y € T} (11)

generates a parallel surface which is exterior to ¥ for 7 > 0 and interior for 7 < 0.
It is well known from differential geometry (see e.g. [21]) that if |7| is sufficiently
small, then the surface X(7) is regular, and the normal to one parallel surface
is a normal to the other. According to our regularity assumptions imposed on
3 the functions

(z,y) — OO Gy enxs x4y

lz—y| (12)
(wy) = LD gy eTxT, py
are bounded. Hence, there exists a constant M > 0 such that
_ < _
v@)—vl)] < Mls—y, 1)

(@) - (@ —y)| < Mlz—yl,



3 BASIC CONCEPTS 7

for all (z,y) € ¥ x X. Moreover, it is easy to see that

inf |z +7v(z) — (y + ov(y))| = |7 — o
T, YyeEX

provided that |7|, |o| are sufficiently small.

3.2 Function Spaces

In what follows we discuss function spaces that are of particular significance in
our approach.

Let ¥ be a regular surface. Pot(X;,;) denotes the space of all functions U €
C(z)(Eint) satisfying Laplace’s equation in ¥, while Pot(Xey;) denotes the
space of all functions U € C(2)(Eext) satisfying Laplace’s equation in Yy and
being regular at infinity (that is, |U(z)| = O(|z|™!), |(VU)(z)| = O(|z|~2) for
|z| = oo uniformly with respect to all directions).

For k = 0,1,... we denote by Pot®) (Tiy;) the space of all U € C*)(Tiy) such
that U|Sin is of class Pot(Sing). Analogously, Pot™® (Seg) is the space of all
U € C¥) (Z4yy) such that U|Sey is of class Pot(Zeyt)-

In shorthand notation,

Pot™) (Ting) = Pot(Sint) N C*) (Tiny), (14)
Pot*) (Text) = Pot(Text) N CH (Terr).- (15)

Let U be of class Pot(®)(Ziy). Then the maximum/minimum principle of po-
tential theory states

sup |U(z)| < sup |U(x)]| . (16)
TEX

TEXint

Let U be of class Pot(”) (Zx;). Then the maximum /minimum principle gives

sup |U(z)| < sup |U(z)|. (17)
TEXext zeX

In C© (%) we have the inner product

(E@m®=AF@M@%M% (18)

where dw denotes the surface element. The inner product (-,-)2(x) implies the
norm

1/2
IF |2y = (B F)ragsy) '’ (19)

The space (C(©(X), (-, -)12(s;)) is a pre-Hilbert space. For every F' € C(0(X) we
have the norm-estimate

1FllLzcz) < VIENIFllcos), (20)
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where

uwzéww. (21)

By L2(X) we denote the space of (Lebesgue) square-integrable functions on the
regular surface ¥. L2(X) is a Hilbert space with respect to the inner product

(-,-)r2(s) and a Banach space with respect to the norm || - [|2(x). L*(Z) is the
completion of C(®) () with respect to the norm || - ||p2(s):
comy e Z 2wy (22)

4 Limit Formulae and Jump Relations

Let F' be a continuous function on a regular surface ¥. Then the functions
U, :R\Z =R, n=1,2,..., defined by

o ., 1
Une) = [ F0) ()™ T o) (23)

are infinitely often differentiable and satisfy the Laplace equation in ¥, and
Yext- In addition, the functions U, are regular at infinity.
The function U; given by

1
Ui(o) = [ P doty) (24)

is called the potential of the single layer on X, while Us given by

F dw(y 25
is called the potential of the double layer on X.

4.1 Formulation in (C'(X), | - |[cx))

For F' € C(®(%), the functions U, can be continued continuously to the surface
¥, but the limits depend from which parallel surface (inner or outer) the points
x tend to ¥. On the other hand, the functions U,,n = 1,2, also are defined on
the surface ¥, i.e., the integrals (24), (25) exist and are continuous for z € .
Furthermore, the integral

0= [ PO g e (26)

exists for all x € ¥ and can be continued continuously to 3. However, the inte-
grals do not coincide, in general, with the inner or outer limits of the potentials

(cf. [19]).
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From classical potential theory (see, for example, [13]) it is known that for all
z€Yand F e COY)

lim Uy (z £ 7v(x)) = Ui (z), (27)
lim %(m +1v(x)) = F2nF(x) + U] (z), (28)
lim Us(z + 7v(z)) = £27F(z) + Uz (2), (29)
(‘limit relations’)
lim (Uy(z + 7v(z)) — Ur(z — mv(z))) =0, (30)
lim (%(a: +1v(x)) — %(m - 7'1/(1‘))) = —4nF(z), (31)
lim (Uz(z + tv(x)) — Us(z — Tv(2))) = 4w F (), (32)
lim (%(m + 1v(z)) — %(m - 7'1/(3:))) =0 (33)

>0

(‘jump relations’).

In addition, O.D. KELLOGG (1929), J. SCHAUDER (1931) proved that the
above relations hold uniformly with respect to all € ¥. This means that

lim sup Uy (z £ tv(z)) — Uy ()| =0, (34)
TS0 TEY
. oU; '
lim sup | —(z £ 7v(z)) £ 27 F(x) — U{(z)| =0, (35)
720 wen | OV
lim sup |Us(z £ 7v(z)) F 2nF(z) — Uz(z)| =0 (36)
750 TEX
and
lim sup |U1 (x 4+ 7v(z) —Us(z — Tl/(a:))| =0, (37)
T30 wEN

. oUy oUy .

%1;)151) 21612 E(w + 1v(x)) — E(m —71v(z)) + 47 F(x)| =0, (38)
lim sup |Uz2(z + rv(2)) = Us(2 — Tv(2)) — 47F (z)| = 0, (39)
TS0 TEX

. oU, oU, .
%1_5} 223 E(m + 71v(z)) — E(w - TI/(CE))‘ =0. (40)
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Here we have written, as usual,

oU
5 —(x £ 1v(z)) = v(z) - (VU)(z £ Tr(2)) . (41)
For 7 # o with |7|,|o| sufficiently small, the functions
1
(z,y) = (z,y) € X x %, (42)

[z +7v(z) = (y + ov(y))l’

are continuous. Thus the potential operators P(7,c) defined by

1
P(r,0)F(z) = /EF(y) |z + 1v(z) — (y + ov(y))|

dw(y) (43)

form mappings from L*(X) into C(®)(¥) and are continuous with respect to
Il - llc (s;). For all 7 # o the restrictions of P(r,0) on C(©)(%) are bounded
with respect to || - L2

By formal operations we obtain for F € C(0)(X)

1
P(r,0)F Fly)——————— 44
(7. 0) / |:n+7'1/(:v) -y d(y) (44)
(P(7,0) : operator of the single-layer potential on ¥ for values on (7)),

0

Py(1,0)F(z) = P(T 0)F(2)]s=0 (45)
1
= / Fly < et (@) (y+au<y)>|>god“(y)
B o) (o + 70l) )
= [ ro T ) (16)

(P|2(7', 0) : operator of the double-layer potential on ¥ for values on X(7)).
The notation P; indicates differentiation with respect to the i-th variable. Ana-
logously we get

0
EP(T, o)F(x

= - [ F " TS gy

|z +7v(z) =y

P (1,0)F () (47)

)|a'=0’

and

62
Otdo
for the operators of the normal derivatives.
If 7 = 0 = 0, the kernels of the potentials have weak singularities. The integrals
formally defined by

Plaoi (1, 0)F(2) = P(r,0)F ()] (49)

=0

P(0,0)F(x) = / Fly)—— du(y), (50)

|z -y
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0 1
v(y) |z —yl

Pa0.0F(@) = [ Fl); do(y),

Ru0.0)F(@) = 5o [ )= ),

|z -yl

11

(51)

(52)

however, exist and define linear bounded operators in L?(X). P(0,0), P;(0,0)
and Pj5(0,0) map CO) (D) into itself (see [19]). Furthermore, the operators are

continuous (even compact) with respect to || - [|cco) (x)-
The operator P(7,0)* satisfying

(F,P(T, U)G)L2 (z) = (P(T7 U)*Fa G)LZ(Z)

(53)

for all F,G € L2(X) is called the adjoint operator of P(r,0) with respect to

(*;)L2(x)- According to Fubini’s theorem it follows that

(F, P(T U)G)L2(E)

= ) ") W\
= [F@ /|m+w y+au(y))|d ) dufz)

(x)
/ G |x+w STy ) 0
- ) FG)LZ

By comparison we thus have

P(r,0)"F(z) = P(1,0)"F(z)|s=0
1

- [F Oy Tty —a W)

Analogously we obtain expressions of P, (7,0)* and Pj,(7,0)*:

M0 F@) = — [P R 28 ),
Rar0)F) = [ Fop ") g

Elementary calculations show that
P;1(0,0)"F(x)
v(y) -y —x)
F d = P;3(0,0)F
and

P2(0,0)"F(x )
/ _‘T) dw(y) :P\l(O,O)F(m) .

Iy —:L‘I3

(54)

(55)
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The potential operators now enable us to give concise formulations of the clas-
sical limit formulae and jump relations in potential theory. Let I be the iden-
tity operator in L2(X). Suppose that, for all sufficiently small values 7 >
O,Lii(r),i = 1,2,3, and Ji(7),i = 1,...,6, respectively, define the following
operators:

LE(r) = P(£1,0) - P(0,0), (60)
Ly(r) = Py(£7,0) - P(0,0) + 271, (61)
Ly(r) = Pa(£7,0) = P(0,0) F 2n, (62)
Ji(r) = P(r,0) — P(—7,0), (63)
Jo(r) = Pj(1,0) = Py(—7,0) + 41, (64)
J3(r) = P3(7,0) = Pa(-7,0) — 4r1, (65)
Ju(r) = Pppi(1,0) = Pap(~T,0), (66)
Js(t) = Pj(7,0) + P (—7,0) = 2P;(0,0), (67)
Js(r) = P3(7,0) + P32(—7,0) — 2P;(0,0). (68)

Then, for F € C©(X), the main results of classical potential theory may be
formulated by

lim | LE(1)F oo )= 0, lim || Ji(7)F |lco )= 0,

T . e . (69)
lim [| L7 (7)"F llooyy=0,  lim || Ji(7)"F [|co) ()= 0.

>0 >0

4.2 Formulation in (L*(2), || - ||12(x))
The relations (69) can be generalized to the Hilbert space L?(X) (see [3], [14]):
THEOREM 4.1. For all F € L*(3)

lim | LEMF [lLey=0,  Llim [| Ji(7)F [|z(m)= 0,
T‘>0 N § ‘r‘>0 x (70)
lim || LE(7)F 2y =0, lim || Ji(7)"F lla(s)= 0.
>0 70

Proof. Denote by T'(7) one of the operators in(T),i =1,2,3, Ji(r),i =1,...,6.
Then, by virtue of the norm estimate,

I F ez < VIEE T lleos), |5 IIZ/Zdw, FecC?(®), (1)

we obtain
lim [| T(T)F [[Lz(s)= 0, lim || T(7)*F ||l2(z)=0 (72)

T>0 T>0

for all F' € C(X). Therefore there exists a constant C(F') > 0 such that
I T(DF |2y < C(F), ([ T(7)*F [lL2(z)< C(F) (73)
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for all 7 < 79 (7o sufficiently small). The uniform boundedness principle of
functional analysis (see e.g. [12]) then shows us that there exists a constant
M > 0 such that

ITOICOE) ez < M, | T ICO(E) [z < M (74)

for all 7 < 7p. The operators (T'(7)*T (7)) are self-adjoint, and their restrictions
to the Banach space C(9)(X) are continuous. We now modify a technique due
to [15]. According to the Cauchy-Schwarz inequality we get for F' € C(0)(%)

(I T(T)F lles))® = (T(DFT(1)F)ras) (75)

(F, (T(7)"T (7)) F)L2(x)
| F ezl (T T ) F [lezs) -

IN

Consequently it follows that

(I F ||L2(Z))2(|| T(r)"T(r)F ||L2(Z))2 (76)
(I F llz)” | F ezl (T(r)*T (1)) F |liz(s) -

(I T(DF o)™ <
<

Induction yields

anl

(I T()F llzs)® < ALF llae)® I (T(0)*T(r))

for all positive integers n. According to the norm estimate (71) and the bound-
edness of the operators T'(7), T'(7)* for all 7 < 7 there exists a positive constant
K such that

F s (77)

ITOF Nliz)® <VISTE (L F lew)” 7 Flleow - (78)

Therefore, for positive integers n and all F € C(©)(X) with F # 0, we find

g-n
ITOF ey _ o (VIETIF lleos)* 7
| F ey~ | F [z cs)
Letting n tend to infinity we obtain for all F' # 0
VIEEIITF lleo ) 2
li =1. 80
A ( | F [lz(s) ) (80)

This shows us that the norm || T'(7) ||2(x) of the operator T'(7), 7 < 79, can be
estimated by K, i.e.

| T(T)F |l < K || F |2z (81)

for all F € C(©)(2) and all 7 < 79. The same argument holds true for the adjoint

operators, i.e.
I T(T)"F |2y < K || F lLzs) (82)
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for all F € CO(X) and all 7 < 75. The space C(*)(X) is as a linear subspace
dense in L%(X). Thus, by the Hahn-Banach theorem (cf. [12]), we can extend
the operators T'(r) and T(7)* from C(©(X) to L*(X) without enlarging their
norms. Therefore, T(r) and T(7)*,7 < 79, are bounded with respect to L2(X).
To be more specific,

I1T(T) leemy < (1T lloo ) I T(7)* [lew@(s))? (83)
I1T(T)" lleey < (TT() lleo ) I T(7)* fleos))?- (84)
But this immediately leads to Theorem 4.1 . a

5 L?(X)—Closure of Outer Harmonics

We begin our consideration with the following lemma concerning outer harmo-
nics.

LEMMA 5.1. Let ¥ be a reqular surface such that (10) holds true. Then the
following statements are valid:

(i) (an_17k|2) weo... s linearly independent,

k=1,...,2n+1

(i) (aH’" L ’“) o, 18 linearly independent.

Ovs
k=1,...,2n+1

Proof. In order to verify the statement (i) we have to derive that for any linear
combination H of the form

m 2n+1
H=3 > aneH% 14 (85)
n=0 k=1
the condition H|¥ = 0 implies ap1 = ... = Gm,1 = ... = Gm,2m+1 = 0. From the

uniqueness theorem of the exterior Dirichlet problem we know that H|Y = 0
yields H|Xex = 0. Therefore, for every sphere I around the origin with radius

v > %P = sup,cy, |z/, it follows that
[ k@ @) dotw) = 0 (56)
forn=0,...,m;j=1,...,2n+1. Inserting (85) into (86) gives us in connection

with the completeness property of the spherical harmonics a, ; = 0 for n =
0,....,m;j=1,...,2n+ 1, as required for statement (i).

For the proof of statement (ii) we start from the homogeneous boundary condi-
tion _—
+

A 8an 1,k

aVZ Z Z Un.k—(f

n=0 k=1

=0 (87)
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on Y. The uniqueness theorem of the exterior Neumann problem then yields
H|Ycxt = 0. This gives us ap, = 0forn =0,....m; j =1,...,2n + 1, as
required for statement (ii). O

Next our purpose is to prove completeness and closure theorems in L2(X).
THEOREM 5.2. Let ¥ be a regular surface such that (10) is satisfied. Then the

following statements are valid:

(i) (an_17k|2) o 1 complete in L*(X),

k=1,...,2n+1

(it) (aHi;;E L ’“) . is complete in L*(X).
k

Proof. We restrict our attention to statement (i). Suppose that F € L2(X)
satisfies

(FH® D)o /F @) dw(y) =0 (38)
for all n = 0,1,..;5 = 1,...,2n + 1. We have to show that F = 0 on L?(X).

We remember that the series expansion

(o] | |n 2n+1

1 1
Iz —y] =4WZ o+ 1 [yt 4 Z Yok (©)Ynr (), (89)

x = |z|¢, y = |y|n, is analytic in the domain A;,; with a < o™ (cf. 10). For all
x € Ajng we thus find by virtue of (88)

1
i) = [ F(y)m do(y) (90)

[ee) 471'0( 2n+1
= L nTT X H) [ R0 del)
= 0.

Analytic continuation shows that the single-layer potential U; vanishes at each
point z € ¥j,¢. In other words, the equations

Ui(x —tv(z)) = 0, (91)
et = 0 (92

hold for all z € ¥ and all sufficiently small 7 > 0. This yields using the relations
of Theorem 4.1

i /E U1 (@4 7o) [ dote) = o, (93)
. aU, 2 B
lg)ré . 81/—(:n)(x +7v(z)) +4nF(z)| dw(z) = 0, (94)
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and
lim / ‘U{(x)+27rF(a:) dw(z) = 0. (95)
b))

T—0
>0

The last equation can be rewritten in the explicit form

1 0 1
"o LTV e =y

in the sense of L?(X). However, the left hand side of (96) is a continuous function
of the variable z (see e.g. [13], [19]). Thus, the function F' can be replaced by a
function F' € C©) (%) satisfying F' = F in the sense of L2(X). For the continuous
function F', however, the classical limit relations and jump formulae are valid:

dw(y) = F(z) (96)

lim Uy(z +v(z)) = 0, z€X, (97)
>0
lim 8—11]/1(:6 +1v(z)) = —47F(z), z €. (98)
>0

The uniqueness theorem of the exterior Dirichlet problem then shows us that
Ui(z) = 0 for all x € Yeyy- But this means that F = 0 on the surface ¥, as
required.

The remaining statement (ii) follows by analogous arguments. O

From functional analysis (see e.g. [2]) we know that the properties of complete-
ness and closure are equivalent in a Hilbert space such as L2(X). This leads us
to the following corollary.

COROLLARY 5.3. Under the assumptions of Theorem 5.2 the following state-
ments are valid:

(i) (an_17k|2) weon.. s closed in L2(%), i.e.: for given F € L2(X) and

arbitrary € > 0 there exist a linear combination

m 2n+1
= Z Z i H g |2 (99)
such that
|F' = HillL2z) < € . (100)

.y (OHS . . ) .
(ii) (ﬁlk) oy s closed in L*(X), i.e.: for given F € L*(X) and
k=1,...,2n+1
arbitrary € > 0 there exist a linear combination

8Hgn 1,k

=3 Z (101)

n=0 k=1

such that
|IF' = SimllLzz) <€ .
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6 Multiscale Modelling in (L(X), - lpzcs)

Writing out the limit and jump relations (Theorem 4.1) we obtain the following
corollary.

COROLLARY 6.1. For F € L(X)

lim [ & (-,y) F(y) dw(y)

s
F , 1=2,3,5,6
0 , 1=4,7
= ) ) i
fz a,,( =l y| F(y) dw(y) , i=38
Js 8V(y) B ylF(y) dw(y) , i=9,
where
2 _ 1 (@xtmv(@) —y) vie) (x-y) v
®ir(@,y) = 2m ( |z £ Tv(z) — y|? |z —y[? > ’
3 _ 1 ((@xtrv(@) —y) vy (@-y) vy
®ir(2,y) = 2m ( |z £ Tv(z) — y|? |z —y[? > ’
@i(e,y) = : .

o+ rv(2) —y| |z —Tv(e) —yl

B (z,y) = 1 <(a: +1v(r) —y) -viz) (z—T1v(r)—19)-" ,/(x)> |

A7 |z + Tv(z) — y|? |z — Tv(z) — y|?
o (@) —y) ) (o (@) —y) o)
Tr(wy) = M< [t (@) — gF m~wm—m3>’
c @) @) )
B P £ R TR e o g
(@) — ) v @) (@t () ) - vly)
EEp
(z = (@) ) - v@)((@ + 7v(x) — y) - V()
3 o — v(z) — g !
o1 (@) —y) (@) (- v(a) —y) i)
Tr(@my) = 2( Trr@ —gF T @ P )
9 _ 1 /(@+mv(z)—y) vy  (@-1v(z)—y) v(y)
Br(my) = 2< et @ —gF T oo — o )’

7>0,(z,y) €T x .

From the limit and jump relations for the dual operators we obtain the following
result.
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COROLLARY 6.2. For F € L(X)

lim [ & (y,-) F(y) dw(y)

T—=0

>0
F . i=2,3,5,6
, 1=4,7
_ fz = 7y| y) dw(y) , i=1
Js 5 e} |—y|F(y) do(y) , i=38

fZ 8u(y) - —y|F(y) dCU( ) ) t=9.

6.1 Scaling and Wavelet Functions

For 7 > 0 and i € {1,...,9}, the family {®.},~ of kernels ®. : ¥ x ¥ — R is
called a X—scaling function of type i. Moreover, ®} : ¥ x ¥ — R (i.e.: 7=1) is
called the mother kernel of the Y—scaling function of type i.

Correspondingly, for 7 > 0 and i € {1,...,9}, the family {¥%}, 5o of kernels
Ui ;% x ¥ — R given by

. . d i
\I’:.(l’,y) = —CK(T) 1E(§T(1‘)y)7 T,y € E) (102)

is called a Y —wavelet function of type i.

In the remainder of this paper we particularly choose a(r) = 7! (of course,
other weight functions than a(r) = 7~! can be chosen in (102)). Moreover,
Ul Y x X - R (ie: 7 = 1) is called the mother kernel of the S—wavelet
function of type i.

The differential equation (102) is called the (scale continuous) Y -scaling equa-
tion of type 1.

DEFINITION 6.3. Let {®.},~o be a X-scaling function of type i. Then the
associated Y—wavelet transform of type i is defined by

(WT)D : L2(2) = L2((0,00) x ¥)

with
W) (F) (r, z) = / i (2, 9) F(y) duw(y) -
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In accordance with our construction we have
m(x +71v(z) —y) - v(z)

v ot (o) — oF
o ot L (et —y) @)
e = 5 (T ew )

V(z,y) = L(M)

2 \ |z + mv(z) —y|?

_ 37 (((ﬂf +rv(z) —y) -v@)((@ + (@) —y) - V(Z/)))
2m |z + Tv(z) — y|° ’

Wan) = r(EEHO D) ol - )]

|z +7v(z) =yl |z —Tv(z) =y

5 (2 _ T 1 1
(o) 4w<m—7wm—m3+m—Twm—yP>
37 (et (@) —y) v(@)? (& - ro(x) —y)  v(z)?
+4w< Y R P p Jp )’
o= @) vl v(z) - v(y)
Yrloy) = 4w(m+7wm—m3 m—rwm—yﬁ>
+g<mmwwm—wwumm+wmww»ww
4 |s + Tv(z) — Y|

((z = 1v(z) —y) -v(@)((z —Tv(2) = Y) - V(y))>

|z —Tv(z) —y|?

_|_

for x,y € X. For simplicity, we omit the representations of ¥ (z,y), ¥3(x,y)
and ¥ (z,y), z,y € X.

6.2 Scale Continuous Reconstruction Formula

It is not difficult to see that the wavelets U2, i € {1,...,9}, behave like O(7 1),
hence, the convergence of the following integrals in the reconstruction theorem
is guaranteed.

THEOREM 6.4. Let {®1},5¢ be a X-scaling function of type i. Suppose that F
is of class L2(X). Then the reconstruction formula

F , i=2,3,5,6
0 =47
/ wyiF) )T =] s 2 Fly) dely) , i=1
0 4 fE ﬁy?z) ﬁF(y) dw(y) , 1= 8
Js sy Fy) dwly) , i=9
holds in the sense of || - || 2(x)-

Proof. Let R > 0 be arbitrary. By observing Fubini’s theorem and the identity

X o dr
@g@w>=ﬁzwuaw

]
T

(z,y) € X x X,
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Figure 2: Scaling—function ®¢ (sectional illustration) for two values of 7
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Figure 3: Wavelet—function ¥¢ (sectional illustration) for two values of 7
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we obtain
o X dr &0 X dr
[ wvn@esT = [ [ eiewre wn? s
R T R Jx T
R dr
= [ [ wiewrw we
v JR T
= [ #0F) de)
The limit R — 0 in connection with Theorem 6.1 yields the desired result. O

Next our interest is to reformulate the wavelet transform and the reconstruction
theorem by use of dilated and shifted versions of the mother kernel. For that
purpose we introduce the z—translation and the 7—dilation operator of a mother
kernel as follows:

T,: 9~ T,¥ = ¥ =Ui(,), TEY, (104)
D,:¥. DU = ¥ 7>0. (105)
Consequently it follows that
i=1,...,9. In other words,
WD (E)(ria) = [ WP dow), w€Sr>0. (107
2
Moreover, we have the following limit results.
THEOREM 6.5. For x € ¥ and F € L*(X)
lim [ %, (y)F(y) dw(y)
R>0 z
F(z) . i=2,3,5,6
0 . i=4,7
Jo e Fy) dw(y) =1
- SRtV Yy , &=
Js o e FW) dw(y) , i=8
fZ Bua(y) |xiy| (y) dW(y) ) 1=9
and
° dr
/ /Z\I/T;z(y)F(y) dw(y)—
0
F(z) . i=2,3,5,6
0 . i=4,7
——F(y) d =1
= fz \z—y\ (y) w(y) ) =
Js e FW) dw(y) , i=8
Js ooy e F) dw(y) , i=9 .
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Note that the properties of the ¥—wavelets of type i (analogously to variants of
spherical wavelets developed in [7], [8]) do not presume the zero—mean property
of Wi. The wavelets constructed in this way, therefore, do not satisfy a sub-
stantial condition of the Euclidean concept. However, it should be pointed out
that a construction of wavelets possessing the zero-mean property (see [7]), is
obvious and will not be discussed here.

6.3 Scale Discretized Reconstruction Formula

Until now we were concerned with a scale continuous approach to wavelets. In
what follows, scale discrete Y—scaling functions and wavelets of type i will be
introduced. We start with the choice of a sequence which divides the continuous
scale interval (0,00) into discrete pieces. More explicitly, (7j)jez denotes a
sequence of real numbers satisfying

lim 7, =0 (108)
J—0o0
and
lim 7, =00 . (109)
j——o0

Remark. For example, one may choose 7; = 277, j € Z (note that in this case,
2Tj+1 = Tj, j € Z)

Given a Y-scaling function {®%},¢ of type i, then we clearly define the (scale)
discretized Y—scaling function of type i by {<I>i]_ Yiez.
In doing so, by Theorem 6.5, we immediately get the following result.

THEOREM 6.6. For F € L*(X)
lim [ @L(,y)F(y) dw(y) (110)
j— Js

F , i=2,3,56

- fz\_y\ ()dw(y) , i=1 (111)
fz 8()|1| () () , 1=28
Js o2 FW) doly) , i=9

holds in the || - ||lL2(x)—sense.

e

Our procedure canonically leads us to the following type of scale discretized
wavelets.

DEFINITION 6.7. Let {®,,;}jez be a discretized X-scaling function of type i.
Then the (scale) discretized Y—wavelet function of type i is defined by

(= [ wenT, ez (112)
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In connection with (102) it follows that

() = - [ rgeieT (113)
i iy AT T
= (I)Z/r]+1( I ) - (I):'J ('7 )

Formula (113) is called (scale) discretized Y.—scaling equation of type i.
Assume now that F is a function of class L?(¥). Observing the discretized
Y—scaling equation of type i we get for J € Z and N € N

/ B, (u)F) doly) = / & (,y)F(y) du(y)

Therefore we are able to formulate the following corollary.

COROLLARY 6.8. Let {‘Iﬁj }iez be a (scale) discretized Y—scaling function of
type i. Then the multiscale representation of a function F € L2(X)

f/m ) do(y)

j=—o0
F , 1=2,3,5,6
0 , 1=4,5
_ ) S Fw Aoty L =1
s () ﬁF(y) dw(y) , 1=8
Je i F @) dwly)  i=9
holds in the || - ||r2(x) —sense.

Corollary 6.8 admits the following reformulation.

COROLLARY 6.9. Under the assumption of Corollary 6.8

+Z/\I!’ y) dw(y)

F , i=2,3,5,6
0 , 1=4,5
- fzﬁ () dw(y) , =1
o ) dw(y) , i=8

K
!

(y) dw(y) , i=9

or every J € in the sense of the || - ||r2(x) —norm), where P! s given by
f JEZ (inth f th (=) here P} (F b

Pi (F) = / B (y)F(y) duly) -
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The scale discretized Y—wavelets allow the following formulation

T.TDTJ' \I!ll = TCI?‘II:'J = \I!i'j;m = \I!:'] (w? .) (114)
fori=1,...,9and z € X.
The (scale) discretized X—wavelet transform of type i is defined by

(WT) :L*(Z) = {H:ZxX — ]R‘ ‘Z /Z(H(j;y))2 dw(y) < oo
with
(W) (F) (ry; ) = / U (g)F(y) doly) -

THEOREM 6.10. Let {<I>i]_ }iez be a (scale) discretized Y—scaling function of type
i. Then, for all F € L2(X), the reconstruction formula

F . i=2,3,5,6
. 0 L i=4,7
S W) (F) i) = { Jx = FW) dely) , i=1
Jj=—o0 fz 3,:9(.) _;y‘F(y) dw(y) , 1=28
Js Bua(y) _;y\F(y) do(y) , i=9
holds in || - [|.2(x) —sense.

6.4 Scale and Detail Spaces

Comparing this result with the continuous analogue (6.4) we notice that the
subdivision of the continuous scale interval (0,00) into discrete pieces means
substitution of the integral over 7 by an associated discrete sum.

As in the spherical theory of wavelets (see [5], [6]), the operators RL_, P} defined
by

RL(F) = W00 dety), FeLX(m), (115)
PLR) = [ @ (0P det) FerX®) (116)

may be understood as band pass and low pass filter, respectively. The scale
spaces Vij and the detail spaces WTij of type i are defined by

Vi = PL(L*(Y) = {P;’J_ (F)|F € L2(z)}, (117)

i
Wi

Ri (L(D) = {Rg (F)|F e L2(E)} , (118)
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respectively. From the identity
[ CoF@ de) = [ @ C0F@ dsw) ()
¥ >
+ [ VL) o

ie.

Pl (F) = Pi,(F) + Ri, (F) (120)
for all J € Z it easily follows that

Vi =Vo +Wo . (121)

However, it should be remarked that the sum (121) generally is neither direct
nor orthogonal.
The equation (121) may be interpreted in the following way: The set Vij con-
tains a Pﬁj —filtered version of a function belonging to the class L*(¥). The
lower the scale, the stronger the intensity of filtering. By adding ’Ri}_ —details’
contained in the space Wij the space Vij L8 created, which consists of a filtered
versions at resolution j + 1. Obviously, for i = 2,3,5,6,

%) ||'||L2(z:)
U vi =1%(%) .
j=—o00
Moreover,

T”'”rﬂ(z)

U v = P(0,0)(L(D)), (122)
j=—o00

%) ||'||L2(2)

U v = PL(0,0)(L2(%)), (123)
j=—00

%) ||'||L2(2)

U v = PL(0,0)(L2(%)) . (124)
j=—00

6.5 Multiresolution Analysis

Our purpose is to establish a multiresolution analysis for the X —wavelet func-
tion.

DEFINITION 6.11. A family of subspaces {V}(Z)},¢(0,00) C L2(2),i € {1,...,9},
is called a multiresolution analysis if it satisfies the following properties:

(i) {0} cViE) cVi(Z)CL*(X) for 0< 7 <7 <00,
(i) {lim, o0 ([ @40, 9)F(y) dw(y)) |F € L*(2)} = {0},
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(iii) {F € L2(X)|F € V(%) for some T € (0, oo)}”'”“@) =L%(®).

The following lemma summarizes results which were listed in the previous sec-
tion.

LEMMA 6.12. For the scale spaces V', i = 5,6, of the ¥—scaling function of
type 5 and 6 defined in (117), respectively, the following statements are true:

(i) Vi C L2(%) for all T € (,00),
(i) {lim; o0 (f5 ®2(,y)F(y) dw(y)) |F € L2 (%)} = {0},

(iii) V! is a linear subspace of L*(X),

() {F € L2(X)|F € Vi(X) for some T € (0,00)}”.”142(2) =L3(%).

Proof. Statement (i) is clear by the definition of the scale spaces. Moreover,
statement (i7) follows from the fact that the ¥—scaling functions of type 5 and
6 tend to 0 for 7 — co. Finally, property (zi7) is a result of the linearity of the
integral, while (iv) has been shown in the last section. O

We are interested in discussing the multiresolution analysis for the spherical case
and the case of a regular surface separately. From now on, we restrict ourselves
to the types ¢ = 5, 6.

6.5.1 Spherical Case

First we prove the following lemma which forms the bridge to the spherical
wavelet theory of [6], [7].

LEMMA 6.13. The family of scale spaces {Vi(Qa)}re(0,00), @ € {5,6}, fulfills
the properties of a multiresolution analysis in L2(Q,) for arbitrary a > 0.

Proof. We embed our considerations in the theory of product kernels and spher-
ical multiscale theory as presented in [7]. By using the identity

Z('“) (€ 1) (125)

Y|

Iﬂf—yl Tl
with @ = [z| &,y = y|n, &n € Q2] < |y| and
e +71v(z)|=a+1, x€Q,, TE(—a,0) (126)

we first get by some easy calculations

= 2n+1

Bry) = Y Grs(an)Pa(t), (127)
n=0
>~ 2n+1

q)?—(xay) = 47T G‘/I—\,G(avn)Pn(t)a (128)

n=0
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with 2,y € Qq, t = T4 € [~1,1] and

A B 1 n(a—7)""1  (n+1)a"?
Grslanm) = 2n + 1 an—1 * (a+7)nt2 )7 (129)
1 na™~! (n+1)(a—1)"
A _
Glg(a,n) = ST <(a e + e ) ; (130)

n €Ny, 7 € (0,a) and a > 0.
This is the standard spectral representation for product kernels as used in [7].
However, in the approach presented here, elementary representations in explicit
form are additionally available for the scaling functions and the wavelets.

It should be noted that the restriction 7 < a does not really matter, since we
are interested in the limit 7 — 0.

For the symbol G7 ;(a,n) of the spherical kernels ®} and ®¢

>, respectively, we
easily obtain the following properties:

(i) Gps(,0) = 2 for all 7 € (0,a),

(ii) G2 6(,0) =1 for all 7 € (0,a),
(iii) lim G ,(a,n) =1 foralln € Ny and i € {5,6},

T—=0
>0

(iv) G2 ;(a,n) is monotonically decreasing in 7 for all n € Ny, 7 € (0, ) and
i€ {5,6}.

The first three points are clear from our construction, the fourth point can easily
be verified by the facts that

9 1 a — )2 a2
grGhstem = gy (ntne DT e D 2 )
_ (41 (nla=7)"?  (n+2)a"? 0
N 2n +1 an—1 (a4 7)nt3 ’

0 n _ 1 antl G
EGT,S(OQ TL) - om+1 <—TL(TL + 1) (CK + T)n+2 - TL(TL + 1) am >
n+1 _ <\n—1
_nn+l) ([ a (@—s) <0,
2n+1 \(a+7)nt2 "

for n € Ny and 7 € (0, ). By these properties we are immediately able to de-
duce that the scale spaces V,5(Q,) and V() form a multiresolution analysis
in L2(Q). (For a more detailed discussion concerning the idea of continuous
multiresolution analysis the reader is referred to [6], [7].) O
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For the sake of completeness we next present the symbols of the ¥ —wavelet
function of type 5 and 6, respectively

— 2n + 1
‘II?.(.’E,Z/) = 47T Qs(aan)Pn(t)a (131)
n=0
00
2n+1
‘II?.(.’E,Z/) = Z A7 Qﬁ(aan)Pn(t)a (132)
n=0

with z,y € Qq, t = T4 and

A n+1) (nla—T1)""2 n + 2)ant?

= A (o ety g
A n(n+1 antt a—s)"!

T,G(a7n) = T 2(TL + 1) <(a _+_7.)n+2 + ( an) > ’ (134)

forn € Np.

6.5.2 Non-spherical Case

Let ¥ be a regular surface. Then, as shown in Lemma 6.12, the scale spaces V.°
fulfill the properties of a multiresolution analysis up to one condition, viz. the
inclusion property

VS(®) cVE(R) for 7' < T (135)
In what follows we discuss the inclusion property in more detail. The point of de-
parture is the observation that the system (an_17k|2) os is closed and

k=1,...,2n+1
complete in L?(X), i.e. a countable Hilbert basis in L?(X). Clearly, by means
of the well-known Gram-Schmidt orthonormalization process, this system can

be orthonormalized resulting in the countable system (H &1k (Zs ))

which is complete and closed in L2(¥) and fulfills the orthonormality [;roperty
/ HO, o (Sa) HO oy (502) dw(z) = by . (136)
)

The Y —scaling function of type 6 can now be expanded in terms of this L?(X)—or-
thonormal system. In other words, there exist functions ¢, ; € L2(¥) such that

oo 2n+1

@?(Z‘, ) = Z Z C:L,k(m) Stnfl,k:(z) ')7 r €. (137)

n=0 k=1

The function ¢f, ;, € L?(X) itself can then be expanded into a Fourier series and
we get

oo 2n+l oo 2m+1

(., )= 33 Ny H o k(B,0) Hy5(5,0). (138)

n=0 k=1 m=0 j=1

This leads us to the following result.
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k=1,...,2n+1

{5y V1 4(5 )} rmot it o (139)

is an L2(Z x X)—orthonormal system.

Proof. By using Fubini’s theorem and the L*(X)—orthonormality of H*, _, (%, .)
we find

(H ot (3 Vs (5 ) HE o (5 Do (8,0))

</E He, ) o(S,2)H ) 10 (S, 2) dw($)>

(/E Hgm—l,j(zvy)Hgm’—l,j’(an) dw(y))
= 6n,n’6k,k’6m,m’5j,j’-

O

In other words, observing the identity (138) and Parseval’s theorem we are led
to the following representation of the L(X x ¥) —norm of the ¥ —scaling function

of type 6
oo 2n+l1 oo 2m+1

||(I>76'||L2(E><E) = Z Z Z Z (A;,k,m,j)z' (140)

n=0 k=1 m=0 j=1

Based on these auxiliary tools we are therefore able to formulate the following
result.

THEOREM 6.15. If the ¥—scaling function of type 6, ®%, satisfies

T

|23

Hleams) < 2%

L2(ExX)’ (141)
then the scale spaces VS(X) of the ¥—scaling function of type 6 satisfy the
inclusion

VEE) cVE(R) . (142)
Proof. Let a function G in V5(X) be given. Then there exists a function
F € L?(2) such that G = [, ®5(.,y)F(y) dw(y). Translated in the spectral

language in terms of the system {anilﬁk(E, )} this equivalently

means that
oo 2n+1

GNm,j) =Y Y FrN0 k)AL ko (143)

n=0 k=1
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forallm=20,1,...;j=1,...,2m + 1. Thus we obtain

oo 2n+1 2
(GN(m, )" = (Z > FNnk) Z,k,m,j>

n=0 k=1

IN

IF sy S (Npoms) (144)
n=1

Keeping this result in mind we find the following relation:

Gl 2
Gevf(z)@”(ini <. (145)
1222 (x5

Observing the condition (141) it follows that

G2 (s G2 (s (146)
||(I>?—’||L2(z><z) N ||(I>§—||L2(Z><E)
Using (145) we finally get the desired result G € V5 (Z). O

It is obvious that the multiresolution property for the scale spaces V.>(X) for
the non—spherical case can be proved in analogy to the considerations above.

6.6 A Tree Algorithm

Next we deal with some aspects of scientific computing (for a similar approach
in spherical theory see [9]). We are interested in a pyramid scheme for the (ap-
proximate) recursive computation of the integrals PTij (F) and Rij (F) starting
from an initial approximation of a given function F' € L2(X). The tree algorithm
(pyramid scheme) is based on the existence of a ‘reproducing kernel function'
on the regular surface 3.

A pyramid scheme is a tree algorithm with the following ingredients. Starting
from a sufficiently large J € N such that for all x € &

F(x) , 1=2,3,5,6
) Ny ) 0 5 'L = 4, 7
PL(F) =Y ap? @l (z,yp7) = P(0,0)F(z) , i= (147)
k=1 P1(0,0) , 1=8
-P|2(0) 0) y 1 9
we want to calculate coefficients
T
an; € RV, qNi = (aivj,...,a%;) , j=Jdo,...,d,
such that the following statements hold true:
1. The vectors a™i, j = Jy,...,J — 1, are obtainable by recursion starting

from the vector a?V7.
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2. For j = Jy,...,J

Nj
PL(F)@) = [ @ (2,0)F(y) doly) = > @, (2,7
k=1

Forj=Jo+1,...,J

R (F)(x) = /‘P () F( Z‘I’ (o)

(the symbol '~ always means that the error is assumed to be negligible).

In the scheme we base the numerical integration on certain approximate for-
mulae associated to known weights w,ivj € R and prescribed knots y,lcvj € X,
j =Jo,-..,J. This may be established, for example, by transforming the inte-
grals over the regular surface ¥ to integrals over the (unit) sphere  in case an
explicit transformation © : @ — ¥ is given (see [4], [18]). Note that j denotes
the scale of the discretized scaling function, N; is the number of integration
points to the accompanying scale j, and k denotes the index of the integration
knot within the integration formulae under consideration, i.e.:

N;
2) =Y W' F (y{f) 3 (xy{f) : (148)
k=1
j=Joy...J,
Nj_
R @~y wpF ()l (), (49)
k=1

j=Jdo+1,...,J.

The pyramid scheme — as every recursive implementation — is divided into two
parts, the initial step and the recursion step, here called the pyramid step.

Initial Step. For a suitable large integer J, P} (x) is sufficiently close to the
right hand side of (147) for all € ¥. Thus we simply get by (148)

ay? =wy’ F(yy’), k=1,...,Ny . (150)

Pyramid Step. The essential idea for the development of our recursive scheme
is the existence of a (symmetric) kernel function Z} : ¥ x ¥ — R such that

¥, = [ (0202 dol2) (151)

and

Zi(z,y) ~ / =i (2, 2)5 44 (3, 2) dwl2) (152)
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for j = Jy,...,J.

Since our scaling functions are non—bandlimited, the scale spaces VT"J_ are infinite—
dimensional. This leads us to choose the functions =;, for example, to be equal
to

=z = 9! j=Jo,...,J; 1 €1{2,3,56} .

Ti4+L?

for suitable L € Ny. By virtue of the approximate integration rules on the
sphere we thus get

/E i () F(y) doly) ~ / Ei(y,2) / Bi (- 2)F(y) dw(z) du(y)
/ B (2) / Ei(y, 2)F(y) dw(y) dw(z)
> >

1

N;
N; &i N;
~ S aMel (y) (154)
k=1
for j = Jo,...,J — 1, where we have set
N; N; =i [, Nj
a,’ = w, /E:j (yk ,y) F(y) dw(y) (155)

for j = Jo,...,J —land k =1,...,N;. Hence, in connection with (153), we
find

= ol [ = () P doty (156)

o [ [ SaenEed.s) wEF) d)

1

Njt1
N; Njy1—i (. N; Nj i N
w32 = () /Eiﬁ'ﬂ (v ) F(y) duy)
=1

Njt1

_ N; Njti= (, Nj  Njt1\ Njp1
= wy E : Wy =i \Yx ¥ a; .
=1

1

forj=J—1,...,Joand k=1,...,N;.

We see that the coefficients afj’ ~! can be calculated recursively from a;"? for
the initial level J, akNJ’2 can be deduced from aiv"’l

reconstruction scheme

, etc. Finally, we get as a

P} (F)

1

Nj
S ayiel (y,iv) G=Jorr s, (157)
k=1

Nj_1
Ri_(F) =~ S aywl (L), j=do+1,d . (158)
k=1
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Note that the coefficients a7 in the initial step do not depend on the choice
of 2% = <I>lTJ+L. Furthermore, the functions =, j = Jo,...,J-1, can be chosen

independently of the scaling function {<I>ij }jez used in (157) and (158).

Table 1: Pyramid Scheme (Tree Algorithm)

Initial step: For J sufficiently large
afcv" :w,iVJ F(y,iVJ), k=1,...,N;

Pyramid step: For j = Jy,...,J —land k=1,...,N;

Njt1
Ny _  Nj =i (o Ni o Nit1) Njir
ap" = Wy E:Hj Y W @y
=1

In conclusion, the above considerations lead us to the following decomposition
and reconstruction scheme:

F - a7 = V= 5 0 5 dVorr 5 oMV
R R o R
P, (F) P, (F) Py (F) P, (F)

(decomposition scheme)

alN7o alNJo+1
o !
P7Z'J0 (F) 77:J0+1 (F)
| N N
e E) =+ = R
alN7-1
o
P, (F)
. N\
+ = R, (F) — + —= P,(F)

(reconstruction scheme).

The numerical effort of a pyramid step can drastically be reduced by use of a
panel—clustering method (e.g. fast multipole procedures as developed by [10]).
In doing so, the evaluations take advantage of the localizing structure of the
kernels E§ Roughly spoken, the kernel is split into a near field and a far field
component. The far field component is approximated by a certain expression
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obtaining the ’low frequency contributions’. For the points close to the eval-
uation position the evaluation uses the exact near field of the kernel. For the
remaining points, the approximate far field contributions are put together.

The numerical results (based on the types i = 5,6) presented in the Diploma
thesis [18] illustrate the efficiency and economy in applications of our wavelet
method for different types of regular surfaces (e.g. sphere, ellipsoid, Cassini‘s
surfaces, etc). Figure 5 demonstrates the functionality of the multiscale analysis.
The mechanism is, for example, as follows: To a scale-—reconstruction at scale
J = b5 the detail-structure at scale J = 5 has to be added to get the scale—
reconstruction at scale J = 6. This can be done globally as shown in Figure 5
or locally as shown in Figure 4 without getting any oscillations because of the
space—localizing properties of the scaling functions.

Finally three important applications of wavelet decomposition and reconstruc-
tion should be mentioned:

(i) The ’zoom-in‘ property allows a local high—scale reconstruction of fine
structure based on global data. For the evaluation of a functional value
under consideration, only wavelet coefficients close to the point have to
be taken into account. This aspect of functional evaluation enables us
to derive local features within a global model. This is demonstrated in
Figure 4 by a reconstruction of the EGM96-geopotential model [16] from
discrete data in local areas (for example, South—America).

(ii) Data compression techniques reduce storage requirements and speed up
read or write operations. The loss of information emerged by data com-
pression is shown in Figure 6.

(iii) In Figure 7 the detection of a high frequency phenomena is demonstrated.
We added within the EGM96—model a mass point lying 63km under the
(spherical) Earth’s surface and at 80° West and 30° South to the EGM96—
geopotential model. It is well known that phenomena with such short
wavelengths cannot be detected with the spherical harmonic techniques
known in the literature.

In conclusion, as mentioned in our Introduction, three esssential features are
incorporated in this way of thinking about wavelets generated by layer poten-
tials, namely the basis property, the zoom—in ability, and fast computation. In
particular, these facts justify the characterization of our wavelets as ’building
blocks’ that enable fast decorrelation of data given on a regular surface.
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Figure 4: Tllustration of the zoom—in property. In order to reconstruct a function
on a local area, only data in a certain neighborhood of this area are used. Since
global high—scale reconstruction of fine structure is very time—consuming, only
the area of interest is reconstructed which can be done with a considerably fewer
effort.
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(c) global scale-reconstruction at scale J =6

Figure 5: Scale-reconstruction at scale J = 6 (c¢) consists of detail-reconstruct-
ion at scale J =5 (b) added to scale-reconstruction at scale J =5 (a).
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(a) reconstruction at scale J = 8
with compression rate of 19%
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(c) reconstruction at scale J = 8
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Figure 6: Local reconstruction with ¥—scaling function <I’fj at scale 7 = 8 with
compressed rate of wavelet coefficients after setting a certain treshold. The
compression rate indicates the percentage of neglected wavelet coefficients.
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(a) local reconstruction with
Y—scaling function @2 at scale
j=5

(c) local reconstruction with
Y —wavelet function \Ilgj at scale
i=6

'S

'S

(e) local reconstruction with
> —scaling function \Ilgj at scale
j=38

o]
moakm.

(b) local reconstruction with
S—wavelet function W% at scale
j=5

(d) local reconstruction with
Y —wavelet function \IJ?J, at scale
i=T

(f) local reconstruction with

Y—scaling function ®5 at scale
J

j=5

Figure 7: Detection of high frequency perturbation within a local area of the
EGM96—geopotential model. The buried mass point at 80° West, 30° South is
clearly detected, especially in the wavelet reconstruction at scale 8.
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7 Multiscale Modelling of Boundary-Value Prob-
lems

The classical problem of solving a boundary-value problem for the Laplace equa-
tion AU = 0 from given data on a regular boundary ¥ arises in many applica-
tions (for example, geophysics, mechanics, electromagnetism, etc). Of particular
importance is the Dirichlet (resp. Neumann) boundary-value problem, i.e., the
determination of U from given potential values (resp. normal derivatives) on
the boundary. Finding the solution in the exterior space of a regular boundary
(such as e.g. sphere, ellipsoid, geoid, (actual) Earth’s surface) is of importance
in all Earth’s sciences:

7.1 Formulation and Well-posedness

We begin with the formulation of the boundary—value problems.
Exterior Dirichlet Problem (EDP): Given F € C((%), find a function U €
Pot(?) (Text) such that

Ut(z) = lim U(z + tv(z)) = F(z), z€X.

>0

Exterior Neumann Problem (ENP): Given a function F € C(°)(¥), find U €
Pot!) (Text) such that

36U+ (z) = lim v(z) - (VU)(z + Tv(2)) = F(2), «€X.
Vs >0

Ezistence and Uniqueness: We recall the role of layer potentials in the afore-
mentioned boundary-value problems:

(EDP) Let D* (more accurately, Dy) denote the following set:
Dt = {UH|U € Pot'” (Texr) }- (159)

The solution of (EDP) is uniquely determined, hence, C(®)(£) = D*. It can be
formulated in terms of a potential of the form

0 1 1
U(z) = d — d 160
@)= [ Q) gt dolo) + 7 [ QW) dotw). (160
where Q € C(9)(X) satisfies the integral equation
F=U"=(2rl+ P+ P5(0,0))Q. (161)

with
PQ) iz - / Q) du(y). (162)
|93| )
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Setting
T =27l + P+ P;(0,0) (163)
we obtain
kern(T*) = {0}, (164)
T(CO(%)) = D*. (165)
By completion,
12(s) = prllee — Gomy! e (166)

(ENP) Let N* (more accurately, N5i) denote the following set:

JF
Nt = {_38[5 | Ue Pot<1>(m)} : (167)
b

The solution of (ENP) is uniquely determined, hence, C(9)(£) = N*. It can be
formulated in terms of a single layer potential

1
V) = [ Q) dolw), Q€ C(®), (168)
b |z — yl
where @ satisfies the integral equations
+
F =" _ (ot 1 B(0,0))0. (169)
61/2
Setting
T = (—2nI + P;1(0,0)) (170)
we obtain
kern (T) = {0}, (171)
T(CO () =NT. (172)
By completion,
12(x) = N+ 2o, (173)

Analogous arguments, of course, hold for the inner boundary-value problems.
The details are left to the reader. A more comprehensive treatment of classical
potential theory may be found in standard textbooks, e.g. [11], [13], [17], [23].

7.2 Regularity Theorems

From the maximum/minimum principle of potential theory we already know
that
sup |U(z)| < sup |U™ ()| (174)
TES axt TEY
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holds for U € Pot(o)(Eext). Moreover, from the theory of integral equations it
can be easily detected (see e.g. [19]) that there exists a constant C (dependent
on ¥) such that for U € Pot™Y) (Tey)

+

oU
sup |U(z)| < C sup
TEXext zeY v

(z) (175)

In what follows we want to verify analogous regularity theorems in the L2(X)-
context.

THEOREM 7.1. Let U be of class Pot(®) (Zext). Then, for every (sufficiently
small) p > 0, there exists a constant C(= C(k; K, X)) such that

532‘(V(k)U) (.7;)‘ <C (/Z Ut ()] dw(m)>1/2 (176)

for all K C Sex, with dist (K,%) > p and for all k € Ny (where VOU = U
and VU is the gradient of V*-DU),

Proof. Recall that the exterior Dirichlet problem (EDP) can be solved by (160),
(161). The operator T' defined by (163) and its adjoint operator T* with respect

to || - ||lLz(z) are bijective in the Banach space (C(O)(E),H-HC(U)(E)) (see e.g.
[19]). By virtue of the open mapping theorem (see e.g. [24]) the operators T'
and T~! are linear and bounded with respect to || - llco) (sy-  Furthermore,

(T*)~t = (T~')*. Therefore, by virtue of the technique due to P. Lax (1954)
(cf. Theorem 4.1), T and its inverse operator T~! are bounded with respect to
- llasy-

Now, for all sufficiently small values p > 0 and all points z € K C X, with
dist(K,%) > p, the Cauchy-Schwarz inequality gives

()@ = 1 ew (W agpy ) @ 07

) 1 1)? :
< Vo ————— t —| dw
< (/ ov) o —l * (y)>
( [ ewr dw<y>) .
>
This shows us that
sup | (V) @] < 0 ([ oW dotw) (17s)
zeK >
where we have used the abbreviation
) 1 2 :
D = sup / %2 +—| dw . 179
xeK< IV B eyl el W (7
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However,
1
2
sup | (v“ 2)| < D (/ T > dw(y )) . (180)
zeK
Because of the boundedness of T—! with respect to || - ||r2(x) this tells us with

C= D||T_1||L2(Z) that

sup | (YO0) @ < ¢ ([ IFwP dw(y>);. (1s1)

Hence, the statement (Theorem 7.1) is true. O

An analogous argument yields the following theorem.

THEOREM 7.2. Let U be of class Pot(l)(Eext). Then, for every (sufficiently
small) p > 0, there ezists a constant C(= C(k; K, X)) such that

(7l <]

for all K C Seyy with dist (K,) > p > 0 and for all k € Ny.

oUu+

ov

5 1/2
(z) dw(m)) (182)

7.3 Solution by Outer Harmonics

Combining the L?-closure (Corollary 5.3) for the system of outer harmonics and
the regularity theorems (Theorem 7.1) we first obtain the following results.

THEOREM 7.3. Let ¥ be a regular surface satisfying the condition (10).

(EDP) For given F € CO(X), let U be the potential of class Pot'®) (Sexq) with
Ut = F. Then, for any given value € > 0 and K C Yoy with dist(K,%) > 0
there exist an integer m (dependent on ¢) and a set of coefficients
Q0,15 s Qm,1yeeey Am,2m+1 Such that

m 2n+1 2 %
/ Z Z an,j H —n 1,5 37) dw(x) <e
n=0 j=1
and
m 2n+1
sup ( k)U) Z an.j (V(k a 17]) (@)| < Ce
zeK =0 j—1

hold for all k € Ny.
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(ENP) For given F € C(O)( ), let U satisfy U € Pot 1)( ext) oU™ |Ovs =
Then, for any given value € > 0 and K C ey, with dist(K,%) > 0 there emst
an integer m (dependent on €) and a set of coefficients ap 1, ..., m 1, -y G, 2m+1
such that

=

2

m 2n+1
8H°‘
/ g E ap,j—F—= n—l,j (z)| dw(z) <e
p)

n=0 j=1

and

sup ( k)U) i2§1am (V(k i 17]) ()| < Ce
j=1

zeK n=0
hold for all k € Ny.

In other words, locally uniform approximation is guaranteed in terms of outer
harmonics, i.e. the L2- approximation in terms of outer harmonics on ¥ implies
the uniform approximation (in ordinary sense) on each subset K with positive
distance of K to ¥.

Unfortunately, the theorems developed until now are non-constructive, since fur-
ther information about the choice of m and the coefficients of the approximating
linear combination is needed. In order to derive a constructive approximation
theorem the system of potential values and normal derivatives, respectively, has
to be orthonormalized on ¥. As result we obtain a orthogonal Fourier approzi-
mation that shows locally uniform approximation.

THEOREM 7.4. Let ¥ be a regular surface such that (10) holds true.

(EDP) For given F € CO(X), let U satisfy U € Pot'? (Texy), U™ = F. Cor-
responding to the countably infinite sequence (Hﬁ,kl’]) there exists a system

(H n 1;(%;7) € Pot™ (Aewy) such that (H 1 j(5;-)|Z) is orthonormal in
the sense that

/ Henor f (S5 ) Ho 1 (S5 ) deoly) = St 051
>

Consequently, U is representable in the form
oo 2n+1
=35 ([ FH i) do)) Ho (S5
n=0 j=1

for all points * € K with K C Yey, and dist(K,%) > 0. Moreover, for each
U™ given by

ii ([ P H-mss(S0) o)) Honms (i)

n=0
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we have the estimate

sup ‘ (V(k)U) (x) — (V(k)U(m)) (a:)‘
zeR

m 2n+1 2

<c| [IFwP awm-X Y

n=0 j=1

2

/ YV Hon1,5(Ssy) doly)

(ENP) For given F € CO(X), let U satisfy U € Pot™ (Sexe), %lf =F. Cor-
responding to the countably infinite sequence (anfl’j) there exists a system
(H-n-1,;(%5%) C Pot(?) (Aexs) such that (OH_p—1,;(%;-)/0vs) is orthonormal
in the sense that

/ OH_n1,;(Z5y) OH 1-1,1(Z;y)
» ov ov

dw(y) = o 5jk-

Consequently U is representable in the form

oo 2n+1

P> (/ w%u’j(z;y) dw(l/)) H_n1,;(557)

n=0 j=1

for all points x € K with K C ey and dist(K,%) > 0. Moreover, for each
U™ given by

m 2n+1

UMy =3 % (/ Fly M dw(y)> H_p—1,;(X;2)

n=0 j=1

we have the estimate

sup ‘(V(’“)U) (x) — (V(k)U(m)) (a:)‘

z€K
m 2n+1 2 3
OH_,_1;(%;
<o [Irwr aw - Y 3 | [ro =550 au)
n=0 j=1

Note that the orthonormalization procedure can be performed (e.g. by the well—
known Gram-Schmidt orthonormalization process) once and for all when the
regular surface ¥ is specified.

Clearly, in the same way, the inner boundary-value problems can be formulated
by generalized Fourier expansions (orthogonal expansions) in terms of inner
harmonics. Furthermore, locally uniform approximation by ‘generalized Fourier
expansions’ can be obtained not only for (the multipole system of inner/outer)
harmonics, but also for the mass point and related kernel representations. The
details are omitted.
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7.4 Solution by Wavelets

(EDP) For given F € C(0 (), the solution U € Pot(® (Teyq) with UT = F of
the exterior Dirichlet problem (EDP) can be written as layer potential (160),
where the double layer Q € C(©)(X) satisfies the integral equation

27 Q(x / Qy) duly / 3 (2,1)Q() dw(y) ~ F(z)  (183)

for all x € ¥ (L € N sufficiently large). An approximation of scale .J
ZaNJqﬂ (a: glNJ) , z€YX (184)

(with i € {2,3,5,6},4,"" € R,y,)"" € S,l=1,...,N; and J,N; € N sufficiently
large) is deducable from (183) by solvmg a system of linear equations obtained
by an appropriate approximation method such as collocation, Galerkin proce-
dure, least squares approximation, etc .

(ENP) For given F € C(O(X), the solution U € Pot*) (Tx) with %(‘{;r = F of
the exterior Dirichlet problem (ENP) can be written as layer potential (168),
where the single layer Q € C(9)(X) satisfies the integral equation

2mQ(a) + / 35, (2,1)Q() dw(y) ~ F(z) (185)

for all z € ¥ (L € N sufficiently large). An approximation of scale J

Z PHEE 32 (a: glNJ) . zeYX (186)

(with i € {2,3,5,6}, 4" € R, 9’ € ¥,1 =1,...,Ny and J,N; € N suf-
ficiently large) is deducable from (185) by solving a sytem of linear equations
obtained by an appropriate approximation method such as collocation, Galerkin
procedure, least squares approximation, etc .

For solving the linear systems fast multipole methods (FMM) are applicable (see
e.g. [10]). The aforementioned observations concerning the exterior boundary
value problems of potential theory lead us to tree algorithms with the following
ingredients:

T
Starting from a7 € RN7  gN7 = (div", d%") , the coefficients
a N; ~N; N; T .
i e RV af—(alJ,.. aN) = Joye T — 1, (187)

are determined such that the following rules hold true:
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1. The vectors a™i,j = Jy,...,J — 1 are given by recursion (see Section 6.6)
Njt1

W = w3 () a (158)
=1

2. For j = Jy,...J

Ny
PLQ)@) = ay el (m,g),iv") , TEYD. (189)

Forj=Jy+1,....0

R _( Z Vvl (z37), wes (190)

where

R, _,(Q)(x) = PL(Q)(x) - PL_,(Q)(x) . (191)

THEOREM 7.5. Let ¥ be a regular surface such that (10) holds true.

(EDP) For given F € CO)(X), let U be the potential of class Pot?) (Sexe) with
Ut = F. The function Fy € C°O)(X) given by

Fy(x) (192)
kG Nig < N, AL N, ; N,
= 271'2&1 JO@’TJO (w,g)l JO) + mZdl JO/E'I’ZTJO (y,gjl JO) dw(y)
1=1
Ny,
N
+ Z / (y,yl J°) dw(y)
J—1 1 Njy1
+ > |2 Z i (2, ) + Tl Z ’“/ v (1,97 duly)
j=Jo =1 =1

J+1

P [ @, (nil) ).

x € %, represents a J—scale approzimation of F € C(O(X) in the {25 —sense,
while Uy € Pot(o)(Eext) given by

Us(z) = Zd;\% ‘I’zno (y’glNJO) (|i~| * 62 )Ixiy|> L)

R o i) (G gy )
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represents a J—scale approximation of U in the ||'||C(0)(f) —sense for every K C
Yexs with dist(K,¥) > 0. Furthermore

1/2
sup (VP U () — V(k)UJ(m)‘ <C </E |F(z) — Fy(z)|” dw(a:)) (193)

zEK
forallk e Ny.

(ENP) For given F € CO)(), let U be the potential of class PotY) (Sexe) with
3U+ = F. The function F; € C(°)(X) given by

FJ(w) (194)
Ny, N L Moo N
- —27r2al Jo <I>’ (a: 9, JO) |— Z / (y,g]l JO) dw(y)
=1 =1
Ny,

~N. i ~N.
£ Y [ @l (1) d)
=1
J-1 Njt1 Njt1

£ Y (e Y A () + %Z / (3 doty)

j=Jo =1

J+1

+ Z a ’“/ v (v ) dety) |

x € T, represents a J—scale approzimation of F € C°)(X) in the IIlly2(5) —sense,
while Uy € Pot(o)(Eext) given by

NJO

Z NJO/ TJo y yl ) |1‘iy|dw(y)

< 1N]+1 i+1 AV i+ 1
DI I / (y,yl )|$_y|dw(y)

Jo I=1

represents a J—scale approzimation of U in the ||||¢) ) —sense for every K C
Yext with dist(K,¥) > 0. Furthermore

1/2
sup VP U (z) — v<k)UJ(x)‘ <C </E |F(z) — Fy(z)| dw(a:)) (195)

z€EK
for all k € Ny.
In other words, the tree algorithm developed above uses an approximation

method by solving a linear system for the initial step and integration rules
with known weights and knots for the subsequent pyramid steps.
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7.5 Concluding Remarks

The wavelet solution of boundary—value problems as presented here can be gen-
eralized in canonical way to boundary—value problems of elasticity and electro-
magnetic theory corresponding to regular surfaces. Furthermore, all considera-
tions formulated here for the three—dimensional case may be generalized as well
to higher dimensions.
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