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Preface

The study of families of curves with prescribed singularities has a long tra-
dition. Its foundations were laid by Plücker, Severi, Segre, and Zariski at
the beginning of the 20th century. Leading to interesting results with appli-
cations in singularity theory and in the topology of complex algebraic curves
and surfaces it has attained the continuous attraction of algebraic geometers
since then.

Throughout this thesis we examine the varieties �������� ���
	�� ��������� � � � of irreducible
reduced curves in a fixed linear system � ��� on a smooth projective surface �
over � having precisely � singular points of types � ��������� � � – for a more precise
definition we refer to Chapter I. We are mainly interested in the following
three questions:

(a) Is ���
���� ����	�� ��������� � � � non-empty?

(b) Is ���
���� ����	�� ��������� � � � T-smooth, that is smooth of the expected dimension?

(c) Is ���
���� ��� 	�� ��������� � � � irreducible?

That the dimension be the expected one means that the dimension of � ��� drops
for each imposed singularity type � � exactly by the number of conditions im-
posed by � � – e. g. a node imposes one condition, a cusp two.

The simplest possible case of nodal plane curves was more or less completely
answered by Severi in the early 20th century. He showed that �������� ��� �!	 ��" � � ,
where # is a line in $&%	 , is non-empty if and only if

')( � ( 	+*�,.- �0/ 	+*�,21 �
1 �

Moreover, he showed that �3������ ��� �!	 ��" � � is T-smooth whenever it is non-empty,
and he claimed that the variety is always irreducible. Harris proved this
claim, which had become known as the Severi Conjecture by then, in 1985
(cf. [Har85b]). Considering more complicated singularities we may no longer
expect such complete answers. Hirano provides in [Hir92] a series of exam-
ples of irreducible cuspidal plane curves of degree *�451 /�687 , 9;:=< , imposing
more than

��>?�A@ �B
% conditions on � * #)� – that means in particular, we may hardly

expect to be able to realize all smaller quantities of cusps on an irreducible
curve of degree * . Moreover, we see that � �
���� �A�C�D	 ��" % � does not necessarily have
the expected dimension – examples of this behaviour were already known
to Segre (cf. [Seg29]). In 1974 Jonathan Wahl (cf. [Wah74b]) showed that
�E������ � �GFIH � �!	 68JK68JL/ " ��NM 'O' / " % � is non-reduced and hence singular. However, its
reduction is smooth. The first example, where also the reduction is singu-
lar, is due to Luengo. In [Lue87a] he shows that the plane curve P given
by QSR&T.UCVWQXU  TZY F�[ % has a single singular point of simple type " +\ and that
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� ������ R H �C� 	 " +\
�

is non-smooth, but reduced at P . Thus also the smoothness will fail
in general. And finally, already Zariski (cf. [Zar35]) knew that �3������ � H � �!	 J / " % �
consists of two connected components.

The best we may expect thus is to find numerical conditions, depending on
the divisor � and certain invariants of the singularities, which imply either
of the properties in question. In order to see that the conditions are of the
right kind - we then call them asymptotically proper -, they should not be too
far from necessary conditions respectively they should be nearly fulfilled for
series of counterexamples. Let us make this last statement a bit more precise.
Suppose that � 4 *�� for some fixed divisor � and *�� '

. We are looking for
conditions of the kind ��

��� �	�
	�� � ��
� 	+* � 

where � is some invariant of topological respectively analytical singularity
types and

� :���� Q�� is some polynomial, neither depending on * nor on the� � . We say that the condition is asymptotically proper, if there is a necessary
condition with the same invariants and a polynomial of the same degree. If
instead we find an infinite series of examples not having the desired property,
where, however, the above inequality is reversed for the same invariants and
some other polynomial of the same degree, we say that at least for the involved
subclass of singularity types, the condition is asymptotically proper. (See also
[Los98] Section 4.1.)

While the study of nodal and cuspidal curves has a long tradition, the con-
sideration of families of more complicated singularities needed a suitable de-
scription of the tangent space of the family at a point, giving a concrete mean-
ing to “the number of conditions imposed by a singularity type”, that is to
the expected dimension of the family. Greuel and Karras in [GrK89] in the
analytical case, Greuel and Lossen in [GrL96] in the topological case iden-
tify the tangent spaces basically with the global sections of the ideal sheaves
of certain zero-dimensional schemes associated to the singularity types (see
Defintion I.2.6 and Remark I.2.14). This approach - in combination with a
Viro gluing type method in the existence case - allows to reduce the exis-
tence, T-smoothness and irreducibility problem to the vanishing of certain
cohomology groups. Various efforts in this direction culminate in asymptot-
ically proper conditions for the existence (cf. [GLS98c]) and conditions for
the T-smoothness and irreducibility, which are better than any previously
known ones (cf. [GLS00]). Due to known examples the conditions for the
T-smoothness are even asymptotically proper for simple singularities and or-
dinary multiple points. For an overview on the state of the art in the case of
the plane curves we refer to [GrS99].

While the previous investigations mainly considered curves in $ %	 , we study
curves on arbitrary smooth projective surfaces and derive results on various
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families of surfaces, in many cases the first results in that direction known on
these surfaces at all.

In Chapter III we study the question of the existence of curves and the main
condition (cf. Corollary III.2.5), which we derive in the case of topological sin-
gularity types, is of the form

��
��� ��� 	�� � � ( � � % T��C� ��� T�� 

and for analytical singularity types it is of the form

��
��� �

� 	�� � � ( � � % T	� � ��� T
� 
for some fixed divisor � and some absolute constants � , � and � , where � 	�� � �is the delta-invariant of � � and � 	�� � � is its Milnor number. The corresponding
necessary condition

��
��� �

� 	�� � � ( 1 / ��
��� � � 	�� � � ( � % TZ� ����� T 1

is of the same asymptotical behaviour.

Also for the main condition ��
��� �

V���� 	�� � � T - [ T ��� ���
%�� % 
�� � T ����F�� % / � % 

which we get in Chapter IV for the T-smoothness (cf. Theorem IV.1.1) we can-
not expect to do better in general – here for topological singularity types� � 	�� � � 4 � �"! 	�� � � is the codimension of the equisingular stratum of � � in its
semiuniversal deformation, and for analytical types � � 	�� � � 4 � 	�� � � , the Tju-
rina number of � � . In the case of simple singularities on plane curves the
mentioned examples in [GLS00] show that the conditions are asymptotically
proper. However, already for ordinary multiple points this is no longer the
case, as is shown there as well. Still, our results apply to surfaces which
have not been considered before, and even in the well studied case of of nodal
curves on quintics in $ 	 we get the same sharp results as Chiantini and Ser-
nesi (cf. [ChS97]).

We do not know wether our main condition (cf. Theorems V.2.1-V.2.4)

��
��� �

V���� 	�� � � T 1 [ % 
 � / 	 � , ��� � %
in the study of the irreducibility in Chapter V shows a similar properness,
since neither sufficient conditions of this form nor counterexamples with the
same asymptotical behaviour are known – here, � is some constant, possibly
depending on � . And we do not even expect them to be of the right kind. How-
ever, the results which we get are for most of the considered surfaces the only
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known ones, and even in the well studied plane case they are asymptotically
of the same quality than the best previously known conditions.

All our results somehow rely on the vanishing or non-vanishing of certain
cohomology groups. The results of Chapter IV and of Chapter V could be
formulated completely as a vanishing theorem; and although we derive the
existence of curves with prescribed topological or analytical singularities by
gluing these into a suitable given curve, we derive the existence of that curve
(cf. Theorem III.1.2) again with the aid of a vanishing theorem. The latter is a
generalisation of a vanishing theorem of Geng Xu (cf. [Xu95]) and thus of the
Kawamata–Viehweg Vanishing Theorem . Chapter II is devoted to its proof.

In Chapter I we introduce the notions used throughout the thesis and state
several important facts which are well known. A compact and profound de-
scription of the introduced objects and cited results can be found in the thesis
of Christoph Lossen [Los98], and for the convenience of the reader we usually
refer to this thesis as well as to the original sources.

Apart from the introduction, each chapter of the thesis consists of one or two
sections describing the main results possibly followed by a section contain-
ing essential technical details of the proofs. At the end of each chapter we
examine the derived conditions on several classes of surfaces:

(a) $ %	 ,

(b) geometrically ruled surfaces,

(c) product-surfaces,

(d) surfaces in $ 	 , and

(e) K3-surfaces.

We have chosen these partly due to their important role in the classification of
surfaces, and partly since they all have advantages in their own which make
it possible to keep control on the numerical conditions. In the appendix we
gather a number of facts which we suppose are well known, but for which
we nevertheless could not find a suitable reference. In particular, we give
an overview of the properties of the studied surfaces, which we need for the
examinations.

Throughout a fixed chapter the theorems, lemmata, definitions and remarks
are numbered by sections, e. g. within Section 1 of Chapter V the Theorem 1.1
is followed by Corollary 1.2, while in Section 2 we start again with Theo-
rem 2.1. The same applies to the equations. There is, however, one excep-
tion from this rule. In the example sections we reproduce certain statements
(equations, theorems, ...) in special cases, and instead of using new numbers
we rather keep the old ones adding the letter of the corresponding subsection,
e. g. in the example section of Chapter V we have Theorem 2.1a with equation
(2.2a) in Subsection 4.a, which is just the appropriate form of Theorem 2.1
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in Chapter V. Whenever we refer to a statement within the same chapter, we
just cite it by its number. If we, however, refer to it in some other chapter, we
add the number of the chapter, e. g. we refer to Theorem 1.1 of Chapter IV
within Chapter IV as Theorem 1.1, while in the preface we would cite it as
Theorem IV.1.1.

Chapter II and Chapter III are a joint work with Ilya Tyomkin (Tel Aviv Uni-
versity) and have been accepted for publication in the Transactions of the
American Mathematical Society. Chapter IV is a slight modification of re-
sults already published by Gert-Martin Greuel (Universität Kaiserslautern),
Christoph Lossen (Universität Kaiserslautern) and Eugenii Shustin (Tel Aviv
University) in [GLS97], and a slightly stronger version may be found in
[GLS02]. Finally, Chapter V extends an approach via Bogomolov unstability
of vector bundles used by Gert-Martin Greuel, Christoph Lossen and Eugenii
Shustin in the plane case (cf. [GLS98b]).
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CHAPTER I

Introduction

1. General Assumptions and Notations

Throughout this thesis � will denote a smooth projective surface over � .

Given distinct points U ��������� U � : � , we denote by ��� Bl � 	 � � 4 ���� � the blow
up of � in U 4 	 U ��������� U � � , and the exceptional divisors � � U � will be denoted by� � . We shall write

�P 4 Bl � 	 P � for the strict transform of a curve P	�.� .

For any smooth projective surface � we will denote by Div 	 � � the group of
divisors on � and by � � its canonical divisor. If � is any divisor on � , 
 � 	 � �
shall be a corresponding invertible sheaf. A curve P�� � will be an effective
(non-zero) divisor, that is a one-dimensional locally principal scheme, not nec-
essarily reduced; however, when we talk of an “irreducible curve” this shall
include that the curve is reduced. � � � 4 � � � � 4 $)V # � V+�  
 � 	 � � [�[ denotes the
system of curves linearly equivalent to � , while we use the notation � � �� for
the system of curves algebraically equivalent to � (cf. [Har77] Ex. V.1.7), that
is the reduction of the connected component of Hilb � , the Hilbert scheme of all
curves on � , containing any curve algebraically equivalent to � (cf. [Mum66]
Chapter 15).1 We write Pic 	 � � for the Picard group of � , that is Div 	 � � modulo
linear equivalence (denoted by ��� ), NS 	 � � for the Néron–Severi group, that is
Div 	 � � modulo algebraic equivalence (denoted by �� ), and Num 	 � � for Div 	 � �
modulo numerical equivalence (denoted by � � ). Given a reduced curve P�� �
we write

�  	 P � for its arithmetical genus and � 	 P � for the geometrical one.

Given any scheme � and any coherent sheaf � on � , we will often write #�� 	 � �
instead of #�� 	 �  � � when no ambiguity can arise. Moreover, if � 4 
�� 	 � �
is the invertible sheaf corresponding to a divisor � , we will usually use the
notation # � 	 �  � � instead of # � V �  
�� 	 � � [ . Similarly when considering tensor
products over the structure sheaf of some scheme � we may sometimes just
write � instead of ����� .
Given any subscheme � �  of a scheme  , we denote by !"� 4 ! �$#&% the
ideal sheaf of � in 
'% , and for U :( we denote by 
'%

�
� the local ring of  at

U and by )�%
�
� its maximal ideal, while *
�%

�
� denotes the )+%

�
� -adic completion

of 
�%
�
� . If � is zero-dimensional we denote by # � the number of points in

its support supp 	 � � , by deg 	 � � 4-, �/.0% dim 1 	 
�%
�
�324! �$#&%

�
� � its degree, and by

mult 	 �  U � 4 max 546 : <877 !9�$#&% � �":	)�;% � �0< its multiplicity at U .
1Note that indeed the reduction of the Hilbert scheme gives the Hilbert scheme Hilb =3>@?A

of curves on B over reduced base spaces.

1



2 I. INTRODUCTION

If � � � is a zero-dimensional scheme on � and � : Div 	 � � , we denote by
77 ! �$# � 	 � � 77 � 4 $ � # � V3!9� # � 	 � � [ � the linear system of curves P in � � � � with � � P .

If � �.� is any reduced curve and � �.� a zero-dimensional scheme, we define
the residue scheme �(� � � � of � by the ideal sheaf ! � � � # � 4 ! �$# � � ! � # � with
stalks

! � � � # �
�
� 4 ! �$# �

�
�"�$! � # �

�
� 

where “ � ” denotes the ideal quotient. This leads to the definition of the trace
scheme � � � � � of � via the ideal sheaf ! ��� � # � given by the exact sequence

'
// ! � � � # � 	W, � � H �

// ! �$# � // ! ��� � # � //
' �

Let  be a Zariski topological space (cf. [Har77] Ex. II.3.17). We say a subset� :� is very general if it is an at most countable intersection of open dense
subsets of  . Some statement is said to hold for points U ��������� U � :  (or U :  � )
in very general position if there is a suitable very general subset

� :  � ,
contained in the complement of the closed subvariety � �	���


� U :  � �OU � 4 U 
� of
 � , such that the statement holds for all U : �

.

2. Singularity Schemes

This thesis is a generalisation of results described in [Los98], and the zero-
dimensional schemes with which we are concerned are examined very care-
fully in [Los98] Chapter 2. We therefore restrict ourselves to a very short
description and refer to [Los98] for more details.

2.1 Definition

(a) Let �;: 
 �
�
� � � � Q  Y  be given. The germ 	 P  U � � 	 �  U � defined by a

representative P 4 5 U���77 � 	 U��
� 4 ' < is called a plane curve singularity.

The � -algebra 
��
�
� � 4 
 �

�
� 2 	 � � is called the local ring of 	 P  U � .

(b) Two plane curve singularities 	 P  U � and VAP �  U � [ are said to be topolog-
ically equivalent if there exists a homeomorphism � � 	 �  U � � 	 �  U � �
such that � 	 P � 4 P � .2 We write 	 P  U � ��� VAP �  U � [ .
An equivalence class � of this equivalence relation is called a topological
singularity type.

(c) Two plane curve singularities 	 P  U � and V P��  U�� [ are said to be analyt-
ically equivalent (or contact equivalent) if there exists an isomorphism
� # � *
����

�
����� *
��

�
� of the complete local rings. We write 	 P  U � ��� V P �  U � [ .

An equivalence class � of this equivalence relation is called an analytical
singularity type.

(d) Let � :�
 �
�
� and � � :�
 �

�
��� . We say � and � � are topologically respectively

analytically equivalent if the singularities defined by � and � � are so. We
then write � ����� � respectively � ����� � .

2This means of course that the equality holds for suitable representatives.
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2.2 Remark
We will need a number of well known invariants of topological respectively
analytical singularity types, which we are just going to list here. Note that
every invariant of the topological type of a singularity is of course also an
invariant of its analytical type. Let 	 P  U � be a reduced plane curve singularity
with representative � : 
 �

�
���.� � Q  Y  .

(a) The following are known to be invariants of the topological type � of the
plane curve singularity 	 P  U � .

(1) mult 	�� � 4 mult 	 P  U � 4 ord 	 � � is the multiplicity of � .

(2) � 	�� � 4 � 	 P  U � 4 dim 1 � � Q  Y 
� V����

���
 ���
���

[
is the Milnor number of � .

(3) � � ! 	�� � 4 � � ! 	 P  U � is the codimension of the � -constant stratum in
the semiuniversal deformation of 	 P  U � .

(4) 	 	�� � 4 	 	 P  U � , the intersection multiplicity of � with a generic
polar curve.

(5) 
 ! 	�� � 4 
 ! 	 P  U � shall be the minimal integer 6 such that ) ; �
�
� :� ! 	 P  U � and is called the topological deformation determinacy.

(Cf. Definition 2.6 for the definition of
� ! 	 P  U � .)

(6) � 	�� � 4 � 	 P  U � 4 dim 1 V� � 
���
�
� 2 
��

�
�
[

is the delta invariant of � ,
where �	� V �P  U [ � 	 P  U � is a normalisation of 	 P  U � .

(7) � 	�� � 4 � 	 P  U � is the number of branches of 	 P  U � .
(b) For the analytical type � of 	 P  U � we have three additional invariants:

(1) The Tjurina number of � is defined as � 	�� � 4 � 	 P  U � 4
dim 1 � � Q  Y 

� V	�  ���
���
 ���
���

[
.

(2) 
  	�� � 4 
  	 P  U � shall be the minimal integer 6 such that
)+; �

�
� : �  	 P  U � and is called the analytical deformation determi-

nacy. (Cf. Remark 2.7 for the definition of
�  	 P  U � .)

(3) mod 	�� � 4 mod 	 P  U � , the modality of the singularity � .
(Cf. [AGZV85] p. 184.)

Throughout the thesis we will very often consider topological and analytical
singularity types at the same time. We therefore introduce the notation � � 	�� �
and 
 � 	�� � , where for a topological singularity type � � 	�� � 4 � � ! 	�� � and 
 � 	�� � 4

 ! 	�� � , while for an analytical singularity type � � 	�� � 4 � 	�� � and 
 � 	�� � 4 
  	�� � .
2.3 Remark
For the convenience of the reader we would like to gather some known rela-
tions between the above topological and analytical invariants of the singular-
ity types corresponding to some reduced plane curve singularity 	 P  U � .
(a) � 	�� � ( � 	�� � T � 	�� � ,.- 4 1 � 	�� � . (Cf. [Mil68] Chapter 10.)
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(b) � 	�� � ( � � ! 	�� � , since the � -constant stratum of the semiuniversal defor-
mation of 	 P  U � contains the � -constant stratum and since its codimen-
sion is just � 	�� � (see also [DiH88]).

(c) 	 	�� � 4 � 	�� � T mult 	�� � ,5- .
(d) 	 	�� � ( 1 � 	�� � . (Cf. [Los98] Lemma 5.12.)

(e) � � ! 	�� � 4 � 	�� � , mod 	�� � . (Cf. [AGZV85] p. 245.)

(f) � � ! 	�� � ( � 	�� � , since � 	�� � is the dimension of the base space of the semi-
universal deformation of 	 P  U � .

(g) � 	�� � ( � 	�� � , by definition.

(h) 
�! 	�� � ( � � ! 	�� � . (Cf. [GLS00] Lemma 1.5.)

(i) 
�! 	�� � ( � 	�� � , if all branches of 	 P  U � have at least multiplicity three.
(Cf. [GLS00] Lemma 1.5.)

(j) 
  	�� � ( � 	�� � . (Cf. [GLS00] Remark 1.9.)

(k) 
�! 	�� � ( 
  	�� � , since
�  	 P  U � : � ! 	 P  U � (cf. Definition 2.6).

Combining these results we get:


 ! 	�� � ( ���� � �"! 	�� �

  	�� �

���
� ( � 	�� � ( � 	�� � ( 	 	�� � ( 1 � 	�� � ( 1 � � ! 	�� � ( 1 � 	�� � �

2.4 Remark
It is well known that the simple singularities, that is the singularities with
modality zero, form two infinite series "�� , given by Q �
	 � , Y % for � � - , and ��� ,
given by Y / V Q % , Y � @ % [ for � �� , together with three excepitional singularities� � for � 4 J 
� �� , given by Q  , Y F , Q  , QOY  and Q  , Y \ respectively. Moreover,
they are the only plane curve singularities � with � 	�� � 4 � 	�� � ( � .
The first non-simple family of singularities � R , that is, the only one-modular
family of singularities of Milnor number M , is given by Q F , Y F T�� / Q8% Y % . The
modulus corresponds to the crossratio of the four intersecting lines. Topolog-
ically all these singularities are indeed equivalent. Note that, apart from the
simple singularities, these are the only singularities � with � � ! 	�� � ( � , as a
view at the classification table in [AGZV85] Chapter 15 shows, taking the
restrictions on � � ! 	�� � given in Remark 2.3 into account.

Moreove, from the classification we deduce for an analytical singularity type� some results which will be useful in Lemma V.3.10.

mult 	�� � mod 	�� � � 	�� �
1 ' - ( � 	�� �
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mult 	�� � mod 	�� � � 	�� �
6 ' � ( � 	�� �

- - ' ( � 	�� � ( - �
1 - J ( � 	�� �
6 1O1 ( � 	�� �
�� 1 � ( � 	�� �� - M ( � 	�� � ( -�1
1 - � ( � 	�� �
� 6 1O1 ( � 	�� �

And finally:

mod 	�� � � 	�� � � 	�� � mult 	�� �
' - ( � 	�� � 4 � 	�� � ( � - ( � 	�� � 4 � 	�� � ( � 1  6
- M ( � 	�� � ( - � M ( � 	�� � ( - � 6  �
1 - � ( � 	�� � - 6 ( � 	�� � , mod 	�� � ( � 	�� � 6  �
� 6 - J ( � 	�� � � 	�� � , mod 	�� � ( � 	�� � 6 (

mult 	�� �
2.5 Definition
Given distinct points U ��������� U � : � and non-negative integers 6 ��������� 6 � we
denote by � 	 6 � U � 4 � 	 6 ��������� 6 � � U �I������� U � � the zero-dimensional subscheme
of � defined by the ideal sheaf ! � > ; � � B # � with stalks

! � > ; � � B # � � � 4 �� � ) ;���
�
� �  if U 4 U � �� 4 - ������� � 


 �
�
�  else.

We call a scheme of the type � 	 6 � U � an ordinary fat point scheme.

2.6 Definition
Let P � � be a reduced curve.

(a) The scheme � �  	 P � in � is defined via the ideal sheaf ! �	��
 > � B # � with
stalks

! �	��
 > � B # �
�
� 4 � �  	 P  U � 4 � �  	 � � 4 V �  ���

���
 ���
���

[
: 
 �

�
� 

where Q  Y denote local coordinates of � at U and � : 
 �
�
� a local equation

of P .
� �  	 P  U � is called the Tjurina ideal of the singularity 	 P  U � , and it

is of course 
 �
�
� whenever U is a smooth point of P . We call � �  	 P � the

equianalytical singularity scheme of P .
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(b) We define the zero-dimensional subscheme � � ! 	 P � of � via the ideal
sheaf ! � � � > � B # � with stalks

!9� � � > � B # �
�
� 4 � � ! 	 P  U � 4 5�� : 
 �

�
�+77 � T � � is equisingular over � � � � 2 	 � % � < 

where � : 
 �
�
� is a local equation of P at U . � � ! 	 P  U � is called the equisin-

gularity ideal of the singularity 	 P  U � , and it is of course 
 �
�
� whenever

U is a smooth point.
� � ! 	 P  U � 2 � �  	 P  U � can be identified with the tangent

space of the equisingular stratum in the semiuniversal deformation of	 P  U � (cf. [Wah74b], [DiH88], and Definition III.2.1). We call � � ! 	 P � the
equisingularity scheme of P .

(c) The scheme � � � � � 	 P � in � is defined via the ideal sheaf ! � ��
� ��� > � B # � with
stalks

! � ��
� ��� > � B # � � � 4 � � 
� � � 	 P  U

� 4 � � 
� � � 	 �

� 4 	 � � T�) �
�
� / V ���

���
 ���
���

[
: 
 �

�
� 

where Q  Y denote local coordinates of � at U and � : 
 �
�
� a local equation

of P .
� � � � � 	 P  U � is of course 
 �

�
� whenever U is a smooth point of P .

(d) We define the zero-dimensional subscheme � � !� � � 	 P � of � via the ideal
sheaf ! � � �� ��� > � B # � with stalks

!9� � �� ��� > � B # � � � 4 � � !
� � � 	 P  U

� 4 �
� : 
 �

�
� 7777

� T � � is equisingular over � � � � 2 	 � % �
along the trivial section � 

where � : 
 �
�
� is a local equation of P at U . � � !� � � 	 P  U � is of course 
 �

�
�

whenever U is a smooth point.

(e) The scheme �  	 P � in � is defined via the ideal sheaf ! � 
 > � B # � with stalks

! � 
 > � B # �
�
� 4 �  	 P  U � : 
 �

�
� 

where we refer for the somewhat lengthy definition of
�  	 P  U � to Re-

mark 2.7.
�  	 P  U � is called the analytical singularity ideal of the sin-

gularity 	 P  U � , and it is of course 
 �
�
� whenever U is a smooth point. We

call �  	 P � the analytical singularity scheme of P .

(f) The scheme � ! 	 P � in � is defined via the ideal sheaf ! � � > � B # � with stalks

! � � > � B # �
�
� 4 � ! 	 P  U � 4	� � : 
 �

�
� 777 � goes through the cluster 
�� VAP � � 	 P  U � [�� 

where  � 	 P  U � denotes the essential subtree of the complete embedded
resolution tree of 	 P  U � . � ! 	 P  U � is called the singularity ideal of the
singularity 	 P  U � , and it is of course 
 �

�
� whenever U is a smooth point.

We call � ! 	 P � the singularity scheme of P . (Cf. [Los98] Section 2.2.1.)

Throughout the thesis we will frequently treat topological and analytical sin-
gularities at the same time. Whenever we do so, we will write � � 	 P � for
� �"! 	 P � respectively for � �  	 P � , and similarly � �� � � 	 P � for � �"!� � � 	 P � respectively
for � � � � � 	 P � , and � 	 P � for � ! 	 P � respectively for �  	 P � .
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2.7 Remark
Let 	 P  U � be an isolated plane curve singularity of analytical type � with rep-
resentative � :�
 �

�
� .

(a) A collection of ideals � 	 � � 4 � � 	 � � � � : 
 �
�
� � � � ���  is said to be suitable,

if the ideals
� 	 � � :�� satisfy the following properties:

(1) � : � 	 � � .
(2) For a generic element in � : � 	 � � we have ������� and

� 	 � � 4 � 	 � � ;
more precisely, for any * � '

the set of polynomial � : � 	 � � �
� � Q  Y ��� � such that �	��� � and

� 	 � � 4 � 	 � � is open dense in
� 	 � � �

� � Q  Y ��� � , where � � Q  Y ��� � are the polynomials of degree at most * .

(3)
� V � [ 4�� � � 	 � � , if � � 
 �

�
� � 
 �

�
� is an isomorphism and � :�
 �

�
� is

a unit such that � 4�� � 	 � / � � .
(4) � 6
	 ' � � 	 � � 4 � V jet ; 	 �

� [
, i. e.

� 	 � � is determined by jet ; 	 �
�
.

We note that (3) implies that
� 	 � � only depends on the ideal � �� , and that

the isomorphism class of
� 	 � � is an invariant of � . We call deg � 	 � � 4

dim 1 V 
 �
�
� 2 � 	 � � [ the degree of � 	 � � . (Cf. [Los98] Definition 2.39.)

(b) If we define � �  	 � � 4 5 � : 
 �
�
� � � �  	 � � : � �  	 � � <

for � : 
 �
�
� with ��� � � , then the collection

�
� 	 � � 4 5 � �  	 � � 77 � : 
 �

�
�-�

� � ��� < is suitable. (Cf. [Los98] Definition 2.42.)
By [Los98] Lemma 2.44 we know deg

�
� 	 � � ( 6 � 	�� � .

(c) Among the suitable collections of ideals we choose one with minimal
degree, and we call it �  	 � � . The elements of �  	 � � are parametrised by� � 4 � �5: 
 �

�
�;�9�	� � �  , and we denote the element corresponding to

� : � by
�  	 � � . We then define

�  	 P  U � 4 �  	 � � �
Note that �  	 � � exists in view of (b), and that its definition depends only
on � . Moreover, deg �  	 � � ( 6 � 	�� � . (Cf. [Los98] Definition 2.40.)

2.8 Remark
If P	�.� is a reduced curve, then ! � 
 > � B # � : ! � ��
� ��� > � B # � : !9�	��
 > � B # � and ! � � > � B # � :
! � � �� ��� > � B # � : ! � � � > � B # � .
In particular, the vanishing of � � V �  ! � > � B # � 	 � � [ implies the vanishing
of � � V �  ! ���� ��� > � B # � 	 � � [ , and the vanishing of the latter implies that of
� � V �  ! � � > � B # � 	 � � [ .
To see the first assertion, consider the exact sequence' � ! � > � B # � 	 � � � ! � �� ��� > � B # � 	 � � � V3! � �� ��� > � B # � 24! � > � B # � [ 	 � � � ' �
The long exact cohomology sequence then leads to

# � V �  !9�$# � 	 � � [ � # � V �  !9���� ��� # � 	 � � [ � # � V �  V3!9��� � ��� # � 24!9� # � [ 	 � � [ 4 ' 
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where the latter vanishes since its support is zero-dimensional. This proves
the claim. The second assertion follows analogously.

2.9 Remark
In [Los98] Proposition 2.19 and 2.20 and in Remark 2.40 (see also [GLS00])
and 2.41 it is shown that, fixing a point U : � and a topological respec-
tively analytical type � , the singularity schemes respectively analytical sin-
gularity schemes having the same topological respectively analytical type are
parametrised by an irreducible Hilbert scheme, which we are going to denote
by Hilb � 	�� � . This then leads to an irreducible family

Hilb 	�� � 4�� � . � Hilb � 	�� � �
For a more careful study of these objects we refer to [Los98] Remark 2.21 and
Remark 2.41.

In particular, equisingular respectively equianalytical singularities have sin-
gularity schemes respectively analytical singularity schemes of the same de-
gree (see also [GLS98c] or [Los98] Lemma 2.8). The same is of course true,
regarding the equisingularity scheme respectively the equianalytical singu-
larity scheme. This leads to the following definition.

2.10 Definition
If P � � is a reduced curve such that U is a singular point of topological
respectively analytical type � , then we define deg V � ! 	�� � [ 4 deg V � ! 	 P �  U [ ,
deg V � � !� � � 	�� � [ 4 deg V � � !� � � 	 P �  U [ and deg V � �"! 	�� � [ 4 deg V � �"! 	 P �  U [ respec-
tively deg V �  	�� � [ 4 deg V&�  	 P �  U [ , deg V � � � � � 	�� � [ 4 deg V � � � � � 	 P �  U [ and
deg V � �  	�� � [ 4 deg V � �  	 P �  U [ .
To express the degree of the schemes � � 	�� � and � �� � � 	�� � in terms of the invari-
ants from Remark 2.2 for an analytical respectively topological singularity
type � is much simpler, since by definition

deg V � � ! 	�� � [ 4 � � ! 	�� � and deg V&� �  	�� � [ 4 � 	�� � 
while deg V � �� � � 	�� � [ 4 deg V � � 	�� � [ T 1 , and hence

deg V � � !� � � 	�� � [ 4 � � ! 	�� � T 1 and deg V � � � � � 	�� � [ 4 � 	�� � T 1 �

2.11 Remark
We note that for a topological respectively analytical singularity type �

dim Hilb � 	�� � 4 deg V � 	�� � [ , deg V � � 	�� � [ , 1
for any U�: � , and thus

dim Hilb 	�� � 4 deg V � 	�� � [ , deg V � � 	�� � [ �
For the convenience of the reader we reproduce the proof from [GLS02]
Lemma 2.1.49 at the end of this chapter.
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2.12 Remark

(a) A simple calculation shows (see also [Los98] p. 28)

� deg 	 �  	�� � [ 4 deg 	 � ! 	�� � [
" � 

%
/ � T 1  � even 

" � 

%
/ � T %  � odd 

� � 

%
/ �  � even 

� � 

%
/ � T �

%  ���4 �
odd 

� \ 

%
/ � , �

% 4 �  � 4 � 
� � 

%
/ � ,.- 4 �  � 4 J 

��� 

%
/ � , �

% 4 - '  � 4 � 
� � 

%
/ � ,.- 4 -O-  � 4 � �

In particular, if � is a simple singularity, then deg 	 � ! 	�� � [ ( 

% � 	�� � T 1 ,
where � 	�� � denotes the Milnor number of � .

(b) If � is an analytical singularity type, then (cf. [Los98] Lemma 2.44)

deg V �  	�� � [ ( 6 � 	�� �  (2.1)

where � 	�� � denotes the Tjurina number of � .

(c) Let � be any topological singularity type, then by [Los98] Lemma 2.8

deg V � ! 	�� � [ 4 � 	�� � T �
� .�� � > �

�
� B 6 � 

where 	 P  U � is a plane curve singularity of type � ,  � 	 P  U � is the essen-
tial subtree of the complete embedded resolution tree of 	 P  U � , 6 � is the
multiplicity of 	 P  U � at the infinitely near point �.:  � 	 P  U � , and � 	�� �the delta invariant of � .
In [Los98] p. 103 it is shown that if � is not a simple singularity type,
then

deg V � ! 	�� � [ (  % / V � 	�� � ,.- [ �
Combining this with (a) we get for � arbitrary

deg V � ! 	�� � [ (  % � 	�� � T 1 � (2.2)

2.13 Definition

(a) Given topological or analytical singularity types � ��������� � � and a divisor
� : Div 	 � � , we denote by � 4 � � ��� 	�� ��������� � � � the locally closed sub-
space of � � � � of reduced curves in the linear system � ��� � having precisely
� singular points of types � ��������� � � .
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By � � � � 4 � � � �� ��� 	�� ��������� � � � we denote the open3 subset

� � � � 4 5 PZ: � 77 �
� V �  ! � > � B # � 	 � � [ 4 ' < : � 

where � 	 P � 4 � ! 	 P � respectively �  	 P � , and by � ����� 4 � �
���� ��� 	�� ��������� � � � we
denote the open subset

� ����� 4 5 P : � 77 �
� V �  ! � �� ��� > � B # � 	 � � [ 4 ' < : � 

where � �� � � 	 P � 4 � �"!� � � 	 P � respectively � � � � � 	 P �
Similarly, we use the notation � ����� 4 � ������ ����	�� ��������� � � � to denote the
open subset of irreducible curves in the space � , and we set � ���W��� � � � 4
� ���W��� � � �� � � 	�� ��������� � � � 4 � ���W� � � � � � and �E�
����� � � � 4 ��������� � � �� ��� 	�� ��������� � � � 4 ������� �
� � � � , which are open in � � � � respectively � � � � , and hence in � .

If a type � occurs 9 	 - times, we rather write 9 � than �  7�����
 � .

(b) Analogously, � � � � 	 6 ��������� 6 � � 4 � � ��� 	 6 �
denotes the locally closed sub-

space of � ��� � of reduced curves having precisely � ordinary singular
points of multiplicities 6 ��������� 6 � . (Cf. [GrS99] or [Los98] 1.3.2)

(c) Let � 4 � � � � 	�� ��������� � � � respectively � 4 � � � � 	 6 �
. We say � is T-smooth at

P : � if the germ 	 �  P � is smooth of the (expected) dimension dim � ��� � ,
deg V � � 	 P � [ , where � � 	 P � 4 � � ! 	 P � , � � 	 P � 4 � � ! 	 P � or � � 	 P � 4 � 	 6 � U �
with Sing 	 P � 4 � U ��������� U �  respectively.

We call these families of curves equisingular families of curves.

2.14 Remark
With the notation of Definition 2.13 and by [Los98] Proposition 2.1 (see also
[GrK89], [GrL96], [GLS00]) T-smoothness of � at P is implied by the vanish-
ing of # � V �  ! � � > � B # � 	 P � [ . This is due to the fact that the tangent space of � at
P may be identified with # � V �  !9� � > � B # � 	 P � [ 2 # � 	 �  
 � � .
In particular, the subvarieties ��� � � , � � � � , � �
����� � � � and ��������� � � � are T-smooth, that
is smooth of expected dimension �

� V �  
 � 	 P � [ , deg V&� � 	 P � [ , - .
2.15 Definition
Let � : Div 	 � � be a divisor, � ��������� � � distinct topological or analytical singu-
larity types, and 9 ��������� 9 � : <�� � '  .
(a) We denote by

� �
the irreducible parameter space

� � 4 � � 	 9 � � ��������� 9 � � � � 4
��
��� �

Sym
7
� V Hilb 	�� � �

[ 
and by

� 4 � 	 9 � � ��������� 9 � � � � the non-empty open, irreducible and dense,
subspace

� 4 � V � � �
�
��������� � �

�
7�� � ������� � � � � ��������� � ��� 7�� �

[ : � � 777 supp 	 � � � 
 � � supp 	 � !�� � � 4	�
 - ( ���� ( �  - (� ( 9 �  - (�� ( 9 ! � �
3See Theorem V.1.1.
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Note that dim 	 � � does not depend on � , more precisely, with the notation
of Remark 2.11 we have

dim 	 � � 4 ��
��� �

9 � / � deg V � 	�� � �
[ , deg V ��� 	�� � � [ � �

(b) Let us set � 4 , �� � � 9 � deg V � 	�� � �
[
. We then define an injective morphism

� 4���	 9 � � ��������� 9 � � � � �
� 	 9 � � ��������� 9 � � � � // Hilb

� �
V � � �

�
��������� � �

�
7�� � ������� � � ��� �I������� � ��� 7�� �

[
� // � ���� � �

7
�
 � � � � � 
 

where Hilb
� � denotes the smooth connected Hilbert scheme of zero-

dimensional schemes of degree � on � (cf. [Los98] Section 1.3.1).

(c) We denote by � 4 � � 	 9 � � ��������� 9 � � � � the fibration of � � ��� 	 9 � � ��������� 9 � � � �
induced by

� 	 9 � � ��������� 9 � � � � , that is, the morphism � is given by

� � � � ��� 	 9 � � ��������� 9 � � � � //
� 	 9 � � ��������� 9 � � � �

P � // V � � �
�
��������� � �

�
7�� � ������� � � � � ��������� � ��� 7�� �

[

where Sing 	 P � 4 � U � � 
 � � 4 - ������� �   4 - ������I 9 �  , � � � 
 4 � 	 P  U � � 
 � and	 P  U � � 
 � �4 � � for all � 4 - ������I �   4 - ������� 9 � .
(d) Denoting by 6 4 9 � T ����� T 9 � the number of imposed singularities we

define the fibration � 4 � � 	 9 � � ��������� 9 � � � � by

� � � � ��� 	 9 � � ��������� 9 � � � � // Sym ; 	 � �
P � // Sing 	 P � 

sending a curve P to the unordered tuple of its singular points.

2.16 Remark

(a) With the notation of Definition 2.13 and Definition 2.15 note that for PZ:
� 4 � � � � 	 9 � � ��������� 9 � � � � the fibre �

@ � V � 	 P � [ is the open dense subset of
the linear system 77 ! � > � B # � 	 � � 77 � consisting of the curves P � with �3VAP � [ 4
� 	 P � . In particular, the fibres of � restricted to � � � � are irreducible, and
since for PZ: � � � � the cohomology group # � V �  ! � > � B # � 	 � � [ vanishes, they
are equidimensional of dimension

�
� V+�  ! � > � B # � 	 � � [ ,.- 4 � � V �  
 � 	 � � [ , deg V � 	 P � [ ,.-

4 � � V �  
 � 	 � � [ , ��
��� �

9 � / deg V � 	�� � �
[ ,5- �

(b) Note that for P : � the fibre � @ � V � 	 P � [ has at P the tangent space
# � V �  ! ���� ��� > � B 	 � � [ 2 # � 	 
 � � , so that

dim
� � @ � V � 	 P � [ � ( � � V+�  !9� �� ��� > � B 	 � � [ , - � (2.3)
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Moreover, suppose that � � V �  ! � �� ��� > � B # � 	 � � [ 4 '
, then the germ of the

fibration at P
	 �  P � � V �  P [ � V Sym ; 	 � �  Sing 	 P � [

is smooth of fibre dimension �
� V �  ! ���� ��� > � B 	 � � [ , - , i. e. locally at P the

morphism � is a projection of the product of the smooth base space with
the smooth fibre. This implies in particular, that close to P there is
a curve having its singularities in very general position. (Cf. [Los98]
Proposition 2.1 (e).)

Proof of Remark 2.11: Since dim Hilb 	�� � is independent of � , we may as
well suppose that � 4 $ %	 , and we let # be a line in $ %	 .

For a reduced curve P�� $ %	 we set � 	 P � 4 � ! 	 P � and � � 	 P � 4 � � ! 	 P � respec-
tively � 	 P � 4 �  	 P � and � � 	 P � 4 � �  	 P � .
Since deg V � [ 4 deg V � 	�� � [ is independent of �5: Hilb 	�� � , there is an integer
6 	 '

such that for * 	 6
� � V $ %	  ! � #�� �	 	+* � [ 4 '

for any � : Hilb 	�� � .
Let 9 	 '

be the determinacy bound of � , that is, any representative �Z:

 � �	

�
� 4 � � Q  Y  of � depends only on the 9 -jet of � . Hence, for * 	 9 the

morphism
� 4 � ��� 	�� � � � � �A� � 	�� � � � 	�� � 4 Hilb 	�� �

is surjective.

Let us now fix some * 	 max
� 9  6  . For each P :;� � ��� � 	�� � the fibre �

@ � V � 	 P � [
is the open dense subset of 77 ! � > � B #�� �	 	+* � 77 , consisting of curves P � : � � �A�C� 	�� � with
� V P � [ 4 � 	 P � . From the long exact cohomology sequence of' � !9� > � B # � � 
 � �	 	+* � � 
�� > � B � '
it follows

�
� V $ %	  ! � > � B #�� �	 	 * � [ 4 � � V $ %	  
 � �	 	+* � [ , deg V � 	�� � [ �

In particular the fibres all have the same dimension

dim �
@ � V � 	 P � [ 4 � � V $ %	  
 � �	 	+* � [ , deg V � 	�� � [ , - �

We therefore get

dim Hilb 	�� � 4 dim ��V � � ��� � 	�� � [ 4 dim V � � ��� � 	�� � [ , dim �
@ � V � 	 P � [

4 dim VG� � ��� � 	�� � [ , � � V $ %	  
 � �	 	+* � [ T deg V � 	�� � [ T - �
Moreover, by Remark 2.8 we know that also � � VG$ %	  ! � � > � B #�� �	 	+* � [ 4 '

for any
P : � � �A�C� 	�� � , and thus in view of Remark 2.14 � � �A� � 	�� � is T-smooth, that is

dim VG� � �A�C� 	�� � [ 4 � � V $ %	  
 � �	 	+* � [ , deg V ��� 	�� � [ ,5- 
which finishes the claim.



CHAPTER II

A Vanishing Theorem

In Chapter III we deduce the existence of an irreducible curve with pre-
scribed topological or analytical singularities from the existence of an ir-
reducible curve P with ordinary multiple points U ��������� U � of certain multi-
plicities 6 ��������� 6 � which has the T-smoothness property, that is such that
� � V �  ! � > ; � � B # � 	 � � [ 4 '

. If we want to derive numerical conditions for the
existence in terms of invariants of the singularities and the divisor � from
this theorem, we need to have such numerical conditions for the vanishing of
# � V �  ! � > ; � � B # � 	 � � [ . Section 1 is devoted to the proof of a suitable vanishing
theorem. We generalise an approach used by Geng Xu in [Xu95] for the plane
case. The basic idea is to give conditions such that V � � � ,	, ���� � 6 �

� �
[ , � �� is

big and nef, where �(� Bl � 	 � � 4 �� � � denotes the blow up of � in U ��������� U � ,
and then to apply the Kawamata–Viehweg Vanishing Theorem.

1. The Vanishing Theorem

1.1 Theorem
Let 6 � � ����� � 6 � � '

be non-negative integers, � : � with � 	 - , 9�� 4
max 5 �.: <877 �


 �

�
@ � < and let � : Div 	 � � be a divisor satisfying the following

three conditions1

(1.1) 	 � , ��� � % � max
�
�
/ �,
��� �

	 6 � T - � %  	 9�� / 6 � T 9�� � % � ,

(1.2) 	 � , ��� � � � � 9�� / 	 6 � T - � for any irreducible curve
�

with
� % 4 '

and dim � � �  	 '
, and

(1.3) � , ��� is nef.

Then for U ��������� U � : � in very general position and 
 	 '
# �


Bl � 	 � �  � � � , ��

��� �
6 � � � � 4 ' �

In particular,
# � V �  !9� > ; � � B # � 	 � � [ 4 ' �

Proof: By the Kawamata–Viehweg Vanishing Theorem (cf. [Kaw82] and
[Vie82]) it suffices to show that " 4 V � � � , , ���� � 6 �

� �
[ , � �� is big and nef,

i. e. we have to show:
1The proof uses Kawamata–Viehweg vanishing which needs characteristic zero for the

ground field.

13
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(a) " % 	 '
, and

(b) " � � � � '
for any irreducible curve

� � in
�� 4 Bl � 	 � � .

Note that " 4 � � 	 � , ��� � , , ���� � 	 6 � T - � � � , and thus by Hypothesis (1.4) we
have

" % 4 	 � , ��� � % , ��
��� �

	 6 � T - � % 	 ' 
which gives condition (a).

For condition (b) we observe that an irreducible curve
� � on

�� is either the
strict transform of an irreducible curve

�
in � or is one of the exceptional

curves
� � . In the latter case we have

" � � � 4 " � � � 4 6 � T - 	 ' �
We may, therefore, assume that

� � 4 � �
is the strict transform of an irreducible

curve
�

on � having multiplicity mult � � 	
� � 4 � � at U � , � 4 - ������� � . Then

" � � � 4 	 � , ��� � � � , ��
��� �

	 6 � T - � � � 
and thus condition (b) is equivalent to

(b’) 	 � , ��� � � � � �,
��� �

	 6 � T - � � � .
Since U is in very general position Lemma 2.1 applies in view of Corollary A.3.
Using the Hodge Index Theorem E.4, Hypothesis (1.4), Lemma 2.1, and the
Cauchy-Schwarz Inequality we get the following sequence of inequalities:

V 	 � , ��� � � � [ % � 	 � , ��� � % / � % �
�
/ V , ���� � 	 6 � T - � % [ / V , ���� � � %� , � � �

[

4 , ���� � 	 6 � T - � % / , ���� � � %� T 	
�
,.- �0/ � , �� � � 	 6 � T - � % / V , ���� � � %� , �

�
@ � / � � �

[ �
� V , ���� � 	 6 � T - �0/ � �

[ % T 	
�
, - � / � , �� � � 	 6 � T - � % / V , ���� � � %� , �

�
@ � / � � �

[ � 
where � � : � - ������� �  is such that � � � 4 min

�
� � ��� � �4 '

 . Since � , ��� is nef,
condition (b’) is satisfied as soon as we have

��
��� �

� %� � �

�
@ � / � � � �

If this is not fulfilled, then � � 
 �

�
@ � for all � 4 - ������I � , and thus

��
��� �

	 6 � T - � / � � ( 9�� / 	 6 � T - � �
Hence, for the remaining considerations (b’) may be replaced by the worst case

	 � , ��� � � � � 9�� / 	 6 � T - � �
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Note that since the U � are in very general position and U � � : � we have that� % � '
and dim � � �  	 '

(cf. Corollary A.6). If
� % 	 '

then we are done by the
Hodge Index Theorem E.4 and Hypothesis (1.4), since � , � � is nef:

	 � , ��� � � � � � 	 � , ��� � % � � 	 9�� / 6 � T 9�� � % � 9�� / 	 6 � T - � �
It remains to consider the case

� % 4 '
which is covered by Hypothesis (1.5).

For the “in particular” part we just note that ! � > ; � � � � B # � � /�/�/ � ! � > ; � � � � B # � �
 � 	 � � �4 !9� > ; � � B # � � 
 � 	 � � (see Lemma C.4) and that, using the Leray spectral
sequence (compare [Laz97] Lemma 5.1)

# ��� �  ��
��� �

! � > ; � � � � B # � � 
 � 	 � ��� 4 # �
 ��  � �N� , ��

��� �
6 � � � � �

Choosing the constant �
4 1 in Theorem 1.1, then �

�
@ � 4 1 and thus 9�� 4 - .

We therefore get the following corollary, which has the advantage that the
conditions look simpler, and that the hypotheses on the “exceptional” curves
are not too hard.

1.2 Corollary
Let 6 ��������� 6 � : < � , and � : Div 	 � � be a divisor satisfying the following three
conditions

(1.4) 	 � , ��� � % �Z1 / �,
��� �

	 6 � T - � % ,
(1.5) 	 � , ��� � � � 	 max

� 6 � � � 4 - ������I �  for any irreducible curve
�

with
� % 4 '

and dim � � �  	 '
, and

(1.6) � , ��� is nef.

Then for U ��������� U � : � in very general position and 
 	 '
# �


Bl � 	 � �  � � � , ��

��� �
6 � � � � 4 ' �

In particular,
# � V �  !9� > ; � � B # � 	 � � [ 4 ' �

1.3 Remark
Condition (1.3) respectively Condition (1.6) are in several respects “ex-
pectable”. First, Theorem 1.1 is a corollary of the Kawamata–Viehweg Van-
ishing Theorem, and if we take all 6 � to be zero, our assumptions should
basically be the same, i. e. � , ��� nef and big. The latter is more or less
just (1.1) respectively (1.4). Secondly, we want to apply the theorem to an
existence problem. A divisor being nef means it is somehow close to being
effective, or better its linear system is close to being non-empty. If we want
that some linear system � � � � contains a curve with certain properties, then it
seems not to be so unreasonable to restrict to systems where already � � , � � � � ,
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or even � � , ��, ��� � � with � some fixed divisor, is of positive dimension, thus
nef.

In many interesting examples, such as $ %	 , Condition (1.2) respectively (1.5)
turn out to be obsolete or easy to handle. So finally the most restrictive ob-
struction seems to be (1.1) respectively (1.4).

If we consider the situation where the largest multiplicity 6 � occurs in a large
number, more precisely, if 6 � 4 ����� 4 6 ��� with

�
� 4 min 5 � : < 77 �

/
� � 9 % � < ,

then Condition (1.1) comes down to

(1.1’) 	 � , ��� � % � � / �,��� � 	 6 � T - � % .
1.4 Remark
Even though we said that condition (1.4) was the really restrictive condition
we would like to understand better what condition (1.5) means. We therefore
show in Appendix B that an algebraic system � � �  of dimension greater than
zero with

�
irreducible and

� % 4 '
gives rise to a fibration � �O� � # of � over

a smooth projective curve # whose fibres are just the elements of � � �  .

2. Generalisation of a Lemma of Geng Xu

Throughout the proof of Theorem 1.1 we need the following generalisation of
a lemma of Geng Xu.

2.1 Lemma
Let U 4 	 U �I������� U � � :;� � be in very general position, � : < � � , and let

� �.� be an
irreducible curve with mult � � 	

� � � � � , then

� % � ��
� � �

� %� , min
�
� � � � � �4 '

 �
2.2 Remark

(a) A proof for the above lemma in the case � 4 $ %	 can be found in [Xu94]
and in the case � 4 - in [EiL93]. Here we just extend the arguments
given there to the slightly more general situation.

(b) For better estimates of the self intersection number of curves in the sit-
uation where one has some knowledge on equisingular deformations in-
side the algebraic system see [GuS84].

(c) With the notation of Lemma A.2 respectively Corollary A.3 the assump-
tion in Lemma 2.1 could be formulated more precisely as “let

� �.��: $��	
be an irreducible curve such that ���

�
� 4 � � ”, or “let U :;� � � � ”.2

2Since � is irreducible, the general element in � �	��
 will be irreducible. Since ���� � � B =
there will be some family of curves in Hilb � A satisfying the requirements of Lemma 2.3.
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(d) Note, that one cannot expect to get rid of the “ , min
�
� � � � � �4 '

 ”.
E. g. � 4 Bl � V $ %	 [ , the projective plane blown up in a point U , and

� � �
the strict transform of a line through U . Let now � 4 - , � � 4 - and U � :;�
be any point. Then there is of course a (unique) curve

�
� : � � �  through

U � , but
� % 4 ' 
 - 4 � % � .

Idea of the proof: Set � � � 4 � � , - and � � � 4 � � for � �4 - , where w. l. o. g. � � 4
min

�
� � � � � �4 '

 . By assumption there is a family
� P �  �&. 1 in � � �  satisfying the

requirements of Lemma 2.3. Setting P�� 4 P � the proof is done in three steps:

Step 1: We show that # � VAP  ! � > � � � B # � / 
 � 	 P � [ �4 '
. (Lemma 2.3)

Step 2: We deduce that # � VAP  � � 
��� V , , ���� ��� �
� �
[
��
 � 	 P � [ �4 '

. (Lemma 2.4)

Step 3: It follows that deg V � � 
��� V , , �� � ��� �
� �
[
� 
�� 	 P � [ � '

, but this degree
is just P % , , ���� � � � � � . �

2.3 Lemma
Given � ��������� � � :;< � , � � - . Let

� P �  �&.�� ,
� :5� an open neighbourhood of

'
, be

a non-trivial family of curves in � together with a section
� � � � ���� U �

�
� : P �

such that
mult � �	� 
 	 P � � � � � T - for all

� : �
and fixed points U % ������� U � : � such that

mult � � 	 P � � � � � for all � 4 1 ������� � and
� : � �

Then with U � 4 U �
�

�

# � V P  ! � > � � � B # � / 
�� 	 P � [ �4 ' 
i. e. there is a non-trivial section of the normal bundle of P , vanishing at U � to
the order of at least � � for � 4 - ������� � .3
Proof: We stick to the convention � � 4 � � T - and � � 4 � � for � 4.1 ������I � , and
we set U � � � � 4 U � for � 4 1 ������� � and

� : �
. Let

� � �
be a small disc around

'
with coordinate

�
, and choose coordinates 	 Q �  Y � � on � around U � such that

� U � � � 4 	 � � 	 � � � � 	 � �N� for
� : �

with � � � � : � � �  ,� U � 4 	 � � 	 ' � � � 	 ' �N� 4 	 '  ' � , and
��� � 	 Q �  Y �  � � 4 � � � � 	 Q �  Y � � : � � Q �  Y �  �  , where P � 4 � � � � � 4 '

 locally at U � � �
(for

� : �
).

We view
� P �  �&.�� as a non-trivial deformation of P , which implies that the im-

age of �
� � � � � � :  � 	 � � under the Kodaira-Spencer map is a non-zero section � of

# � VNP  
�� 	 P � [ . � is locally at U � given by ��� �
� � � � � � .

Idea: Show that ��� �
� � � � � � : 	 Q �  Y � � � � , which are the stalks of ! � > � � � B # � / 
�� 	 P � at

the U � , and hence � is actually a global section of the subsheaf ! � > � � � B # � / 
�� 	 P � .
3Note, that ����� > � � ��� A��! �"�#%$'& �)( >+*A � �,* ����� ( >.-A � � - �� /"�#%$'& .
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Set � � � � 	 Q �  Y � � � 4 � � � � 	 Q � T � � 	 � �  Y � T  � 	 � �  � � 4 ,��7 � ��� � � 7 	 Q �  Y �
�0/ � 7 :;� � Q �  Y �  �  .

By assumption for any
� : �

the multiplicity of � � � � at 	 '  ' � is at least � � ,
i. e. � � � � 	 Q �  Y � � : 	 Q �  Y � � � � for every fixed complex number

� : �
. Hence,� � � 7 	 Q �  Y � � : 	 Q �  Y � � � � for every 9 .4

On the other hand we have
� � � � 	 Q �  Y � � 4 �

�
�
� 
 >
� � � � �

B
� � � � � �4 � V ��� �

��� �
	 Q �  Y �  ' �  ��� ���� �

	 Q �  Y �  ' �  ��� �� � 	 Q �  Y � 
' � [  V ˙� � 	 ' �  ˙ � 	 ' �  - [��

4 ��� �
� �

��� �
	 Q �  Y � �0/ ˙� � 	 ' � T ��� �

� �

��� �
	 Q �  Y � �C/ ˙ � 	 ' � T ��� �

� � 	 Q �  Y � 
' � �

Since � � � � : 	 Q �  Y � � � � , we have ��� �
� �

��� �
	 Q �  Y � �  ��� �

� �

��� �
	 Q �  Y � � : 	 Q �  Y � � � �

@ �
, and hence

��� �
� � 	 Q �  Y � 

' � : 	 Q �  Y � � � � . For this note that ˙� � 	 ' � 4 ˙ � 	 ' � 4 '
, if � �4 - .

The main idea of the next lemma is the following commutative diagram:
� // Ker #
	 & // ���� B������  �� A ����� =�
���� �"!��$#&%('*)  " #%$'& #,+ //

-
��

���� $ �.��� � > � � � � A/�! " # $ & # // �

���� B��
�.�  /�" �0�1� =�
���. �$!��2#3%('&4  " #%$'& #
+ 33gggggggggg

i. e. the fact that Ker 	 �
� : Ker 	 � � , or in other words, that � factorises over � .

2.4 Lemma
Given � ��������� � � :;< � and U ��������� U � :;� , � � - .
The canonical morphism5 ! � > � � � � � B # � � /�/�/ � ! � > � � � � � B # � � 
�� 	 P �(5 � ! � > � � � B # � / 
�� 	 P �
induces a surjective morphism � on the level of global sections.6

If � : # � VAP  ! � > � � � � � B # � ��� � /�/�/ �'� � ! � > � � � � � B # � �'� � 
 � 	 P � [ , but not in Ker 	 � � , then
� induces a non-zero section ˜� in # � V P  � � 
��� V , , ���� � � �

� �
[
�'�76�
�� 	 P � [ .

Proof: Set
� � 4., , ���� ��� �

� � .
We start with the structure sequence for

�P :
'

// 
 �� V , �P [ // 
 �� // 
 �� //
' �

Tensoring with the locally free sheaf 
 �� 	 � � and then applying � � we get a
morphism:

� � 
 �� 	 � �5 � � � 
��� 	 � � �
Now tensoring by 
�� 	 P � over 
 � we have an exact sequence:

'
// Ker 	 � � // � � 
 �� 	 � � �'� � 
 � 	 P �8 // � � 
 �� 	 � � �'� � 
�� 	 P � �

And finally taking global sections, we end up with:
'

// # � V+�  Ker 	 � � [ // # � V+�  � � 
 �� 	 � � � 
�� 	 P � [ � // # � V �  � � 
��� 	 � � ��
�� 	 P � [ �
4See Lemma C.1.
5I. e. ( > *A � �,* % �+��� % ( > -A � �	- %  " #%$'&*9�: ( > *A � �,* ���+� ( > -A � � - �! " #%$'& .6 	 is surjective, since supp � Ker #
	 & # ; <>= � �@?A?@?A� = =CB by Lemma C.4, and hence� � # B3� Ker #
	 & & � �

.



3. EXAMPLES 19

Since the sheaves we look at are actually 
 � -sheaves and since P is a closed
subscheme of � , the global sections of the sheaves as sheaves on � and
as sheaves on P coincide (cf. [Har77] III.2.10 - for more details, see Corol-
lary C.3). Furthermore, � � 
 �� 	 � � 4�� ���� � ! � > � � � � � B # � .
Thus it suffices to show that Ker 	 �

� : Ker 	 � � .
Since � � � � � � 	 � ���� �

� � � � � � � U ��������� U �  is an isomorphism, we have that
supp V Ker 	 � � [ : � U ��������� U �  is finite by Lemma C.5. Hence, by Lemma C.6
Ker 	 � � is a torsion sheaf, and thus

Ker 	 �
� 4 # � V �  Ker 	 � � [ :.# � � �  Tor

� � �
� � � !9� > � � � � � B # � � 
 � 	 P � � � �

Let now
� : Ker 	 �

�
be given. We have to show that � 	 � � 4 '

, i. e. � � 	 � � � 4 '
for

every U�: � . If U �: � U ��������� U �  , then
� � 4 '

. Thus we may assume U 4 U 7 . As we
have shown,

� ��� : Tor V ) � ��
�
��� �'� � � � � 
��

�
���
[ 4 Tor V ) � ��

�
��� 2 � ��� ) � ��

�
���
[ 4 	 � ��� � 2 � ��� ) � ��

�
��� 

where � ��� is a local equation of P at U 7 . Therefore, there exists a
' �4 � ���E: 
 �

�
���

such that
� ��� 4 � ���$�4���)V mod � ��� ) � ��

�
� �
[��

� ����� �4��� (note that � ����: ) � ��
�
� � :	) � ��

�
� � !).

But then ����� 	 � ��� � is just the residue class of � ��� �4��� in ) � ��
�
��� 
 �

�
��� 4 ) � ��

�
��� 2 	 � ��� � ,

and is thus zero.

Proof of Lemma 2.1: Using the notation of the idea of the proof given on
page 17, we have, by Lemma 2.3, a non-zero section � :;# � V P  ! � > � � � B # � / 
 � 	 P � [ .
This lifts under the surjection � to a section � � : # � VAP  � �� � � !9� > � � � � � B # � � 
�� 	 P � [
which is not in the kernel of � . Again setting

� � 4 , , ���� � � �
� � , by Lemma

2.4, we have a non-zero section ˜� : # � VAP  � � 
 �� 	 � � �'�76 
�� 	 P � [ , where by
the projection formula the latter is just # � V P  � � V 
 �� 	 � � �'�	�6 � � 
�� 	 P � [�[ 4 def# � V �P  
��� 	 � � ��� �6 � � 
�� 	 P � [ .
Since 
 �� 	 � � ���
�6 � � 
�� 	 P � has a global section and since

�P is irreducible and
reduced, we get by Lemma D.2:

')(
deg V/
 �� 	 � � ���
�6 ��� 
�� 	 P � [ 4 deg V 
��� 	 � � [ T deg V � � 
�� 	 P � [

4 � � �P T deg V 
�� 	 P � [ 4 ��
��� �

, � � � � T.P % �

3. Examples

In this section we are going to examine the conditions in the vanishing theo-
rem (Corollary 1.2). Unless otherwise stated, � � - is a positive integer, and
6 ��������� 6 � :;< � are non-negative.
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3.a. The Classical Case - � 4 $&%	
Since in $&%	 there are no irreducible curves of self-intersection number zero,
condition (1.5) is redundant. Moreover, condition (1.6) takes in view of (1.4)
the form * T 6 � � 1 . Corollary 1.2 thus takes the following form, where
� : � 
 � �	 	+- � � � is a generic line.

1.2a Corollary
Let * be any integer such that

(1.4a) 	+* T 6 � % �Z1 �,
��� �

	 6 � T - � % ,
(1.6a) * �.,�- .

Then for U ��������� U � : $ %	 in very general position and 
 	 '

# �


Bl � V+$ %	 [  * � � �3, ��
� � �

6 � � � � 4 ' �

3.b. Geometrically Ruled Surfaces

Throughout this section we use the notation and the results from Section G.a,
in particular Lemma G.2 for the irreducible curves with selfintersection zero
on � .

1.2b Corollary
Given two integers � � :�� satisfying

(1.4b) � V  , V % ,5- [ � [ � �,
��� �

	 6 � T - � % ,
(1.5b.i) � 	 max

� 6 � � � 4 - ������� �  ,
(1.5b.ii)  	 max

� 6 � � � 4 - ������� �  , if � 4 '
,

(1.5b.iii) 1 V  , V % ,5- [ � [ 	 max
� 6 � � � 4 - ������� �  , if � 
 '

, and

(1.6b)  � 	 � ,.- � � , if � 	 '
.

For U ��������� U � :;� in very general position and 
 	 '

# �


Bl � 	 � �  	 � ,21 �0/ � � P � T 	  , 1 T 1 � �C/ � � � , ��
��� �

6 � � � � 4 ' �

Proof: Note that if the invariant � is non-positive, then V  , V % , - [ � [ 	 '
implies

 � 	 � , - � �  (3.1)

so that this inequality is fulfilled for any choice of � .
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Setting � 4 	 � ,21 � P � T 	  , 1 T 1 � � � we have

	 � , ��� � % 4 V
� P � T 	  T � � � [ % 4 1 � �  , � �1 ,.- � � � �Z1 ��
��� �

	 6 � T - � % 
which is just (1.4b.i/ii/iii). Similarly, by (1.5b) and Lemma G.2 condition (1.5)
is satisfied.7 Finally, in view of Lemma G.1, condition (1.6b) implies that
� , ��� is nef.

3.c. Products of Curves

As we have seen in Proposition G.12, for a generic choice of smooth projective
curves of genera � � � - and � % � - respectively the surface � 4 P ��� P %
has Picard number two and according to Remark G.11 the only irreducible
curves

� �.� with selfintersection
� % 4 '

are the fibres P � and P % , and for any
irreducible curve

� �  � P � T  P % the coefficients � and  must be non-negative.
Taking into account that � � �  	�1 � % , 1 � P � T 	�1 � � , 1 � P % Corollary 1.2 comes
down to the following.

1.2c Corollary
Let P � and P % be two generic curves with � 	 P � � 4 � � � - , � 4 -  1 , and let� � : � be integers satisfying

(1.4c) 	 � , 1 � % T 1 � / 	  , 1 � � T 1 � � �,
� � �

	 6 � T - � % , and

(1.5c) 	 � , 1 � % T 1 �  	  , 1 � � T 1 � 	 max
� 6 � � � 4 - ������� �  ,

then for U ��������� U � :;� 4 P ��� P % in very general position and 
 	 '
# �


Bl � 	 � �  � � � P � T  � � P % , ��

��� �
6 � � � � 4 ' �

3.d. Products of Elliptic Curves

That P � and P % be “generic” in the above sense means for elliptic curves just
that they are non-isogenous.

In view of (1.5d) and Lemma G.19 (iv) the condition (1.6) becomes obsolete,
and Corollary 1.2 has the following form, taking Lemma G.19 (iii) and � � 4 '
into account.

1.2d Corollary
Let P � and P % be two non-isogenous elliptic curves, � � : � be such that

(1.4d) �  � �,
��� �

	 6 � T - � % , and

7To see this, let ��� 
��
� $ � �
	 ���

be an irreducible curve with �� � �
. Then by Lemma G.2

either � � � �
and 	 � ��� , or  � �

, � ��� � and 	 � � �
, or  �� �

, � �����
, and 	 � � 
��


 �� �

.
In the first case, #�� ��� A & ? � � ��� max < � � �"! �#� �@?A?@?A�%$ B by (1.5b.i). In the second case,
#&� �'� A & ? � � 	 � �(� 	 � max < � � �)! �*� �A?@?@?A�%$ B by (1.5b.ii). And finally, in the third case, we
have #&� �+� A & ? � � � � � � 	 � � 



� � #  & # � max<,� � �-! �.� �@?A?@?@�/$ B by (1.5b.iii).
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(1.5d) � � 	 max
� 6 � � � 4 - ������� �  ,

then for U ��������� U � :;� 4 P ��� P % in very general position and 
�	 '

# �


Bl � 	 � �  ��� � P � T  � � P % , ��
��� �

6 � � � � 4 ' �

3.e. Surfaces in $ 	
Since we consider the case of rational surfaces separately the following con-
siderations thus give a full answer for the “general case” of a surface in $ 	 .

1.2e Corollary
Let � � $ 	 be a surface in $ 	 of degree � , # : NS 	 � � be the algebraic class of
a hyperplane section, and * an integer satisfying

(1.4e) �
/ 	 *3, �=T � � % �Z1 �,

� � �
	 6 � T - � % , and

(1.5e) 	+*�, � T � �C/ # � � 	 max
� 6 � � � 4 - ������� �  for any irreducible curve�

with
� % 4 '

and dim � � �  � - , and

(1.6e) * � � , � ,
then for U ��������� U � :;� in very general position and 
 	 '

# �

Bl � 	 � �  * ��� # , ��

��� �
6 � � � � 4 ' �

3.1 Remark

(a) If NS 	 � � 4 # � , then (1.5e) is redundant, since there are no irreducible
curves

�
with

� % 4 '
. Otherwise we would have

� �� 9 # for some 9 : �
and 9X% � 4 � % 4 '

would imply 9 4 '
, but then # � � 4 '

in contradiction
to # being ample (see Lemma E.1).

(b) By a Theorem of Noether a generic surface in $ 	 has Picard number
one.However, a quadric in $ 	 or the K3-surface given by �

F T Q F T Y F TEU F 4'
contain irreducible curves of self-intersection zero.

(c) If �,
��� �

	 6 � T - � % 	 �

% 6 %� for all � 4 - ������� � then again (1.5e) becomes obsolete

in view of (1.4e), since # � � 	 '
anyway. The above inequality is, for

instance, fulfilled if the highest multiplicity occurs at least
�

% times.

(d) In the existence theorems the condition depending on curves of self-
intersection will vanish in any case, see Section III.3.e.

3.f. K3-Surfaces

3.f.i. Generic K3-Surfaces. Since a generic K3-surface does not possess an el-
liptic fibration the following version of Corollary 1.2 applies for generic K3-
surfaces. (cf. [FrM94] I.1.3.7)
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1.2f.i Corollary
Let � be a K3-surface which is not elliptic, and let � a divisor on � satisfying

(1.4f) � % �Z1 / �,
��� �

	 6 � T - � % , and

(1.6f) � nef,

then for U ��������� U � :;� in very general position and 
 	 '
# �


Bl � 	 � �  � � � , ��

��� �
6 � � � � 4 ' �

3.f.ii. K3-Surfaces with an Elliptic Structure. The hypersurface in $ 	 given
by the equation Q F T Y F TZU F T � F 4 '

is an example of a K3-surface which is
endowed with an elliptic fibration. Among the elliptic K3-surfaces the gen-
eral one will possess a unique elliptic fibration while there are examples with
infinitely many different such fibrations. (cf. [FrM94] I.1.3.7)

1.2f.ii Corollary
Let � be a K3-surface which possesses an elliptic fibration, and let � be a
divisor on � satisfying

(1.4f) � % �Z1 / �,
��� �

	 6 � T - � % ,
(1.5f) � � � 	 max

� 6 � � � 4 - ������� �  for any irreducible curve
�

with� % 4 '
, and

(1.6f) � nef,

then for U ��������� U � :;� in very general position and 
 	 '
# �


Bl � 	 � �  � � � , ��

��� �
6 � � � � 4 ' �

3.2 Remark
If � is generic among the elliptic K3-surfaces, i. e. admits exactly one elliptic
fibration, then condition (1.5f) means that a curve in � � � � meets a general fibre
in at least 9 4 max

� 6 � � � 4 - ������I �  distinct points.

4. Yet Another Vanishing Theorem

In [GLS98c] a different approach is used for the existence of curves with
prescribed topological singularity types in the plane case. It relies once more
on vanishing theorems for singularity schemes and may be applied to other
surfaces as well, once we have the corresponding vanishing theorems. It is
the aim of this section to generalise the first of these vanishing theorems
(cf. [GLS98c] Lemma 3.1 or [Los98] Lemma 3.10), and we claim that the
second one (cf. [GLS98c] Lemma 4.1 or [Los98] Lemma 3.11) can be treated
analogously.
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The proof uses an induction based on the reduction of a singularity scheme �
by a smooth curve � , that is, replacing � by ��� � . Unfortunately, the class of
singularity schemes is not closed under reduction, it therefore becomes neces-
sary to consider a wider class of zero-dimensional schemes. We only give the
definitions and state the results, which are necessary for Theorem 4.5. For a
more thorough investigation of these schemes, including many examples, we
refer to [GLS98c] Section 2 or [Los98] Section 2.2.

4.1 Definition
Let 	 P  U � � 	 �  U � be a reduced plane curve singularity with complete em-
bedded resolution tree  	 P  U � , and let  � 	 P  U � denote the essential subtree of 	 P  U � .
(a) If  � is a finite, connected subtree of  	 P  U � containing the essential

subtree  � 	 P  U � , we call the zero-dimensional scheme � 	 P � � � defined
by the ideal sheaf with stalks

! � > �
�
� � B # �

�
� 4 � 	 P � � � 4 � �L: 
 �

�
� 777 � goes through the cluster 
�� VNP � � [ �

and !9� > �
�
� � B # �

�
� � 4 
 �

�
� � , whenever U � �4 U , a generalised singularity

scheme (with centre U ).
We denote by

� � the class of zero-dimensional schemes in � which may
be obtained that way.

(b) The subclass of
� � of zero-dimensional schemes of the form � 	 P � � �

with centre U , where the plane curve singularity 	 P  U � has only smooth
branches, is denoted by

� � � .
(c) The subclass of

� � of zero-dimensional schemes of the form � 	 P � � � with
centre U where  � 4  � 	 P  U � is denote by � , and its members are called
singularity schemes.
We note that in this sense the singularity schemes � ! 	 P � introduced in
Definition I.2.6 are finite unions of singularity schemes. (See Remark
4.2.)

(d) By 
 � we denote the subclass of � of ordinary fat point schemes � 	 6 � U � .
(e) Since the support of a scheme � : � � consists of a unique point U , we

may define mult 	 � � 4 mult 	 �  U � .
(f) Let � 4 � 	 P � � � : � � and � � � be a curve which is smooth at U . We

then define  � � �24 � � :  � � the strict transform of � goes through �  ,
that is,  � � � is the maximal subtree  of  � such that � goes through
the cluster 
�� 	 P � � .

(g) Two generalised singularity schemes � �  � � : � � with centre U are called
isomorphic, if they are isomorphic as subschemes of � . We then write
� � �4 � � .
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(h) An equimultiple family of plane curve singularities over a (reduced) al-
gebraic scheme  over � is a flat family


 � � // � � 
����

��
��

�

 
�YY3

3
3
3
3
3

of reduced plane curve singularities V 
 � �� 	 � � [ �.� � � �
 �4 � with section

� , which admits a simultaneous embedded resolution, together with
sections � � through infinitely near points, defining a family � � of finite
connected trees  �� with  � V 
 � �� 	 � � [ :  �� �  V 
 � �� 	 � � [ , such that the
total transform of 
 is equimultiple along � � , � � 	 � � :  �� . (Cf. [GLS98c]
Definition 2.9, and [Los98] Definition 2.14.)

(i) Two generalised singularity schemes � �  � � : � � with centre U are
called equivalent, if there exist germs 	 P �  U � and 	 P �� U � defining � � re-
spectively � � , and a  � -equimultiple family of plane curve singularities
over some (reduced) open connected subset  of � �1 having 	 P � � �� � and	 P ��� �� � as fibres. We then write � � � � � . (Cf. [GLS98c] Definition 2.9,
and [Los98] Definition 2.28.)

4.2 Remark
The classes

� � ,
� � � and 
 � are closed with respect to the equivalence relation

� and with respect to reduction by a smooth curve � . (Cf. [GLS98c] Proposi-
tion 2.11 and Lemma 2.13, or [Los98] Proposition 2.23 and Lemma 2.31.)

4.3 Remark
The concepts introduced so far immediately generalise to multigerms 	 P  U � ,
and also the remaining part of this section does not change in this situation
(cf. [GLS98c] p. 545). Moreover, the singularity schemes introduced in Def-
inition I.2.6 then become precisely the elements of � . Just in order to save
some notation we will avoid the multigerms.

4.4 Definition
Let � �.� be a smooth curve such that the corresponding divisor is very ample.

(a) Let � �I������� � � � Num 	 � � � � ��� � Hilb
� � � � be some functions possibly de-

pending on the numerical class of � , and let 	 : � ��� � Hilb
� � be some

class of zero-dimensional schemes (not necessarily closed under reduc-
tion by � ).
We then call 	 � �I������� � � � a tuple of � -reduction resistant conditions on 	
if, whenever � � 	 �  � � � '

, � 4 - ������� � , for some zero-dimensional scheme
� :
	 and some divisor class � : Num 	 � � with � � � 	 � % , then also
� � 	 � , �  � � � � � '

, � 4 - ������� � .
We say, an � -reduction resistant condition � is satisfied by some zero-
dimensional scheme � and some divisor class � , if � 	 �  � � � '

.
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(b) We call a tuple 	 � ��������� � � � of � -reduction resistant conditions on 
 � suit-
able if for any ordinary fat point scheme � 4 � 	 6  U � �5� and any divisor
� , with � � � 	 � % , satisfying � � , for � 4 - ������� � , there exists a scheme
� � : 
 � with

(1) � � � � ,

(2) deg 	 � � � � � 4 deg 	 � � � � , and

(3) � � V �  ! � � # � 	 � � [ 4 '
.

Given a generalised singularity scheme � and a divisor � we would like to
know under which circumstances # � V �  ! �$# � 	 � � [ vanishes. However, it turns
out that this is hard to answer, and indeed, for the applications in the exis-
tence theorems (cf. [GLS98c]) we can do with less. There, we may replace
� by an equivalent scheme � � for which the cohomology group vanishes, and
it is the aim of Theorem 4.5 to provide numerical conditions ensuring the
existence of � � . Well, actually the theorem reduces the problem to finding
conditions which guarantee the existence of � � if � is an ordinary fat point
scheme (cf. (4.1)), which is much simpler to handle and where the geometry of
� will come into play.

4.5 Theorem
Let � � � be a smooth curve of genus � 4 � 	 � � such that the corresponding
divisor is very ample, and let � : Div 	 � � with � � � � � % and � : � � � such
that:

(4.1) There is a suitable tuple of � -reduction resistent conditions on 
 �
which are satisfied by � and � .

(4.2) deg 	 � � ( � / � V ��� �� � , mult 	 � � [ % , % � �>
�
@ �+B / ��� �� � � , and

(4.3) deg 	 � � � � ( ��� �� � , �

H � ���� � /
deg 	 � � ,21 � ,

where �
4 - T � 1 and � 4 6 ,21 / � 1 .

Then there is some � � : � � � with � � � � and deg 	 � � � � � 4 deg 	 � � � � such that

� � V+�  ! � � # � 	 � � [ 4 ' �
Proof: We do the proof by induction on * 4 � � � , starting with *Z4 � % . We
note that we may suppose that � is not an ordinary fat point scheme, since
the theorem holds for these by Assumption (4.1). This gives in particular the
induction basis, since for * 4 � % (4.2) can only be satisfied if � 4 � .
Setting 	 the subclass of

� � � which are not ordinary fat point schemes, Con-
dition (4.2) and Condition (4.3) are � -reduction resistant on 	 by Lemma 4.7.
We then may replace � and � by � � � and � , � , satisfying now (4.1)–
(4.3). Thus, by induction there is a scheme  � � � � � in

� � � such that
deg V  � � � [ 4 deg V 	 � � � � � � [ and � � V+�  ! % � # � 	 � ,�� � [ 4 '

. Due to the
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Semicontinuity Theorem for � � (cf. [Har77] III.12.8) and Lemma 4.8 (a) we
then find a scheme � � : � � such that � � � � and deg V � � � � [ 4 deg 	 � � � � .
Moreover, in view of Remark 4.2 we have � � : � � � , and by Lemma III.1.1 and
Condition (4.3) we find

� � V �  ! � � # � 	 � � [ 4 ' 
which finishes the proof.

4.6 Remark

(a) We note that for an ordinary fat point scheme � 	 6 � U � the cohomology
group # � V+�  ! � > ; � � B # � 	 � � [ vanishes if and only if

(1) � � V �  
 � 	 � � [ 4 '
, and

(2) # � V �  
 � 	 � � [ � # � V �  
 � > ; � � B 	 � �
[ 4 
 �

�
� 2 )�; �

�
� is surjective.

(b) We call a surface � regular with respect to � if for any * � - we have
� � V �  
 � 	+*�� � [ 4 '

.
We then see that the examples which we are considering throughout this
thesis are all regular with respect to the obvious choices of very ample
divisors.

(1) Complete intersections are regular with respect to hyperplane
sections by Proposition G.20. In particular $ %	 and surfaces in $ 	
are so.

(2) On a Hirzebruch surfaces � � , � � '
, a divisor � 4

� P
� T � � is

very ample if and only if � 	
'

and � 	 � � (cf. [Har77] V.2.18).
Then, however, � � is regular with respect to � (cf. Remark G.4 and
Lemma G.6).

(3) For a geometrically ruled surface � with invariant � over a curve
P of genus � 4 � 	 P � � - , we may choose a suitable integer

� �� 1 � , -  � T 1 � , -  such that there is a very ample divisor � ��EP � T � � .
By Lemma G.5 � is then regular with respect to � .

(4) Let � 4 P � � P % be a product of two smooth projective curves
of genera � � 4 � 	 P � � and denote by pr � �&� � P � the canonical
projection, � 4 -  1 . If � 4 pr �% � � pr � ��� with � : Div 	 P % � of de-
gree � � 1 � % T - and � : Div 	 P � � of degree  � 1 � � T - , then �
is very ample by Lemma G.7, and since � and � are non-special
by Riemann-Roch (cf. [Har77] IV.1.3.4) the Künneth formula in
Lemma G.8 implies that � � 	 �  � � 4 '

. But then � is regular with
respect to � .

(5) If � is a product of two elliptic curves, then � � 4 '
, and thus by

the Kodaira Vanishing Theorem � is regular with respect to any
very ample divisor.

(6) If � is a K3-surface, again the Kodaira Vanishing Theorem implies
that � is regular with respect to any very ample divisor � .
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(c) If � : Div 	 � � is very ample such that � is regular with respect to � and if
� 4 * / � is a multiple of the very ample divisor � , then (4.1) just becomes
obsolete.
In this situation Condition (4.2) and Condition (4.3) take the form:

(4.2*) deg 	 � � ( V 6 ,21 / � 1 [ / � V *�, mult 	 � � [ % , V 1 T � 1 [ / � / * � ,

(4.3*) deg 	 � � � � ( *�, � 	�� %� /
deg 	 � � ,21 � .

(d) In the case of the Hirzebruch surface � 4 � � 4 $ 	 - � $ �	 we would like
to use the chance to replace (4.1) by some condition, which applies to
arbitrary divisors � 4 � P � T  � on � rather than only to multiples of
�)4 P � T � . We claim that (4.1) may be replaced by

� � � 4 � � mult 	 � � ,.- and � � P � 4  � mult 	 � � ,5- � (4.4)

Proof: (a) and (b) are obvious.

(c) � is a hyperplane section of some embedding ��� � $ �	 , and we thus may
find two curves � �  � � : � � � � such that the germs � � � � and � � � � at U are local
coordinates of 	 �  U � , that is ) �

�
� 4 	 �

� � �  � � � � � .
If � 4 � 	 6 � U � is an ordinary fat point scheme such that (4.2) and (4.3)
are satisfied by � and � . We then deduce from (4.11) below, which is an
immediate consequence of (4.2), that

6 4 mult � ( ��� �
% H � � 
 * �

But then the map in (a) is surjective.

(d) The global sections of 
 � 	 � � may be identified with the polynomials
in � � Q �  Q �� Y �  Y � � which are bihomogenous of bidegree 	 � � � . Assuming
that U 4 V 	 ' � - �  	 ' � - � [ the map in (a) comes down to

# � 	 �  � P � T  � � � 
 �
�
� 2 ) ; �

�
� �4 P � Q �  Y � � 2 	 Q �  Y � � ; � � �� � 	 Q �  -  Y �  - � 

which is surjective by Assumption (4.4).
It remains to show that the conditions are � -reduction resistant on 
 � .
However, if � 	 6 � U � is an ordinary fat point scheme and � is smooth at U ,
then mult V � 	 6 � U � � � [ 4 mult V � 	 6 � U � [ ,5- , while � ,� 4 	 � ,5- �0/ P � T	  ,5- �C/ � , which finishes the claim.

4.7 Lemma
Let 	 denote the subclass of

� � � of schemes which are not ordinary fat point
schemes, let � � � be a smooth curve of genus � 4 � 	 � � such that the cor-
responding divisor is very ample, and let �

4 - T � 1  � 4 6 , 1 / � 1 and� 4 % �> � @ �+B / � 4 V 1 T � 1 [ / � .
We define two conditions ���  � � � Num 	 � � � � ��� � Hilb

� � � � by

��� 	 �  � � 4 " 	 �  � � , deg 	 � � and � � 	 �  � � 4 � 	 �  � � ,.* �4� 	 � � � � 
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where
" 	 �  � � 4 � / � V ��� �� � , mult 	 � � [ % , � / ��� �� � �

and � 	 �  � � 4 ��� �� � , �

H � ���� � /
deg 	 � � ,21 � �

The tuple 	 � �  � � � is � -reduction resistant on 	 .

Proof: For � : 	 and � : Num 	 � � with � � � 	 � % , deg 	 � � ( " 	 �  � � and
deg 	 � � � � ( � 	 �  � � we have to show

deg 	 � � � � ( " 	 � ,�  ��� � � (4.5)

and

deg V 	 � � � � � � [ ( � 	 � , �  � � � � � (4.6)

For this we consider four different cases, where the first case shall illustrate
that the constants � and � are chosen optimal.

Step 1: Some useful considerations on � , � and � .

We claim that � 	
'

is minimal and � 	 '
maximal such that� / V � % T � [ 4 �
, - � (4.7)

To see this we consider for a fixed  	 '
the equation

 / � % T 	  ,.- �C/ ��T - 4 ' � (4.8)

The discriminant V  , - � % , �  vanishes if and only if  4 � , and in this case� 4 , � @ �
% � 4

� , which proves the claim.

Furthermore, by the definition of � , � and � we have

	
� T - �0/ � / � 4 1 �  (4.9)

- ,
� � , 1 � 4 6 � 1 , � 	 '  (4.10)

and mult 	 � � % ( 1 / deg 	 � � ( 1 / " 	 �  � � ( 1 � / V � � �� � , mult 	 � � [ % , which implies

mult 	 � � 
 � 	 � % �

� % �
/
mult 	 � � ( ��� �� � � (4.11)

Step 2: Suppose that deg 	 � � � � 4 � 	 �  � � .
Since � / V � % T � [ ( � ,.- by (4.7), we have

V � % [ % / V � % T �
[ /

deg 	 � � ( V � % [ % / > � @ �+B�
/ " 	 �  � �( 	

�
,5- �0/ 	 � � � � % ,�� % / 	 � ,5- �0/ � / � � �
 	

�
,.- �C/ 	 � � � � % T V � % , 1

� �
/ � % [ / � � � �

Taking the assumption of Step 2 into account, this implies
�

H � �� � � /
deg 	 � � � - T �

H � �� � � @ � � / V deg 	 � � , � 	 �  � � [ 4 � �� � T �

H � ���� � @ � � / deg 	 � � � � �
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But then (4.6) follows:

deg V 	 � � � � � � [ ( deg 	 � � � � ( � 	 �  � � ( � 	 � ,�  ��� � � �
Due to (4.9)–(4.11) we have

P 	 �  � � � 4 	 � � � � % / 	+- , � � , 1 � � T � � / mult 	 � �0/ � % / V 1 / � � �E,�� % / mult 	 � � [ T
� � � / � % / V 1 � / mult 	 � � T � T 	

� T - �C/ � � , 1 � [ � ' �
In view of the assumption of Step 2 and (4.9) a tedious calculation shows

deg 	 � � � � 4 deg 	 � � , deg 	 � � � � 4 deg 	 � � , � 	 �  � �
4 V - T �

H � ���� � [ / deg 	 � � , � � �� � T 1 � ( V - T �

H � �� � � [ / " 	 �  � � , ��� �� � T 1 �
4 � / � V ��� � @ � �� � , mult 	 � � [ % , � / ��� � @ � �� � � , � > �

�
� B��� � H � �

( � / � V ��� � @ � �� � , mult 	 � � [ % , � / ��� � @ � �� � � ( " 	 � ,��  ��� � � 
which gives (4.5).

Step 3: We now suppose that � 4 � 	 P � � � satisfies the following conditions:

(a) deg 	 � � � ��
 � 	 �  � � .
(b) There exists an irreducible branch � of 	 P  U � such that  � � �)4  � � � .

(c) There exists no irreducible branch � � of 	 P  U � such that  � � ���  � � � � .
Since � is not an ordinary fat point scheme, the tree  � has at least three
vertices, and due to (c) the tree  � � � , therefore, has at least two. But then
deg 	 � � � � 
 deg 	 � � and deg V 	 � � � � � � [ (

deg 	 � � � � , 1 . Moreover, since

� � 
 - and by (4.11) we have

�
/
deg 	 � ��
 V ��� �� � , mult 	 � � [ % ( ��� �� � / V � � �E,� % [ 

and thus, taking (a) into account, we get (4.6):

deg V 	 � � � � � � [ 
 � 	 �  � � , 1
4 � 	 � , �  � � � � T �

H � ���� � H > ��� � @ � � B / deg 	 � � ,.- ( � 	 � ,�  ��� � � �
By (b) and Lemma 4.8 (b) we know that mult 	 � � � � 4 mult 	 � � ,.- . Therefore,

deg 	 ��� � � 
 deg 	 � � ( " 	 �  � � 4 " 	 � ,�  � � � � , � 
which implies (4.5).

Step 4: We now suppose that � 4 � 	 P � � � satisfies the following conditions:

(a) deg 	 � � � ��
 � 	 �  � � .
(b) There exists an irreducible branch � of 	 P  U � such that

(1)  � � � 4 � U 4 � � 
 � � 
 ����� 
 � �  ,
(2)  � � � 4 � U 4 � � 
 � � 
 ����� 
 � !  , � 
 �

, and

(3) mult VNP > � ��� � B  � ! 	 � [ 4 6 with deg 	 � � � � T 6 � � 	 �  � � .
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Due to (4.10) and (4.11) we have

P � 	 �  � � � 4 	+- ,
� � , 1 � � / V � � �� � , mult 	 � � [ T �&T �

�
H
mult

> � B H � ���� � / V ��� �� � , mult 	 � � [ � ' �
But then, taking (3) and (4.9) into account, a simple calculation shows

deg 	 ��� � � 4 deg 	 � � , deg 	 � � � � ( deg 	 � � , � 	 �  � � T mult 	 � �
4 V - T �

H � ���� � [ / deg 	 � � , V ��� �� � , mult 	 � � [ T 1 �( V - T �

H � ���� � [ / " 	 �  � � , V ��� �� � , mult 	 � � [ T 1 �
4 � / � V ��� � @ � �� � , mult 	 � � [ % , � / ��� � @ � �� � � , P � 	 �  � �
( � / � V ��� � @ � �� � , mult 	 � � [ % , � / � � � @ � �� � � ( " 	 � , �  � � � � 

which gives (4.5).

Consider next the concave function � ��� � � � Q �� � / 	 - T � �C/ V 1 Q , � ���� � / Q8% [ ,
which takes its maximum at Q 4 ��� �� � and is thus concavely increasing on the
interval � '  � % �

� 	 � % �
/ � � �� ��� . In particular, since the line

� Y 4 Q  intersects the

graph of � in Q 4 '
and Q 4 � �

� 	 � �
/ ��� �� � , � 	 Q � � Q for all

' ( Q ( � �

� 	 � �
/ ��� �� � .

Now consider a second function � � � '  � % �

� 	 � % �
/ ��� �� ��� � � given by

��	 Q � � 4 ���� Q  for
' ( Q ( � �

� 	 � �
/ ��� �� � � 1 � / V ��� �� � , Q [ % , Q %  for � �

� 	 � �
/ ��� �� � ( Q ( � % �

� 	 � % �
/ � � �� � �

This function is concave as well and takes its maximum at Q 4 � �

� 	 � �
/ � � �� � ,

where � and � coincide. In particular, � is bounded from above by � .

Note that by Lemma 4.8 (c) we have mult
> � B � 	 ; �%



deg 	 � � ( � / V � � �� � , mult 	 � � [ % ;

and 6 (
mult 	 � � anyway. We thus find

6 ( � V mult 	 � � [ ( � V mult 	 � � [ 
since by (4.11) mult 	 � � takes its values in the domain of definition of � .

Taking (4.8) and (4.9) into account, we deduce from this

P � � 	 �  � � � 4 ��� �� � / 	
�
,5- � T 	 - ,

� 6
, 1

� �
� , � �� � � / V � T � % [ / deg 	 � �

� ��� �� � / 	
�
,.- � T 	+- ,

� 6
,21

� �
� , � ���� � / V � T � % [ / " 	 �  � �

�
�
/ � � V mult 	 � � [ , 6 � � ' �

Moreover, we note that due to (3) we have

deg 	 � � � � 4 deg 	 � � , deg 	 � � � � ( deg 	 � � , � 	 �  � � T 6 �
But then

deg V 	 ��� � � � � [ ( deg 	 � � � � ( � 	 �  � �
4 ��� � @ � �� � ,

�
/ � �� � � @ � � / V deg 	 � � , � 	 �  � � T 6 [ , 1 � , � �� � � @ � � / P � � 	 �  � �( ��� � @ � �� � ,

�
/ � ���� � @ � � / deg 	 ��� � � , 1 � 4 � 	 � , �  ��� � � 
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which gives (4.6).

Step 5: We finally suppose that � 4 � 	 P � � � satisfies the following conditions:

(a) deg 	 � � � ��
 � 	 �  � � .
(b) There exists an irreducible branch � of 	 P  U � such that

(1)  � � � 4 � U 4 � � 
 � � 
 ����� 
 � �  ,
(2)  � � � 4 � U 4 � � 
 � � 
 ����� 
 � !  , � 
 �

, and

(3) mult VNP > � ��� � B  � ! 	 � [ 4 6 with deg 	 � � � � T 6 
 � 	 �  � � .
Then by Lemma 4.8 (d) we may specialise the point � ! 	 � onto the curve � and
consider the new scheme � � � � with deg 	 � � � � � 4 deg 	 � � � � T 6 . (Note
that � � ��� implies that � � : 	 .) By the Semicontinuity Theorem for � �
(cf. [Har77] III.12.8) the vanishing of # � V+�  ! � � � # � 	 � � [ for some � � � � � � with
deg V � � � � � [ 4 deg 	 � � � � � implies the vanishing of # � V �  ! � # � 	 � � [ itself. Thus,
specialising points to � we come down to the cases which we have already
studied.

4.8 Lemma
Let � 4 � 	 P � � � : � � , let � be a smooth branch of 	 P  U � and let � � � be a
curve which is smooth at U . Then:

(a) For almost all  � � � � � in
� � with deg V  � � � [ 4 deg V 	 � � � � � � [ there

exists a generalised singularity scheme � � � � in
� � such that  � 4 � � � �

and deg V � � � � [ 4 deg 	 � � � � .
(b) If  � � � :  � � � , then mult 	 ��� � � 4 mult 	 � � ,5- .
(c) deg 	 � � 4 , � .�� � ;��

H > ;�� 	 �+B% .

(d) If  � � � :  :  � � � is a connected subtree, then there exists an an-
alytical isomorphism � � 	 �  U � � 	 �  U � mapping 	 P  U � to a plane curve
singularity 	 P �� U � such that the subtree  �� corresponding to  � satisfies:

(1) � � 4 � 	 P ��� �� � �4 � ,

(2)  �� � � is the subtree of  �� corresponding to  , and

(3)  �� � � 4  �� � � � , where � � 4 � 	 � � is a smooth branch of 	 P �� U � .
In particular, � � � � and deg 	 � � � � � 4 deg 	 � � � � T , � . ��� > � � � � B 6 � .

Proof: (a) Cf. [GLS98c] Proposition 2.18 or [Los98] Proposition 2.32.

(b) Cf. [GLS98c] Lemma 2.15 or [Los98] Lemma 2.26.

(c) Cf. [GLS98c] Lemma 2.6 or [Los98] Lemma 2.8.

(d) Cf. [GLS98c] Lemma 2.14 or [Los98] Lemma 2.25.
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5. Examples

We are now stating the results which we derive from Theorem 4.5 in view of
Remark 4.6. We leave it to the reader to exploit the possibilities, which (4.1)
offers, in a better way.

5.a. The Classical Case - � 4 $ %	
Choosing � as a line in $ %	 , which has genus � 4 � 	 � � 4 '

, we get precisely the
same result as in [GLS98c].

4.5a Theorem
Let * 	 - be an integer and let � : � � � such that:

(4.2a) deg 	 � � ( V 6 , 1 / � 1 [ / V *�, mult 	 � � [ % ,
(4.3a) deg 	 � � � � ( *�, � 	 � %� /

deg 	 � � .
Then there is some � � : � � � with � � � � and deg 	 � � � � � 4 deg 	 � � � � such that

� � V $ %	  ! � � # � 	+*�� � [ 4 ' �
5.b. Hirzebruch Surfaces

Working now with the very ample divisor �)4 P � T 	 � T - � / � , which has genus
� 4 � 	 � � 4 '

, the theorem takes for divisors *�� precisely the same form as in
the case of $ %	 . We might as well work with any other very ample divisor � , of
possibly larger genus � 4 � 	 � � . The Theorem then takes the same form as for
K3-surfaces.

For the Hirzebruch surface � � 4 $ �	 � $ �	 we also get another, somewhat more
general version.

4.5b Theorem
Let � � 	 - be two integers and let � : � � � such that:

(4.1b) � � � mult 	 � � ,.- ,
(4.2b) deg 	 � � ( V 6 , 1 / � 1 [ / V *�, mult 	 � � [ % ,
(4.3b) deg 	 � � � � ( *�, � 	 � %� /

deg 	 � � .
Then there is some � � : � � � with � � � � and deg 	 � � � � � 4 deg 	 � � � � such that

� � VG$ �	 � $ �	  !9� � # � 	 � P � T  � � [ 4 ' �
5.c. Geometrically Ruled Surfaces

Using the notation of Section G.a � � � � P is a geometrically ruled surface
with invariant � . As in Remark 4.6 we may choose some integer

� � max
� 1 � ,-  ��T 1 � , -  such that � 4 P � T � � is very ample. Its genus is then just

� 	 � � 4 � 	 P � .
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4.5c Theorem
Let * 	 - be an integer and let � : � � � such that

(4.2c) deg 	 � � ( V 6 ,21 / � 1 [ / � V *3, mult 	 � � [ % , V 1 T � 1 [ / � 	 P �0/ * � ,

(4.3c) deg 	 � � � � ( *�, � 	 � %� /
deg 	 � � ,21 � 	 P � .

Then there is some � � : � � � with � � � � and deg 	 � � � � � 4 deg 	 � � � � such that

� � V �  !9� � # � 	+*�� � [ 4 ' �
5.d. Products of Curves

Let � 4 P � � P % be a product of two smooth projective curves of genera � � and
� % respectively. Then we may choose some very ample divisor � �  	�1 � % T - � /
P � T 	�1 � � T - �0/ P % of genus � 4 � � � � % T(� � T(� % .
4.5d Theorem
Let * 	 - be an integer and let � : � � � such that

(4.2d) deg 	 � � ( V 6 , 1 / � 1 [ / � V *0, mult 	 � � [ % , V 1 T � 1 [ / 	 � � � � % T � � T � % ��/ * � ,

(4.3d) deg 	 � � � � ( *�, � 	�� %� /
deg 	 � � ,21 / 	 � � � � % T(� � T(� % � .

Then there is some � � : � � � with � � � � and deg 	 � � � � � 4 deg 	 � � � � such that

� � � P ��� P %  ! � � # � V * / 	 1 � % T - �C/ P � T * / 	�1 � � T - �C/ P %
[ � 4 ' �

5.e. Surfaces in $ 	
For a surface in $ 	 of degree � with � a hyperplane section, the formula for
the genus � 4 � 	 � � comes down to � 4 > � @ �+B H > � @ % B% .

4.5e Theorem
Let * 	 - be an integer and let � : � � � such that

(4.2e) deg 	 � � ( V 6 , 1 / � 1 [ / � V * , mult 	 � � [ % , % 	 � %% / 	 � , - �S/ 	 � , 1 �S/ * � ,

(4.3e) deg 	 � � � � ( *�, � 	�� %� /
deg 	 � � , 	 � , - �0/ 	 � , 1 � .

Then there is some � � : � � � with � � � � and deg 	 � � � � � 4 deg 	 � � � � such that

� � V �  ! � � # � 	+*�� � [ 4 ' �
If � was a complete intersection of type 	+* ��������� * � @ % � and � is a hyper-
plane section, then we just would have to replace the genus � 4 � 	 � � 4� � H!H!H ��� � � H V � � � �

���
� �

�
@
�
[ 	 %% .
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5.f. K3-Surfaces

If � is a K3-surface and � any very ample divisor of genus � 	 � � 4 � , Theo-
rem 4.5 comes down to.

4.5f Theorem
Let * 	 - be an integer and let � : � � � such that

(4.2f) deg 	 � � ( V 6 , 1 / � 1 [ / � V *3, mult 	 � � [ % , V 1 T � 1 [ / � / * � ,

(4.3f) deg 	 � � � � ( *�, � 	 � %� /
deg 	 � � ,21 � .

Then there is some � � : � � � with � � � � and deg 	 � � � � � 4 deg 	 � � � � such that

� � V+�  ! � � # � 	+*�� � [ 4 ' �
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CHAPTER III

Existence

The question whether there exist plane curves of given degree having singular
points of given types was already studied by the Italian geometers during the
last century. A very nice and inspiring result in this direction is that of Severi
(cf. [Sev21]) which says that there is an irreducible plane curve of degree *
with � nodes as only singularities if and only if

' ( � ( >?�A@ �+B H >?�A@ % B% . In our
terminology this means

� ������ � H � � 	 ��" � � �4	� ��� ' ( � ( 	+*�,5- �C/ 	 *3, 1 �
1 

where # is a line in $&%	 . Severi deduced this by showing that nodes on plane
curves can be “smoothed” independently.

Looking for generalisations of this result one might concentrate on different
aspects such as

� looking at ordinary multiple points of higher multiplicities on plane
curves, or

� looking at arbitrary singularities on plane curves, or
� looking at nodal curves on arbitrary surfaces, or, finally,
� looking at arbitrary singularities on arbitrary surfaces.

All these generalisations have one problem in common – we may hardly ex-
pect criteria which are necessary and sufficient for the existence at the same
time. Already when replacing “nodes” by “cusps” on plane curves there is no
such complete answer known – except for small degrees * , * ( - ' –, and
the existence of irreducible plane curves with more cusps than the number of
conditions imposed by them should allow shows that one may hardly expect
such a result (cf. [Hir92]). Similar problems arise in the other situations, and
the reason is mainly that in general the conditions which the singular points
impose are not independent.

The direction of looking at plane curves with ordinary multiple points of
arbitrary multiplicities was very much inspired by a conjecture of Nagata
who proposed in [Nag59] that � � / , �� � � 6 � should be a lower bound for
the degree of a plane curve passing through � general points with mul-
tiplicities 6 ��������� 6 � , whenever � � M . He himself gave a complete an-
swer for the case � ( � and when � is a square. Many efforts have been
taken to fully prove the conjecture and much progress has been made –
cf. [Nag59, Seg62, ArC81, Hir85, Har86, Gim87, Hir89, Ran89, CiM98,

37
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Sei99, Bru99, Eva99, Mig00, AlH00, Roé01, Mig01]. However, a full proof
is still missing, though several special cases have been cracked and the gen-
erally known bounds have been improved largly. We refer to [Cil01] and
[Har01] for an overview on the state of the art for the Nagata Conjecture
and for the related conjectures of Segre [Seg62], Gimigliano [Gim87] and of
Harbourne–Hirschowitz [Har85a, Hir89].

Also for the existence of plane curves with one or with several singularities of
given topological singularity types there is a large number of results, giving
necessary or sufficient conditions for the existence or just giving strange ex-
amples – cf. [GTU66, ArC81, Bru81, ArC83, GuN83, Var83, Ura83, Tan84,
Ura84, GrM85, Ivi85, Koe86, Hir86, Ura86, Deg87, Shu87a, GrM88,
Hir92, Bar93b, Sak93, Shu93, Deg95, Wal95, Wal96, GLS98c, Los98,
Shu98, Shu99, Mig01, Shu01]. For an overview on the results known
we refer to [Los98], [GrS99] or [GLS02]. Just recently the asymptotically
best known conditions for the existence of curves in the plane with arbitrary
topological singularities have been considerably improved using Castelnuovo
function arguments, and at the same time the first general conditions for an-
alytical singularities have been found (cf. [Shu01]). The existence of an irre-
ducible plane curve of degree * with topological singularity types � ��������� � � ,
among them 9 nodes, 6 cusps and

�
singularities of type " % � with

� � 1 , as
only singular points is ensured byJ 9�T - ' 6 T F R� / � T � % \F�� / �

�
� �� � � � � � � 	�� � � ( * % , 1 * T 6 

where � 	�� � � is the delta-invariant of � � , and similarly for analytical singularity
types J 9�T - ' 6 T M / �

�
� �� � � � � � � 	�� � � ( * % ,21 * T 6 

suffices, where � 	�� � � is the Milnor number of � � . (Cf. [Shu01].) We will com-
pare this particular result to the corresponding special case of our general
results in Section 3.a and see that our results are weaker – which was to be
expected, since the techniques applied in [Shu01] are optimized for the plane
case.

In the past the question of the existence of curves with prescribed analytical
singularity types has attained much less attention, due to the lack of suitable
methods to tackle the problem. However, the Viro method which Shustin
uses in [Shu99] Section 6 on hypersurfaces in $ �

	 and which we also use here
allows to glue topological singularities as well as analytical ones, so that our
main results are valid for both kinds of singularity types. (See also [Shu01].)

The basic idea may be described as follows: suppose we have a “suitable” irre-
ducible curve PZ: � ��� � with ordinary multiple points U ��������� U � of multiplicities
6 ��������� 6 � as singularities, and suppose we have “good” affine representa-
tives � ��������� � � for the singularity types � ��������� � � , then we may glue locally
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at the U � the equations � � into the curve P . In Definition 2.1 we define what
it precisely means that a representative is “good”; that the curve P then is
“suitable”, just means that the 6 � -jet of P at U � coincides with the 6 � -jet of � � ,
where 6 � 4 deg 	 � � � , and that � � � � 	 6 ��������� 6 � � is smooth at P of the expected
dimension. Finding general conditions for the existence thus comes down to
finding conditions for the existence of curves with ordinary multiple points
satisfying the T-smoothness property and to finding upper bounds for the de-
gree of a good representative. Section 1 is devoted to the first problem, and we
get satisfactory results in Theorem 1.2 and Corollary 1.3, while for the second
problem we are bound to known results (cf. [Shu01]).

The most restrictive among the sufficient conditions which we find in Corol-
lary 2.5 is (2.7) respectively (2.11) and could be characterised as a condition
of the type ��

��� ��� 	�� � � ( � � % T��C� ��� T�� 
for topological singularity types, respectively for analytical ones as

��
��� �

� 	�� � � ( � � % T	� � ��� T
� 
where � is some fixed divisor class and �  � and � are some absolute constants.
(See also Remark II.1.3.) However, it seems that this condition is of the right
type and with the right “exponents” for the invariants of the � � as well as for
the divisor � , since there are also necessary conditions of this type, e. g.

��
� � �

� 	�� � � ( 1 / ��
� � � � 	�� � � ( � % T � � ��� T 1 

which follows from the genus formula: If � is an irreducible curve with
precisely � singular points of topological or analytical types � ��������� � � and

-� �� � � its normalisation, then

�  	 � � 4 � V �� [ T � 	 � � � � 	 � � , where� 	 � � 4 dim 1)V 
 � 
��� 2 
 � [ is the delta invariant of � (cf. [BPV84] II.11).
Moreover, by definition � 	 � � 4 , �/. Sing

> � B � 	 �  U � , and it is well known that1 � 	 �  U � 4 � 	 �  U � T � 	 �  U � , - � � 	 �  U � (see Remark I.2.2). Using now the
genus formula we get: � % TZ� ����� T 1�4 1 �  	 � � � 1 / , ���� � � 	�� � � � , �� � � � 	�� � � .

1. Existence Theorem for Ordinary Fat Point Schemes

In order to be able to apply the existence theorem for ordinary fat point
schemes to the general case it is important that the existing curve has the
T-smoothness property, that is that some # � vanishes. This vanishing is en-
sured by reducing the problem to a “lower degree” and applying the following
lemma as a kind of induction step.

1.1 Lemma
Let � � � be a smooth curve and � � � a zero-dimensional scheme. If � :
Div 	 � � such that
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(1.1) � � V �  ! � � � # � 	 � ,�� � [ 4 '
, and

(1.2) deg 	 � � � � ( � � � T - , 1 � 	 � � ,
then

� � V �  ! �$# � 	 � � [ 4 ' �
Proof: Condition (1.2) implies

1 � 	 � � , 1 
 � � �E, deg 	 � � � � 4 deg V 
 � 	 � � [ T deg V3! ��� � # � [ 4 deg V3! � � � # � 	 � � [ 
and thus by Riemann-Roch (cf. [Har77] IV.1.3.4)

� � V ! ��� � # � 	 � � [ 4 ' �
Consider now the exact sequence

' // ! � � � # � 	 � ,�� � H �
// ! �$# � 	 � � // ! � � � # � 	 � � // ' �

The result then follows from the corresponding long exact cohomology se-
quence

' 4 # � V ! � � � # � 	 � , � � [ // # � V !9� # � 	 � � [ // # � V ! ��� � # � 	 � � [ 4 ' �

1.2 Theorem
Given 6 ��������� 6 � : < , not all zero, and U ��������� U � : � , in very general position.
Let � : Div 	 � � be very ample over � , and let � : Div 	 � � be such that

(1.3) � � V �  ! � > ; � � B # � 	 � , � � [ 4 '
, and

(1.4) � � ��,21 � 	 � � � 6 � T - for all � 4 - ������� � .
Then there exists an irreducible curve P : � � � � with ordinary singular points of
multiplicity 6 � at U � for � 4 - ������� � and no other singular points. Furthermore,

� � V+�  ! � > ; � � B # � 	 � � [ 4 ' 
and in particular, � � ��� 	 6 �

is T-smooth at P .

Addendum: Given local coordinates Q 
  Y 
 in U 
 and open dense subsets
�

 :� � Q 
  Y 
 � ;�� ,1  4 - ������� � , the curve P may be chosen such that the 6 
 -jet at U 
 of

a section defining P belongs to
�

 .

Idea of the proof: For each U 
 find a curve P 
 : 77 ! � > ; �
� B # � 	 � � 77 � with an ordi-

nary singular point of multiplicity 6 
 and show that this linear system has no
other base points than U ��������� U � . Then the generic element is smooth outside
U ��������� U � and has an ordinary singularity of multiplicity 6 
 in U 
 for

 4 - ������� � .
1For the definition of

��� � ���	� ? see Page 44.
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Proof: Let U � : � be a generic point in the sense that for any U � : � there is
a smooth connected curve, say � � � , in � � � � through U � and U � containing at most
one of the U � , � 4 - ������� � . (Cf. Lemma E.3.)

If � :.� is any zero-dimensional subscheme and U � :;� is any point, we define
the zero-dimensional scheme ���

� U �  by the ideal sheaf

!������ � �
	 # �
�
� 4 �� � !�� # �

�
�  if U �4 U � 

) �
�
� � / !�� # �

�
� �  if U 4 U � �

Writing � for � 	 6 � U � we introduce in particular the zero-dimensional schemes
� 
 4 ���

� U 
� for
 4 ' ������� � .

Step 1: � � V3! � � ��� � � 	 # � 	 � � [ 4 � � V&! � � # � 	 � � [ 4 '
for U � :;� � � U �  and

 4 ' ������� � .
Since � � � passes through U � , U � and at most one U 
 ,  : � - ������� �  , where U � might
be this U 
 , Condition (1.4) implies

deg V&� � � � � � [ ( 6 
 T 1 ( � � � T - , 1 � 	 � � � (1.5)

Moreover, if U � 4 U 
 for some
 : � - ������� �  or if � � � does not pass through any

U 
 ,  : � - ������� �  , then � � � � U �  � � � � 4 � , otherwise we get the exact sequence

'
// ! �$# � // ! � � ��� � � 	 � � � � # � // ) ; � @ ��

�
� � 2 ) ;��� � � � //

' 
but in any case we have by Condition (1.3) that

� � V3!9� � ��� � ��	 � � � � # � 	 � , � � [ 4 ' � (1.6)

(1.5) and (1.6) allow us to apply Lemma 1.1 in order to obtain

� � V ! � � �� � ��	 # � 	 � � [ 4 ' �
The inclusion !9� � ��� � � 	 # � � � !9� � # � , for

 4 - ������� � , respectively the inclusion
! � � ��� � � 	 # � � � ! � � # � , for some U � �4 U � , then imply that for any

 4 ' ������� � also

� � V&! � � # � 	 � � [ 4 ' �
Step 2: For each

 4 - ������� � there exists a curve P 
 : � � � � with an ordinary
singular point of multiplicity 6 
 at U 
 and with mult � � 	 P 
 � � 6 � for - ( � �4  .
Consider the exact sequence

'
// !9� � # � // !9�$# � // ) ; ��

�
� � 2 ) ; �

	 ��
�
� � //

'
twisted by � and the corresponding long exact cohomology sequence

# � V ! � # � 	 � � [ // ) ;���
�
� � 2 ) ;��

	 ��
�
� � // # � V ! � � # � 	 � � [ //

Step 1

# � V ! � # � 	 � � [ //
' �

'
(1.7)
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Thus we may choose the P 
 to be given by a section in # � V ! � # � 	 � � [ where the
6 
 tangent directions at U 
 are all different – indeed, we may choose the 6 
 -jet
at U 
 of the section defining P 
 arbitrary!

Step 3: The base locus of 77 !9� � # � 	 � � 77 � is
� U � ������� U �  .

Suppose U � :;� was an additional base point of 77 ! � � # � 	 � � 77 � . By Step 1

� � V@! � � �� � � 	 # � 	 � � [ 4 ' 
and thus as in Step 2

�
� V3!9� � # � 	 � � [ 4 � � V3!9� � ��� � � 	 # � 	 � � [ T - �

But by assumption U � is a base point, and thus

�
� V ! � � # � 	 � � [ 4 � � V ! � � ��� � � 	 # � 	 � � [ 

which gives us the desired contradiction.

Step 4: The base locus of 77 !9� # � 	 � � 77 � is
� U �I������� U �	 .

By Step 3 and since 77 ! � � # � 	 � � 77 � � 77 !9�$# � 	 � � 77 � we know that the base locus is
contained in

� U � ������� U �  .
Let now U �� : � be a second generic point like U � , then we see with the same
arguments that the base locus 77 ! �$# � 	 � � 77 � is contained in

� U ��  U �I������� U �  , and
thus it is

� U ��������� U �  .
Step 5: There is an irreducible curve P : 77 ! �$# � 	 � � 77 � , which has an ordinary
singular point of multiplicity 6 � at U � for � 4 - ������� � and no other singular
points – indeed, there is an open and dense subset

�
of curves in 77 ! �$# � 	 � � 77 �

satisfying these requirements.

Because of Step 2 the generic element in 77 ! � # � 	 � � 77 � has an ordinary singu-
lar point of multiplicity 6 � at U � and is by Bertini’s Theorem (cf. [Har77]
III.10.9.2) smooth outside its base locus. It remains to show that 77 ! �$# � 	 � � 77 �
contains an irreducible curve, then the generic curve is irreducible as well.

Suppose therefore that all curves in 77 ! � � # � 	 � � 77 � are reducible. Then by a Theo-
rem of Bertini (cf. Theorem E.5) there is a one-dimensional family � of curves
such that the irreducible components of any curve in 77 ! � � # � 	 � � 77 � belong to � .
Since any curve in 77 ! � � # � 	 � � 77 � passes through U � , any curve in 77 ! � � # � 	 � � 77 � has
an irreducible component passing through U � . By Step 3 the linear system
has no fixed component, and thus each curve of � must pass through U � . By
assumption each curve in 77 ! � � # � 	 � � 77 � has several components and now each
of these components passes through U � . Thus, each curve in 77 !9� � # � 	 � � 77 � is
singular in U � . However, since U � is generic there will be a generic curve in
77 ! �$# � 	 � � 77 � through U � , which then has to be smooth in U � , as we have seen
above. This gives the desired contradiction.

Step 6: � � V3!9� # � 	 � � [ 4 '
, which follows immediately from equation (1.7).
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Step 7: � � ��� 	 6 �
is T-smooth at P .

By [GLS98c], Lemma 2.7, we have

! � # � : ! �	� � > � B # � 
and thus by Step 6

� � V ! �	� � > � B # � 	 � � [ 4 ' 
which proves the claim.

Step 8: Prove the addendum.

Fixing local coordinates Q 
  Y 
 at U 
 we may consider the linear maps

� 
 � #
� V �  !9�$# � 	 � � [ � � � Q 
  Y 
 � ; � � � �� jet ; � 	 � � �

� 
where jet ;�� 	 � � �

�
denotes the 6 
 -jet of the section � in the local coordinates at

U 
 . According to the considerations in Step 2 we know that the � 
 are indeed
surjective. Thus the sets � @ �


 	 � 
 � are open dense subsets of # � V �  !9� # � 	 � � [ ,
and if � � # � V �  ! �$# � 	 � � [ denotes the open dense subset of sections corre-
sponding to the curves in the set

�
from Step 5, then � 4 � ��� � 
 � � �

@ �

 	 � 
 � is

non-empty and a curve defined by a section in � satisfies the requirements
of the addendum.

1.3 Corollary
Let 6 ��������� 6 � : < � , not all zero, and let � : Div 	 � � be very ample over � .
Suppose � : Div 	 � � such that

(1.8) 	 � , ��, ��� � % �Z1 / �,
��� �

	 6 � T - � % ,
(1.9) 	 � , � , ��� � � � 	 max

� 6 ��������� 6 �  for any irreducible curve
� �.�

with
� % 4 '

and dim � � �  � - ,
(1.10) � � �E, 1 � 	 � � 	 max

� 6 ��������� 6 �  , and

(1.11) � , ��, ��� is nef.

Then for U ��������� U � :;� in very general position there exists an irreducible curve
P : � ��� � with ordinary singular points of multiplicity 6 � at U � for � 4 - ������� �
and no other singular points. Furthermore,

� � V+�  ! � > ; � � B # � 	 � � [ 4 ' 
and in particular, � � ��� 	 6 �

is T-smooth in P .

Addendum: Given local coordinates Q 
  Y 
 in U 
 and open dense subsets
�

 :� � Q 
  Y 
 � ;�� ,  4 - ������� � , the curve P may be chosen such that the 6 
 -jet at U 
 of a

section defining P belongs to
�

 .

Proof: Follows from Theorem 1.2 and Corollary II.1.2.
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2. Existence Theorem for General Singularity Schemes

Notation
Througout this section we will be concerned with equisingular respectively
equianalytical families of curves. We are treating these two cases simultane-
ously, using the suffixes “es” in the equisingular case, that is whenever topo-
logical singularity types are considered, “ea” in the equanalytical case, that is
when analytical singularity types are considered, and finally, using “*” when
both cases are considered at once.

In the following we will denote by � � Q  Y � � , respectively by � � Q  Y � � � the � -
vector spaces of polynomials of degree * , respectively of degree at most * . If
��: � � Q  Y � � � we denote by � 7 : � � Q  Y � 7 for 9 4 ' ������� * the homogeneous part
of degree 9 of � , and thus � 4 , �7 � � � 7 . By � 4 	 � 7

�
� � ')( 9 T � ( * � we will denote

the coordinates of � � Q  Y ��� � with respect to the basis 5KQ 7 Y � � ' ( 9�T � ( * < .
For any � : � � Q  Y ��� � the tautological family

� � Q  Y ��� � � � %��
�

� . 1�� � � �����
	
� �  � � @ � 	 ' �(5 � � � Q  Y � � �

induces a deformation of the plane curve singularity V � @ � 	 ' �  ' [ whose base
space is the germ V � � Q  Y ��� �  � [ of � � Q  Y ��� � at � . Given any deformation	 �  Q � � � 	��  Q � � 	 � �� � of a plane curve singularity 	 �  Q � , we will denote by
� � 4 	 � � �� � the germ of the equisingular respectively equianalytical stratum
of 	 � �� � .2 Thus, fixed an � : � � Q  Y ��� � , � � Q  Y � � � � 4 V � � Q  Y � � � �  � [ is the (local)
equisingular respectively equianalytical stratum of � � Q  Y � � � at � .

2.1 Definition

(a) We say the family � � Q  Y � � � is topologically respectively analytically T-
smooth at � : � � Q  Y ��� � if for any � � * there exists a  � 5 	 9  � � :
< % � 77 '2( 9 T � ( * < with #  4 � � 4 � � V	� @ � 	 ' �  ' [ such that � � Q  Y � � � � is
given by equations� 7

�
� 4�� 7

�
��V�� > � B  � > % B [  	 9  � � :� 

with � 7
�
� : � 5 � > �+B  � > % B < where � > � B 4 	 � 7

�
� � 	 9  � � :� � , � > �+B 4 	 � 7

�
� � ' (

93T � ( *  	 9  � � �:� � , and � > % B 4 	 � 7
�
��� * T - ( 9�T � ( � � .

(b) A polynomial � :;� � Q  Y ��� � is said to be a good representative of the topo-
logical respectively analytical singularity type � in � � Q  Y � � � if it meets
the following conditions:

(a) Sing V � @ � 	 ' � [ 4 � � :;� % 777 � 	
� � 4 '  ���

���
	 � � 4 '  ���

���
	 � � 4 ' � 4 � '

 ,
(b) V � @ � 	 ' �  ' [ ��� � respectively V	� @ � 	 ' �  ' [ � � � ,

(c) � � Q  Y ��� � is T-smooth at � , and
2That is, � � is the analytical space germ parametrising the subfamily of #�� � � &�: # ����� & of

singularities which are topologically respectively analytically equivalent to #�� � � & .
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(d) � � is a generic reduced * -form, that is, there is an open subset� : � � Q  Y � � of reduced * -forms such that for each � � : �
there is

an � :;� � Q  Y � � � satisfying (a)-(c) and � � 4 � � .
(c) Given a topological respectively analytical singularity type � we define

� ! 	�� � respectively �  	�� � to be the minimal number * such that � has a
good representative of degree * .
Whenever we consider topological and analytical singularity types at
the same time, we will use � � 	�� � to denote ��! 	�� � and �  	�� � respectively.

2.2 Remark

(a) The condition for T-smoothness just means that for any � � * the equi-
singular respectively equianalytical stratum � � Q  Y � � � � is smooth at the
point � of the expected codimension in V � � Q  Y ��� �  � [ .

(b) Note that for a polynomial of degree * the highest homogeneous part � �
defines the normal cone, i. e. the intersection of the curve 5��� 4 ' < with
the line at infinity in $ %	 , where �� is the homogenisation of � . Thus the
condition “ � � reduced” just means that the line at infinity intersects the
curve transversally in * different points.

(c) If � : � � Q  Y  U � � is an irreducible polynomial such that 	 ' � ' � - � is the
only singular point of the plane curve

� � 4 '
 � $ %	 , then a linear change

of coordinates of the type 	 Q  Y  U � �� 	 Q  Y  U T �SQ�T  Y � will ensure that
the dehomogenisation ˇ� of � satisfies “ ˇ� � reduced”. Note for this that
the coordinate change corresponds to choosing a line in $ %	 , not passing
through 	 ' � ' � - � and meeting the curve in * distinct points. Therefore,
the bounds for � ! 	�� � and �  	�� � given in [Shu01] do apply here.

(d) In order to obtain good numerical conditions for the existence it is vital
to find good upper bounds for ��! 	�� � and �  	�� � . We gather here the best
known results in this direction obtained by Eugenii Shustin in [Shu01]
(see also [GLS02] Chapter V.4).
If � is a simple singularity, then of course � ! 	�� � 4 �  	�� � .
� � ! 	�� � 4 �  	�� � � � ! 	�� � 4 �  	�� �
" � 1 � F 6
" % 6 � \ �
" �  � 4 6 �������
� � � �  � ( J ������� - ' �

" �  � 4 � ������� - ' � � �  � ( -O- ������I - 6 J
" �  � � - ( 1 /�� � � T ��� � �  � � - ( 1 /�� � � T � �
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� � ! 	�� � 4 �  	�� � � � ! 	�� � 4 �  	�� � � � ! 	�� � 4 �  	�� �
� � � ��� � � � �

For non-simple singularities the invariants for � ! 	�� � and �  	�� � differ in
general. If � �: � " �I " %  is a topological singularity type, then

� ! 	�� � ( % \FIH �  / � � 	�� � ,.- 
and if � �: � " �I " %  is an analytical singularity type, then

�  	�� � ( 63/ � � 	�� � , - �
Finally, in Lemma V.3.10 we are going to show that for an arbitrary
topological or analytical singularity type we have the inequality

� � 	�� � ( ��� 	�� � T - �
(e) For refined results using the techniques of the following proof we refer

to [Shu99].

2.3 Theorem (Existence)
Let � ��������� � � be topological or analytical singularity types, and suppose there
exists an irreducible curve P : � � � � with Sing 	 P � 4 � U ��������� U �  such that in
local coordinates at U � the 6 � -jet of a section defining P coincides with the 6 � -
jet of a good representative of � � ,3 where 6 � 4 � ! 	�� � � respectively 6 � 4 �  	�� � � ,
� 4 - ������� � , and

� � V �  ! � > ; � � B # � 	 � � [ 4 ' �
Then there exists an irreducible curve

�P : � ��� � with precisely � singular points
of types � ��������� � � as its only singularities.

Idea of the proof: The basic idea is to glue locally at the U � equations of good
representatives for the � � into the curve P . Let us now explain more detailed
what we mean by this.

If � � 4 , ; �7 	 � � � �X� � � � �7
�
� Q 7� Y �� , � 4 - ������I � , are good representatives of the � � , then

we are looking for a family � � , � : 	 �  ' � , in # � V �  
 � 	 � � [ which in local coor-
dinates Q �  Y � at U � looks like

� �� 4 ; � @ ��
7 	 � � �

� ; � @ 7 @ � ˜� � 7
�
� 	 � �C/ Q 7� Y �� T

�
7 	 � � ; � V � � � � � �7

�
� T � / � ���0� � � [ / Q 7� Y �� T � ���0� � ��

where the ˜�S�7
�
� 	 � � should be convergent power series in

�
with ˜� � 7

�
� 	 ' � 4 �S� � � � �7

�
� .

The curve defined by � � will just be the curve P , while � �� for
� �4 '

can be
transformed, by 	 Q �  Y � � �� 	 � Q �  � Y � � , into a member of some family

˜� �� 4 ; � @ ��
7 	 � � � ˜� � 7

�
� 	 � �C/ Q 7� Y �� T

�
7 	 � � ;�� V � � � � � �7

�
� T � / � ���0� � � [ / Q 7� Y �� T � ���0� � �� � :;� 

3This implies in particular that $ has an ordinary � � -fold point.
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with
˜� � � 4 � � �

Using now the T-smoothness property of � � , � 4 - ������� � , we can choose
the ˜� � 7

�
� 	 � � such that this family is equisingular respectively equianalytical.

Hence, for small
� �4 '

, the curve given by � � will have the right singularities
at the U � . Finally, the knowledge on the singularities of P and the Conserva-
tion of Milnor numbers will ensure that the curve given by � � has no further
singularities, for

� �4 '
sufficiently small.

The proof will be done in several steps. First of all we are going to fix some no-
tation by choosing good representatives for the � � (Step 1.1) and by choosing a
basis of # � V �  
 � 	 � � [ which reflects the “independence” of the coordinates at
the different U � ensured by � � V �  !9� > ; � � B # � 	 � � [ 4 '

(Step 1.1). In a second step
we are making an “Ansatz” for the family � � , and, for the local investigation
of the singularity type, we are switching to some other families ˜� �� , � 4 - ������� �
(Step 2.1). We, then, reduce the problem of � � , for

� �4 '
small, having the

right singularities to a question about the equisingular respectively equian-
alytical strata of some families of polynomials (Step 2.2), which in Step 2.3
will be solved. The final step serves to show that the curves � � have only the
singularities which we controlled in the previous steps.

Proof:

Step 1.1: By the definition of 6 � 4 � ! 	�� � � respectively 6 � 4 �  	�� � � , we may
choose good representatives

� � 4
; ��
7 	 � � � � � � � � �7

�
� Q 7� Y �� : � � Q �  Y � ��� ; �

for the � � , � 4 - ������� � . Let � � � � � � 4 V � � � � � �7
�
� 77

' ( 9;T � ( 6 �
[

and � � � � 4
V�� � � � � � ������� � ��� � � � [ .
Step 1.2: Parametrise � � � � 4 $)V+# � V 
 � 	 � � [�[ .
Consider the following exact sequence:

' 5 � ! � > ; � � B # � 	 � � 5 � 
 � 	 � �(5 � ��
��� �


 �
�
� � 2 ) ; �� � � � 5 � ' �

Since � � V ! � > ; � � B # � 	 � � [ 4 '
, the long exact cohomology sequence gives

# � V 
 � 	 � � [ 4 ��
� � �

� � Q �  Y �  2 	 Q �  Y � � ; ��� # � V ! � > ; � � B # � 	 � � [ 
where Q �  Y � are local coordinates of 	 �  U � � .
We, therefore, can find a basis 5 � � 7

�
� �� 
 77  4 - ������� �  � 4 - ������� �  ' ( 9)T � (

6 � ,5- < of # � V/
 � 	 � � [ , with � 4 � � V@! � > ; � � B # � 	 � � [ , such that4

4Throughout this proof we will use the multi index notation � � # � � ��� 
&����  and � � � �

� � � �  .
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(1) P is the curve defined by � � ,
(2) 	 � � � � � 4 , �

�
� � ; �

� � � Q � �� Y � �� for � 4 - ������� � , with
� � � 4 � � � � � �� �

�
� � when � � � 4 6 � ,

(3) V � 
7
�
�
[
� � 4

����
��

� Q 7� Y �� T ,�
�
� � ; � " � � �� �

7
�
� Q � �� Y � ��  if � 4  

,�
�
� � ; � "


 � �
�
�
7
�
� Q � �� Y � ��  if � �4  �

Let us now denote the coordinates of # � V 
 � 	 � � [ w. r. t. this basis by 	 � � � 4
V�� � ������� � � � [ with � � 4 V
�X�7

�
� � ' ( 93T � ( 6 � ,5- [ and  4 	  
 �  4 - ������� � � .

Thus the family

� > 
�

� B 4 ��
��� �

; � @ ��
7 	 � � � � � 7 � � � � 7 � � T

��

 � �

 
 � 
  	 � � � :;� � with
� 4 � T ��

� � �
� 6 � T -

1 � 
parametrises # � V 
 � 	 � � [ .
Step 2: We are going to glue the good representatives for the � � into the
curve P . More precisely, we are constructing a subfamily � � , � : 	 �  ' � , in
# � V 
 � 	 � � [ such that � � 4 � � and locally in U � , � 4 - ������I � , the � � , for small� �4 '

, can be transformed into members of a fixed � � -equisingular respectively� � -equianalytical family.

Step 2.1: “Ansatz” and first reduction for a local investigation.

Let us make the following “Ansatz”:

 � 4 -   % 4 ����� 4  � 4 ' 
� � 7

�
� 4 � ;�� @ 7 @ � / ˜� � 7

�
�  for � 4 - ������� �  ')( 93T � ( 6 � ,5- �

This gives rise to a family

� > �
�
˜ B 4 � � T ��

��� �
; � @ ��
7 	 � � �

� ; � @ 7 @ � ˜� � 7
�
� � � 7

�
� : # � V 
 � 	 � � [

with
� : � and ˜� 4 V ˜� � ������� ˜� � [ where ˜� � 4 V ˜�X�7

�
� � ';( 9)T � ( 6 � , - [ : � � �

with
� � 4 V ; � 	 �% [

. In particular, � > �
�
˜ B 4 � � .

Fixing � : � - ������� �  , in local coordinates at U � the family looks like

� � > �
�
˜ B � 4 V � > �

�
˜ B [ � � 4

;�� @ ��
7 	 � � �

� ; � @ 7 @ � ˜� � 7
�
� Q 7� Y �� T

�
�
�
� � ; �

� � � 	 �  ˜� � Q � �� Y � �� 
with

� � � 	 �  ˜� � 4 � � � T ��

 � �

;�� @ ��
7 	 � � �

� ;�� @ 7 @ � ˜� 
7
�
� " 
 � ��

�
7
�
� 

and thus � � � 	 '  ˜� � 4 � � � 4 � � � � � �� �
�
� �  for � � � 4 6 � �
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For
� �4 '

the transformation � �� � 	 Q �  Y � � �� 	 � Q �  � Y � � is indeed a coordinate
transformation, and thus � � > �

�
˜ B is contact equivalent to

˜� � > �
�
˜ B � 4 � @ ; � / � � > �

�
˜ B 	 � Q �  � Y � � 4

; � @ ��
7 	 � � � ˜� � 7

�
� Q 7� Y �� T

�
�
�
� � ; �

� � � � @ ; � � � � 	 �  ˜� � Q � �� Y � �� �
Note that for this new family in � � Q �  Y �  we have

˜� � > �
�
 � ��� B 4 ; ��

7 	 � � � � � � � � �7
�
� Q 7� Y �� 4 � � 

and hence it gives rise to a deformation of V � @ �� 	 ' �  ' [ .
Step 2.2: Reduction to the investigation of the equisingular respectively equi-
analytical strata of certain families of polynomials.

It is basically our aim to verify the ˜� as convergent power series in
�

such that
the corresponding family is equisingular respectively equianalytical. How-
ever, since the ˜� � > �

�
˜ B are power series in Q � and Y � , we cannot right away apply

the T-smoothness property of � � , but we rather have to reduce to polynomials.
For this let � � be the determinacy bound5 of � � and define

� � � > �
�
˜ B � 4 ; � @ ��

7 	 � � � ˜� � 7
�
� Q 7� Y �� T

� ��
�
�
� � ;��

� � � � @ ; � � � � 	 �  ˜� � Q � �� Y � �� �
˜� � > �

�
˜ B V mod 	 Q �  Y � � � � 	 � [ �

Thus � � � > �
�
˜ B is a family in � � Q �  Y � ��� � � , and still

� � � > �
�
 � ��� B 4 ˜� � > �

�
 � ��� B 4 � � �

We claim that it suffices to find ˜� 	 � � :;� � �  with ˜� 	 ' � 4 V
�S� � � � �7
�
� � � 4 - ������� �  ')(

9 T � ( 6 � , - [ , such that the families � � �� � 4 � � � > �
�
˜ > � B
B , � : 	 �  ' � , are in the

equisingular respectively equianalytical strata � � Q �  Y � � � � � � , for � 4 - ������� � .
Since then we have, for small6 � �4 '

,

� � 4 � � � � � � � � �� � ˜� � > �
�
˜ > � B
B � � � � > �

�
˜ > � B
B 4 V � > �

�
˜ > � B
B [ � � > � B 

by the � � -determinacy and since � �� is a coordinate change for
� �4 '

, which
proves condition (2). Note that the singular points U � will move with

�
.

Step 2.3: Find ˜� 	 � � :;� � �  � with ˜� 	 ' � 4 V �X� � � � �7
�
� , � 4 - ������� �  ')( 9 T � ( 6 � , - [ ,

� 4 , �� � � V ;�� 	 �% [
, such that the families � � �� 4 � � � > �

�
˜ > � B
B , � : 	 �  ' � , are in the

equisingular respectively equianalytical strata � � Q �  Y � � � � � � , for � 4 - ������ � .
5A power series � �  

 � � < � ��� B (respectively the singularity � � # � & � � # defined by � ) is
said to be finitely determined with respect to some equivalence relation � if there exists some
positive integer  such that � ��� whenever � and � have the same  -jet. If � is finitely
determined, the smallest possible  is called the determinacy bound. Isolated singularities
are finitely determined with respect to analytical equivalence and hence as well with respect
to topological equivalence. C. f. [DeP00] Theorem 9.1.3 and Footnote 6.

6 Here � ��� means � ����� respectively � ���	� in the sense of Definition I.2.1. Note that if
� and � are contact equivalent, then there exists even an analytic coordinate change 
 , that
is, � ����� implies �(����� .



50 III. EXISTENCE

In the sequel we adopt the notation of Definition 2.1 adding indices � in the
obvious way.

Since � � Q �  Y � ��� ; � is T-smooth at � � , for � 4 - ������� � , there exist  � : � 	 9  � � � ' (
9 T � ( 6 �  and power series � � 7

�
� : � 5 ˜� � > � B  ˜� � > % B < , for 	 9  � � :  � , such that the

equisingular respectively equianalytical stratum � � Q �  Y � � � � � � is given by the� �� 4 � � 	�� � � 4 #  � equations

˜� � 7
�
� 4 � � 7

�
� V ˜� � > �+B  ˜� � > % B [  for 	 9  � � :� � �

Setting  4 � � 
 � �
� 
 �  
 we use the notation ˜� > � B 4 V ˜� � > � B ������� ˜� � > � B [ 4

V ˜�X�7
�
� 77 	 �� 9  �

� : 
[

and, similarly ˜� > �+B , ˜� > % B , � � � � � �> �+B , � � � �> � B , and � � � �> �+B . Moreover,
setting ˜� � V �  ˜� > � B [ 4 V � � � � @ ; � � � � V �  ˜� > � B  � � � �> �+B [ 77 6 � ( � � �

( � �
[
, we define an ana-

lytic map germ

� � � � � ��� � � � /�/�/ � ��� ��  V '  � � � �> � B [ � � � ��� � � � /�/�/ � ��� ��  ' �
by

� � 7
�
� V �  ˜� > � B [ 4 ˜� � 7

�
� , � � 7

�
� � � � � � � �> �+B  ˜� � V �  ˜� > � B [ �  for 	 �� 9  � � :� 

and we consider the system of equations

� � 7
�
� V �  ˜� > � B [ 4 '  for 	 �� 9  � � :� �

We show in Step 2.4 that�� �E�7
�
��

˜� 
 �
� � V

'  � � � �> � B [ � > � � 7 � � B � > 
 � � � � B .�� 4 id 1	� �
Thus by the Inverse Function Theorem there exist ˜� � 7

�
� 	 � � :;� � �  with ˜�S�7

�
� 	 ' � 4�X� � � � �7

�
� such that

˜� � 7
�
� 	 � � 4�� � 7

�
� � � � � � � �> �+B  ˜� � V �  ˜� > � B 	 � � [ �  	 �� 9  � � :� �

Now, setting ˜� > �+B 	 � � � � � � �> � B , the families � � �� 4 � � � > �
�
˜ > � B B are in the equisingular

respectively equianalytical strata � � Q �  Y � � � � � � , for � 4 - ������� � .
Step 2.4: Show that

� � � � � � 

� ˜ � � � � V '  � � � �> � B [ � > � � 7 � � B � > 
 � � � � B .� 4 id � .

For this it suffices to show that�
� � 7

�
� V � � � � � �> �+B  ˜� �IV �  ˜� > � B [ ��

˜� 
 �
� � 777 � �

�
�
˜ � ��� �  � ���� ��� 4 ' 

for any 	 �� 9  � �  	   	 �� � :� , which is fulfilled since the map� � V �  ˜� > � B [ �� � � � � �> �+B  ˜� V �  ˜� > � B [ �
satisfies � ��

˜� 
 �
� � 77 � � � � ˜ � ��� �  � ���� ��� 4

��
' 

�
˜� � V �  ˜� > � B [�

˜� 
 �
� � 77 � �

�
�
˜ � ��� �  � ���� ���

��
4 ' �
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For the latter notice that�
˜� ��V �  ˜� > � B [�

˜� 
 �
� � 77 � �

�
�
˜ � ��� �  � ���� ��� 4

��
� � � � @ ; � /

� � � � V �  ˜� > � B  � � � �> �+B [�
˜� 
 �

� � 77 � �
�
�
˜ � ��� �  � ���� ��� 7777 6 �

( � � �
( � �

��

and for � � � 4 6 �
� � � 	 �  ˜� � 4 � � � � � �� �

�
� � T � / ��


 � �
;�� @ ��
7 	 � � �

� ; � @ � @ 7 @ � ˜� 
7
�
� " 
 � ��

�
7
�
� �

Step 3: It finally remains to show that � � , for small
� �4 '

, has no other singu-
lar points than U � 	 � � ������I U � 	 � � .
P � : � � � � shall denote the curve defined by � � , � : 	 �  ' � , in particular P � 4 P .

Since for any � 4 - ������� � the family � � , � : 	 �  ' � , induces a deformation of
the singularity 	 P �  U � � there are, by the Conservation of Milnor Numbers
(cf. [DeP00], Chapter 6), (Euclidean) open neighbourhoods

� 	 U � � � � and
� 	 ' � �.� such that for any

� : � 	 ' �
(2.1) Sing 	 P � � � � ���� �

� 	 U � � , i. e. singular points of P � come from singu-
lar points of P � ,

(2.2) � 	 P �  U � � 4 , �/. Sing
> � � 
 B � � > � � B � V � ��  U [ , � 4 - ������� � .

Let � : � - ������� �  . For
� �4 '

fixed we consider the transformation � �� � defined
by the coordinate change � �� ,

� % � � 	 U � � 5 � � � 	 U � � � � %
� �

	 Q �  Y � � �� V �� Q �  �� Y �
[ 

and the transformed equations

˜� �� 	 Q �  Y � � 4 �
@ ; � � �� 	 � Q �  � Y � � 4 ' �

Then obviously,
� �� 	 U � 4 ' � � V ˜� ���� � �� � [ 	 U � 4 ' 

and
� � �� � � -� id 1 � �

Thus we have

	 6 � ,5- � % 4 � 	 P �  U � � 4 �
�/. Sing

> � � 
 B � � > � � B
� V � ��  U [ 4 �

�/. Sing
> ˜� � 
 B � � 
 > � � B

� 	 ˜� ��  U � �
For

� �4 '
very small

� � 	 U � � becomes very large, so that, by shrinking � 	 ' � we
may suppose that for any

' �4 � : � 	 ' �
Sing 	 � � � � � � 	 U � � 
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and that for any U : Sing 	 � � � there is an open neighbourhood
� 	 U � � � � 	 U � �

such that � 	 � �  U � 4 �
� � . Sing

> ˜� � 
 B � � > � B
� V ˜� ��  U � [ �

If we now take into account that � � has precisely one critical point, U � , on its
zero level, and that the critical points on the zero level of ˜� �� all contribute to
the Milnor number � 	 � �  U � � , then we get the following sequence of inequali-
ties:7 	 6 � ,.- � % , � 	�� � � 4 �

�/. Sing
> �
�
B
� 	 � �  U � , �

� . Sing
> � � �
�
> � B
B

� 	 � �  U �
( �
�/. Sing

> ˜� � 
 B � � 
 > � � B
� V ˜� ��  U [ , �

�/. Sing
>
> ˜� � 
 B � � > � B
B � � 
 > � � B

� V ˜� ��  U [
4 �
� . Sing

> � � 
 B � � > � � B
� 	 � ��  U � , �

�/. Sing
>
> � � 
 B � � > � B B � � > � � B

� 	 � ��  U �
( � 	 P �  U � � , � V � ��  U � [ 4 	 6 � ,.- � % , � 	�� � � �

Hence all inequalities must have been equalities, and, in particular,

Sing 	 P � � � � 	 U � � 4 Sing V 	 � �� � @ � 	 ' � [ � � 	 U � � 4 � U �  
which in view of condition (2.1) finishes the proof.

Note that P � , being a small deformation of the irreducible reduced curve P 4
P � , will again be irreducible and reduced.

Now applying the existence theorem of Section 1 for ordinary fat point
schemes we deduce the following corollary, giving explicit numerical criteria
for the existence of curves with prescribed topological respectively analytical
singularities on an arbitrary smooth projective surface.

2.4 Corollary
Let � : Div 	 � � be very ample over � . Suppose that � : Div 	 � � and � ��������� � �
are topological respectively analytical singularity types with � � 	�� � � � ����� �
� � 	�� � � satisfying

(2.3) 	 � , �3, ��� � % �Z1 , ���� � V!� � 	�� � � T - [ % ,
(2.4) 	 � , �3, ��� � � � 	 � � 	�� � �

for any irreducible curve
�

with
� % 4 '

and dim � � �  	 '
,

7Note, an ordinary plane curve singularity # � � � & of multiplicity � has Milnor number� #�� � � & � dim � � � < � ��� B � # ����� � ��� ��� � & # � # � � � &  . And, for an affine plane curve given by
an equation � such that the equation has no critical point at infinity we have by Bézout’s
Theorem:

# � � � &  ���	�
��� !���� �� � ��� �� ������� �
where by definition ! �������� � ���� � �!� # and � # �0� � & are defined as the dimension of the same vector
spaces.
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(2.5) � � �E, 1 � 	 � � 	 � � 	�� � � , and

(2.6) � , ��, ��� is nef,

then there is an irreducible reduced curve P in � ��� � with � singular points of
topological respectively analytical types � ��������� � � as its only singularities.

Proof: Due to the definition of a good representative there is an open dense
subset

� � of 6 � -forms for which there exists a good representative of � � , where
6 � 4 � � 	�� � � . The above conditions then imply with the aid of Corollary 1.3 the
existence of an irreducible curve P : � � � � with Sing 	 P � 4 � U ��������� U �  whose 6 � -
jet in local coordinates at U � coincides with the 6 � -jet of a good representative.
Moreover, � � V+�  ! � > ; � � B # � 	 � � [ 4 '

and thus Theorem 2.3 applies.

In view of the bounds for 6 � in Remark 2.2 we get the following corollary.

2.5 Corollary
Let � : Div 	 � � be very ample over � and � : Div 	 � � .
(a) Suppose that � ��������� � � are topological singularity types with � 	�� � � ������ � � 	�� � � , among them 9 nodes and 6 cusps, satisfying

(2.7) 	 � ,��3, ��� � % � - � 93T 6 1 6 T � % \% F
/ , � @ 7 @ ;��� � � 	�� � � ,

(2.8) 	 � ,��3, ��� � � � 	 % \FIH �  / � � 	�� � � ,.-
for any irreducible curve

�
with

� % 4 '
and dim � � �  	 '

,

(2.9) � � ��, 1 � 	 � � 	 % \FIH �  / � � 	�� � � ,.- , and

(2.10) � , �3, ��� is nef,

then there is an irreducible reduced curve P in � � � � with � singular points
of topological types � ��������� � � as its only singularities.

(b) Suppose that � ��������� � � are analytical singularity types with � 	�� � � �
����� � � 	�� � � , among them 9 nodes and 6 cusps, satisfying

(2.11) 	 � ,��3, ��� � % � - � 93T 6 1 6 T - � / , � @ 7 @ ;��� � � 	�� � � ,
(2.12) 	 � ,��3, ��� � � � 	 6�/ � � 	�� � � ,.-

for any irreducible curve
�

with
� % 4 '

and dim � � �  	 '
,

(2.13) � � ��, 1 � 	 � � 	 6�/ � � 	�� � � ,.- , and

(2.14) � , �3, ��� is nef,

then there is an irreducible reduced curve P in � � � � with � singular points
of analytical types � ��������� � � as its only singularities.

2.6 Remark
Knowing something more about the singularity type one can achieve much
better results, applying the corresponding bounds for the ��! 	�� � � respectively
�  	�� � � .
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3. Examples

In this section we are going to examine the conditions in the existence results
for various types of surfaces. 6 ��������� 6 � : < are positive integers.

3.a. The Classical Case - � 4 $ %	
We note that in $ %	 there are no irreducible curves of self-intersection number
zero, and we take � : � 
 � �	 	+- � � � to be a generic line.

In the existence theorem Corollary 1.3 for ordinary fat point schemes, we,
of course, find that condition (1.9) is obsolete, and so is (1.11), taking into
account that (1.10) implies * 	 '

. But then conditions (1.10) becomes also
redundant in view of condition (1.8) and the assumption * � 6

.

Thus Corollary 1.3 and Corollary 2.5 reduce to the following versions.

1.3a Corollary
Let # be a line in $ %	 , and * � 6

an integer satisfying

(1.8a) 	+* T 1 � % �Z1 / �,
��� �

	 6 � T - � % ,
then for U ��������� U � :Z� in very general position there is an irreducible reduced
curve P : � * #)� � with ordinary singularities of multiplicities 6 � at the U � as only
singularities. Moreover, � � ��� � 	 6 �

is T-smooth at P .

2.5a Corollary
Let # be a line in $ %	 , � ��������� � � topological respectively analytical singularity
types, which are neither nodes nor cusps, and * � 6

an integer such that

(2.7a) 	+* T 1 � % � - � 9�T 6 1 6 T � % \% F
/ , ���� � � 	�� � �

respectively

(2.11a) 	+* T 1 � % � - � 9�T 6 1 6 T - � / , ���� � � 	�� � � .
Then there is an irreducible reduced curve P in � ��� � with � singular points of
topological respectively analytical types � ��������� � � , 9 nodes and 6 cusps as its
only singularities.

Our results for ordinary multiple points are weaker than those in [GLS98c]
(see also [Los98] Proposition 4.11), where the factor 1 is replaced by

� �

R
[

which
use the Vanishing Theorem of Geng Xu (cf. [Xu95] Theorem 3), particularly
designed for $&%	 . Similarly, our general conditions are weaker than the con-
ditions which recently have been found by Shustin applying the Castelnuovo
function (cf. [Shu01]). – Using � : � 
 � 	 � � � � with

� 	 - instead of 
 � 	+- � in
Corollary 1.3 does not improve the conditions.
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3.b. Geometrically Ruled Surfaces

Throughout this section we use the notation of Section G.a.

With the choice of � 4 P � T � � as indicated in Remark G.4 we have � 	 � � 4 � ,
and hence the generic curve in � � � � is a smooth curve whose genus equals the
genus of the base curve.

In order to obtain nice formulae we considered � 4 	 � ,�1 � P � T 	  ,�1 T 1 � � � in
the formulation of the vanishing theorem (Corollary II.1.2b). For the existence
theorems it turns out that the formulae look best if we work with the divisor
� 4 	 � , - � P � T 	  T � T 1 � , 1 , � � � instead. In the case of Hirzebruch surfaces
this is just � 4 	 � ,5- � P � T 	  ,.- � � .
1.3b Corollary
Given integers � � : � satisfying

(1.8b) � V  , % �
[ � �,

��� �
	 6 � T - � % ,

(1.9b.i) � 	 max
� 6 � � � 4 - ������� �  ,

(1.9b.ii)  	 max
� 6 � � � 4 - ������I �  , if � 4 '

,

(1.9b.iii) 1 / V  , % �
[
	 max

� 6 � � � 4 - ������� �  , if � 
 '
, and

(1.11b)  � � � , if � 	 '
,

then for U ��������� U � :Z� in very general position there is an irreducible reduced
curve P : � 	 � , - � P � T 	  T � T 1 � , 1), � � � �  with ordinary singularities of
multiplicities 6 � at the U � as only singularities. Moreover, � � � � 	 6 �

is T-smooth
at P .

Proof: Note that by (1.8b) and (1.9b.i)  	 % � � � � , if � ( '
, and thus the

inequality

 � � �  (3.1)

is fulfilled no matter what � is.

Noting that � ,��3, ��� �  � P � T  � , it is in view of Lemma G.2 clear, that the
conditions (1.8) and (1.9) take the form (1.8b) respectively (1.9b). It, therefore,
remains to show that (1.10) is obsolete, and that (1.11) takes the form (1.11b),
which in particular means that it is obsolete in the case � �4 P � $ �	 .

Step 1: (1.10) is obsolete.

If � ��4 $ �	 � $ �	 , then
� � 1 . Since, moreover, � 	 � � 4 � and � � � 4 � 	 � , � � T  T1 � , 1 , condition (1.9b.i) and (3.1) imply (1.10), i. e. for all �� 

� � ��,21 � 	 � � 4 � 	 � , � � T  , 1 � ���� �3T  , 1 		6 �  if � �4 $ �	 � $ �	 
1 �3T 	  , � � � , 1 	 6 �  else.



56 III. EXISTENCE

Step 2: (1.11) takes the form (1.11b).

If � ( '
, then by [Har77] V.2.20 and V.2.21 we find in view of (1.9b.i)-

(1.9b.iii) that � , � , ��� is even ample, while, if � 	 '
, the result follows

from Lemma G.1.

2.5b Corollary
Given integers � and  .

(a) Let � ��������� � � topological singularity types with � 	�� � � � ����� � � 	�� � � ,among them 9 nodes and 6 cusps, such that

(2.7b) � 	  , % �
� � M 9�T - J 6 T � % \F�� / , � @ 7 @ ;��� � � 	�� � � ,

(2.8b.i) � 	 % \FIH �  / � � 	�� � � ,5-
(2.8b.ii)  	 % \FIH �  / � � 	�� � � ,.- if � 4 '

,

(2.8b.iii) 1 V  , % �
[
	 % \FIH �  / � � 	�� � � ,.- if � 
 '

, and

(2.10b)  � � � , if � 	 '
.

Then there is an irreducible reduced curve P in � 	 � , - � P � T 	  T � T 1 � ,13, � � � �  with � singular points of topological types � ��������� � � as its only
singularities.

(b) Let � ��������� � � analytical singularity types with � 	�� � � � ����� � � 	�� � � ,
among them 9 nodes and 6 cusps, such that

(2.11b) � 	  , % �
� � M 9�T - J 6 T M / , � @ 7 @ ;��� � � 	�� � � ,

(2.12b.i) � 	 6�/ � � 	�� � � , -
(2.12b.ii)  	 6�/ � � 	�� � � ,.- if � 4 '

,

(2.12b.iii) 1 V  , % �
[
	 6�/ � � 	�� � � ,5- if � 
 '

, and

(2.14b)  � � � , if � 	 '
.

Then there is an irreducible reduced curve P in � 	 � , - � P � T 	  T � T 1 � ,1�, � � � �  with � singular points of analytical types � ��������� � � as its only
singularities.

3.c. Products of Curves

As we have seen in Proposition G.12, for a generic choice of smooth projective
curves of genera � � � - and � % � - respectively the surface � 4 P � � P %
has Picard number two. Furthermore, according to Remark G.11 the only
irreducible curves

� �.� with selfintersection
� % 4 '

are the fibres P � and P % ,
and for any irreducible curve

� �  � P � T  P % the coefficients � and  must be
non-negative.

Then choosing for the existence theorem Corollary 1.3
� � 6

minimal such
that �)4 � P � T � P % is very ample, we claim that the conditions (1.10) and (1.11)
become obsolete and the corollary takes the following form.
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1.3c Corollary
Let � 4 P � � P % for two smooth projective curves P � and P % of genera � �� � % � -
such that the Picard number is two, and let

� 	 '
be minimal such that

� P � T � P %
is very ample. Suppose that � � :�� are two integers satisfying

(1.8c) 	 � , � , 1 � % T 1 �0/ 	  , � ,21 � � T 1 � � �,
��� �

	 6 � T - � % , and

(1.9c) 	 � , � , 1 � % T 1 �  	  , � ,21 � � T 1 � 	 max
� 6 � � � 4 - ������� �  .

Then for U ��������� U � :2� in very general position there is an irreducible reduced
curve PZ: � � P � T  P % �  with ordinary singularities of multiplicities 6 � at the U �
as only singularities. Moreover, � � � � 	 6 �

is T-smooth at P .

Proof: (1.11) becomes redundant in view of (1.9c) and since an irreducible
curve

� �  � � P � T  � P % has non-negative coefficients � � and  � .
It remains to show that � � �C, 1 � 	 � � 	 6 � for all ��  . However, by the adjunction
formula � 	 � � 4 - T �% 	 � % T � ����� � 4 - T � / 	 � T � � T � % , 1 � , and by (1.9c) � � �0, 1 � 	 � � 	� / V 	 � , � ,)1 � % T 1 � T 	  , � , 1 � � T 1 � [ 	 J 6 � 		6 � . Thus the claim is proved.

From these considerations we at once deduce the conditions for the existence
of an irreducible curve in � ��� � , � �  � P � T  P % , with prescribed singularities
of arbitrary type, i. e. the conditions in Corollary 2.5.

2.5c Corollary
Let � 4 P � � P % for two smooth projective curves P � and P % of genera � �� � % � -
such that the Picard number is two, and let

� 	 '
be minimal such that

� P � T � P %
is very ample.

(a) Suppose that � � : � are two integers and � ��������� � � topological singu-
larity types with � 	�� � � � ����� � � 	�� � � , among them 9 nodes and 6 cusps,
satisfying

(2.7c) 	 � , � ,�1 � % T 1 ��/ 	  , � ,31 � � T 1 � � M 9 T - J 6 T � % \F�� / , � @ 7 @ ;��� � � 	�� � � ,
(2.8c) 	 � , � , 1 � % T 1 �  	  , � , 1 � � T 1 � 	 % \F�H �  / � � 	�� � � ,.- �

Then there is an irreducible reduced curve P in � � P � T  P % �  with � sin-
gular points of topological types � ��������� � � as its only singularities.

(b) Let � ��������� � � analytical singularity types with � 	�� � � � ����� � � 	�� � � ,
among them 9 nodes and 6 cusps, such that

(2.11c) 	 � , � , 1 � % T 1 �K/ 	  , � , 1 � � T 1 � � M 9 T - J 6.T M / , � @ 7 @ ;��� � � 	�� � � ,
(2.12c) 	 � , � , 1 � % T 1 �  	  , � , 1 � � T 1 � 	 6�/ � � 	�� � � ,.- �

Then there is an irreducible reduced curve P in � � P � T  P % �  with � sin-
gular points of analytical types � ��������� � � as its only singularities.
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3.d. Products of Elliptic Curves

That P � and P % be “generic” in the above sense means elliptic curves for just
that they are non-isogenous. Working with the very ample divisor class � 46 P � T 6 P % the theorems in Section 3.c look as follows.

1.3d Corollary
Let � 4 P � � P % for two non-isogenous elliptic curves P � and P % . Suppose that� � :�� are two integers satisfying

(1.8d) 	 � , 6 �0/ 	  , 6 � � �,
��� �

	 6 � T - � % , and

(1.9d) 	 � , 6 �  	  , 6 � 	 max
� 6 � � � 4 - ������� �  .

Then for U ��������� U � : � in very general position there is an irreducible reduced
curve PZ: � � P � T  P % �  with ordinary singularities of multiplicities 6 � at the U �
as only singularities. Moreover, � � � � 	 6 �

is T-smooth at P .

2.5d Corollary
Let � 4 P ��� P % for two non-isogenous elliptic curves P � .
(a) Suppose that � � : � are two integers and � ��������� � � topological singu-

larity types with � 	�� � � � ����� � � 	�� � � , among them 9 nodes and 6 cusps,
satisfying

(2.7d) 	 � , 6 � / 	  , 6 � � M 9�T - J 6 T � % \F�� / , � @ 7 @ ;��� � � 	�� � � and

(2.8d) � , 6 � , 6 	 % \FIH �  / � � 	�� � � , - �
Then there is an irreducible reduced curve P in � � P � T  P % �  with � sin-
gular points of topological types � ��������� � � as its only singularities.

(b) Let � ��������� � � analytical singularity types with � 	�� � � � ����� � � 	�� � � ,
among them 9 nodes and 6 cusps, such that

(2.11d) 	 � , 6 �0/ 	  , 6 � � M 93T - J 6 T M / , � @ 7 @ ;��� � � 	�� � � and

(2.12d) � , 6 � , 6 	 63/ � � 	�� � � ,.- �
Then there is an irreducible reduced curve P in � � P � T  P % �  with � sin-
gular points of analytical types � ��������� � � as its only singularities.

3.e. Surfaces in $ 	
Since we consider the case of rational surfaces separately the following con-
siderations thus give a full answer for the “general case” of a surface in $ 	 .

1.3e Corollary
Let � be a smooth projective surface of degree � in $ 	 whose Picard group is
generated by a hyperplane section # , and let * � 6

be an integer such that

(1.8e) �
/ 	 *3, �=T 6 � % �Z1 / �,

� � �
	 6 � T - � % .
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Then for U ��������� U � :2� in very general position there is an irreducible reduced
curve P : � * #)�  with ordinary singularities of multiplicities 6 � at the U � as
only singularities. Moreover, � � ��� � 	 6 �

is T-smooth at P .

Proof: The role of the very ample divisor � is filled by a hyperplane section,
and thus � 	 � � 4 - T � � 	 � � � �% 4 V � @ �%

[
. Therefore, (1.8e) obviously implies (1.8),

and (1.10) takes the form

�
/ 	+*�, � T 6 � 	 6 � T 1 for all � 4 - ������� � � (3.2)

However, from (1.8e) we deduce for any � : � - ������I � 
�
/ 	+*3, �=T 6 � � � � / � 1 / 	 6 � T - � � 6 � T 1 

unless � 4 � 4 6 � 4 - , in which case we are done by the assumption * � 6
.

Thus (1.10) is redundant.

Moreover, there are no curves of self-intersection zero on � , and it thus re-
mains to verify (1.11), which in this situation takes the form

* � � , 6 
and follows at once from (3.2).

2.5e Corollary
Let � be a smooth projective surface of degree � in $ 	 whose Picard group is
generated by a hyperplane section # .

(a) Let * be an integer and � ��������� � � topological singularity types with� 	�� � � � ����� � � 	�� � � , among them 9 nodes and 6 cusps, satisfying

(2.7e) � 	+*�, �=T 6 � % � - � 9�T 6 1 6 T � % \% F
/ , � @ 7 @ ;��� � � 	�� � � .

Then there is an irreducible reduced curve P in � * #)�  with � singular
points of topological types � ��������� � � as its only singularities.

(b) Let � ��������� � � analytical singularity types with � 	�� � � � ����� � � 	�� � � ,
among them 9 nodes and 6 cusps, such that

(2.11e) �
/ 	+*3, � T 6 � % � - � 93T 6 1 6 T - � / , � @ 7 @ ;��� � � 	�� � � .

Then there is an irreducible reduced curve P in � * #)�  with � singular
points of analytical types � ��������� � � as its only singularities.

3.f. K3-Surfaces

3.f.i. Generic K3-Surfaces. A generic K3-surface does not possess an ellip-
tic fibration, and hence it does not possess any irreducible curve of self-
intersection zero. (cf. [FrM94] I.1.3.7)

Therefore, the conditions in Corollary 1.3 reduce to

(1.8f.i) 	 � ,�� � % �Z1 / �,
� � �

	 6 � T - � % ,
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(1.10f.i) � � ��,21 � 	 � � 		6 � for all ��  , and

(1.11f.i) � ,�� nef,

and, analogously, the conditions in Corollary 2.5 in the topological case reduce
to (2.9) and

(2.7f.i) 	 � , � � % � - � 93T 6 1 6 T � % \% F
/ , � @ 7 @ ;��� � � 	�� � � , and

(2.10f.i) � ,�� nef,

and in the analytical case to (2.13) and

(2.11f.i) 	 � , � � % � - � 93T 6 1 6 T - � / , � @ 7 @ ;��� � � 	�� � � , and

(2.14f.i) � ,�� nef.

3.f.ii. K3-Surfaces with an Elliptic Structure. The conditions in Corollary 1.3
then reduce to (1.8f.i), (1.11f.i), (1.10f.i), and

(1.9f.ii) 	 � , � � � � 	 max
� 6 � � � 4 - ������� � 

for any irreducible curve
�

with
� % 4 '

.

Similarly, the conditions in Corollary 2.5 reduce to (2.7f.i) / (2.11f.i), (2.10f.i) /
(2.14f.i), (2.5), and

(2.12f.ii) 	 � , � � � � 	 % \FIH �  / � � 	�� � � ,5-
for any irreducible curve

�
with

� % 4 '
,

respectively

(2.12f.ii) 	 � , � � � � 	 6�/ � � 	�� � � , -
for any irreducible curve

�
with

� % 4 '
.



CHAPTER IV

T-Smoothness

The varieties � � ��� 	 ��" � � (respectively the open subvarieties � �
���� ����	 ��" � � ) of re-
duced (respectively reduced and irreducible) nodal curves in a fixed linear
system � ��� � on a smooth projective surface � are also called Severi varieties.
When � 4 $ %	 Severi showed that these varieties are smooth of the expected
dimension, whenever they are non-empty – that is, nodes always impose inde-
pendent conditions. It seems natural to study this question on other surfaces,
but it is not surprising that the situation becomes harder.

Tannenbaum showed in [Tan82] that also on K3-surfaces � � ��� 	 ��" � � is always
smooth, that, however, the dimension is larger than the expected one and
thus � � ��� 	 ��" � � is not T-smooth in this situation. If we restrict our attention
to the subvariety � ������ ��� 	 ��" � � of irreducible curves with 9 nodes, then we gain T-
smoothness again whenever the variety is non-empty. That is, while on a K3-
surface the conditions which nodes impose on irreducible curves are always
independent, they impose dependent conditions on reducible curves.

On more complicated surfaces the situation becomes even worse. Chiantini
and Sernesi study in [ChS97] Severi varieties on surfaces in $ 	 . They show
that on a generic quintic � in $ 	 with hyperplane section # the variety
� ������ ��� � V \ ��>?�A@ % BF / " � [ has a non-smooth reduced component of the expected dimen-
sion, if * is even. They construct their examples by intersecting a general cone
over � in $ F	 with a general complete intersection surface of type V 1  �%

[
in $ F	

and projecting the resulting curve to � in $ 	 . Moreover, Chiantini and Cilib-
erto give in [ChC99] examples showing that the Severi varieties � �
���� �A�C� 	 ��" � �
on a surface in $ 	 also may have components of dimension larger than the
expected one.

Hence, one can only ask for numerical conditions ensuring that �3���W�� �A� � 	 ��" � � is
T-smooth, and Chiantini and Sernesi answer this question by showing that
on a surface of degree � � �

the condition

� 
 * 	 *�, 1 �=T � � �� (0.1)

implies that �E���W�� �A� �!	 ��" � � is T-smooth for * 	 1 � , � . Note that the above example
shows that this bound is even sharp. Actually Chiantini and Sernesi prove a
somewhat more general result for surfaces with ample canonical divisor � �
and curves which are in � � ��� � � for some

� : � . For their proof they suppose
that for some curve P : �3�
���� �A�C� 	 ��" � � the cohomology group # � V �  ! �	� � > � B # � 	 � � [
does not vanish and derive from this the existence of a Bogomolov unstable
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rank-two bundle
�

. This bundle in turn provides them a divisor
� � such that

they are able to find a lower and an upper bound for
� � ����� contradicting each

other.

This is basically the same approach which we use as well. However, we allow
arbitrary singularities rather than only nodes, we weaken the assumption of��� being ample to � % � �., 6 and we study a wider range of divisors. Yet we still
get the same optimal condition (0.1) for the T-smoothness of nodal curves on
surfaces in $ 	 – see Corollary 2.6. We should like to point out that our general
result for the T-smoothness of �������� ����	�� ��������� � � � with the main condition ��

� � �
V � � 	�� � � T - [ T ��� ���

% � % 
�� � T � � �F�� % / � % 
does apply to a wider range of surfaces than most of the previously known
results. E. g. we deduce in Section 2.d that on a product � 4 P � � P % of elliptic
curves the Severi variety �����W��  � � 	 � � � ��	 ��" � � is T-smooth as soon as

1 � ( �  �
For the plane case there are of course better results like the condition

��
��� �

V�� � 	�� � � T - [ % ( 	+* T 6 � % 
for T-smoothness (cf. [GLS00] or [Los98] Theorem 5.4), where * is the degree
of � . Note that the a series of irreducible plane curves of degree * with �
singularities of type " � , � arbitrarily large, satisfying

� � % 4 ��
��� �

� � 	 " � � 4 M * % T terms of lower order

constructed by Shustin (cf. [Shu97]) shows that asymptotically we cannot ex-
pect to do essentially better in general. For a survey on other known results
on � 4 $ %	 we refer to [Los98] and [GLS00].

In [GLS98a] nodal curves on the projective plane blown up in 6 � - ' points
are considered. This is a case to which our theorem does not apply in general
since � % � 4 M , 6 
 , 6 for 6 � - 6 . Nodal curves on arbitrary rational sur-
faces were also studied by Tannenbaum in [Tan80]. There he gives for the
T-smoothness a condition which basically coincides with the only previously
known general condition for the T-smoothness of �3���W�� � � 	�� ��������� � � �

��
��� �

� � 	�� � � ,�� � 	�� � � 
 , ��� � � 
where � � 	�� � � � - is the so-called isomorphism defect of � � (cf. [GrK89,
GrL96]). In [Fla01] Flamini studies the case of Severi varieties on surfaces
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of general type and he receives conditions for the T-smoothness of � �
���� ����	 ��" � � of
the type

� 
 � � 	 � , � # � T � � % / 	 � , � # � %� 
where # is some hyperplane section (cf. [Fla01] Theorem 5.1 and 5.3). For a
generalisation of the examples of Chiantini and Sernesi of families of nodal
curves which are not T-smooth to general non-degenerate complete intersec-
tion surfaces with ample canonical bundle we refer to [FlM01]. These show
that the results of [Fla01] are sharp, see [Fla01] Remark 5.6.

The theorem which we here present in the following section and its proof are
a slight modification of Theorem 1 in [GLS97]. We sacrifice the sophisticated
examination of the zero-dimensional schemes involved in the proof for the
sake of simplified conditions. A somewhat stronger version may be found in
the book [GLS02].

1. T-Smoothness

1.1 Theorem
Let � ��������� � � be topological or analytical singularity types with � � 	�� � � � ����� �� � 	�� � � and let � : Div 	 � � be a divisor such that1

(1.1) � T ��� nef,

(1.2) � , ��� is big and nef,

(1.3) � % ,21 / � � ��� � > � � � � B � @ � � H � � �F T � , if � � ��� 
 , � ,
(1.4) �,

� � � � � 	�� � � 
 �F / 	 � , ��� � % , and

(1.5) � !,
��� � V�� � 	�� � � T - [ T ��� � �

%
� % 
�� � T � � �F�� / � % for all � 4 - ������� � .

Then either � ������ ����	�� ��������� � � � is empty or T-smooth.

Idea of the Proof: T-smoothness at a point P : ���
���� ��� 	�� ��������� � � � follows once
we know � � V �  ! � � > � B # � 	 � � [ 4 '

. Supposing this is not the case we find a
Bogomolov unstable rank-two bundle

�
which provides us with some “nice”

divisor
� � . This means, we get an upper and a lower bound for � % / 	 � , ��� ,� � � % which contradict each other due to Condition (1.5).

Proof: Let P : �3������ ����	�� ��������� � � � be arbitrary. We set � � 	 P � 4 � � ! 	 P � respec-
tively � � 	 P � 4 � �  	 P � , so that deg V � � 	 P � [ 4 , ���� � � � 	�� � � .
We are going to show that

� � V+�  ! � � > � B # � 	 � � [ 4 ' 
1Here � � #�� � & ��� >�� #�� � & , the codimension of the � -constant stratum in the base of the

semi-universal deformation of � � , respectively � � #�� � & ��� #�� � & , the Tjurina number of � � .
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which by Remark I.2.14 implies the T-smoothness of � ������ ���
	�� ��������� � � � at P .

Suppose the contrary, that is � � V �  ! � � > � B # � 	 � � [ 	 '
.

Step 1: Find a non-empty subscheme � � : � � 	 P � and a rank-two vector bun-
dle

�
satisfying the relations (1.6) and (1.7).

Choose � � : � � 	 P � minimal such that still � � V �  !9� � # � 	 � � [ 	 '
. By (1.2) the

divisor � , ��� is big and nef, and thus � � V �  
 � 	 � � [ 4 '
by the Kawamata–

Viehweg Vanishing Theorem. Hence � � cannot be empty.

Due to the Grothendieck-Serre duality (cf. [Har77] III.7.6) we have
' �4

# � V �  ! � � # � 	 � � [ �4 Ext
� V ! � � # � 	 � �  
 � 	 ��� � [ , and thus, since 
 � 	 ��� � is locally

free, (cf. [Har77] III.6.7)

Ext
� V&! � � # � 	 � , ��� �  
 � [ �4 ' �

That is, there is an extension (cf. [Har77] Ex. III.6.1)

' � 
 � � � � ! � � # � 	 � , ��� � � ' � (1.6)

The minimality of � � implies that
�

is locally free (cf. [Laz97] Proposition 3.9).
Moreover, we have (cf. [Laz97] Exercise 4.3)

� � 	 � � 4 � , ��� and � % 	 � � 4 deg 	 � � � � (1.7)

Step 2: Find a divisor
� � such that

(a) 	 1 � � , � T ��� � % � � � 	 � � % , � / � % 	 � � 	 '
, and

(b) 	 1 � � , � T ��� � � # 	 '
for all # : Div 	 � � ample.

By (1.4) and (1.7) we have

� � 	 � � % , � / � % 	 � � 4 	 � , ��� � % , � / deg 	 � � � 	 ' 
and thus

�
is Bogomolov unstable (cf. [Laz97] Theorem 4.2). This, however,

implies that there exists a divisor
� � : Div 	 � � and a zero-dimensional scheme

� �.� such that

' � 
 � 	 � � � � � � ! � # � 	 � , ��� , � � � � '
(1.8)

is exact (cf. [Laz97] Theorem 4.2) and such that (a) and (b) are fulfilled.

Step 3: Find a curve
� �.� such that

(c)
� T � � � �0� , ��� ,

(d) � � � � deg 	 � � � T # � � , and

(e) deg 	 � � � � � � � � .
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Tensoring (1.8) with 
 � 	W, � � � leads to the following exact sequence

' � 
 � � � 	W, � � � � ! � # � 	 � , ��� , 1 � � � � '  (1.9)

and we deduce �
� V �  � 	W, � � � [ �4 '

.

Now tensoring (1.6) with 
 � 	W, � � � leads to

' � 
 � 	W, � � � � � 	W, � � � � ! � � # � 	 � , ��� , � � � � ' � (1.10)

Let # be some ample divisor. By (b) and since � , � � is nef by (1.2):

, � � � # 
 , �%
/ 	 � , ��� � � # ( ' � (1.11)

Hence , � � cannot be effective, that is # � 	 �  , � � � 4 '
. But the long exact

cohomology sequence of (1.10) then implies
' �4 # � V �  � 	W, � � � [ � � # � V �  ! � � # � 	 � , ��� , � � � [ �

In particular we may choose a curve
� : 77 ! � � # � 	 � , ��� , � � � 77 � �

Thus (c) is obviously fulfilled and it remains to show (d) and (e).

We note that P : � ��� � is irreducible and that
�

cannot contain P as an ir-
reducible component: otherwise applying (b) with some ample divisor # we
would get the following contradiction, since � T � � is nef by (1.1),

')( 	 � , P � � # 
 , �%
/ 	 � T ��� � � # ( ' �

Since � � : � � 	 P � , Lemma 1.3 applies2 to the local ideals of � � , that is for the
points U�: supp 	 � � � we have � 	 P  � � U � � deg 	 � �  U � T - . Thus, since � � � P � �
the Theorem of Bézout implies

� � � 4 P � � 4 �
�/. � � �

� 	 P  � � U � � �
�/. supp

> � � B V deg 	 � �  U � T - [ 4 deg 	 � � � T # � � �
Finally, by (a), (c) and (1.7) we get

	 � � , � � % � � � 	 � � % , � / � % 	 � � 4 	 � � T � � % , � / deg 	 � � � 
and thus deg 	 � � � � � � � � .

Step 4: Find a lower and an upper bound for � % / 	 � � , � � % , contradicting each
other.

From (a) we derive

	 � � , � � % � 	 � , ��� � % , � deg 	 � � � � (1.12)

2We note that � >�� # $'& ; � > 
 # $ & , i. e. if � � ; � >�� # $'& then � � ; � > 
 #%$'& as well.
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(1.1) and (1.2) imply that � is nef, and since the strict inequality for ample
divisors in (b) comes down to “ � ” for nef divisors, we get in view of (c)

' ( � � 	 � � , � � 4 � � 	 � � T � � , 1 / � � �( � � 	 � � T � � , 1 deg 	 � � � ,21 / # � �
4 � � 	 � , ��� � ,21 deg 	 � � � ,21 / # � � � (1.13)

But then applying the Hodge Index Theorem E.4 to the divisors � and
� � , �

,
taking (a) into account, we get

� % / 	 � � , � � % ( V+� � 	 � � , � � [ % ( V � � 	 � , ��� � , 1 deg 	 � � � , 1 / # � � [ % � (1.14)

From (1.12) and (1.14) we deduce that

V � � 	 � , ��� � ,21 deg 	 � � � , 1 / # � � [ % � � % / V 	 � , ��� � % , � deg 	 � � � [ 
and hence

V 1 deg 	 � � � T 1 / # � � T � � ��� [ % � V � / # � � T � % � [ / � % � ' � (1.15)

Suppose first that , � ����� 	 1 deg 	 � � � T 1 / # � � �� , then by (1.5) and (1.3)

V 1 deg 	 � � � T 1 / # � � T � � ��� [ % 
 	 � T � ����� � % ( V � T � % � [ / � % ( V � / # � � T � % � [ / � %
(1.16)

in contradiction to (1.15).

Thus we must have 1 deg 	 � � � T 1 / # � � T � ����� � '
, and since

deg 	 � � � ( �
� . supp

> � � B � � 	 P  U � ( # � ��
��� �

� � 	�� � �
we find once more a contradiction to (1.15) with the aid of (1.5):

V 1 deg 	 � � � T 1 / # � � T � � ��� [ % ( 
1 # � ��
� � �

V�� � 	�� � � T - [ T � ����� � % 
 V � / # � � T � % � [ / � % �
In the following remark we replace (1.5) by a number of other conditions,
which partially may even be better in certain situations.

1.2 Remark

(a) For a surface with � % � ( , 6 condition (1.5) will never be satisfied.

(b) If ��� is nef, then (1.1) and (1.3) are superfluous.

(c) If � ����� ( '
, we can replace (1.5) by��
��� �

V ��� 	�� � � T - [ % 
 � % , 1 / � ����� , > ��� � � B � @8� � H � � �F � (1.17)

Moreover, (1.3) is always fulfilled.
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(d) If � ����� � '
, we may replace (1.5) in Theorem 1.1 by

��
��� �

V ��� 	�� � � T - [ % 
 � % , � ����� / V � � 	�� � � T - [ , > ��� � � B � @8� � H � � �F � (1.18)

(e) For divisors � of the form � � � � ��� for some
' �4 � : � the inequalities

(1.17) and (1.18) take the simpler forms
��
��� �

V � � 	�� � � T - [ % 
 � % , 1 / � � ��� (1.19)

respectively
��
��� �

V � � 	�� � � T - [ % 
 � % , � � ��� / V � � 	�� � � T - [ � (1.20)

Moreover, (1.3) is always fulfilled.

(f) If � is of the form � � � � ��� for some
' �4 � : � , Condition (1.5) can

only be fulfilled if � � 	�� � � T - 
 � ���� ��� for all � 4 - ������� � . Assuming this, the
inequality (1.5) may be replaced by

��
��� �

V � � 	�� � � T - [ %
- , ��� � �� � / V � � 	�� � � T - [


 � % � (1.21)

(g) We could replace (1.5) by
��
��� �

� � 	�� � ��
 � - T � � �F / � � % , 77
� � � �
% T - 77 � (1.22)

(h) If , ��� is ample and � � � � ��� for some
� : � with

� 
 - , � - T F���� 
 '
,

we could replace (1.5) in Theorem 1.1 by
��
��� �

� � 	�� � � 
 � - T � � �F / � � % , �

%
/ ��� � � , - � (1.23)

(i) If � % � � T � % � T � / � � % � T � , then (1.22) respectively (1.23) replaces both
(1.4) and (1.5).

(j) We note that always

� / ��
��� �

��� 	�� � � ( ��
��� �

V ��� 	�� � � T - [ % � (1.24)

Proof: (a) & (b) These are obvious.

(c) We note that  !�
��� �

V ��� 	�� � � T - [ � % ( � / !�
��� �

V ��� 	�� � � T - [ % �
Thus the inequalities!�

��� �
V���� 	�� � � T - [ % 
 � % , � � ���

�
/ !�
��� �

V���� 	�� � � T - [ , > ��� ��� B � @8� � H � � �FIH ! (1.25)

for � 4 - ������� � will imply (1.5). However, by (1.1) and (1.2) � is nef
and thus � % � '

and by the Hodge Index Theorem E.4
> ��� � � B � @8� � H � � �F � '

.
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Moreover, � ����� ( '
and we therefore get the desired result noting that1 is a lower bound for the coefficient

�! / , !��� � V � � 	�� � � T - [ of � ����� .
Since � � 	�� � � � - , from (1.17) we have � 
 � % ,Z1 / � ����� , > ��� � � B � @8� � H ����F ,
which implies (1.3).

(d) It again suffices to verify (1.25) for � 4 - ������� � . However, since this
time � % , > ��� � � B � @8� � H � � �F and � � ��� are all non-negative, (1.25) follows from
(1.18), once we note that � � 	�� � � T - � �! / , !��� � V � � 	�� � � T - [ .

(e) If � � � � / ��� , then 	 � ����� � % , ��% / � % � 4 '
.

(f) Once (1.5) is satisfied, we get from � 4 - that � � � � / V � � 	�� � � T - [ 
 ��% .
Let us therefore suppose that � � 	�� � � T - 
 � �� � � � for each � 4 - ������� � . We
note that then for any � 4 - ������� �!�

��� �
V � � 	�� � � T - [ %

- , ��� ���� � / V�� � 	�� � � T - [ (
��
��� �

V � � 	�� � � T - [ %
- , ��� � �� � / V�� � 	�� � � T - [ �

The Cauchy-Schwartz Inequality thus shows !�
��� �

V � � 	�� � � T - [ � % 4 �� !�
��� �

� � > � � B 	 ��
� @ � � � �� � H > � � > � � B 	 �+B

/ � - , � � � �� � / V�� � 	�� � � T - [
�� %

( !�
��� �

> � � > � � B 	 �+B �� @ ��� � �� � H > � � > � � B 	 �+B / !�
��� �

� - , � � � �� � / V ��� 	�� � � T - [ �

 � / � % , � ����� / !�

��� �
V���� 	�� � � T - [ 

which is just (1.5), since 	 � ����� � % 4 � % / � % � .
(g) In the proof of Theorem 1.1 we could replace � � � in (1.13) by deg 	 � � � T -

instead of deg 	 � � � T # � � . Then (1.15) would be replaced by

V 1 deg 	 � � � T 1 T � ����� [ % � V � T � % � [ / � % � '  (1.26)

and hence � 1 deg 	 � � � T5� 1 T � ����� � � % � V � T � % � [ / � % � '
which contradicts (1.22).

(h) We have to derive from (1.26) a contradiction, replacing (1.22) by (1.23).
For this we consider the convex function

� � � -  deg V&��� 	 P � [ � � � � ���� 	�1 � T 1 TZ� � ��� � % �
Since � is convex, it takes its maximum either in

� � 4 - or in
� � 4

deg V � � 	 P � [ .
If
� � 4 - , then we get from (1.26)

V � T � / � % � [ % � V 1 / deg 	 � � � T 1 TZ� ����� [ % � V � T � % � [ / � % / � % � 
that is � � % � % � , � � � % � , - J (5'

, which contradicts the assumptions on
�

.
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If
� � 4 deg V � � 	 P � [ , then we get from (1.26)� 1 / deg V ��� 	 P � [ T 1 T � � ��� � % � V � T � % � [ / � % 

and, moreover, in this situation we must have 1 / deg V � � 	 P � [ T 1 T)� � ��� �'
. But then we may take square roots on both sides and get

1 / deg V ��� 	 P � [ � � � T � % � / � � % , � ����� , 1 
which is in contradiction to (1.22).

(i) By the above condition we know that� � % , V � T � % � [ � % � - J / � % � T J � �
This, however, implies

V - T ����F [ / � % ( �
� � / V � % T � % � [ % 

and thus finally

� - T � � �F / � � % , 77
� � � �
% T - 77 (

� - T � � �F / � � % , ��� � �
% , - ( �F / 	 � , ��� � % 

which finishes the proof.

(j)
' ( , �� � � V�� � 	�� � � , - [ % 4 , ���� � V�� � 	�� � � T - [ % , � / , �� � � � � 	�� � � .

Throughout the proof of Theorem 1.1 we used the following lemma.

1.3 Lemma
Let 	 P  U � be a reduced plane curve singularity given by � :�
 �

�
� and let

� :
) �

�
� � 
 �

�
� be an ideal containing the Tjurina ideal

� �  	 P  U � . Then for any
� : �

we have

dim 1 	 
 �
�
� 2 � ��
 dim 1)V/
 �

�
� 2 	 �  � � [ 4 � 	 �  � � U � �

Proof: Cf. [Shu97] Lemma 4.1.

2. Examples

Throughout this section for a topological respectively analytical singularity
type � we will denote by � � 	�� � 4 � � ! 	�� � , the codimension of the � -constant
stratum in the base of the semi-universal deformation of � , respectively� � 	�� � 4 � 	�� � , the Tjurina number of � .
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2.a. The Classical Case - � 4 $&%	
In view of Remark 1.2 we get the following version of Theorem 1.1.

1.1a Theorem
Let � ��������� � � be topological or analytical singularity types, let * � 6

and sup-
pose that

��
��� �

V ��� 	�� � � T - [ % 
 * % T J * � (1.5a)

Then either �3������ ��� �!	�� ��������� � � � is empty or T-smooth.

Proof: (1.1) and (1.2) are fulfilled since * � 6
, while by Remark 1.2 (e) (1.3)

is redundant and (1.5) takes the form (1.5a). It remains to show that (1.5a)
implies (1.4), which follows at once from (1.24) in Remark 1.2 (j).

2.1 Remark

(a) The sufficient condition��
��� �

V � � 	�� � � T - [ % 
 	+* T 6 � % (2.1)

in [Los98] Corollary 5.5 (see also [GLS00]) is always slightly better
than (1.5a).

(b) Going back to the original equations in (1.5) we could replace them by��
��� �

V � � 	�� � � T - [ % 
 � - T  � F � 	 R 	 R% � � / * % � (2.2)

For a fixed � this condition is asymptotically better even than the one in
(2.1) – more precisely, * � 6 � � suffices. However, in order to get rid of
(1.4) we then need some assumptions on the singularities – e. g. � � - �
and � � 	�� � � � J

for all � .

(c) Working with condition (1.23) from Remark 1.2 (h) we could replace
(1.5a) by ��

��� �
��� 	�� � � % 
 � �

�
/ * %  (2.3)

if we require * � � . This result is better than (2.1) only for � ( M .
Proof: (a) This is obvious.

(b) Since the derivative� �� � 	 � � 4 , 6�/ V 1 � T 6 � � � T M T M [
1 / � � � T M / � %

of � � � � � � � ��  �
F � 	 R 	 R% � is negative for all � 	 '

, the function is
monotonously decreasing, that is6 � � � T M T M

1 �
( 6 � � � T M T M

1 �
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for all � 4 - ������� � , and therefore!�
��� �

V���� 	�� � � T - [ % ( ��
��� �

V ��� 	�� � � T - [ %

 � - T 6 � � � T M T M

1 �
� / * % ( � - T 6 � � � T M T M

1 � � / * % �
But this implies !�

� � �
V � � 	�� � � T - [ � % ( � / !�

��� �
V � � 	�� � � T - [ %


 � � T % / � � � T M T R% � / * % 4 � � � T RF T %
� % / * % 

and then !�
��� �

V ��� 	�� � � T - [ ,  %
/ * 
 �

� T RF / * 
which in turn gives (1.5), supposed that the left hand side is non-
negative. However, if it is negative, then !�

��� �
V ��� 	�� � � T - [ ,  %

/ * � % 
 M * %� 
 V � T RF [ / * % 
that is, (1.5) is still fulfilled.
If * � 6 � � , then

 H � F �% �
/ * % � M * � J * T M . Thus (2.1) implies (2.2).

Furthermore, if � � - � , then - T  H � F � 	 R 	 R% �
( 1 , and if moreover � � 	�� � � � J

for all � , then

��
��� �

� � 	�� � � ( �� / ��
��� �

V � � 	�� � � T - [ % 
 �F / * % 
which implies (1.4).

(c) We note that (2.3) implies ��
� � �

��� 	�� � � � % ( � / ��
��� �

��� 	�� � � % 
 - ' / * % 
�� � �  	 % / *�,5- � % 
once * � � . This however is sufficient for the T-smoothness according to
Remark 1.2 (h) and (i).

For further results in the plane case see [Wah74a, GrK89, Lue87a, Lue87b,
Shu87b, Vas90, Shu91b, Shu94, GrL96, Shu96b, Shu97, GLS98a, Los98,
GLS00].
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2.b. Geometrically Ruled Surfaces

Throughout this section we use the notation of Section G.a, thus in particular
� ��� � P is a geometrically ruled surface with � 4 � 	 P � and � % � 4 � , � � .
Theorem 1.1 therefore only applies for Hirzebruch surfaces and if P is elliptic.
Below we state the theorem in its general version for the invariant � � '

, even
though the conditions look far too nasty to be of much use. We afterwards
consider the cases separately, so that the conditions take a nicer form, in
particular we consider the unique geometrically ruled surface with negative
invariant � and � 4 - .
Throughout the section it is convenient to set 	 4 1 T � , 1 � , so that � � � �, 1 P � , 	 � . We note that for � ( - and � � '

we have 	 � '
. Thus , � � is nef in

this situation and we may replace (1.5) by (1.17) in Remark 1.2.

1.1b Theorem
Let � � � � P be a geometrically ruled surface with invariant � � '

and � :� '  -  , let � 4 � P � T  � : Div 	 � � , and let � ��������� � � be topological or analytical
singularity types.

Suppose that

(1.1b) � � 1 ,  � � / 	 � , 1 � T 	 ,

(1.2b)  	 � / 	 ��T 1 � , 	 ,

(1.5b) �,
��� � V � � 	�� � � T - [ % 
 	�1 T 	

�S/ �  T �  T 	�1 	 , � � �S/ � , V � �F T �
[ / � % ,  % .

Then either �3������ ����	�� ��������� � � � is empty or T-smooth.

Proof: The conditions (1.1) and (1.2) just come down to (1.1b) and (1.2b), and
(1.17) takes the form (1.5b). Moreover, by Remark 1.2 (c) Condition (1.3) is
obsolete.

It thus remains to show that (1.5b) implies (1.4), which in this situation looks
like ��

��� �
��� 	�� � ��
 �F / V 1 / 	 ��T 1 � / 	  T 	

� , � / 	 �3T 1 � % [ �
In view of (1.24) in Remark 1.2 (j) and by (1.5b) we know already that

��
� � �

��� 	�� � � 
 �F / V 	�1 T 	
�0/ �  T �  T 	�1 	 , � � �C/ � , V � �F T �

[ / � % ,  % [ �
Since 	 , � 4 1 , 1 � � '

, the claim follows from

	�1 T 	
� / �  T �  T 	�1 	 , � � �C/ � , V � �F T �

[ / � % ,  %
4 1 / 	 ��T 1 �0/ 	  T 	

� , � / 	 ��T 1 � % , V �% / � , 
[ % , � / 	 	 , � �( 1 / 	 ��T 1 �C/ 	  T 	

� , � / 	 ��T 1 � % �
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We note that (1.5b) gives an obstruction on � and  , namely

	�1 T 	
� / �  T �  T 	�1 	 , � � �C/ � V � �F T �

[ / � % T  % T � � (2.4)

Let us first consider Hirzebruch surfaces.

2.2 Corollary
Let � �4 � � 4 $ �	 � $ �	 , let � : Div 	 � � of type 	 � � � with � � � 1 , and let� ��������� � � be topological or analytical singularity types.

Suppose that

��
��� �

V ��� 	�� � � T - [ % 
 � �  T �  T � � , � % ,  % � (2.5)

Then either �E������ ����	�� ��������� � � � is empty or T-smooth.

We note that the obstruction (2.4) in this case reads� �  T �  T � � � � % T  % T �  (2.6)

which could be replaced by

� ( 1  T 6
and  ( 1 ��T 6 � (2.7)

If we consider the case � 4  , that is, if � is a rational multiple of the canoni-
cal divisor, then (2.5) looks like

��
� � �

V ��� 	�� � � T - [ % 
 1 � % T � � � (2.8)

In this situation we could even use (1.21) in Remark 1.2 instead and replace
(2.8) by the better inequality

��
��� �

	 � � 	�� � � T - � %- T %  / 	 � � 	�� � � T - � 
 1 � % � (2.9)

Comparing these results with the conditions for irreducibility in Section V.4.b
the right hand side there differs by a factor of about

�

% � � .
The only Hirzebruch surface, which is not minimal, is � � . Since the obstruc-
tions for  there differ from the remaining cases we give the result separately.

2.3 Corollary
Let � 4 � � , let � 4 � P � T  � : Div 	 � � with � � 1 and  � � T - , and let� ��������� � � be topological or analytical singularity types.

Suppose that

��
��� �

V � � 	�� � � T - [ % 
 � �  T �  T 1 � , � F / � % ,  % � (2.10)

Then either � ������ ����	�� ��������� � � � is empty or T-smooth.
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In contrast to the Hirzebruch surfaces with � � 1 , the corollary here applies
to divisors, which are multiples of the canonical divisor, that is when  4


%
/ � . Then, however, we may in view of Remark 1.2 (f) replace (2.10) by the

inequality

��
� � �

	 � � 	�� � � T - � %- T   / 	 � � 	�� � � T - � 
 1 � % � (2.11)

For the Hirzebruch surfaces with � �Z1 we have to study the conditions (1.2b)
and (2.4) a bit closer. We then see that they may be replaced by

 � � �3T � ,5- (2.12)

and
� 

� � 	  � � 45, V  , � 	 %% / � [ % T V 1 �  , � � % [ T �  T 	 �E, 1 � �0/ � , � 	 ' � (2.13)

For � �Z1 fixed we therefore may consider � 
� � ��� � � T � ,�- �� � � � as a concave

function, and we find that
� 

� � 	  � 	 ' � �  
 V 1 T �% [ / ��T � 6 � % T -�1 ��T 1 �
In particular, (2.12) and (2.13) cannot be satisfied both at the same time un-
less � ( � ! And if � ( � , then we may replace condition (1.1b) and (1.2b)
by

� � 1 and  : � � �3T � , -  V 1 T �% [ / �3T � 6 � % T -�1 ��T 1 � � (2.14)

2.4 Corollary
Let � 4 � � with 1 ( � ( � , let � 4 � P � T  � : Div 	 � � with � � 1 and
 : � � � T � , -  V 1 T �% [ / � T � 6 � % T -�1 � T 1 �

, and let � ��������� � � be topological or
analytical singularity types.

Suppose that

��
� � �

V ��� 	�� � � T - [ % 
 V 1 �  , � � % [ T �  T 	 � ,21 � �0/ � , V  , � 	 %% / � [ % � (2.15)

Then either �3������ ����	�� ��������� � � � is empty or T-smooth.

Next we consider the case of an elliptic base curve. As in the case of Hirze-
bruch surfaces, we study Condition (1.2b) and Obstruction (2.4) a bit closer.
We then see that they may be replaced by

 � � �3T � T - (2.16)

and

� 
� � 	  � � 4 , V  , �% / � [ % T V 1 �  , � � % [ T �  T , 1 � � , � 	 ' � (2.17)

For � � 1 fixed we consider � 
� � � � � � T � T - �� � � � as a concave function,

and we find that

� 
� � 	  � 	 ' � �  
 ��T �% / ��T � � % T � ��T 1 �
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Thus (2.16) and (2.17) will never be satisfied at the same time if � � � , while
if
' ( � ( 6

we may replace (1.1b) and (1.2b) by

� �Z1 and  : �.� �3T � T -  �3T �% / ��T � � % T � ��T 1 � � (2.18)

2.5 Corollary
Let � �K� � P be a geometrically ruled surface with � 	 P � 4 - and

')( � ( 6
, let

� 4 � P � T  � : Div 	 � � with � �Z1 and  : � � � T � T -  � T �% / � T � � % T � � T 1 �
,

and let � ��������� � � be topological or analytical singularity types.

Suppose that

��
��� �

V���� 	�� � � T - [ % 
 V 1 �  , � � % � T �  , 1 � � , V  , �% / � [ % � (2.19)

Then either �E������ ��� 	�� ��������� � � � is empty or T-smooth.

We note that in the most interesting case, namely when � 4 '
, which includes

the product P � $ �	 , we just need
' 
  ( �3T � � % T � �3T 1 (2.20)

and

��
� � �

V ��� 	�� � � T - [ % 
 1 �  T �  ,  % � (2.21)

Finally we have to consider the unique case of a geometrically ruled surface
over an elliptic curve with negative invariant � . (1.1) and (1.2) come down to

� �Z1 and  	 , �1 � (2.22)

Moreover, then 	 � P � T  � � � ��� 4 , 1  , � 
 '
, so that Remark 1.2 (c) still

applies, that is, (1.3) is redundant and (1.5) may be replaced by (1.17), which
takes the form

��
��� �

V���� 	�� � � T - [ % 
 F / � % T �  T 1 ��T �  ,  % �
This, however, leads to the obstruction

� 
�

@ � 	  � 4 F / � % T �  T 1 ��T �  ,  % , � 	 ' �
Thus, considering � 

�

@ � now as a concave function � 
�

@ � ��� , % ��
� � � we

find that

� 
�

@ � 	  � 	 ' � � , �1 
 % T 1 , � � % T � � 
  
 % T 1 T � � % T � � �
And we may therefore replace (1.1b)-(1.2b) by

� � 1 and  : � �1 T 1 , � � % T � �  �1 T 1 T � � % T � � � � (2.23)
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2.6 Corollary
Let �	� � � P be a geometrically ruled surface with � 	 P � 4 - and � 4 ,�- , let
� 4 � P � T  � : Div 	 � � with � �Z1 and  : � % T 1 , � � % T � �  % T 1 T � � % T � � �

,
and let � ��������� � � be topological or analytical singularity types.

Suppose that

��
��� �

V � � 	�� � � T - [ % 
 F / � % T �  T 1 ��T �  ,  % � (2.24)

Then either �3������ ����	�� ��������� � � � is empty or T-smooth.

In the above corollary we could for instance let  4 % T 1 , in which case (2.19)
reads ��

��� �
V � � 	�� � � T - [ % 
 	 ��T 1 � % �

2.c. Products of Curves

Throughout this section we use the notation of Section G.b. In particular,
� 4 P � � P % where P � and P % are smooth projective curves over � of genera
� � and � % respectively. Since � is geometrically ruled if some � � 4 '

, we may
restrict our attention to the case � �� � % � - .
For a generic choice of P � and P % the Néron–Severi group NS 	 � � is two-
dimensional by Proposition G.12. Thus the following theorem answers the
general case completely.

1.1c Theorem
Let P � and P % be two smooth projective curves of genera � � and � % respectively
with � � � � % � - .
Let � 4 � P � T  P % : Div 	 � � with � 	 1 � % , 1 and  	 1 � � , 1 , and let� ��������� � � be topological or analytical singularity types with � � 	�� � � � � � 	�� � � for
all � 4 - ������� � .
Suppose that

(1.5c) �,
��� � V � � 	�� � � T - [ %

 1 �  ,�1 / V � � 	�� � � T - [ / V 	 � � , - � � T 	 � % , - � 

[ , V 	 � � ,�- � � , 	 � % , - � 
[ % .

Then either � ������ ����	�� ��������� � � � is empty or T-smooth.

Proof: We note that ��� 4 	�1 � % , 1 ��/ P � T 	�1 � � , 1 ��/ P % is nef. Thus by Remark 1.2
(b) and (d) and due to the assumptions on � and  (1.1)-(1.3) are fulfilled,
while (1.5) may be replaced by (1.18), which in this case is just (1.5c). It thus
remains to show that (1.4) is satisfied, which in this case takes the form

��
��� �

� � 	�� � � 
 �

%
/ 	 ��T 1 ,21 � % �0/ 	  T 1 , 1 � � � �
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This, however, follows from (1.24) in Remark 1.2 since

1 �  ,21 / V � � 	�� � � T - [ / V 	 � � , - � �3T 	 � % ,.- �  [ , V 	 � � ,5- � � , 	 � % ,5- �  [ %( 1 �  , � / V 	 � � , - � ��T 	 � % ,5- �  [ ( 1 / 	 ��T 1 ,21 � % � / 	  T 1 ,21 � � � �

Of course, if 	 � � , - � / � and 	 � % , - � /  differ too much from each other, then
Condition (1.5c) can never be satisfied, since then V 	 � � , - ��/ � , 	 � % ,5- � /  [ %
becomes larger than 1 �  – e. g. if � �� � % 	 - and � 	 � / � � @ �� � @ � /  . Moreover, we
see that the largest � � 	�� � � should be considerably smaller than � or  .

If � �� � % 	 - and if � 4 � / 	 � % ,.- � and  4 � / 	 � � ,.- � for some
� : � , that is if

� is a multiple of the ample divisor � � then (1.5c) takes the simpler form

��
��� �

V ��� 	�� � � T - [ % 
 1 / � � % ,21 � / V ��� 	�� � � T - [ � / 	 � � , - �0/ 	 � % ,.- � � (2.25)

In this case, however, we could replace (2.25) in view of Remark 1.2 (f) also by

��
��� �

	 � � 	�� � � T - � %- , F
�

/ 	 � � 	�� � � T - � 
 1 � % / 	 � � , - �0/ 	 � % ,.- � � (2.26)

2.d. Products of Elliptic Curves

If in Section V.4.c the curves P � and P % are chosen to be both elliptic curves,
Theorem 1.1c looks much nicer, since � � 4 '

.

1.1d Theorem
Let P � and P % be two smooth elliptic curves, let � : Div 	 � � big and nef, and let� ��������� � � be topological or analytical singularity types.

Suppose that

(1.5d) �,
� � � V � � 	�� � � T - [ % 
 � % .

Then either �E������ ����	�� ��������� � � � is empty or T-smooth.

If P � and P % are non-isogenous, then any divisor of � is of the form � 4� P � T  P % , and for such a divisor the condition “ � big and nef” means that� � 	 '
.

The Severi variety ��������  � � 	 � � � �?	 ��" � � is therefore T-smooth as soon as

� ( � 1 
and in the case of cusps and nodes the condition for the T-smoothness of
� ������  � � 	 � � � � 	 9 " � T 6 " % � thus just reads� 9�T M 6 
 1 �  �
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2.e. Surfaces in $ 	
For a generic surface of degree � �� in $ 	 any curve is a hypersurface section
by a Theorem of Noether (see Section G.d). Therefore the following result on
hypersurface sections answers the problem completely on a generic surface in
$ 	 . We note that a hypersurface section is always a rational multiple of the
canonical bundle and thus we may use Remark 1.2 (b) and (1.20).

1.1e Theorem
Let � � $ 	 be a smooth hypersurface of degree � � � , # � � be a hyperplane
section, * 	 � , � and let � ��������� � � be topological or analytical singularity
types with � � 	�� � � � � � 	�� � � for all � 4 - ������� � . Suppose that

(1.4e) �,
��� � � � 	�� � � 
 >�� 	 F @ � B � H �F , and

(1.5e) �,
��� � V � � 	�� � � T - [ % 
 * % / � ,.* / 	 � , � �0/ � / V � � 	�� � � T - [ .

Then either �3������ ��� � 	�� ��������� � � � is empty or T-smooth.

If we suppose � 	 � and the � � 	�� � � T - 
 �
� @ F , which is necessary anyway in

order to have (1.5e), then in view of Remark 1.2 (f) we may replace (1.5e) by
the better inequality

��
��� �

V�� � 	�� � � T - [ %
- , � @ F� / V�� � 	�� � � T - [ 
 * % / � � (2.27)

Let us consider the two cases of nodal curves and of curves with nodes and
cusps more closely.

2.6 Corollary
Let � � $ 	 be a smooth hypersurface of degree � � � , # � � be a hyperplane
section and * 	 1 � , � . Suppose that

� 
 * / 	+*�,21 � T � �0/ �� � (2.28)

Then either �3������ ��� � 	 ��" � � is empty or T-smooth.

Proof: In this situation (1.5e) is just (2.28), and (1.4e) is fulfilled as well in
view of* / 	+*�, 1 �=T � �0/ �� ( * / 	+*3, 1 �=T � �C/ � T 	 �E, �

� % �� 4 	+* T � , �
� % / �� �

2.7 Corollary
Let � � $ 	 be a smooth hypersurface of degree � � � , # � � be a hyperplane
section and * 	 6

� ,5-�1 . Suppose that� 93T M 6 
 * / 	+*3, 6
�=T -�1 �0/ � � (2.29)

Then either � ������ ��� �!	 9 " �� 6 " % � is empty or T-smooth.
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Proof: In this situation (1.5e) is just (2.29), and (1.4e) is fulfilled as well in
view of � / 	 93T 1 6 � ( � 9�T M 6 
 * / 	+*�, 6

� T -�1 �C/ � ( 	+* T � , �
� % / � �

2.f. K3-Surfaces

By Remark 1.2 (b), (c) and (j) Theorem 1.1 for K3-surfaces takes the following
form.

1.1f Theorem
Let � be a smooth K3-surface, � a big and nef divisor on � and � ��������� � � be
topological or analytical singularity types.

Suppose that

(1.5f) �,
� � � V � � 	�� � � T - [ % 
 � % .

Then either �E������ ����	�� ��������� � � � is empty or T-smooth.
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CHAPTER V

Irreducibility

The question whether the variety �3���W� 4 �E������ ��� V � ��������� � �
[

of irreducible curves
in � ��� � having precisely � singular points of the given types � ��������� � � is irre-
ducible seems to be much harder to answer suitably than that of existence or
smoothness. Even in the simplest case of nodal curves in $ %	 the conjecture
of Severi that ���
��� should be irreducible whenever it is non-empty resisted a
full proof until 1985 (cf. [Har85b]), while already Severi himself (cf. [Sev21])
gave a complete characterisation for the existence and showed that the va-
riety is always T-smooth. Moreover, while for the question of existence and
smoothness in the plane curve case there exist sufficient criteria showing
the same asymptotical behaviour as known necessary criteria, respectively
as known (series of) non-smooth families, the asymptotics for the sufficient
criteria for irreducibility seem to be worse (cf. [Los98] Chapter 6). To be more
precise there are conditions linear in certain invariants and quadratic in the
degree which guarantee the existence, while for the irreducibility (as for the
T-smoothness) the conditions are quadratic in the degree and the invariants
as well. Applying similar techniques our results carry the same stigma. How-
ever, apart from nodal curves on the blown up plane (cf. [Ran89, GLS98a])
we do not know at all of any criteria for the irreducibility–problem on surfaces
other than the plane. (See also Section 4.f).

The main condition for irreducibility which we get in the different cases looks
like

��
� � �

V���� 	�� � � T 1 [ % 
 � / 	 � , ��� � %  (0.1)

where � is some constant.

At this point we should like to point out that on more complicated surfaces
than $ %	 we cannot expect the results to be as nice as in the plane case. Al-
ready Harris’ result for the variety of nodal curves does not extend to arbi-
trary surfaces � – more precisely, to our knowledge there is no surface known,
except the plane, where the result holds. In [ChC99] it is shown that on a
generic surface in $ 	 of degree � � � the variety �������� ��� �D	 ��" � � is reducible for all

even * 	 '
and � 4 V � � 	 > F @ � B � 	 % [ H �% as soon as

�  ,.-�1 � % T -O- � , J
J 
 * � , *�, 1

1 
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where the left hand side is the expected dimension of � ������ ��� �D	 ��" � � and the right
hand side is a lower bound for the actual dimension. This lower bound is
found by intersecting � with a family of cones with fixed vertex over plane
nodal curves of degree * with �� nodes. The right hand side is the dimension
of the family of plane nodal curves, and we thus only have to note that cones
over different curves are different. The arguments given so far show that
�E������ ��� � 	 ��" � � has a component which is not T-smooth and works for any surface of
degree * � � in $ 	 , however, in [ChC99] Theorem 3.1 Chiantini and Ciliberto
show that on a generic surface in $ 	 the variety � �
���� �A�C� 	 ��" � � with * � � also
contains a T-smooth component whenever it is non-empty.

For an overview on the different approaches to the question of irreducibility
in the case of plane curves we refer to [GrS99] or [Los98] Chapter 6 – see
also [BrG81, Ura83, GD84, Ura84, Har85b, Dav86, Ura86, Deg87, GrK89,
Kan89a, Ran89, Shu91a, Bar93a, Shu94, Shu96b, Wal96, Bar98, Mig01].
The case of $ %	 blown up in 9 generic points is treated in [Ran89], if 9 4 - ,
and in [GLS98a] in the general case. Our proof proceeds along the lines of
an unpublished result of Greuel, Lossen and Shustin (cf. [GLS98b]). The
basic ideas are in some respect similar to the approach utilised in [GLS00],
replacing the “Castelnuovo-function” arguments by “Bogomolov unstability”.
We tackle the problem in three steps:

Step 1: We first show that the open subvariety �3������� � � � of curves in �E���W� with
� � V �  !9� > � B # � 	 � � [ 4 '

is always irreducible, and hence so is its closure in ������� .
(Cf. Corollary 1.2.)

Step 2: Then we find conditions which ensure that the open subvariety ��������� � � �
of curves in �E���W� with � � V �  ! ���� ��� > � B # � 	 � � [ 4 '

is dense in ���
��� . (Cf. Section 2.)

Step 3: And finally, we combine these conditions with conditions which
guarantee that ������� � � � � is dense in �E�
����� � � � by showing that they share some
open dense subset � � � �� of curves with singularities in very general position
(cf. Lemma 3.9). But then �3������� � � � is dense in ���
��� and � ���W� is irreducible by
Step 1.

The most difficult part is Step 2. For this one we consider the restriction of
the morphism (cf. Definition I.2.15)

� � � � Sym
7 � 	 � � � 	 7�� 	 � � 4 � �

to an irreducible component � � of �E����� not contained in the closure � ������� � � � in
� ����� . Knowing, that the dimension of � � is at least the expected dimension
dim V � ������� � � � [ we deduce that the codimension of

� � 4 � V � � [ in
�

is at most
� � V �  ! � �� ��� > � B # � 	 � � [ , where PZ: � � (cf. Lemma 3.7). It thus suffices to find con-
ditions which contradict this inequality, that is, we have to get our hands on
codim � 	 � � � . However, on the surfaces, which we consider, the non-vanishing
of � � V+�  ! ���� ��� > � B # � 	 � � [ means in some sense that the zero-dimensional scheme
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� �� � � 	 P � is in special position. We may thus hope to realise large parts �
�

� of
� �� � � 	 P � on curves

� � of “small degree” ( � 4 - ������� 6 ), which would impose
at least # �

�

� , dim � � � � � conditions on � �� � � 	 P � , giving rise to a lower bound
, ;� � � # �

�

� , dim � � � � � for codim � 	 � � � . The �
�

� and the
� � are found in Lemma 3.1

with the aid of certain Bogomolov unstable rank-two bundles. It thus finally
remains (cf. Lemma 3.3, 3.4 and 3.6) to give conditions which imply

;�
��� �

# �
�

� , dim � � � � � 	 � � V �  ! � �� ��� > � B # � 	 � � [ �
What are the obstructions by which our approach is restricted?

First, the Bogomolov unstability does not give us much information about the
curves

� � apart from their existence and the fact that they are in some sense
“small” compared with the divisor � . It thus is obvious that we are bound
to the study of surfaces where we have a good knowledge of the dimension
of arbitrary complete linear systems. Second, in order to derive the above
inequality many nasty calculations are necessary which depend very much on
the particular structure of the Néron–Severi group of the surface, that is, we
are restricted to surfaces where the Néron–Severi group is not too large and
the intersection pairing is not too hard (cf. Lemma 3.3, 3.4 and 3.6). Finally,
in order to ensure the Bogomolov unstability of the vector bundle considered
throughout the proof of Lemma 3.1 we heavily use the fact that the surface
� does not contain any curves of negative self-intersection, which excludes
e. g. general Hirzebruch surfaces.

In Section 1 we do not only prove that � ����� � � � � is irreducible, but that this
indeed remains true if we drop the requirement that the curves should be
irreducible, i. e. we show that � � � � is irreducible. However, unfortunately
our approach does not give conditions implying that �3� � � is dense, and thus
we cannot say anything about the irreducibility of the variety of possibly re-
ducible curves in � ��� � with prescribed singularities.1 The reason for this is
that in the proof of Lemma 3.1 we use the Theorem of Bézout to estimate
� � � � . Since

� � may be about “half” of � , we need an irreducible curve in � ��� �
to be sure that at least for some curve in � � � � the curve

� � is not a component.

1. �E����� � � � � is irreducible

We are now showing that � � � � and � ���W��� � � � are always irreducible. We do this
by showing that under � � � � �

(cf. Definition I.2.15) every irreducible
component of these is smooth and maps dominant to the irreducible variety

�
with irreducible fibres.

1Note that e. g. the variety � � = =�

� � #�� � & of irreducible plane conics with one node is empty,

while � �

� � #�� � & is four-dimensional – even though the latter is of course irreducible.



84 V. IRREDUCIBILITY

1.1 Theorem
Let � : Div 	 � � , � ��������� � � be pairwise distinct topological or analytical singu-
larity types and 9 ��������� 9 � : < � � '  .
If � � � �� � � 	 9 � � ��������� 9 � � � � is non-empty, then it is a T-smooth, irreducible, open
subset of � � � � 	 9 � � ��������� 9 � � � � of dimension dim � � � � ,	, ���� �X9 �

/ � � 	�� � � .
Proof: Let us consider the following maps from Definition I.2.15

� 4 � � 	 9 � � ��������� 9 � � � � � � 4 � � � � 	 9 � � ��������� 9 � � � � //
� 	 9 � � ��������� 9 � � � �

and
� 4���	 9 � � ��������� 9 � � � � �

� 	 9 � � ��������� 9 � � � � // Hilb
� � �

Step 1: Every irreducible component � � of � � � � is T-smooth of dimension
dim � � � � , , ���� � 9 �

/ � � 	�� � � .
By [Los98] Proposition 2.1 (c2) � � is T-smooth at any P : � � of dimension
dim � � � � , deg V � � 	 P � [ 4 dim � ��� � , , �� � � 9 �

/ � 	�� � � , since � � V �  ! � � # � 	 � � [ 4 '
according to Remark I.2.8. (See also Remark I.2.10.)

Step 2: �E� � � is open in � .

Let P : � � � � . By assumption � � V �  ! � > � B # � 	 � � [ 4 '
, and thus by Lemma F.1

there exists an open, dense neighbourhood
�

of � 	 P � in Hilb
� � such that

� � V �  ! % # � 	 � � [ 4 '
for all  : �

. But then �
@ � V � @ � 	 � � [ : ��� � � is an open

neighbourhood of � 	 P � in � , and hence � � � � is open in � .

Step 3: � 4 � � 	 9 � � ��������� 9 � � � � restricted to any irreducible component � � of
�E� � � is dominant.

Let � � be an irreducible component of � � � � and let PZ: � � . Since �
@ � V � 	 P � [ is

an open and dense subset of 77 ! � > � B # � 	 � � 77 � and since � � V+�  ! � > � B # � 	 � � [ 4 '
, we

have

dim �
@ � V � 	 P � [ 4 � � V �  ! � > � B # � 	 � � [ ,5- 4 dim � � � � , deg V � 	 P � [ �

By Step 1 we know the dimension of � � and by a remark in Definition I.2.15
we also know the dimension of

�
. Thus we conclude

dim � V � � [ 4 dim � � , dim �
@ � V � 	 P � [

4 V dim � � � � , deg � � 	 P � [ , V dim � ��� � , deg � 	 P � [
4 deg V � 	 P � [ , deg V � � 	 P � [ 4 dim

� �
Since

�
is irreducible, � VG� � [ must be dense in

�
.

Step 4: �E� � � is irreducible.

Let � � and � � � be two irreducible components of ��� � � . Then � V � � [ � � V � � � [ �4	� ,
and thus some fibre � of � intersects both, � � and � � � . However, the fibre
is irreducible and by Step 1 both � � and � � � are smooth. Thus � must be



2. CONDITIONS FOR THE IRREDUCIBILITY OF � �
� �

85

completely contained in � � and � � � , which, since both are smooth of the same
dimension, implies that � � 4 � � � . That is �E� � � is irreducible.

1.2 Corollary
Let � : Div 	 � � , � ��������� � � be pairwise distinct topological or analytical singu-
larity types and 9 ��������� 9 � : < � � '  .
If � �
����� � � �� ��� 	 9 � � ��������� 9 � � � � is non-empty, then it is a T-smooth, irreducible, open
subset of � � ��� 	 9 � � ��������� 9 � � � � of dimension dim � � � � , , ���� �X9 �

/ � � 	�� � � .
Proof: This follows from Theorem 1.1 since � ����� � � � �� ��� 	 9 � � ��������� 9 � � � � is an open
subset of the irreducible set � � � �� ��� 	 9 � � ��������� 9 � � � � .

2. Conditions for the irreducibility of ���
���
Knowing that � ������� � � � , and hence its closure � ������� � � � in � ���W� , is always irre-
ducible, the search for sufficient conditions for the irreducibility of ���
��� may
be reduced to the search for conditions ensuring that �3���W��� � � � is dense in �E���W� .
As indicated in the introduction (cf. p. 82) we achieve this aim by combining
conditions, which ensure that ��������� � � � and �E������� � � � share some dense subset � � � ��
(cf. Step 3 on page 82), with conditions which ensure that ������� � � � � is dense in
� ����� (cf. Step 2 on page 82). For the latter problem we apply a reduction tech-
nique involving the Bogomolov unstability of certain rank-two vector bundles
on � . The main part of the work is carried out in Section 3, where we prove
several technical lemmata which partly are useful in their own respect.

Let us now reformulate Step 2 and Step 3 in a more precise way.

Step 2: We derive from Lemma 3.1-3.7 conditions which ensure that � �
����� � � � is
dense in ���
��� .
Step 3: Taking Lemma 3.8 into account, we deduce from Lemma 3.9 con-
ditions which ensure that there exists a very general subset

� � � ; with
6 4 9 � T ����� T 9 � such that the family � � � �� 4 � � � �� ���

�
� 	 9 � � ��������� 9 � � � � , as defined

there, satisfies

(a) � � � �� is dense in � ������� � � � , and

(b) � � � �� : � ���W��� � � � .
Thus in particular, � ���W��� � � � is dense in � �
����� � � � .
Throughout the proof of the following theorem we will heavily rely on the
study of the zero-dimensional schemes � �� � � 	 P � for some curves P , and we
therefore would like to remind the reader that in view of Definition I.2.10
for a topological respectively analytical singularity type � we have

deg V&� �� � � 	�� � � [ 4 � � 	�� � � T 1 �
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2.1 Theorem
Let � be a surface such that2

(i) NS 	 � � 4 � / � ,

(ii) � � 	 �  P � 4 '
, whenever P is effective.

Let � : Div 	 � � , let � ��������� � � be pairwise distinct topological or analytical
singularity types and 9 ��������� 9 � : <�� � '  .
Suppose that

(2.1) � , ��� is big and nef,

(2.2) � T ��� is nef,

(2.3) �,
��� � 9 �

/ V � � 	�� � � T 1 [ 
 � / 	 � , ��� � % for some
' 
 � ( �F , and

(2.4) �,
��� � 9 �

/ V�� � 	�� � � T 1 [ % 
 � / 	 � , ��� � % , where � 4 V � 	 � � @ F �
[ � H � �FIH � > � � B 	 max�

�
� % H � � � � 	 	 � H � � .

Then either ���
���� ����	 9 � � ��������� 9 � � � � is empty or it is irreducible of the expected di-
mension.

Proof: We may assume that �E�
��� 4 �������� ����	 9 � � ��������� 9 � � � � is non-empty. As indi-
cated above it suffices to show that:

Step 2: �E���W� 4 � �
����� � � � , where �E����� � � � � 4 ������� � � � �� ��� 	 9 � � ��������� 9 � � � � , and

Step 3: the conditions of Lemma 3.9 are fulfilled.

For Step 3 we note that 
 � 	�� � � ( � � 	�� � � . Thus (2.4) implies that

��
��� �

9 � / V 
�� 	�� � � T - [ % ( ��
��� �

9 � / V ��� 	�� � � T 1 [ % ( � / 	 � , ��� � % ( �

%
/ 	 � , ��� � % 

which gives the first condition in Lemma 3.9. Since a surface with Picard
number one has no curves of selfintersection zero, the second condition in
Lemma 3.9 is void, while the last condition is satisfied by (2.1).

It remains to show Step 2, i. e. ���
��� 4 � ���W��� � � � . Suppose the contrary,
that is, there is an irreducible curve P � : �E�
��� � � ������� � � � , in particular
� � V �  !9� � # � 	 � � [ 	 '

for � � 4 � �� � � 	 P � � . Since deg 	 � � � 4 , ���� � 9 �
/ V � � 	�� � � T 1 [ and

, �/. �3V deg 	 � �
�
� � [ % 4 �,

� � � 9 �
/ V � � 	�� � � T 1 [ % the assumptions (0)-(3) of Lemma 3.1

and (4) of Lemma 3.3 are fulfilled. Thus Lemma 3.3 implies that P � satisfies
Condition (3.28) in Lemma 3.7, which it cannot satisfy by the same Lemma.
Thus we have derived a contradiction.

2By Lemma E.1 we may assume w. l. o. g. that
�

is ample.
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2.2 Remark
If we set� 4 68J

�	 6
� T � � % with �

4 � /�� 	 
 � � T max
� '  1 / ��� � �  T JE/ � %
� % 

then a simple calculation shows that (2.3) becomes redundant. For this we
have to take into account that � � 	�� � � - for any singularity type � . The claim
then follows with � 4 �


/ � ( �F .

2.3 Theorem
Let P � and P % be two smooth projective curves of genera � � and � % respectively
with � � � � % � '

, such that for � 4 P � � P % the Néron–Severi group is NS 	 � � 4
P � � � P % � .

Let � : Div 	 � � such that � �  � P � T  P % with � 	 max 5 1 , 1 � %  1 � % , 1 T

 � 	�� � � 77 � 4 - ������� � < and  	 max 5 1�, 1 � �� 1 � � , 1 T 
 � 	�� � � 77 � 4 - ������� � < , let� ��������� � � be pairwise distinct topological or analytical singularity types and
let 9 ��������� 9 � : < � � '  .
Suppose that

��
��� �

9 � / V � � 	�� � � T 1 [ % 
 � / 	 � , ��� � %  (2.5)

where � may be taken from the following table with �
4  @ % � � 	 %� @ % � � 	 % 	 '

.

� � � % � � , if �
4 -

' ' �

% F
�

% F- ' �
max�  % � % � 	

�
 %�Z1 ' �

max� % F 	 � � � � � F � � � 	 �

% F 	 � � � �- - �

max 5  % � % � � % � <
�
 %

�Z1 � - �

max
�
% F 	 � � � � 	 � � � � � F � � � � F � ���� �

% F 	 � � � � 	 � � � �
Then �E���W�� � � 	 9 � � ��������� 9 � � � � is empty or it is irreducible of the expected dimension.

Proof: The assumptions on � and  ensure that � , � � is big and nef and
that � T ��� is nef. Thus, once we know that (2.5) implies Condition (3) in
Lemma 3.1, Step 2 in the proof of Theorem 2.1 follows in the same way, just
replacing Lemma 3.3 by Lemma 3.4.

For Condition (3) we note that

��
� � �

9 � / V���� 	�� � � T 1 [ ( ��
� � �

9 � / V ��� 	�� � � T 1 [ % ( �

% F
/ 	 � , ��� � % 
 �F / 	 � , ��� � % �
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Also Step 3 in the proof of Theorem 2.1 follows in the same way, except that
Condition (b) in Lemma 3.9 is not void this time, but is fullfilled by the as-
sumptions on � and  , since the only irreducible curves of selfintersection
zero are linearly equivalent either to P � or to P % .
In the following theorem we use the notation of Section G.a.

2.4 Theorem
Let � �O� � P be a geometrically ruled surface with � ( '

and � 4 � 	 P � .
Let � : Div 	 � � such that � �  � P � T  � with � 	 max 5 -  
 � 	�� � � ,.1 77 � 4
- ������I � < ,  	 1 � , 1 T  �% T max 5 
 � 	�� � � 77 � 4 - ������� � < , and if � 4 '

then  � 1 .
Let � ��������� � � be pairwise distinct topological or analytical singularity types
and 9 ��������� 9 � : <�� � '  .
Suppose that

��
��� �

9 � / V ��� 	�� � � T 1 [ % 
 � / 	 � , ��� � %  (2.6)

where � may be taken from the following table with �
4 
	 %� 	 % @ % � @  �% 	 '

.

� � � � , if �
4 -

' ' �

% F
�

% F- ' �
max � % F � % � 	

�

% F- ,�- �

max � min 5  � 	 � �� 	 F � � F � 	 R � < � � % � �
�F R

�Z1 ' �
max� % F 	 � � � � F � � 	 �

% F 	 � � ��Z1 
 ' �

max � min 5 % F 	 � � � @ R � � � � � 	 � � � @ R � � @ � �� � < � F � � @ R � � �
Then � ������ ���
	 9 � � ��������� 9 � � � � is empty or it is irreducible of the expected dimension.

Proof: The proof is identical to that of Theorem 2.3, just replacing Lemma 3.4
by Lemma 3.6 and applying Lemma G.2 for the irreducible curves of selfinter-
section zero.

3. The Main Technical Lemmata

The following lemma is the heart of the proof. Given a curve PZ:2� ��� � such that
the scheme � � 4 � � !� � � 	 P � respectively � � 4 � � � � � 	 P � is special with respect to �
in the sense that � � V �  ! � � # � 	 � � [ 	 '

, it provides a “small” curve
�
� through

a subscheme �
�
� of � � , so that we can reduce the problem by replacing � � and

� by � � � � � and � , �
� respectively. We can of course proceed inductively as

long as the new zero-dimensional scheme is again special with respect to the
new divisor.
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In order to find
�
� we choose a subscheme �

�
� : � � which is minimal among

those subschemes special with respect to � . By Grothendieck-Serre duality

# � V+�  ! � � � # � 	 � � [ �4 Ext
� V@! � � � # � 	 � , ��� �  
 � [

and a non-trivial element of the latter group gives rise to an extension
' � 
 � � �

� � ! � � � # � 	 � , ��� � � ' �
We then show that the rank-two bundle

�
� is Bogomolov unstable and deduce

the existence of a divisor
� �
� such that

# � � �  ! � � � # � V � , ��� , � �
�
[ � �4 ' 

that is, we find a curve
�
� :�77 ! � � � # � V � , ��� , � �

�
[
77 � .

3.1 Lemma
Let � be a surface such that

(*) any curve P �5� is nef.

Let � : Div 	 � � and � � �.� a zero-dimensional scheme satisfying

(0) � , ��� is big and nef, and � T ��� is nef,

(1) ��P � : � � � � irreducible ��� � � P � ,
(2) � � V+�  ! � � # � 	 � � [ 	 '

, and

(3) deg 	 � � ��
 � / 	 � , ��� � % for some
' 
 � ( �F .

Then there exist curves
�
��������� � ; � � and zero-dimensional locally complete

intersections �
�

� :(� � @ � �
� � for � 4 - ������� 6 , where � � 4 � � @ � � � � for � 4 - ������� 6 ,

such that

(a) � � � �  !9��� # � V � , , ;��� �
� �
[ � 4 '

,

and for � 4 - ������� 6
(b) � � � �  ! � �

�
# � V � , , � @ �7 � �

� 7 [ � 4 -
(c) � � � � � deg 	 � � @ � � � � � � deg V&� ��

[ � V � , ��� , , � 7 � �
� 7 [ � � � � � %� �

'
(d) V+� , ��� , , � 7 � �

� 7 , � �
[ % 	 '

,

(e) V+� , ��� , , � 7 � �
� 7 , � �

[ � # 	 '
for all # : Div 	 � � ample, and

(f) � , ��� , , � 7 � �
� 7 is big and nef.

Moreover, it follows

' ( �F 	 � , ��� � % , ;�
� � �

deg V � ��
[ ( 

�

% 	 � , ��� � , ;�
��� �

� � � % � (3.1)
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Proof: We are going to find the
� � and �

�

� recursively. Let us therefore sup-
pose that we have already found

�
��������� � � @ � and �

�
� ������� � �� @ � satisfying (b)-(f),

and suppose that still � � � �  !9� � � � # � V � , , � @ ���� �
� �
[ � 	 '

.

We choose �
�

� :(� � @ � minimal such that � � � �  ! � �

�
# � V+� , , � @ �7 � �

� 7 [ � 	 '
.

Step 1: � � � �  ! � �

�
# � V � , , � @ �7 � �

� 7 [ � 4 - , i. e. (b) is fulfilled.

Suppose it was strictly larger than one. By (0) respectively (f), and the Kawa-
mata–Viehweg Vanishing Theorem we have � � � �  
 � V � ,	, � @ �7 � �

� 7 [ � 4 '
.

Thus �
�

� cannot be empty, that is deg V � ��
[ � - and we may choose a sub-

scheme  � �
�

� of degree deg 	  � 4 deg V � ��
[ , - . The inclusion ! � �

�
� � ! %

implies �
� � �  ! � �

�
# � V � , , � @ �7 � �

� 7 [ � ( � � � �  ! % # � V � , , � @ �7 � �
� 7 [ � and the struc-

ture sequences of  and �
�

� thus lead to

� � � �  ! % # � V � , , � @ �7 � �
� 7 [ �

4 �
� � �  ! % # � V � , , � @ �7 � �

� 7 [ � , � � � �  
 � V � , , � @ �7 � �
� 7 [ � T deg 	  �

� �
� � �  ! � �

�
# � V � , , � @ �7 � �

� 7 [ � , � � � �  
 � V+� , , � @ �7 � �
� 7 [ � T deg V � ��

[ , -
4 � � � �  ! � �

�
# � V � , , � @ �7 � �

� 7 [ � , - 	 '
in contradiction to the minimality of �

�

� .
Step 2: deg V � ��

[ (
deg 	 � � � , , � @ �7 � � deg 	 � 7 @ � � � 7 � .

The case � 4 - follows from the fact that �
�
� :�� � , and for � 	 - the inclusion

�
�

� :(� � @ � 4 � � @ % �
� � @ � implies

deg V � ��
[ (

deg 	 � � @ % � � � @ � � 4 deg 	 � � @ % � , deg 	 � � @ % � � � @ � � �
It thus suffices to show, that

deg 	 � � @ % � , deg 	 � � @ % � � � @ � � 4 deg 	 � � � , � @ ��
7 � �

deg 	 � 7 @ � � � 7 � �
If � 4 1 , there is nothing to show. Otherwise � � @ % 4 � � @  � � � @ % implies

deg 	 � � @ % � , deg 	 � � @ % � � � @ � �4 deg 	 � � @  � � � @ % � , deg 	 � � @ % � � � @ � �4 deg 	 � � @  � , deg 	 � � @  � � � @ % � , deg 	 � � @ % � � � @ � �
and we are done by induction.

Step 3: There exists a “suitable” locally free rank-two vector bundle
� � .

By the Grothendieck-Serre duality (cf. [Har77] III.7.6) we have
' �4

# � � �  ! � �

�
# � V+� , , � @ �7 � �

� 7 [ � �4 Ext
� � ! � �

�
# � V+� , , � @ �7 � �

� 7 [  
 � 	 ��� � � , and thus,
since 
 � 	 ��� � is locally free, (cf. [Har77] III.6.7)

Ext
� � ! � �

�
# � V � , ��� , , � @ �7 � �

� 7 [  
 � � �4 ' �
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That is, there is an extension (cf. [Har77] Ex. III.6.1)

' � 
 � � � � � ! � �

�
# � � � , ��� , , � @ �7 � �

� 7 � � ' � (3.2)

The minimality of �
�

� implies that
� � is locally free (cf. [Laz97] Proposition 3.9)

and hence that �
�

� is a locally complete intersection (cf. [Laz97] p. 175). More-
over, we have (cf. [Laz97] Exercise 4.3)

� � 	 � � � 4 � , ��� , � @ ��
7 � �

� 7 and � % 	 � � � 4 deg V � ��
[ � (3.3)

Step 4:
� � is Bogomolov unstable.

According to the Theorem of Bogomolov we only have to show � � 	 � � � % 	 � � % 	 � � �
(cf. [Bog79] or [Laz97] Theorem 4.2). In order to show this we note that

, 1 , � @ �7 � �
� 7 � V � , ��� , , 7


 � �
�


[

4 , 1 � , � @ �7 � �
� 7 � � 	 � , ��� � T 1 , � @ �7 � � ,

7

 � �

� 7 � � 

4 , 1 � , � @ �7 � �

� 7 � � 	 � , ��� � T , � @ �7 � �
� % 7 T � , � @ �7 � �

� 7 � % � (3.4)

Since 	 � � ,.- �C/ 	 � , ��� � % ( '
by (3) and since

� % 7 � '
by (*) we deduce:

� � % 	 � � � 4 � deg V � ��
[ (

Step 2
� deg 	 � � � , � , � @ �7 � � deg 	 � 7 @ � � � 7 �



(3)/(c)

� � 	 � , ��� � % , 1 , � @ �7 � �
� 7 � V � , ��� ,	, 7


 � �
�


[ , 1 , � @ �7 � �

� % 7
4

(3.4)
� � 	 � , ��� � % ,21 � , � @ �7 � �

� 7 � � 	 � , ��� � T � , � @ �7 � �
� 7 � % , , � @ �7 � �

� % 7
4 � � , ��� , , � @ �7 � �

� 7 � % T 	 � � ,.- �0/ 	 � , ��� � % , , � @ �7 � �
� % 7

( � � , ��� , , � @ �7 � �
� 7 � % 4 � � 	 � � � % �

Step 5: Find
� � .

Since
� � is Bogomolov unstable there exists a zero-dimensional scheme � � �.�

and a divisor
� �
� : Div 	 � � such that

' � 
 � V � �� [ � � � � ! � � # � � � , ��� , , � @ �7 � �
� 7 , � �� � � '

(3.5)

is exact (cf. [Laz97] Theorem 4.2) and that

(d’) V 1 � �� , � T ��� T , � @ �7 � �
� 7 [ % � � � 	 � � � % , � / � % 	 � � � 	 '

, and

(e’) V 1 � �� , � T ��� T , � @ �7 � �
� 7 [ � # 	 '

for all # : Div 	 � � ample.

We note that (e’) implies �
� � �  
 � V � , ��� , , � @ �7 � �

� 7 , 1 � ��
[ � 4 '

and the
inclusion ! � � # � � � 
 � thus gives

�
� � �  ! � � # � V+� , ��� , , � @ �7 � �

� 7 , 1 � ��
[ � 4 ' � (3.6)
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Tensoring (3.5) with 
 � V , � �
�
[

leads to the following exact sequence

' � 
 � � � � V , � ��
[
� ! � � # � � � , ��� , , � @ �7 � �

� 7 ,21 � �� � � '  (3.7)

and we deduce with (3.6) �
� � �  � � V , � �

�
[ � 4 � � 	 �  
 � � 4 - .

Now tensoring (3.2) with 
 � V , � �
�
[

leads to

' � 
 � V , � ��
[
� � � V , � ��

[
� ! � �

�
# � � � , ��� , , � @ �7 � �

� 7 , � �� � � ' � (3.8)

By (e’), and (0) respectively (f)

, � �� � #

 , �% V � , ��� , , � @ �7 � �

� 7 [ � # ( '
for an ample divisor # , hence , � �� cannot be effective, that is # � V+�  , � ��

[ 4 '
.

But the long exact cohomology sequence of (3.8) then implies
' �4 # � � �  � � V , � ��

[ � � � # � � �  ! � �

�
# � � � , ��� , , � @ �7 � �

� 7 , � �� � � �
In particular the linear system 77 ! � �

�
# � V+� , ��� , , � @ �7 � �

� 7 , � �
�
[
77 � is non-empty,

and we may choose
� � : 777 ! � �

�
# � V+� , ��� , , � @ �7 � �

� 7 , � ��
[ 777 � �

Step 6:
� � satisfies (d)-(f).

We note that by the choice of
� � we have the following linear equivalences

� �� � �C� , ��� , , � 7 � �
� 7 (3.9)

� �� , � � � � 1 �
�

� , � T ��� T , � @ �7 � �
� 7 � �0� , ��� , , � 7 � �

� 7 , � � � (3.10)

Thus (d) and (e) is a reformulation of (d’) and (e’).

Moreover, V � �� , � �
[ � # 	 '

for any ample # , implies V � �� , � �
[ � # � '

for any #
in the closure of the ample cone, in particular

V � �� , � �
[ � # � '

for all # nef � (3.11)

But then

� �� � # � � � � # � '
for all # nef  (3.12)

since
� � is effective. And finally, since by assumption (*) any effective divisor

is nef, we deduce that
� �
� � P �

'
for any curve P , that is,

� �
� is nef. In view of

(3.9) for (f) it remains to show that V � ��
[ % 	 '

. Taking once more into account
that

� � is nef by (*) we have by (d’), (3.10), (3.11) and (3.12)

V � ��
[ % 4 V � �� , � �

[ % T V � �� , � �
[ � � � T � �� � � � 	 ' �

Step 7:
� � satisfies (c).
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We would like to apply the Theorem of Bézout to P � and
� � . Thus suppose that

the irreducible curve P � is a component of
� � and let # be any ample divisor.

Applying (d) and the fact that � T � � is nef by (0), we derive the contradiction

')( 	 � � , P � � � # 
 , -
1 /  � T ��� T � @ ��

7 � �
� 7 � � # ( , -

1 / 	 � T ��� � � # ( ' �
Since � � @ � :(� � � P � the Theorem of Bézout therefore implies

� � � � 4 P � � � � � deg 	 � � @ � � � � � �
By definition �

�

� :(� � @ � and �
�

� �
� � , thus

deg 	 � � @ � � � � � � deg V � ��
[ �

By assumption (*) the curve
� � is nef and thus (3.12) gives

V � , ��� , , � 7 � �
� 7 [ � � � 4 � �� � � � � � %� � ' �

Finally from (d’) and by (3.3) it follows that

V � �� , � �
[ % � � � 	 � � � % , � / � % 	 � � � 4 V � �� T � �

[ % , � / deg V � ��
[ 

and thus
deg V � ��

[ � � �� � � � �
Step 8: After a finite number 6 of steps � � � �  ! ��� # � V � , , ;��� � � � [ � 4 '

, i. e. (a)
is fulfilled.

As we have mentioned in Step 1 deg V � ��
[
	 '

. This ensures that

deg 	 � � � 4 deg 	 � � @ � � , deg 	 � � @ � � � � � ( deg 	 � � @ � � , deg V � ��
[ 


deg 	 � � @ � � 
i. e. the degree of � � is strictly diminished each time. Thus the procedure
must stop after a finite number 6 of steps, which is equivalent to the fact
that � � � �  ! � � # � V � , , ;��� �

� �
[ � 4 '

.

Step 9: It remains to show (3.1).

By assumption (*) the curves
� � are nef, in particular

� � � � 
 � '
for all ��  .

Thus (c) implies

, ;��� � deg V � ��
[ � , ;� � � V � , ��� , , � 7 � �

� 7 [ � � �4 	 � , ��� � � , ;��� � � � , �

%
� V , ;� � � � � [ % T , ;��� � � %� �

� 	 � , ��� � � , ;��� � � � , V , ;��� �
� �
[ % �

But then, taking condition (3) into account,
' ( �F 	 � , ��� � % , deg 	 � � � ( �F 	 � , ��� � % , , ;��� � deg V � ��

[
( �F 	 � , ��� � % , 	 � , ��� � � , ;� � � � � T V , ;��� �

� �
[ %

4 V �% 	 � , ��� � , , ;� � � � � [ % �



94 V. IRREDUCIBILITY

It is our overall aim to compare the dimension of a cohomology group of the
form # � V �  ! � � # � 	 � � [ with some invariants of the �

�

� and
� � . The following

lemma will be vital for the necessary estimations.

3.2 Lemma
Let � : Div 	 � � and let � � � � be a zero-dimensional scheme such that there
exist curves

�
��������� � ; � � and zero-dimensional schemes �

�

� : � � @ � for � 4
- ������I 6 , where � � 4 � � @ � � � � for � 4 - ������� 6 , such that (a)-(f) in Lemma 3.1
are fulfilled.

Then:

� � V �  ! � � # � 	 � � [ ( ;,
��� � �

� � � �  ! � � � � � � � # � � V � , , � @ �7 � �
� 7 [ �

( ;,
��� �

� - T deg 	 � � @ � � � � � , deg V � ��
[ �

( ;,
��� �

� � � / V ��� T , � 7 � �
� 7 [ T - � �

Proof: Throughout the proof we use the following notation
� � 4 ! � � � � � � � # � �

� � , , � @ �7 � �
� 7 � and

�
�

� 4 ! � �

�
# � � V � , , � @ �7 � �

� 7 [
for � 4 - ������� 6 , and

� � 4 ! � � # � � � , , � 7 � �
� 7 � 

for � 4 ' ������� 6 .

Since � � 	 � 4 � � � � � 	 � we have the following short exact sequence

' // � � 	 �
H � � � � // � � //

� � 	 � // ' (3.13)

for � 4 ' ������� 6 ,.- and the corresponding long exact cohomology sequence

' // # � 	 �  � � 	 � � // # � 	 �  � � � // # � 	 �  � � 	 � � // # � 	 �  � � 	 � �
��' 4 # % 	 �  � � 	 � � # % 	 �  � � �oo # % 	 �  � � 	 � �oo # � 	 �  � � 	 � �oo # � 	 �  � � �oo

(3.14)

Step 1: � � 	 �  � � � ( , ;
 � � 	 � � � 	 �  �



�

for � 4 ' ������� 6 , - .
We prove the claim by descending induction on � . From (3.14) we deduce

' 4 # � 	 �  � ; � // # � 	 �  � ; @ � � // # � 	 �  �

;
� 

which implies � � 	 �  � ; @ � � ( � � 	 �  �

;
�

and thus proves the case � 4 6 ,.- .
We may therefore assume that - ( � ( 6 ,51 . Once more from (3.14) we
deduce � 4 � � 	 �  � � 	 � � , � � 	 �  � � � T � � 	 �  � � 	 � � � ' 
and

 4 � % 	 �  � � 	 � � , � % 	 �  � � � � ' 
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and finally

� � 	 �  � � � 4 � � 	 �  � � 	 � � T � � 	 �  � � 	 � � , � , 
( � � 	 �  � � 	 � � T � � 	 �  � � 	 � �(

Ind.
� � 	 �  � � 	 � � T , ;
 �O� 	 % � � 	 �  �



�

4 , ;
 �O� 	 � � � 	 �  �



� �

Step 2: � � 	 � �  � � � 4 �
� 	 � �  � � � , � � 
 � � V � , , � @ �7 � �

� 7 [ � T deg 	 � � @ � � � � � .
We consider the exact sequence

'
//

� � // 
 � �
� � , , � @ �7 � �

� 7 � // 
�� � � � � � � # � �
� � , , � @ �7 � �

� 7 � //
' �

The result then follows from the long exact cohomology sequence.

Step 3: �
� V � �  �

�

�
[ , � � 
 � � V+� , , � @ �7 � �

� 7 [ � 4 � � V � �  �
�

�
[ , deg 	 � ��

�
.

This follows analogously, replacing � � @ � by �
�

� , since �
�

� 4 �
�

� �
� � .

Step 4: � � V � �  �
�

�
[ ( � � � �  ! � �

�
# � V � ,	, � @ �7 � �

� 7 [ � 4 - .
Note that �

�

� �
� � 4 � , and hence ! � �

�
� � � # � 4 
 � . We thus have the following

short exact sequence

'
// 
 � � � , , � 7 � �

� 7 � H � � // ! � �

�
# � � � , , � @ �7 � �

� 7 � //
�
�

� //
' � (3.15)

By assumption (f) the divisor � , ��� , , � 7 � �
� 7 is big and nef and hence

' 4 � � � �  
 � V , � T ��� T , � 7 � �
� 7 [ � 4 � % � �  
 � V � , , � 7 � �

� 7 [ � �
Thus the long exact cohomology sequence of (3.15) gives

# � � �  ! � �

�
# � V � , , � @ �7 � �

� 7 [ � // # � V � �  �
�

�
[

//
' 

and
� � V � �  �

�

�
[ ( � � � �  ! � �

�
# � V+� , , � @ �7 � �

� 7 [ � �
However, by assumption (b) the latter is just one.

Step 5: � � 	 � �  � � � ( - T deg 	 � � @ � � � � � , deg V � ��
[
.

We note that
� � � � �

�

� , and thus

�
� 	 � �  � � � ( �

� 	 � �  �
�

�
[ �

But then

� � 	 � �  � � � (
Step 2/3

� � V � �  �
�

�
[ , deg V � ��

[ T deg 	 � � @ � � � � �(
Step 4

- , deg V � ��
[ T deg 	 � � @ � � � � � �
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Step 6: Finish the proof.

Taking into account, that � � 	 �  � � � 4 � � 	 � �  � � � , since
� � is concentrated on� � (cf. [Har77] III.2.10), the first inequality follows from Step 1, while the

second inequality is a consequence of Step 5 and the last inequality follows
from assumption (c).

In the Lemmata 3.3, 3.4 and 3.6 we consider special classes of surfaces which
allow us to do the necessary estimations in order to finally derive

;�
� � �

V # � �� , dim � � � � �
[
	 � � V �  ! � � # � 	 � � [ �

We first consider surfaces with Picard number one.

3.3 Lemma
Let � be a surface such that3

(i) NS 	 � � 4 � / � ,

(ii) � � 	 �  P � 4 '
, whenever P is effective.

Let � : Div 	 � � and � � � � a zero-dimensional scheme satisfying (0)–(3) from
Lemma 3.1 and

(4) ,� . � V deg 	 � �
�
� � [ % 
 � / 	 � , ��� � % , where � 4 V � 	 � � @ F �

[ � H � �FIH � > � � B 	 max�
�
� % H � � � � 	 	 � H � � .

Then, using the notation of Lemma 3.1 and setting � � 4 � ;��� � �
�

� ,
� � V �  !9� � # � 	 � � [ T ;�

��� �
� � � V �  
 � 	 � � � [ ,.- � 
 # � � �

Proof: We note that by Lemma E.1 we may assume that � is ample. We fix
the following notation:

� �  * / �  ��� �  	
/ �  � � �  � � / �  and

� 4 � � % 	 ' �
Furthermore, we set

�
4 F�H � > � � B 	 max �

�
� % H � � � � 	 	 � H � �F�H � � 4 �� � � > � � B� � T � 	 %  if 	 � ' 

� > � � B� � T %  if 	

 ' 

and thus � 4 V � 	 � � @ F �
[ �F

� .

Step 1: � satisfies the assumption (*) of Lemma 3.1.

If �
/ � �  P � � is effective, then in particular � 4 �� � / P � � 	 '

, and thus P is
ample, in particular nef. Hence (*) in Lemma 3.1 is fulfilled.

Step 2: , ;��� � � � / � ( >?�A@ � B H �
% , � >?�A@ � B � H � �F , deg 	 � � � , by (3.1).

3By Lemma E.1 we may assume w. l. o. g. that
�

is ample. – Remember that # ��� is the
number of points in the support of ��� .
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Step 3: � � V �  !9� � 	 � � [ ( V 	 / , ;��� � � � [ / � % T �

%
� V , ;��� � � � [ % T , ;��� � � %� � / � % T 6 .

By Lemma 3.2 we know:

� � V �  !9� � 	 � � [ ( , ;� � �
� � � / V ��� T , � 7 � �

� 7 [ T - �
4 , ;� � � � � / V 	 T , � 7 � � � 7 [ / � % T 64 V 	 / , ;��� � � � [ / � % T V , ;��� � , � 7 � � � � / � 7 [ / � % T 64 V 	 / , ;��� � � � [ / � % T �

%
� V , ;��� � � � [ % T , ;��� � � %� � / � % T 6 �

Step 4: , ;��� �
� � � V �  
 � 	 � � � [ , - � ( 6 / V � 	 
 � � , - [ T � �% / , ;��� � � %� , � H � �% / , ;��� � � � .

Since
� � is effective by (ii), � � 	 �  � � � 4 '

. Hence by Riemann-Roch

�
� 	 �  � � � ( � V 
 � 	 � � � [ 4 � %� , ��� � � �1 T � 	 
 � � �

This implies

, ;��� �
� � � V �  
 � 	 � � � [ ,5- � ( , 6 T 6 /�� 	 
 � � T �

% , ;��� � V
� %� , ��� � � � [

4 6 / V � 	 
 � � ,5- [ T � �% / , ;��� � � %� , � H � �% / , ;��� � � � �
Step 5: Finish the proof.

In the following consideration we use the facts that

6 (  ;�
��� ��� � � %  ;�

��� ��� � (
 ;�
��� � � � � %  ;�

��� ��� %� (
 ;�
��� ��� � � %  (3.16)

and that

deg 	 � � � ( deg 	 � � � ( � / 	+*3, 	
� % / � % � (3.17)

We thus get:

� � V+�  ! � � 	 � � [ T , ;��� �
� � � V �  
 � 	 � � � [ ,5- �

(
Step 3 / 4

6 /�� 	 
 � � T � % / , ;��� � � %� T � H � �% / , ;��� � � � T � �% / V , ;� � � � � [ %(
(3.16) �

/ V � / , ;��� � � � [ % (
Step 2 �

/ � >��N@ � B H �% , � >��N@ � B � H � �F , deg 	 � � � � %
(

�
/ � � 	 � � � ��� 
 �� @ V � 	 � � � ��� 
 �� @

deg
> ��� B [� 	 � � � � 
� 	 � � 	 � � � � � 
 �� @

deg
> ��� B

� % 4
�
/ � % H deg

> ��� B [>?�A@ � B H � 	 � >?�A@ � B � H � � @ FIH deg
> � � B � %

(
(3.17)

F
�

V � 	 � � @ F �
[ � H >?�A@ � B � H � � / V deg 	 � � � [ % 4 �8 H > �C@ � � B � / V , �/. � deg 	 � �

�
� � [ %

( # ���8 H > �C@�� � B � / , � . � deg 	 � �
�
� � % ( # ���8 H > �C@�� � B � / , �/. � deg 	 � �

�
� � % 


(4)
# � � �
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The second class of surfaces which we consider, are products of curves. We
use the notation of Section G.b.

3.4 Lemma
Let P � and P % be two smooth projective curves of genera � � and � % respectively
with � � � � % � '

, such that for � 4 P � � P % the Néron–Severi group is NS 	 � � 4
P � � � P % � , and let � : Div 	 � � such that � �  � P � T  P % with � 	 max

� 1 � % ,1  1�,Z1 � %  and  	 max
� 1 � � ,Z1  1�, 1 � �  . Suppose moreover that � � � � is a

zero-dimensional scheme satisfying (1)–(3) from Lemma 3.1 and

(4) ,� . � V deg 	 � �
�
� � [ % 
 � / 	 � , ��� � % ,

where � may be taken from the following table with �
4  @ % � � 	 %� @ % � � 	 % 	 '

.

� � � % �
' ' �

% F- ' �
max�  % � % � 	�Z1 ' �

max � % F 	 � � � � � F � � � 	- - �

max 5  % � % � � %� <
�Z1 � - �

max
�
% F 	 � � � � 	 � � � � � F � � � � F � �� �

Then, using the notation of Lemma 3.1 and setting4 � � 4 � ;��� � �
�

� ,
� � V+�  ! � � 	 � � [ T ;�

��� �
� � � V �  
 � 	 � � � [ ,5- � 
 # � � �

Proof: Then ��� �  	�1 � % ,21 �0/ P � T 	�1 � � ,21 �0/ P % and we fix the notation:
� � �  � � P � T  � P % �

Step 1: � satisfies the assumption (*) of Lemma 3.1 by Lemma G.7. Moreover,
due to the assumptions on � and  we know that � , � � is ample and � T ���
is nef, i. e. (0) in Lemma 3.1 is fulfilled as well.

Step 2a: V  @ % � � 	 %F [ / , ;��� �  � T V � @ % � � 	 %F [ / , ;��� � � � ( deg 	 � � � .
Let us notice first that the strict inequality “



” in Lemma 3.1 (e) for ample

divisors # comes down to “
(

” for nef divisors # . We may apply this for # 4 P �
and # 4 P % and deduce the following inequalities:

' ( 
� , ��� , ��

7 � �
� 7 , � � � � P � 4  , 1 � � T 1 , ��

7 � �
 7 ,  �  (3.18)

4Remember that # ��� is the number of points in the support of ��� .
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and

' ( 
� , ��� , ��

7 � �
� 7 , � � � � P % 4 � , 1 � % T 1 , ��

7 � �
� 7 , � � � (3.19)

For the following consideration we choose � �   � : � - ������I 6  such that � � � � � �
for all � 4 - ������� 6 and  
 � �  
 for all

 4 - ������� 6 . Then

� ,21 � % T 1 � � ��
7 � �

� 7 T � � � �Z1 � � � �Z1 � � (3.20)

and

 , 1 � � T 1 � 
 ��
7 � �

 7 T  
 � �Z1  
 � �Z1  
 (3.21)

for all ��  4 - ������� 6 , and we finally get

deg 	 � � � 4 , ;��� � deg V � ��
[ �

Lemma 3.1 (c)
, ;��� � V � , ��� , , � 7 � �

� 7 [ � � �
4 	 � , ��� � � , ;��� � � � , , � � 7 � � � � � 7 � � �
4 	 � , ��� � � , ;��� � � � , �

% , ;��� �
� %� , �

% V , ;� � �
� �
[ %

4 	 � , 1 � % T 1 � , ;��� �  � T 	  , 1 � � T 1 � , ;��� � � � , , ;��� � � �  � , , ;��� � � � , ;� � �  �
�

(3.18) / (3.19)

 @ % � � 	 %% , ;� � �  � T
� @ % � � 	 %% , ;��� � � � T �

% V , ;��� � � � T � ; [ / , ;��� �  �
T �% V , ;��� �  � T  ;

[ / , ;��� � � � , , ;��� � � �  � , , ;��� � � � , ;��� �  �
4  @ % � � 	 %% , ;��� �  � T

� @ % � � 	 %% , ;��� � � � T  �% , ;��� �  � T
�
�% , ;��� � � � , , ;��� � � �  �

�
(3.20) / (3.21)

 @ % � � 	 %F , ;� � �  � T
�F , ;� � � 1 � �  � T � @ % � � 	 %F , ;��� � � � T �F , ;��� � 1 � �  �

T  �% , ;��� �  � T
�
�% , ;� � � � � , , ;� � � � �  �

�  @ % � � 	 %F , ;� � �  � T
� @ % � � 	 %F , ;��� � � � �

Step 2b: , ;��� � � � / , ;��� �  � ( �> �C@�� � B � / V deg 	 � � � [ % .
Using Step 2a we deduce

V deg 	 � � � [ % 	 � � @ % � � 	 %F / , ;��� � � � T  @ % � � 	 %F / , ;��� �  � � %
� FIH >  @ % � � 	 % B H > � @ % � � 	 % B� � / , ;��� � � � / , ;� � �  �
4 > �C@ � � B �� / , ;��� � � � / , ;� � �  � �

Step 2c: , ;��� � � � ( �� � % �> �C@�� � B � / V deg 	 � � � [ %  if , ;��� �  � 4
' 

�> �C@�� � B � / V deg 	 � � � [ %  else �
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If , ;� � �  � 4
'
, then the same consideration as in Step 2a shows

deg 	 � � � � 	  ,21 � � T 1 �0/ ;�
��� �

� � 	 ' 
and thus

> � @ � � B �
% �

/ ;�
��� �

� � ( 	  ,21 � � T 1 � % /
 ;�
��� �

� � � % ( V deg 	 � � � [ % �
If , ;� � �  � �4

'
, then by Step 2b

;�
��� �

� � ( ;�
��� �

� � / ;� ��� �  �
( �> �C@ � � B � / V deg 	 � � � [ % �

Step 2d: , ;��� �  �
( �� � %�

H > �C@�� � B � / V deg 	 � � � [ %  if , ;��� � � � 4 ' 
�> � @ � � B � / V deg 	 � � � [ %  else.

This is proved in the same way as Step 2c.

Step 3: � � V �  !9� � 	 � � [ ( 1 ;,
� � � � � ;,��� �  � T 	 1 � � , 1 � ;,

��� � � � T 	 1 � % ,21 � ;,
��� �

 � T 6 .

The following sequence of inequalities is due to Lemma 3.2 and the fact that� � � � 
 � '
for any ��  : � - ������� 6  :

� � V �  ! � � 	 � � [ ( , ;� � �
� � � / V ��� T , � 7 � �

� 7 [ T - �
4 ��� / , ;��� � � � T , � � 7 � � � ; � � � � 7 T 6( ��� / , ;��� � � � T V , ;� � �

� �
[ % T 6

4 	 1 � � ,21 �0/ , ;��� � � � T 	�1 � % ,21 �0/ , ;��� �  � T 1 / , ;��� � � � / , ;��� �  � T 6 �
Step 4: We find the estimation , ;��� �

� � � V �  
 � 	 � � � [ ,5- � ( � , where

� 4
���������
�������

�
, ;� � � � � / , ;��� �  � T , ;��� �  �  if � � 4 -  � % 4 ' 
, ;� � � � � / , ;��� �  � , 6  if � � 4 -  � % 4 -  � � � � � � �  � � 	 ' 
, ;� � � � � T , ;� � �  � , 6  if � � 4 -  � % 4 -  
 � � � �  � 4 ' 
, ;� � � � � / , ;��� �  � T , ;��� � � � T , ;��� �  �  else.

In general by Corollary G.9 �
� V �  
 � 	 � � � [ ( � �  � T � � T  � T - , while if � � 4-  � % 4 '

by Lemma G.5 we have �
� V �  
 � 	 � � � [ 4 � �  � T  � T - . It thus only

remains to consider the case � � 4 � % 4 - .
Applying Lemma G.15 we get

;�
��� �

�
� V+�  
 � 	 � � � [ 4 �

 � � �
���
� � �  � T �

 � �
�
 � T

�
�
� �
� � � �
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If always either � � or  � is zero, we are done. Otherwise there exists some
� � : � - ������� 6  such that � � �

�4 ' �4  � � . Then looking at the right hand side we
see

;�
��� �

�
� V+�  
 � 	 � � � [ ( �

 � � �
���
� � �  � T � � �

/ �
 � �
�
 � T  � �

/ �
�
� �
� � � ( ;�

��� �
� � / ;� ��� �  � �

Step 5: Finish the proof.

Using Step 3 and Step 4, and taking 6 ( , ;��� � � � T  � into account, we get
� � V �  ! � � 	 � � [ T , ;��� �

� � � V �  
 � 	 � � � [ ,5- � ( � � , where � � may be chosen as

� � 4 ������
����

�
63/ , ;��� � � � / , ;��� �  �  if � � 4 '  � % 4 ' 
63/ , ;��� � � � / , ;��� �  � T , ;��� � � �  if � � 4 -  � % 4 ' 
63/ , ;��� � � � / , ;��� �  � T 1 � � / , ;� � � � � T 1 � % / , ;��� �  �  if � � �Z1  � % � ' �

For the case � � 4 � % 4 - we take a closer look. We find at once the following
upper bounds � � � for � � V �  !9� � 	 � � [ T , ;��� �

� � � V+�  
 � 	 � � � [ ,.- �
� � � 4 �� � 6�/ , ;��� � � � / , ;��� �  �  if � � � � � � �  � �

�4 ' 
1 / , ;��� � � � / , ;��� �  � T , ;��� � � � T , ;��� �  �  if


 � � � �  � 4 ' �
Considering now the cases , ;��� � � � �4 ' �4 , ;� � �  � , , ;��� � � � 4 '

and , ;��� �  � 4
'
,

we can replace these by

� � � ( � � 4 ������
����

�
� / , ;��� � � � / , ;��� �  �  if , ;��� � � � �4 ' �4 , ;��� �  � 
, ;� � � � �  if , ;��� �  � 4

' 
, ;� � �  �  if , ;��� � � � 4 ' �

Applying now the results of Step 2 in all cases we get

� � V �  !9� � 	 � � [ T , ;��� �
� � � V �  
 � 	 � � � [ ,5- � ( � � ( �8 H > �C@���� B � / V deg 	 � � � [ %

4 �8 H > �C@�� � B � / V , �/. � deg 	 � �
�
� � [ % ( # ���8 H > �C@ � � B � / , � . � deg 	 � �

�
� � %

( # ���8 H > �C@ � � B � / , �/. � deg 	 � �
�
� � % 


(4)
# � � �

3.5 Remark
Lemma 3.4, and hence Theorem 2.3 could easily be generalised to other sur-
faces � with irreducible curves P �� P % �.� such that

NS 	 � � 4 P � � � P % � with intersection matrix 	 � �� � � (3.22)

once we have an estimation similar to

�
� 	 �  � P � T  P % � ( �  T ��T  T -

for an effective divisor � P � T  P % .
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With a number of small modifications we are even able to adapt it in the
following lemma in the case of geometrically ruled surfaces with non-positive
invariant � although the intersection pairing looks more complicated.

The problem with arbitrary geometrically ruled surfaces is the existence of
the section with negative self-intersection, once the invariant � 	 '

, since
then the proof of Lemma 3.1 no longer works.

In the following lemma we use the notation of Section G.a.

3.6 Lemma
Let � � � � P be a geometrically ruled surface with invariant � ( '

and
� 4 � 	 P � , and let � : Div 	 � � such that � �  � P � T  � with � � 1 ,  	 1 � , 1 T  �% ,
and if � 4 '

then  � 1 . Suppose moreover that � � � � is a zero-dimensional
scheme satisfying (1)–(3) from Lemma 3.1 and

(4) ,� . � V deg 	 � �
�
� � [ % 
 � / 	 � , ��� � % ,

where � may be taken from the following table with �
4 
	 %� 	 % @ % � @  �% 	 '

.

� � �
' ' �

% F- ' �
max� % F � % � 	- ,�- �

max � min 5  � 	 � �� 	 F � � F � 	 R � < � � % � �
�Z1 ' �

max� % F 	 � � � � F � � 	�Z1 
 ' �

max � min 5 % F 	 � � � @ R � � � � � 	 � � � @ R � � @ � �� � < � F � � @ R � � �
Then, using the notation of Lemma 3.1 and setting5 � � 4 � ;��� � �

�

� ,
� � V+�  ! � � 	 � � [ T ;�

��� �
� � � V �  
 � 	 � � � [ ,5- � 
 # � � �

Proof: Remember that the Néron–Severi group of � is generated by a section
P � of � and a fibre � with intersection pairing given by V @ � �� � [ . Then ��� � , 1 P � T 	�1 � , 1 , � �C/ � and we fix the notation:

� � �  � � P � T  � � �
Note that by Lemma G.1 we have� � � '

and  �� � 4  � , �% � � � ' �
Finally we set 	 � 4 ��T 1 and 	 % 4  T 1 , 1 � ,  �% and get

	 � , ��� � % 45, � / 	 ��T 1 � % T 1 / 	 ��T 1 �0/ 	  T 1 T � , 1 � � 4 1 / 	 � / 	 % � (3.23)
5Remember that # ��� is the number of points in the support of ��� .
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Step 1: By Lemma G.1 � satisfies the assumption (*) of Lemma 3.1, and by
the assumptions on � and  we know that � , � � is ample and � T ��� is nef,
that is, (0) in Lemma 3.1 is fulfilled.

Step 2a:
� �F / , ;��� �  �� T

� �F / , ;��� � � � ( deg 	 � � � .
Let us notice first that the strict inequality “



” in Lemma 3.1 (e) for ample

divisors # comes down to “
(

” for nef divisors # . We may apply this for # 4
P � T �% / � and # 4 � and deduce the following inequalities:

' ( 
� , ��� , ��

7 � �
� 7 , � � � � VNP � T �% � [ 4 	 % ,

��
7 � �

 �7 ,  ��  (3.24)

and

' ( 
� , ��� , ��

7 � �
� 7 , � � � � � 4 	 � , ��

7 � �
� 7 , � � � (3.25)

For the following consideration we choose � �   � : � - ������I 6  such that � � � � � �
for all � 4 - ������� 6 and  �
 �

�  �
 for all
 4 - ������� 6 . Then

	 � � � ��
7 � �

� 7 T � � � �Z1 � � � � 1 � � (3.26)

and

	 % �

 ��
7 � �

 �7 T  �
 �
�Z1  �
 �

�Z1  �
 (3.27)

for all ��  4 - ������� 6 , and we finally get

deg 	 � � � 4 , ;��� � deg V&� ��
[ �

3.1 (c)
, ;��� � V � , ��� , , � 7 � �

� 7 [ � � �
4 	 � , ��� � � , ;��� � � � , , � � 7 � � � � � 7 � � �
4 	 � , ��� � � , ;��� � � � , �

% , ;��� �
� %� , �

% V , ;� � �
� �
[ %

4 	 �
/ , ;� � �  �� T 	 % / , ;��� � � � ,	, ;��� � � �  �� ,	, ;��� � � � / , ;��� �  ��

�
(3.24) / (3.25)

� �
%
/ , ;��� �  �� T

� �% / , ;��� � � � T �

%
/ V , ;��� � � � T � ; [ / , ;� � �  ��

T �%
/ V , ;��� �  �� T  �;

[ / , ;��� � � � , , ;��� � � �  �� , , ;��� � � � / , ;� � �  ��
4 � �

%
/ , ;��� �  �� T

� �% / , ;� � � � � T  �%
/ , ;��� �  �� T

� �
�%
/ , ;��� � � � , , ;��� � � �  ��

�
(3.26) / (3.27)

� �F / , ;��� �  �� T
�F , ;� � � 1 � �  �� T � �F / , ;��� � � � T �F , ;��� � 1 � �  ��

T  �%
/ , ;��� �  �� T

� �
�%
/ , ;��� � � � , , ;��� � � �  ��

� � �F / , ;��� �  �� T
� �F / , ;��� � � � �
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Step 2b: , ;��� � � � / , ;��� �  �� ( �> �C@�� � B � / V deg 	 � � � [ % .
Using Step 2a and taking (3.23) into account, we deduce

V deg 	 � � � [ % �

	 %� / ;�

��� �
� � T 	 �� / ;�

��� �
 �� � % � � / 	 � / 	 %- J / ;�

� � �
� � / ;� ��� �  �� �

Step 2c: � ;,� � � � � �
% (  % �> �C@���� B � V deg 	 � � � [ % and � ;,��� �  ��

� % (  %�

H > �C@���� B � V deg 	 � � � [ % .
This follows from the following inequality with the aid of Step 2a and (3.23),

V deg 	 � � � [ % � V � �F / , ;��� � � � [ % T V � �F / , ;� � �  ��
[ %

� % H � � H � � % �
/ V , ;��� � � � [ % T % H � � H � � H � %

/ V , ;��� �  ��
[ % �

Step 2d: ;,
��� � � � ( ���� % �> �C@���� B � / V deg 	 � � � [ %  if , ;��� �  �� 4

' 
�> �C@���� B � / V deg 	 � � � [ %  else.

If , ;��� �  �� 4
'
, i. e.  �� 4

'
for all � 4 - ������� 6 , then the same consideration as

in Step 2a shows

deg 	 � � � � 	 % /
;�
� � �

� � 
and thus > �C@�� � B �

% �
/ ;�
��� �

� � ( 	 %%
/  ;�

��� �
� � � % ( V deg 	 � � � [ % �

If , ;� � �  �� �4
'
, then by Step 2b

;�
��� �

� � ( ;�
��� �

� � / ;� ��� �  ��
( �> � @ � � B � / V deg 	 � � � [ % �

Step 3: � � V+�  !9� � 	 � � [ ( 1 / ;,
� � � � � / ;,��� �  �� T 	�1 � ,21 �0/ ;,

��� � � � , 1 / ;,
� � �

 �� T 6 .

By Lemma 3.2 and since
� � � � 
 � '

for any ��  : � - ������� 6  we have:

� � V+�  ! � � 	 � � [ ( , ;��� �
� � � / V ��� T , � 7 � �

� 7 [ T - �
( ��� / , ;��� � � � T V , ;��� �

� �
[ % T 6

4 	�1 � , 1 �C/ , ;��� � � � ,21 / , ;��� �  �� T 1 / , ;� � � � � / , ;��� �  �� T 6 �
Step 4a: If � 4 '

, we find the estimation

;�
��� �

� � � V �  
 � 	 � � � [ ,�- � (
����������
��������

�
;,
��� � � � / ;,��� �  �� T ;,

��� �
 �� , 6  if � 4 -  , ;� � �  �� �4

' 
;,
��� � � � / ;,��� �  �� T ;,

��� �
 �� 4

'  if � 4 -  , ;� � �  �� 4
' 

;,
��� � � � / ;,��� �  �� T ;,

��� � � � T ;,
� � �

 ��  for � arbitrary.
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We note that in this case  � 4  �� and that  �� 4
'

thus implies � � 	 '
. By

Corollary G.5 we have

�
� V �  
 � 	 � � � [ ( ������

����

� � �  �� T  ��  if � 4 - � �� 	
' 

� �  �� T  �� T - 4 -  if � 4 - � �� 4 ' 
� �  �� T � � T  �� T -  else.

The results for � arbitrary respectively � 4 - and , ;��� �  �� 4
'

thus follow right
away. If, however, some  �� � 	 '

, then
�
� ���


� �  
 �  � �

�
�	��O� �

� � � # 5  �� �  �� 4 ' <
and hence

�
� V �  
 � 	 � � � [ ( ;�

��� �
� �  �� T ;�

��� �
 �� T # 5  �� �  �� 4 ' <

4 ;�
� � �

� � / ;� ��� �  �� T
;�
��� �

 �� T # 5  �� �  �� 4 ' < , �
�	���


� �  �
 ( ;�
��� �

� � / ;� ��� �  �� T
;�
��� �

 �� �

Step 4b: If � 
 '
, we give several upper bounds for � 4 ;,

��� �
� � � V+�  
 � 	 � � � [ , - � :

� (
����������
��������

�
�

% ;,��� � � � ;,��� �  �� T �

% � ;,� � �  ��
� % T �� � ;,��� � � � �

% T �F ;,
� � � � � T �

% ;,��� �
 ��  if � 4 - 

;,
��� � � � ;,��� �  �� T ;,

��� � � � T ;,
��� �

 �� , R � % � ;,��� � � � �
%  for � arbitrary.

�F ;,
��� � � � ;,��� �  �� T ;,

��� � � � T ;,
� � �

 �� , R � % � ;,��� � � � �
% , �

% � � ;,��� �  ��
� %  � arbitrary.

If � is arbitrary, the claim follows since by Corollary G.5 we have

�
� V �  
 � 	 � � � [ ( � �  �� T � � T  �� T - , R � % / � %�

and

�
� V �  
 � 	 � � � [ ( �F / � �  �� T � � T  �� T - , R � % / � %� , �

% � /  �� % �
If � 4 - , then � 4 ,�- and  � 4  T % . We may once more apply Corollary G.5
and see that in any case

�
� V �  
 � 	 � � � [ ( � �  � T  � T - T  � >  � 	 �+B% T �

�
> �
�
@ �+B
%4 �

%
/ � �  �� T �

%
/  �� % T �� / � %� T �F / � � T �

%
/  �� T - 

which finishes the case � 4 - .
Step 5: In this last step we gather the information from the previous investi-
gations and finish the proof considering a bunch of different cases.
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Using Step 3 and Step 4 and taking , ;��� � � � T  ��
( 6 into account, we get the

following upper bounds for � � 4 � � V �  !9� � 	 � � [ T , ;��� �
� � � V �  
 � 	 � � � [ ,5- �

� � (
���������������������
�������������������

�

6 ;,
��� � � � ;,��� �  �� T 1 � ;,� � � � �  if � 4 ' 

6 ;,
��� � � � ;,��� �  �� T 1 � ;,� � � � � , R � % � ;,��� � � � �

%  if � 
 ' 
RF ;,��� � � � ;,��� �  �� T 1 � ;,��� � � � , R � % � ;,��� � � � �

% , �

% � � ;,��� �  ��
� %  if � 
 ' 

6 ;,
��� � � � ;,��� �  ��  if � 4 '  � 4 -  ;,

��� �
 �� �4

' 
6 ( ;,

��� � � �  if � 4 '  � 4 -  ;,
��� �

 �� 4
' 

\
% ;,��� � � � ;,��� �  �� T �

% � ;,��� �  ��
� % T �� � ;,��� � � � �

% T \F ;,
��� � � �  if � 
 '  � 4 - �

Applying now the results of Step 2b-2d we get

� � H > � @ � � B �
V deg

> ��� B [ � (

����������������������������������
��������������������������������

�

1 �  if � 4 ' 
1 �  if � 4 -  � 4 '  ;,

��� �
 �� �4

' 
1
�  if � 4 -  � 4 '  ;,

��� �
 �� 4

' 
min 5 6 ' T � �

� T � �  � ' T M � <  if � 4 -  � 
 '  ;,
��� �

 �� �4
' 

� 

% �  if � 4 -  � 
 '  ;,
��� �

 �� 4
' 

1 � T - J �  if � �Z1  � 4 '  ;,
� � �

 �� �4 ' 
� � �  if � �Z1  � 4 '  ;,

� � �
 �� 4

' 
min 5 1 � T - J � , M � �  - � T - J � , M � � ,

� �� � < 
if � �Z1  � 
 '  ;,

� � �
 �� �4

' 
� � � , M � �  if � �Z1  � 
 '  ;,

� � �
 �� 4

' �
Hence we have

� � H > �C@�� � B �
V deg

> ��� B [ � (
����������������
��������������

�

1 �  if � 4 ' 
max

� 1 �  1 �   if � 4 -  � 4 ' 
max � min 5 6 ' T � �

� T � �  � ' T M � < 
� 

% �
�  if � 4 -  � 
 ' 

max
� 1 � T - J �  � � �  if � �Z1  � 4 ' 

max � min 5 1 � T - J � , M � �  - � T - J � , M � � ,
� �� � <  � � � , M � �

� 
if � �Z1  � 
 ' �
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We thus finally get

� � V �  ! � � 	 � � [ T , ;��� �
� � � V �  
 � 	 � � � [ ,5- � 4 � � ( �8 H > � @ � � B � / V deg 	 � � � [ %

4 �8 H > �C@�� � B � / V , �/. � deg 	 � �
�
� � [ % ( # ���8 H > � @ � � B � / , �/. � deg 	 � �

�
� � %( # ���8 H > � @ � � B � / , �/. � deg 	 � �

�
� � % 


(4)
# � � �

It remains to show, that the inequality which we derived in the above cases
cannot hold.

3.7 Lemma
Let � : Div 	 � � , � ��������� � � be pairwise distinct topological or analytical sin-
gularity types and 9 ��������� 9 � : < � � '  . Suppose that �E���W��� � � �� � � 	 9 � � ��������� 9 � � � � is
non-empty.

Then there exists no curve6 PZ: � ������ ��� 	 9 � � ��������� 9 � � � � � � ���W��� � � �� � � 	 9 � � ��������� 9 � � � � such
that for the zero-dimensional scheme � � 4 � � !� � � 	 P � respectively � � 4 � � � � � 	 P �
there exist curves

�
��������� � ; � � and zero-dimensional locally complete inter-

sections �
�

� : � � @ � for � 4 - ������I 6 , where � � 4 � � @ � � � � for � 4 - ������� 6 such
that � � 4 � ;� � � �

�

� satisfies

� � V+�  ! � � 	 � � [ T ;�
��� �

� � � V+�  
 � 	 � � � [ ,.- � 
 # � � � (3.28)

Proof: Throughout the proof we use the notation � ����� 4 � ������ ��� 	 9 � � ��������� 9 � � � �
and � ���W��� � � � 4 �E����� � � � �� ��� 	 9 � � ��������� 9 � � � � .
Suppose there exists a curve P : �����W� � � ������� � � � satisfying the assumption of
the Lemma, and let � � be the irreducible component of �����W� containing P .
Moreover, let P � : � ���W��� � � � .
We consider in the following the morphism

� 4 � � ��� 	 9 � � ��������� 9 � � � � � � � � � 	 9 � � ��������� 9 � � � � � Sym
7�� 	 � � � 	 7 � 	 � � 4 � �

from Definition I.2.15.

Step 1: �
� V �  ! ���� ��� > � � B # � 	 � � [ 4 � � V �  ! ���� ��� > � B # � 	 � � [ , � � V �  ! ���� ��� > � B # � 	 � � [ �

By the choice of P � we have' 4 # � V �  ! � �� ��� > � � B # � 	 � � [ � # � 	 �  
 � 	 � � [ � # � 	 �  
 � �� ��� > � � B 	 � � [ 4 ' 
and thus � is non-special, i. e. � � 	 �  
 � 	 � � [ 4 '

. But then

�
� V+�  ! � �� ��� > � � B # � 	 � � [ 4 �

� V+�  
 � 	 � � [ , deg V � �� � � 	 P � � [4 �
� V+�  
 � 	 � � [ , deg V � �� � � 	 P � [4 �
� V �  ! � �� ��� > � B # � 	 � � [ , � � V �  ! � �� ��� > � B # � 	 � � [ �

6For a subset
� ; � of a topological space � we denote by

�
the closure of

�
in � .
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Step 2: � � V �  ! � �� ��� > � B 	 � � [ � codim �
� � V � � [ � .

Suppose the contrary, that is dim
� � V � � [ � 


dim 	 � � , � � V �  ! � �� ��� > � B # � 	 � � [ ,
then by Step 1, Remark I.2.14 and Equation (I.2.3) in Remark I.2.16

dim V � � [ (
dim

� � V � � [ � T dim
� � @ � V � 	 P � [ �



dim 	 � � , � � V �  !9� �� ��� > � B # � 	 � � [ T � � V+�  ! � �� ��� > � B # � 	 � � [ ,.-

4 1 / 	 9 � T ����� T 9 � � T �
� V+�  ! ���� ��� > � � B # � 	 � � [ ,.- 4 dim V ������� � � � � [ �

However, any irreducible component of ���
��� has at least the expected dimen-
sion dim V � ������� � � � [ , which gives a contradiction.

Step 3: codim �
� � VG� � [ � � # � � , , ;� � � dim � � � � � .

The existence of the subschemes �
�

� : � �� � � 	 P � � � � imposes at least # �
�

� ,
dim � � � � � conditions on � �� � � 	 P � and increases thus the codimension of �;VG� � [ by
the same number.

Step 4: Derive a contradiction.

Collecting the results we derive the following contradiction:

� � V �  !9���� ��� > � B 	 � � [ � Step 2
codim �

� � VG� � [ �
�

Step 3
# � � , , ;��� � dim � � � � � 	 (3.28)

� � V+�  !9� �� ��� > � B 	 � � [ �
The following two lemmata provide conditions which ensure that ������� � � � � and
�E������� � � � share some dense subset � � � �� , and thus that �E���W��� � � � is dense in �3������� � � � .
3.8 Lemma
Let � ��������� � � be topological or analytical singularity types, let � : Div 	 � � and
let � ����� 4 � ������ ��� 	�� ��������� � � � .
There exists a very general subset

� �5� � such that7 � � � �� 4 � � � �� ���
�
� 	�� ��������� � � � 45 PZ: �E����� 77 U : �  	 P  U � � � � � �� 4 - ������� �  is dense in �E�
����� � � �� ��� 	�� ��������� � � � .

Proof: This follows from Remark I.2.16 (b).

3.9 Lemma
With the notation of Lemma 3.8 we assume that

(a) 	 � , ��� � % �Z1 / , 7
��� � V 
 � 	�� � � T - [ % ,

(b) 	 � , ��� � � � 	 max 5 
 � 	�� � � 77 � 4 - ������� � < , and

(c) � , ��� is nef.

Then there exists a very general subset
� � ��� such that � � � �� :

� ������� � � �� ��� 	�� ��������� � � � .
7Here � means either topological equivalence ��� or contact equivalence � � .
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Proof: By Theorem II.1.1 we know that there is a very general subset
� � � �

such that for U : �
and 
 4 V 
 � 	�� � � ������� 
 � 	�� � � [ we have

� � V �  !9� > � � � B # � 	 � � [ 4 ' �
However, if PZ: �E����� and U : �

with 	 P  U � � � � � , then by the definition of 
 � 	�� � �
we have

!9� > � � � B # � � � ! � > � B # � 
and hence the vanishing of # � V+�  !9� > � � � B # � 	 � � [ implies � � V �  !9� > � B # � 	 � � [ 4 '

,
i. e. PZ: �E������� � � � .
In Section 4 we would like to combine the irreducibility results with the ex-
istence results from Chapter III. Due to the following lemma this basically
comes down to show that for a suitable very ample line bundle � we have
(cf. Corollary III.2.4)� / 	 � , ��� � % ( �

%
/ 	 � , ��� ,�� � % � (3.29)

3.10 Lemma
Let � be a topological or analytical singularity type, then

V!� � 	�� � T - [ % ( V���� 	�� � T 1 [ % �
Proof: Let us first consider the case that � is a simple singularity. Then

� � 	�� � 4 � ! 	�� � 4 �  	�� �  � 	�� � 4 � 	�� � 4 � � ! 	�� � 4 ��� 	�� �  � 	�� � ( mult 	�� � ( 6
and thus 1 � 	�� � 4 � 	�� � T2� 	�� � , - ( � 	�� � T 1 4 � � 	�� � T 1 �
But then, once � � 	�� � � �

, we have

V+� � 	�� � T - [ % ( � % \F � / � 	�� � ( � % \F �NH % H �
/ V � � 	�� � T 1 [ % ( V�� � 	�� � T 1 [ % 

while for � � 	�� � ( � , that is for � : � " �I " %  "   " F  � F  we know � � 	�� � precisely
and the inequality is fulfilled as well. (Cf. Remark III.2.2.)

We may thus suppose that � is not simple, i. e. mod 	�� � � - .
Let us first consider the case of a topological singularity type. A simple calcu-
lation shows that for � � ! 	�� � � � M we always have� % \F�� / � � ! 	�� � � ( V � � ! 	�� � T 1 [ % �
Moreover, from Remark III.2.2 and Remark I.2.3 we thus deduce

V�� ! 	�� � T - [ % ( � % \F�� / � 	�� � ( � % \F � / � � ! 	�� � � ( V�� � ! 	�� � T 1 [ % �
However, there is only one non-simple topological singularity type with� � ! 	�� � � ( � , namely � R , that is four lines through one point (cf. Remark I.2.4).
But then � 	�� � � 4 � > � � B 	 � > � � B @ �% 4 J 
and thus again

V�� ! 	�� � T - [ % ( � % \F�� / � 	�� � ( � % \ H �F�� ( - 'O' 4 V�� � ! 	�� � T 1 [ % �
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We, therefore may turn to the case of non-simple analytical singularity types.
Since � is not simple, we know that mult 	�� � � 6

and � 	�� � � � 	�� � � M . More-
over, we have

1 � 	�� � �Z1 � � 	�� � � 	 	�� � 4 � 	�� � T mult 	�� � , - 
and thus � 	�� � ( 1 � 	�� � , mult 	�� � T - ( 1 � 	�� � ,21 �
Thus, once � 	�� � � - 6 , we have due to Remark III.2.2

V��  	�� � T - [ % ( M � 	�� � ( - � � 	�� � ,.- � ( V � 	�� � T 1 [ % 
and we may suppose that M ( � 	�� � ( -�1 .
Let us first consider the case that mod 	�� � : � -  1  . Then� 	�� � ( � 	�� � T mod 	�� � ( � 	�� � T 1 
and hence

V �  	�� � T - [ % ( M � 	�� � ( M / V � 	�� � T 1 [ ( V � 	�� � T 1 [ % �
It thus remains to consider the case mod 	�� � � 6

, and therefore we also have� 	�� � � - J (cf. Remark I.2.4). If mod 	�� � 4 6
, then � 	�� � � � 	�� � , mod 	�� � �- J , 6 4 - 6 and we are done. Thus indeed mod 	�� � �� .

We do the remaining part be considering the cases mult 	�� � � �
, mult 	�� � 4��

and mult 	�� � 4 6
seperately.

If mult 	�� � � �
, then� 	�� � � � 	�� � T mult 	�� � , -

1 � � � 	 \ @ �% 4 - ' 
and therefore

V��  	�� � T - [ % ( M � 	�� � ( M / V 1 � 	�� � , � [ ( V�� 	�� � T 1 [ % �
If mult 	�� � 4 � , then by Remark I.2.4 � 	�� � �.1O1 and therefore we are done by
the following inequality:� 	�� � � � 	�� � T mult 	�� � ,.-

1 � %+% 	 F @ �% 4 -�1 �% �
If, finally mult 	�� � 4 6

, then � 	�� � �Z1 � and by the same reasoning we see that� 	�� � � - � and this finishes the proof.

4. Examples

4.a. The Classical Case - � 4 $&%	
Since any curve in $ %	 is non-special and since the Picard number is of course
one, the assumptions of Theorem 2.1 are fulfilled. In view of Remark 2.2 the
theorem thus reads in this situation.
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2.1a Theorem
Let * � 6

, � � $ %	 a line, and let � ��������� � � be topological or analytical singu-
larity types.

Suppose that

��
��� �

V � � 	�� � � T 1 [ % 
 R �% � R
/ 	+* T 6 � % � (2.4a)

Then �������� � � �!	�� ��������� � � � is non-empty, irreducible and T-smooth.

Proof: It remains to show that �������� � � � 	�� ��������� � � � is not empty and T-smooth.
However, since * � 6

we have

R �% � R
/ 	+* T 6 � ( �

%
/ 	+* T 1 � ( * % T J *

and, in view of Lemma 3.10, Corollary III.2.4 applies, as does Theo-
rem IV.1.1a.

Many authors were concerned with the question in the case of nodes and
cusps, or of nodes and one more complicated singularity, or simply of ordi-
nary multiple points – cf. e. g. [Sev21, BrG81, ArC83, Har85b, Kan89a,
Kan89b, Ran89, Shu91b, Shu91a, Bar93a, Shu94, Shu96b, Shu96a,
Wal96, GLS98a, GLS98b, Los98, Bru99, GLS00]. Using particularly de-
signed techniques they get of course better results than we may expect to.

The best general results in this case can be found in [GLS00] (see also [Los98]
Corollary 6.1). Given a plane curve of degree * , omitting nodes and cusps,
they get

��
��� �

V � � 	�� � � T 1 [ % ( R� � / * %
as main irreducibility condition. The coefficients differ by a factor of about

6
.

4.b. Geometrically Ruled Surfaces

Throughout this section we use the notation of Section G.a. In particular,
� � � � P is geometrically ruled surface with � 4 � 	 P � .
In [Ran89] and in [GLS98a] the case of nodal curves on the Hirzebruch sur-
face � � is treated, since this is just $ %	 blown up in one point. � � is an example
of a geometrically ruled surface with invariant � 4 - 	 '

, a case which we can-
not treat with the above methods, due to the section with self-intersection ,�- .
So far, we are only able to give a general result for geometrically ruled sur-
faces with invariant � ( '

– see Theorem 2.4. In the case where � 4 '
,

i. e. where � is rational, � � 4 $ �	 � $ �	 is the only surface for which we get any
result; and if � 4 - , by [Har77] V.2.15 we get apart form the product P � $ �	
precisely two other surfaces – one with invariant � 4 '

and one with � 4 ,�- .
For � �Z1 the classes become larger.
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2.4b Theorem
Let � �O� � P be a geometrically ruled surface with � ( '

.

Let � ��������� � � be topological or analytical singularity types, and let � : Div 	 � �
such that � �  � P � T  � with � 	 max 5 -  
 � 	�� � � , 1 77 � 4 - ������� � < , and, if
� 4 '

,  	 max 5 -  
 � 	�� � � , 1 77 � 4 - ������� � < , while if � 	 '
,  	 1 � ,21 T  �% .

Suppose that

��
��� �

V � � 	�� � � T 1 [ % 
 � / 	 � , ��� � %  (2.6b)

where � may be taken from the following table with �
4 
	 %� 	 % @ % � @  �% 	 '

.

� � � � , if �
4 -

' ' �

% F
�

% F- ' �
max � % F � % � 	

�

% F- ,�- �

max � min 5  � 	 � �� 	 F � � F � 	 R � < � � % � �
�F R

�Z1 ' �
max� % F 	 � � � � F � � 	 �

% F 	 � � ��Z1 
 ' �

max � min 5 % F 	 � � � @ R � � � � � 	 � � � @ R � � @ � �� � < � F � � @ R � � �
Then either �3������ ����	�� ��������� � � � is empty or irreducible of the expected dimension.

Addendum 1: If we moreover suppose that � � � � 	�� � � and  � max 5 1 � , 1 T �% T %
/ V � , �% [  1 � ,;1 T  �% T5V � T  �% [ T � � 	�� � � T - < , � 4 - , if � 4 '

, and else
� �Z1

such that such that � 4 P � T � � is very ample, then �������� ����	�� ��������� � � � is non-empty.

Addendum 2: If � 4 '
, � 4 '

, % FF � / � (  ( F �
% F
/ � , or if � 4 - , � 4 '

,  ( % � %
/ � T % � ,

then � ������ ����	�� ��������� � � � is also T-smooth.

Proof: First of all we note that for � 	 '
we have

V�� � 	�� � � T 1 [ ( �

% �
/ 	 � , ��� � % 4 V  T 1 ,21 � ,  �% [ % 

and thus
 T 1 , 1 � ,  �% 	 ��� 	�� � � T 1 	 
�� 	�� � � �

Therefore, the conditions of Theorem 2.4 are fulfilled.

Addendum 2 follows from Corollary IV.2.2 and Corollary IV.2.5, since by the
assumptions on � and  we have for � 4 ' 4 �

�

% F
/ 	 � , ��� � 4 �

� %
/ 	 �3T 1 �C/ 	  T 1 � ( � �  T � �3T �  , � % ,  %

respectively for � 4 - and � 4 '
we have  : � -  ��T � � % T � ��T 1 �

and
�

% F
/ 	 � , ��� � 4 �

� %
/ 	 �  T 1  � ( 1 �  T �  ,  % �

It remains to prove Addendum 1 with the aid of Corollary III.2.4.



4. EXAMPLES 113

The assumptions on  can be reformulated as

 ,21 � T 1 ,  �% � % / V � , �% [ (4.1)

and 	 � ,�3, ��� � � P � 4  , 1 � T 1 , � � , � � � � 	�� � � T - �
Since moreover 	 � , � , ��� � � � 4 � T - 	 � � 	�� � � , Condition (III.2.4) is satisfied,
and at the same time

	 � , ��, ��� � � � 4 	 � , �3, ��� � � P � T � / 	 � , �3, ��� � � �
� � � 	�� � � T - T � / V � � 	�� � � T - [ �Z1 / � � 	�� � � T 1 	 � � 	�� � � T 1 

which implies Condition (III.2.5). From (4.1) we deduce that

 , 1 � T 1 T � , � � 
	 �% / � 
and hence, since also � T - � '

, � , � , ��� is nef. It remains to verify Condition
(III.2.3), which in view of Lemma 3.10 and � ( �

% F comes down to
�

% F
/ 	 � , ��� � % ( �

% 	 � , ��� , � � % �
We note that due to � �Z1 we have

 ,21 � T 1 ,  �% ( 
	 %F / V  ,21 � T 1 ,  �% [ 4 �� / 	 � , ��� � % 
and by (4.1) we get

	 ��T - �0/ V � , �% [ ( % / 	 ��T - �C/ V  , 1 � T 1 ,  �% [ ( �

/ 	 � , ��� � % �

These two results then give

�

% 	 � , ��� ,�� � % 4 �

% 	 � , ��� � % , �  , 1 � T 1 ,  �% T 	 � T - �K/ V � , �% [ � � �

% F
/ 	 � , ��� �

which finishes the proof.

In the case � 4 '
, that is when � �4 $ �	 � $ �	 , we are in the lucky situation that

the constant � does not at all depend on the chosen divisor � , while in the case
� � - the ratio of � and  is involved in � . This means that an asymptotical
behaviour can only be examined if the ratio remains unchanged.

If � is a product P � $ �	 the constant � here is the same as in Section 4.c.

Because of the importance of the case $ �	 � $ �	 we would like to formulate the
result for this surface separatly once more in a slightly weaker form, replacing

 � 	�� � � and � � 	�� � � by � � 	�� � � T - , which is an upper bound for both of them.

4.1 Corollary
Let � �4 � � 4 $ �	 � $ �	 , � ��������� � � be topological or analytical singularity types
and � : Div 	 � � such that � � � � P � T  � with � � � � � 	�� � � T - for � 4 - ������� � .
Suppose that

��
� � �

V ��� 	�� � � T 1 [ % 
 �

% F
/ 	 � , ��� � % 4 �

� %
/ 	 ��T 1 �0/ 	  T 1 � � (2.6b)
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Then � ������ ���
	�� ��������� � � � is non-empty, irreducible and of the expected dimension.

Addendum: If, moreover, % FF � / � (  ( F �
% F
/ � , then �E���W�� � ��	�� ��������� � � � is T-smooth.

4.c. Products of Curves

Throughout this section we use the notation of Section G.b. In particular,
� 4 P � � P % where P � and P % are smooth projective curves over � of genera � �
and � % respectively.

For a generic choice of P � and P % the Néron–Severi group NS 	 � � is two-
dimensional by Proposition G.12. Thus Theorem 2.3 gives the following result
for a generic product surface.

2.3c Theorem
Let P � and P % be two smooth projective curves of genera � � and � % respectively
with � � � � % � '

, such that for � 4 P � � P % the Néron–Severi group is NS 	 � � 4
P � � � P % � .

Let � ��������� � � be topological or analytical singularity types, and let � : Div 	 � �
such that � �  � P � T  P % with

� 	 �� � max 5 -  
 � 	�� � � , 1 77 � 4 - ������� � <  if � % 4 '
1 � % , 1  else 

and

 	 �� � max 5 -  
 � 	�� � � ,21 77 � 4 - ������� � <  if � � 4 '
1 � � , 1  else �

Suppose that

��
��� �

V ��� 	�� � � T 1 [ % 
 � / 	 � , ��� � %  (2.5c)

where � may be taken from the following table with �
4  @ % � � 	 %� @ % � � 	 % 	 '

.

� � � % � � , if �
4 -

' ' �

% F
�

% F- ' �
max�  % � % � 	

�
 %�Z1 ' �

max� % F 	 � � � � � F � � � 	 �

% F 	 � � � �- - �

max 5  % � % � � %� <
�
 %

�Z1 � - �

max
�
% F 	 � � � � 	 � � � � � F � � � � F � �� � �

% F 	 � � � � 	 � � � �
Then either � ������ ����	�� ��������� � � � is empty or irreducible of the expected dimension.
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Addendum 1: If we moreover suppose that

� 	 �� � max 5 � � 	�� � � ,21 77 � 4 - ������� � <  if � % 4 '
1 � % ,21 T  �%  else 

and

 	 �� � max 5 � � 	�� � � ,21 77 � 4 - ������� � <  if � � 4 '
1 � � ,21 T  �%  else 

where
�

is a positive integer such that � 4 � P � T � P % respectively ��4 P � T � P % ,
if � % 4 '

, is very ample, then � ������ ��� 	�� ��������� � � � is non-empty.

Addendum 2: If � % �.1 , � 4 � / 	 � % ,.- � ,  4 � / 	 � � ,5- � , i. e. � �  �

%
/ ��� , and

if we suppose that
� 	

� �
�
� � / V�� � 	�� � � T - [ , then � �
���� ����	�� ��������� � � � is also T-smooth.

Proof: First we note that for � � 	 '
we have

V ��� 	�� � � T 1 [ ( �

% �
/ 	 � , ��� � % 4 V  T 1 , 1 � � [ % 

and thus
 T 1 , 1 � � 	 � � 	�� � � T 1 	 
 � 	�� � � �

Similarly, if � % 	 '
, then �LT 1), 1 � % 	 
 � 	�� � � . Therefore, the conditions of

Theorem 2.4 are fulfilled.

For Addendum 2 we may apply Theorem IV.1.1c and the fact that� / > �C@�� � B �> � � @ �+B H > � � @ �+B ( �F+F / 	 � , 1 � % ( �F+F / � % ( 1 / � � % , 1 / � / V ��� 	�� � � T - [ � �
It remains to prove Addendum 1 with the aid of Corollary III.2.4. For this
we note that by Lemma 3.10 we have � � 	�� � � 
 � � 	�� � � T 1 . But then Due to the
assumptions on � and  and the above considerations, we have that � , � , � �
is nef and that the intersection of � , � , � � with any irreducible curve of self-
intersection zero, that is with the fibres P � and P % , is greater than � � 	�� � � .
Moreover,

� � �E, 1 � 	 � � T 1 4 	 � ,��, ��� � � � � �

/ 	 � , 1 � % T 1 T  ,21 � � T 1 � 	 � � 	�� � � T 1 �

It therefore remains to show that Condition (III.2.3) is satisfied, which in view
of Lemma 3.10 and � ( �

% F amounts to showing
�
� %
/ 	 � ,21 � % T 1 � / 	  ,21 � � T 1 � ( 	 � ,21 � % T 1 , � � / 	  , 1 � � T 1 , � � �

This, however, is again fulfilled due to the assumptions on � and  .

Once more, only in the case � �4 $ �	 � $ �	 we get a constant � which does not
depend on the chosen divisor � , while in the remaining cases the ratio of �
and  is involved in � . This means that an asymptotical behaviour can only
be examined if the ratio remains unchanged.
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4.d. Products of Elliptic Curves

If in Section 4.c the curves P � and P % are chosen to be both elliptic curves,
then “ P � and P % are generic” means precisely that they are not isogenous
(cf. p. 154). We thus get the following theorem.

2.3d Theorem
Let � 4 P ��� P % , where P � and P % are two non-isogenous elliptic curves, let� ��������� � � be topological or analytical singularity types, and let � : Div 	 � �
such that � �  � P � T  P % with � � � �

.

Suppose that

��
� � �

V � � 	�� � � T 1 [ % 
 min 5 � %  % �  �

%  <
/ � % � (2.5d)

Then � ������ ��� 	�� ��������� � � � is non-empty, irreducible and T-smooth.

Proof: We note that due to Theorem IV.1.1d �3������ ����	�� ��������� � � � is T-smooth, and
thus we are done by Theorem 2.3c.

4.e. Complete Intersection Surfaces

Throughout this section we use the notations of Section G.d.

In Proposition G.20 we show that a smooth complete intersection surface, al-
ways satisfies Condition (ii) of Theorem 2.1 for hypersurface-sections. Thus,
a complete intersection with Picard number one satisfies the assumptions of
Theorem 2.1.

2.1e Theorem
Let $&%	 ��4 � � $ �	 be a smooth complete intersection of type 	+* ��������� * � @ % � , let
# �.� be a hyperplane section and suppose that the Picard number of � is one.

Let * 	 	 4 , �
@ %��� � * � ,

� , - � '
, � 4 # % 4 * � /�/�/ * � @ % and let � ��������� � � be

topological or analytical singularity types.

Suppose that

��
��� �

V ��� 	�� � � T 1 [ % 
 � �NH V > � 	 IB H � 	 % � > � � B [ H � �
V >  � 	 � �+B H � 	 � � > � � B [ � / 	+*3, 	

� % � (2.4e)

Then either �3������ ��� �!	�� ��������� � � � is empty or irreducible of the expected dimension.

Proof: It remains to show 	 4 , � , - T , �
@ %��� � * � �

'
, then in particular* # , ��� 4 	+*�, 	

�0/ # is ample and * # T ��� 4 	 * T 	
� / # is nef.

Since 	 � 1 � , ��, � , - 4 � , �
anyway, the critical situations are

� 4 6
with * � ( 6

, and
� 4 � with * � 4 * % 4 1 . In these cases the surface � is either

$ %	 or rational with a Picard number larger than one (see p. 160 and [Har77]
Ex. V.4.13). This finishes the claim.
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By Proposition G.20 we even do know a formula for
� 	 
 � � , however, the for-

mula would just become nastier.

4.f. Surfaces in $ 	
For a generic surface in $ 	 we know that the Picard number is one, since
then any curve is a hypersurface section by a Theorem of Noether (see Sec-
tion G.d). Being a complete intersection, the results of Section 4.e apply for
generic hypersurfaces in $ 	 . However, in this case the invariants involved in
the formulation are much simpler.

2.1f Theorem
Let � � $ 	 be a smooth hypersurface of degree � �� , let # �.� be a hyperplane
section, and suppose that the Picard number of � is one.

Let * � � T J
and let � ��������� � � be topological or analytical singularity types.

Suppose that

��
��� �

V � � 	�� � � T 1 [ % 
 � H V ��� @  � � 	 � � @ � [ H � �
V � � @  � � 	 � � � @ � [ � / 	+* T �E, �

� % � (2.4f)

Then �������� ��� �!	�� ��������� � � � is non-empty and irreducible of the expected dimension.

Addendum: If we, moreover, assume that * � �
/ V�� � 	�� � � T - [ , then

�E������ ��� �D	�� ��������� � � � is T-smooth.

Proof: For the Addendum we note that
� H V � � @  � � 	 � � @ � [ H � �
V � � @  � � 	 � � � @ � [ � ( 1 for � � � , and

hence

� * % ,.* / 	 � , � �0/ � / V���� 	�� � � T - [ �� * % � � H V � � @  � � 	 � � @ � [ H � �
V � � @  � � 	 � � � @ � [ � / 	+* T � , �

� % 
and the result thus follows from Theorem IV.1.1e.

It remains to show that � ������ ��� �D	�� ��������� � � � is non-empty, using Corollary III.2.4.
With �)4 # we have � , � , ��� 4 	+* , � T 6 � / # , and since * � �)T J the divisor
� ,�3, ��� is nef. We thus have to verify the Conditions (III.2.3) and (III.2.5)
in Corollary III.2.4. However, once (III.2.3) is fulfilled, then

� � 	�� � � T - ( � � / 	+* , � T � � 
 1 / � � / 	+* , � T 6 � ,�- ( �
/ 	+* , � T 6 � ,�-E4 � � � , 1 � 	 � � T -

for � 4 - ������� � , that is, (III.2.5) is satisfied as well.

Taking Lemma 3.10 into account (III.2.3) comes down to showing that
� H V ��� @  � � 	 � � @ � [ H �
V � � @  � � 	 � � � @ � [ � /

�
/ 	+*�, � T � � % ( �

%
/
�
/ 	+*3, �=T 6 � % �

We claim that the function� � � � �� � � � � Q ��
� H V � � @  � � 	 � � @ � [ H �V � � @  � � 	 � � � @ � [ �
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is monotonously decreasing. In order to see this, it suffices to show that the
derivative � � 	 Q � 4 @ � H > % � � @ R � � 	 % � � � @ % F � � 	  � � @  � B>

� �
@ 
�
� 	 � � � @ � B � 
 '

for all Q�:� � �� �
, or equivalently that 1 Q � , M Q \ T 1 - Q F ,�1 � Q  T 68J Q , 68J is strictly

positive in the interval � � �� �
. However, since Q �� we get

V 1 Q � , M Q \ T J Q F [ T V - � Q F ,21 � Q  [ T V 68J Q , 68J [ 	 '
since each summand is strictly positive.

It follows that � 	 � � ( � 	 � � 4 % \ %� % \ for all � � � , and it remains to show that

% \ %� % \
/ 	+*�, �=T � � % ( �

%
/ 	 *3, �=T 6 � % 

which is a fairly easy calculation, since *�, �=T 6 � M .
Note that a slightly more sophisticated investigation would have allowed to
replace the restriction * � �=T J

by * � max
�
� ,5-  - '  .

Calculating the invariants in (2.4f) for the examples of reducible families of
irreducible nodal curves on surfaces in $ 	 given in the introduction on page 81
we end up with

� H V ��� @  � � 	 � � @ � [ H � �
V � � @  � � 	 � � � @ � [ � / 	+* T � , �

� %

 �

� @  / 	+* T � , �
� % 
 �

� @  / V * % T 	 �E, �
� / * T 1 �


 R �%
/ V * % T 	 � , �

�0/ * T 1 � 4 M � 4 ��
� � �

V ��� 	 " � � T 1 [ % 
that is, our result fits with these families.

4.g. Generic K3-Surfaces

A generic K3-surface has Picard number one (cf. Section G.e). Moreover, if
� is a K3-surface with NS 	 � � 4 � / � and if P ��� *�� is a curve in � , then by
Lemma E.1 P is ample. Thus by the Kodaira Vanishing Theorem we have
� � 	 �  P � 4 � � 	 �  ��� T P � 4 '

. Hence the surface satisfies the assumptions of
Theorem 2.1.

2.1g Theorem
Let � be a smooth K3-surface with NS 	 � � 4 � / � and set � 4 � % .
Let * � - M and let � ��������� � � be topological or analytical singularity types.

Suppose that

��
� � �

V � � 	�� � � T 1 [ % 
 \ F � � 	 � % �> � � � 	 � % B � / * % / � � (2.4g)

Then �E������ � � �D	�� ��������� � � � is irreducible and T-smooth.
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Proof: Apart from T-smoothness, it remains to prove that � ������ � � �!	�� ��������� � � � is
non-empty and as in the case of surfaces in $ 	 for this it suffices to show that
(III.2.3) and (III.2.5) in Corollary III.2.4 are satisfied, where once again the
first condition implies the latter one due to

� � 	�� � � T - ( � � / * 
 1 / � � / 	+*3,.- � ,5- ( �
/ 	+*�,.- � , - 4 � � �E, 1 � 	 � � T - �

Taking Lemma 3.10 into account it thus remains to show\ F � � 	 � % �> � � � 	 � % B � / * % / � ( �

%
/ 	+*�,.- � % / � �

We consider the function� � � ' �� � � � ��Q �� \ F
�
� 	 � % �> � �
� 	 � % B � 

which converges to
\ F
� % � for Q �� � and is actually bounded from above by this

number. It thus suffices to show\ F
� % �

/ * % ( �

%
/ 	+*�,5- � % 

which is satisfied, since * � - M .
T-smoothness follows from Theorem IV.1.1f, since

\ F � � 	 � % �> � � � 	 � % B � 
 - .
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Appendix

A. Very General Position

It is our first aim to show that if there is a curve passing through points
U ��������� U � :;� in very general position with multiplicities � ��������� � � , then it can
be equimultiply deformed in its algebraic system in a good way - i. e. suitable
for Lemma II.2.3.

For the convenience of the reader we recall the definition of a very general
subset from the Introduction.

A.1 Definition
Let � be any Zariski topological space.

We say a subset
� :(� is very general if it is an at most countable intersection

of open dense subsets of � .

Some statement is said to hold for points U ��������� U � : � (or U : � � ) in very
general position if there is a suitable very general subset

� :(� � , contained in
the complement of the closed subvariety � �	���


� U :�� � � U � 4 U 
  of � � , such that
the statement holds for all U : �

.

In the following we suppose that � : $ �
	 is an embedded smooth projective

surface. We will denote by Hilb � the Hilbert scheme of curves on � , and for
� : � � Q�� by Hilb

� � the Hilbert scheme of curves on � with Hilbert polynomial
� . The latter is a projective variety, and has in particular only finitely many
connected components. If

� � � is a curve with Hilbert polynomial � , then
we denote � � �  the connected component of the reduction of Hilb

� � containing�
. (Cf. [Mum66] Chapter 15.)

A.2 Lemma
Let

� �.� be a curve, and � : <�� � . Then

� �
�
� 4 5OU :;� � 77 � P : � � �  � mult � � 	 P � � � � 
 � 4 - ������� � <

is a closed subset of � � .
Proof:

Step 1: Show first that for �.: < �
� �

�
� � 4 5 	 P  U � : # � � � mult � 	 P � � � <

is a closed subset of # � � , where # � 4 � � �  .
Being the reduction of a connected component of the Hilbert scheme Hilb � , #
is a projective variety endowed with a universal family of curves, giving rise
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to the following diagram of morphisms
 4 � �4. � � P  � P � � //

((PPPPPPPPPPPPPP
# � � pr

� // //

pr �
����

�

# 
where 
 is an effective Cartier divisor on # � � with 
 � � � 	�� � 4 P .8

Let � :;# � V # � �  
 � � � 	 
 � [ be a global section defining 
 . Then9

� �
�
� 4 5 � 4 	 P  U � :;# � � 77 ��� : 	 ) � �

�
� T�) �

�
� �0/ 
 � � �

�
� < �

We may consider a finite open affine covering of # � � of the form
� # � � �


 � � :�   :��  , # � �.# and
�

 �5� open, such that 
 is locally on # � � �


 given by one
polynomial equation, say10

� � � 
 	 � � � 4 '  for � : # �   : �

 �

It suffices to show that � �
�
�
� 	 # � � �



�

is closed in # � � �

 for all ��  .

However, for � 4 	 P  U � 4 	 � � � :;# � � �

 we have

��� : V ) � �
�
� T�) �

�
�
[ / 
 � � �

�
�

if and only if
� � � 
 	 � � � 4 '

and�
� � � � 
�
 � 	 � � � 4 '  for all � � �

(
� , - 

where � is a multiindex. Thus,

� �
�
�
� 	 # � � �



� 4

�
	 � � � :;# � � �



77777
� � � 
 	 � � � 4 ' 4

�
� � � � 
�
 � 	 � � �  
 � � � ( � , -
	

is a closed subvariety of # � � �

 , since � � � 
 and the �

� ! � � �
�

� � 	 � � � are polynomial
expressions in � and  .

Step 2: � �
�
� is a closed subset of � � .

By Step 1 for � 4 - ������� � the set

� �
�
�
� � � 4 5 	 U  P � : � � � # 77 mult � � 	 P � � � � < �4 � � @ � � � �

�
�
�

is a closed subset of � � � # �4 � � @ � � # � � . Considering now

� �
�
� � 4 ��

� � � � � �
�
� � � � //

�
&&NNNNNNNNNNN

� � � #
����� � 

8For the definition of an algebraic family of curves see [Har77] Ex. V.1.7.
9 ( � A � � � � ( � A � � � ( � � " # �� �� A � � � ( � � " �  �� A � � and $ ��� � � "�� � A is locally in = given by the

image of � � in  A � � �  �� A � � � ( � � " �! �� A � � .
10The � and 	 denote coordinates on the affine ambient spaces of � � ;������ respectively

��� ;���� � .
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we find that � �
�
� 4 � 	 � �

�
�
�
, being the image of a closed subset under a

morphism between projective varieties, is a closed subset of � � (cf. [Har77]
Ex. II.4.4).

A.3 Corollary
Then the complement of the set

� 4 �

�$. Hilb
� �

� .�� � �
�

��� � � �� � � � � � �
in � � is very general, where Hilb � is the Hilbert scheme of curves on � .

In particular, there is a very general subset
� : � � such that if for some U : �

there is a curve
� � � with mult � � 	

� � 4 � � for � 4 - ������� � , then for any U � : �
there is a curve

� � : � � �  with mult � �
�
	 � � � � � � .

Proof: Fixing some embedding � :.$ �
	 and � : � � Q � , Hilb

� � is a projective va-
riety and has thus only finitely many connected components. Thus the Hilbert
scheme Hilb � has only a countable number of connected components, and we
have only a countable number of different � �

�
� , where

�
runs through Hilb �

and � through <�� � . By Lemma A.2 the sets � �
�
� are closed, hence their com-

plements � � � � �
�
� are open. But then
� 4 � � � � 4 �

�$. Hilb
� �

� .�� � �
���� � � �� � � V+� � � � � � � [

is an at most countable intersection of open dense subsets of � � , and is hence
very general.

If � is regular, i. e. the irregularity � 	 � � 4 � � 	 �  
 � � 4 '
, algebraic and linear

equivalence coincide, and thus Hilb
� � 4 � � � � , if � is any divisor with Hilbert

polynomial � . This makes the proofs given above a bit simpler.

A.4 Lemma
Given � : < � � and � : Pic 	 � � , the set

� �
�
� 4 5 U :;� � 77 � P : � � � � � mult � � 	 P � � � � <

is a closed subset of � � .

Proof: Fix an affine covering � 4 �
� � ����� � � 7 of � , and a basis � � ��������� � of

# � V �  
 � 	 � � [ .
It suffices to show that � �

�
�
� V � 
 � � ����� � �


 �
[

is closed in
�

 � � ����� � �


 � for all 4 	  ���������  � � : � - ������� 9  � , since those sets form an open covering of � �
�
� .

Consider the set

� �
� � � 
 4 5 	 U  � � : �


 � �2����� � �

 � � $ �

	 77 � � 	 � � � � � 	 U � � T ����� T � � 	 � � � � � 	 U � � 4 ' < 
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where � is a multiindex and � � denotes the corresponding differential op-
erator. This is a closed subvariety of

�

 � � ����� � �


 � � $ �
	 .11 Thus, also the

set
� 
 4 �

��� � � � � � � � ��
�
� � � � @ �

� �
� � � 


is a closed subset of
�

 � � ����� � �


 � � $ �
	 . Considering now the projection to�


 � � ����� � �

 � , � 
 � � // �

''NNNNNNNNNNNNN

�

 � � ����� � �


 � � $ �
	

�����

 � � ����� � �


 � 
we find that Im 	 � � 4 � � V � 
 � �L����� � �


 �
[

is closed in
�

 � �L����� � �


 � (cf. [Har92]
Theorem 3.12).

A.5 Corollary
Let � be regular. Then the complement of the set

� 4 �
� . Pic

> � B �
� .�� � �

�
� � � � �� � � � � �

�

in � � is very general.

In particular, there is a very general subset
� : ��� such that if for some U : �

there is a curve
� � � with mult � � 	

� � 4 � � for � 4 - ������� � , then for any U � : �
there is a curve

� � : � � � � with mult � �
�
	 � � � � � � .

Proof: By Lemma A.4 the sets � �
�
� are closed, hence their complement ��� �

� �
�
� is open. Since � is regular, Pic 	 � � �4 NS 	 � � is a finitely generated abelian

group, hence countable.12 But then
� 4 � � � � 4 �� . Pic

> � B �
� .�� � �

�� � � � �� � � V+� � � � � �
�

[

is an at most countable intersection of open dense subsets of � � and is hence
very general.

In the proof of Theorem II.1.1 we use at some place the result of Corollary
A.6. We could instead use Corollary A.3. However, since the results are quite
nice and simple to prove we just give them.

A.6 Corollary

(a) The number of curves
�

in � with dim � � �  4 '
is at most countable.

11On
���

the � � are given as quotients of polynomials where the denominator is not van-
ishing on

���
. Thus we may assume w. l. o. g. that � � is represented by a polynomial, and hence

the above equation is polynomial in = � and even linear in the � � .
12See [IsS96] Chapters 3.2 and 3.3. From the exponential sequence it follows that

NS # B & �� Pic # B & � Pic � # B & with Pic � # B & �� ��� ���  � , � ��� # B & . Thus, Pic # B & is countable if
and only if B is regular.
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(b) The number of exceptional curves in � (i. e. curves with negative self
intersection) is at most countable.

(c) There is a very general subset
�

of � � , � � - , such that for U : �
no U �

belongs to a curve
� �5� with dim � � �  4 '

, in particular to no exceptional
curve.

Proof:

(a) By definition � � �  is a connected component of Hilb � , whose number is
at most countable (see proof of Lemma A.3). If in addition dim � � �� 4 '

,
then � � �  4 � �

 which proves the claim.

(b) Curves of negative self-intersection are not algebraically equivalent to
any other curve (cf. [IsS96] . p. 153)

(c) Follows from (a).

A.7 Example (Kodaira)
Let U ��������� U R : $ %	 be in very general position13 and let � 4 Bl � V $ %	 [ be the
blow up of $ %	 in U 4 	 U ��������� U R � . Then � contains infinitely many irreducible
smooth rational ,�- -curves, i. e. exceptional curves of the first kind.

Proof: It suffices to find an infinite number of irreducible curves P in $ %	 such
that

* % , R�
��� �

6 %� 45,�-  (A.1)

and

�  	 P � , R�
��� �

6 � 	 6 � ,5- �
1 4 '  (A.2)

where 6 � 4 mult � � 	 P � and * 4 deg 	 P � , since the expression in (A.1) is the self
intersection of the strict transform

�P 4 Bl � 	 P � of P and (A.2) gives its arith-
metical genus.14 In particular

�P cannot contain any singularities, since they
would contribute to the arithmetical genus, and, being irreducible anyway,

�P
is an exceptional curve of the first kind.

13To be precise, no three of the nine points should be collinear, and after any finite number
of quadratic Cremona transformations centred at the = � (respectively the newly obtained
centres) still no three should be collinear. Thus the admissible tuples in #�� � &�� form a very
general set, cf. [Har77] Ex. V.4.15.

14

� 
 ���$ # � � ��� )
	 �"�� �" 
 � � � � �� � ����� � # 	 � " � � � � � � # � � " � � � � � � # 


� � � �� � 	 "�� " 


��� � � � � � � � � � � 
 # $'& ��� � � � � � � � � ?
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We are going to deduce the existence of these curves with the aid of quadratic
Cremona transformations.

Claim: If for some * 	 '
and 6 ��������� 6 R � '

with
6 *L, , R��� � 6 � 4 - there

is an irreducible curve P : 77 ! � > ; � � B 	 *
� 77 � , then  	 P � : 77 ! � > ; � � � � B 	+* T � � 77 � is an

irreducible curve, where

� � ��   9  � � - �������NM  are such that 6 � T 6 
 T 6 7 
 * ,
�  �K$ %	���� � $&%	 is the quadratic Cremona transformation at U �  U 
  U 7 ,
� U �� 4 �� � U �  if 
 �4 ��   9  	 U � U � �  if

�

 ��  �  4 � ��   9  

� 6 �� 4 �� � 6 �  if 
 �4 ��   9 
6 � T �  else, and

� � 4 *3, 	 6 � T 6 
 T 6 7 � �
Note that,

63/ 	 * T � � , , R� � � 6 �� 4 - , i. e. we may iterate the process since the
hypothesis of the claim will be preserved.

Since
6 * 	 , R� � � 6 � , there must be a triple 	 ��   9 � such that * 	 6 � T 6 
 T 6 7 .

Let us now consider the following diagram

� 4 Bl � � � � � � ��� 	 $ %	 � 4 Bl � �
� �
� �� � � �� 	 $ %	

�
�

uulllllllllllllllll � �
))RRRRRRRRRRRRRRRRR

$ %	 �
//______________________ $ %	 

and let us denote the exceptional divisors of � by
� � and those of � � by

� �� .
Moreover, let

�P 4 Bl � � � � � � ��� 	 P � be the strict transform of P under � and let
� 	 P � 4 Bl � �

� �
� �� � � �� V  	 P � [ be the strict transform of  	 P � under � � . Then of course�P 4 � 	 P � , and  	 P � , being the projection � � V �P [ of the strict transform

�P of the
irreducible curve P , is of course an irreducible curve. Note that the condition* 		6 � T 6 
 T 6 7 ensures that

�P is not one of the curves which are contracted.
It thus suffices to verify

deg V  	 P � [ 4 * T � 
and

6 �� 4 mult � �
�
V  	 P � [ 4 ���� 6 �  if 
 �4 ��   9 

6 � T �  else.

Since outside the lines U � U 
 , U � U 7 , and U 7 U 
 the transformation  is an isomor-
phism and since by hypothesis none of the remaining U � belongs to one of
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these lines we clearly have 6 �� 4 6 � for 
 �4 ��   9 . Moreover, we have

6 �� 4 � 	 P � � � �� 4 �P � Bl � � � � � � ��� 	 U 
 U 7 �4 	 � � P ,	, � �O� � 
 � 7 6 �
� � � � 	 � � U 
 U 7 , � 
 , � 7 �4 P � U 
 U 7 , 6 
 , 6 7 4 *�, 6 
 , 6 7 4 6 � T � �

Analogously for 6 �
 and 6 �7 .
Finally we find

deg V  	 P � [ 4  	 P � � U �� U �
 4 � � �  	 P � � � � � U �� U �
4 V � 	 P � T , ��� � � 
 � 7 6 ��
� ��
[ � V � 7 T � �� T

� �

[

4 �P � � 7 T , ��� � � 
 � 7 6 ��
� �� � � 74 6 7 T 6 �� T 6 �
 4 * T � �

This proves the claim.

Let us now show by induction that for any * 	 '
there is an irreducible curve P

of degree * � � * satisfying (A.1) and (A.2). For * 4 - the line P 4 U � U % through
U � and U % gives the induction start. Given some suitable curve of degree * � � *
the above claim then ensures that through points in very general position
there is an irreducible curve of higher degree satisfying (A.1) and (A.2), since� 4 *�, 	 6 � T 6 % T 6  � 	 '

. Thus the induction step is done.

The example shows that a smooth projective surface � may indeed carry an
infinite number of exceptional curves - even of the first kind. According to
Nagata ([Nag60] Theorem 4a, p. 283) the example is due to Kodaira. For
further references on the example see [Har77] Ex. V.4.15, [BeS95] Example
4.2.7, or [Fra41]. [IsS96] p. 198 Example 3 shows that also $ %	 blown up in
the nine intersection points of two plane cubics carries infinitely many excep-
tional curves of the first kind.

B. Curves of Self-Intersection Zero

B.1 Proposition
Suppose that

� �.� is an irreducible curve with
� % 4 '

and dim � � �  � - , then

(B.1) � � �  is an irreducible reduced projective curve, and

(B.2) there is a fibration ���O� � # whose fibres are just the elements of
� � �  , and # is the normalisation of � � �  .

We are proving the proposition in several steps.
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B.2 Proposition
Let �(�� � �  be a finite flat morphism of noetherian schemes with  ir-
reducible such that for some point Y � :  the fibre  �� �

4 � @ � 	 Y � � 4  � � %
Spec V 9 	 Y � � [ is a single reduced point.15

Then the structure map � # �4
�% 5 � � � 
�% � is an isomorphism, and hence so is � .
Proof: Since there is at least one connected reduced fibre  �� � , semicontinuity
of flat, proper16 morphisms in the version [GrD67] IV.12.2.4 (vi) implies that
there is an open dense subset

� :  such that  �� is connected and reduced,
hence a single reduced point,


 Y.: �
. (
�

dense in  is due to the fact that  
is irreducible.)

Thus the assumptions are stable under restriction to open subschemes of  ,
and since the claim that we have to show is local on  , we may assume that
 4 Spec 	 " � is affine. Moreover, � being finite, thus affine, we have  � 4
Spec 	 � � is also affine.

Since � is flat it is open and hence dominates the irreducible affine variety  
and, therefore, induces an inclusion of rings " � � �

. It now suffices to show:

Claim: " � � �
is an isomorphism.

By assumption there exists a Y 4 � : Spec 	 " � 4  such that  �� 4 � @ � 	 Y � 4
Spec 	 ��� 2 � ��� � is a single point with reduced structure. In particular we have
for the multiplicity of  �� 4 Spec 	 ��� 2 � ��� � over

� Y  4 Spec 	 " � 2 � " � �
- 4 � 	  �� � 4 length ��� # � ��� 	 ��� 2 � ��� � 

(cf. [Har77] p. 51 for the definition of the multiplicity) which implies that

" � 2 � " � � � ��� 2 � ���

is an isomorphism. Hence by Nakayama’s Lemma also

" � � � ���

is an isomorphism, that is,
���

is free of rank 1 over " � . � being locally free17

over " , with " 2 � ' an integral domain, thus fulfils

"�� � � �
�

is an isomorphism for all � : Spec 	 " � , and hence the claim follows
(cf. [AtM69] Proposition 3.9).

B.3 Remark
Some comments from Bernd Kreußler.

15The assumption “reduced” is necessary, since finite flat morphisms may very well have
only non-reduced fibres. Consider the ring homomorphism �
	 � � ��� � � : ��� � � �	� � # �  & � ��	��: �

, making � �� ��� � � � into a free and hence flat � -module with only non-reduced fibres
(= double-points).

16By [Har77] Ex. II.4.1 � is proper, since � is finite.
17Since ��� : � is flat!
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(a) Let  � be the standard example of a non-separated variety, the affine line
over 9 with the origin doubled, and let � �$ � �  4 � �7 be the projection
to  . Then � is quasi-finite, but NOT finite, since the preimage of the
affine  is not affine. However, � � 
�% � 4 
�% (see [Har77] II.2.3.5/6), but �
is certainly not an isomorphism.

(b) By [Har77] III.11.3 for � �  � �  projective between noetherian
schemes the condition � � 
�% � 4 
�% implies that the fibres of � are con-
nected. The converse is also true, if the fibres are connected, the
� � 
�% � 4 
�% .

(c) See (a) for an example, that the condition “projective” for the morphism
is not obsolete.

(d) Let � �  � �  be the blow up of a point of $ % 7 , then the fibres are con-
nected, and hence � � 
�% � 4 
�% . � is generically finite, but not finite and
certainly no isomorphism.

(e) If � � � � Spec 	 " � is a morphism such that � # � " � � 	 �  
�� � is an
isomorphism, then � need not be an isomorphism - despite the fact that
Hom V �  Spec 	 " � [ and Hom V "  � 	 �  
�� � [ are naturally bijective. E. g. $ �7
and � the constant map to Spec 	 9 � . Then � 	 �  
'� � 4 9 and thus � # 4 id is
an isomorphism, but � is certainly not! If � is also affine, then however
� is an isomorphism if and only if � # is so.

(f) If " � �
is a ring homomorphism and

�
is locally free of rank - as

an " -module, and if for some
� : Spec 	 " � the localisation " � � ���

is
an isomorphism, then the homomorphism itself is an isomorphism. If,
however, " � �

is only an " -module homomorphism, this need not be
true. E. g. let � be a smooth curve, e. g. $ � , and Q : � a point; let
! � #&� � 4 
�� 	W, Q � be the ideal sheaf of Q , in the case of $ � it’s just 
 �

�
	 	W,�- � .

This is a locally free sheaf, and Q is a divisor on the smooth curve � . This
gives an exact sequence

' � ! � #&� � 
�� � 
 � �
'
. For the stalks over

Y �4 Q the map from � � 
'� is of course an isomorphism, but not for
Y 4 Q .

(g) Let  4 � �7 , � � 4 � 	 Q % , � QOY � � $ �7 with homogeneous coordinates Q  Y
on $ �7 . Then for

� � 4 '
the fibre � � � is connected, namely a non-reduced

fat point, while for
� �4 '

the fibre � � consists of two single points, and
is thus not connected. The condition ��� � reduced in the Corollary B.5 is
hence vital.

B.4 Proposition (Principle of Connectedness)
Let � and  be noetherian schemes,  connected, and let � � � �  be a flat pro-
jective morphism such that for some Y � :� the fibre � � � 4 � @ � 	 Y � � is reduced
and connected.

Then for all Y :  the fibre � � 4 �
@ � 	 Y � is connected.



130 APPENDIX

Proof: Stein Factorisation (cf. [GrD67] III.4.3.3 or [Har77] III.11.5) gives a
factorisation of � of the form

� � � � �
//  � 4 Spec 	 � � 
�� � � //  

with

(1) � � connected (i. e. its fibres are connected),

(2) � finite,

(3) � � 
�% � 4 � � 
�� locally free over 
'% , since � is flat, and

(4)  ��� �
4 � @ � 	 Y � � is connected and reduced, i. e. a single reduced point.

Because of (1) it suffices to show that � is connected; and we claim, moreover,
that the fibres of � are reduced as well.

Considering points in the intersections of the finite number of irreducible com-
ponents of  we can reduce to the case  irreducible. Since � is finite (3) is
equivalent to saying that � is flat (cf. [AtM69] Proposition 3.10). Hence � ful-
fils the assumptions of Proposition B.2, and we conclude that 
+% 4 � � 
�% � and
the proposition follows from [Har77] III.11.3.18

Alternatively, from [GrD67] IV.15.5.9 (ii) it follows that there is an open dense
subset

� :  such that � � is connected for all Y : �
. Since, moreover, by the

same theorem the number of connected components of the fibres is a lower
semi-continuous function on  the special fibres cannot have more connected
components than the general ones, that is, all fibres are connected.

B.5 Corollary (Principle of Connectedness)
Let

� � �  �&. � be a flat family of closed subschemes ��� : $ � 7 > � B , where  is a con-
nected noetherian scheme. Suppose that ��� � is connected and reduced for some
point

� � :  . Then � � is connected for all
� :  .

Proof: The � � are the fibres of a flat projective morphism

� � � //

�

��<
<<

<<
<<

$ � �

��X
where � is a closed subscheme of $ � � . The result thus follows from Proposi-
tion B.4.19

B.6 Lemma
Under the hypotheses of Proposition B.1 let PZ: � � �  then P is connected.

18Compare the result with [GrD67] III.4.3.10, which deals with the case of � also being
integral, but weakens the hypothesis on � to proper and universally open. Also the assump-
tion on the fibre is reduced to � #�� & being algebraically closed in � # � & - in the case where the
characteristic of � #�� & is zero. Compare also [GrD67] IV.12.2.4 (vi) and III.15.5.9, which both
deal with an arbitrary number of connected components.

19Compare the result with [Har77] Ex. III.11.4.
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Proof: Consider the universal family

� � �  � �
pr � � � 


''PPPPPPPPPPPPPPPP

��4. � � � 

� P  � P 4 � �? _oo

� flat
��� � � 

(B.3)

over the connected projective scheme � � � +: Hilb � .
Since the projection � is a flat projective morphism, and since the fibre
� @ � 	 � � 4 � �

 �
�

is connected and reduced, the result follows from Proposi-
tion B.4.

B.7 Lemma
Under the hypotheses of Proposition B.1 let PZ: � � �  with

� : P , then P 4 � .

Proof: Suppose
� � P , then the Hilbert polynomials of

�
and P are different

in contradiction to
� � EP .

B.8 Lemma
Under the hypotheses of Proposition B.1 let P : � � �� with P �4 �

, then P � � 4	� .
Proof: Since

�
is irreducible by Lemma B.7

�
and P do not have a common

component. Suppose
� � P 4 � �

�I������� � �  , then
� % 4 � � P � � 	 '

in contradic-
tion to

� % 4 '
.

B.9 Proposition (Zariski’s Lemma)
Under the hypotheses of Proposition B.1 let P 4 , ���� ��� � P � : � � �  , where the P �
are pairwise different irreducible curves and � � 	 '

for � 4 - ������I � .
Then the intersection matrix � 4 	 P � � P 
 � � � 
 � � � � � � � � is negative semi-definite, and,
moreover, P , considered as an element of the vectorspace

� ���� � �
/ P � , generates

the annihilator of � .

In particular, � % ( '
for all curves � : P , and, moreover, � % 4 '

if and only if
� 4 P .

Proof: By Lemma B.6 P is connected. We are going to apply [BPV84] I.2.10,
and thus we have to verify three conditions.

(a’) P � P � 4
� � P � 4 '

for all � 4 - ������� � by Lemma B.8. Thus P is an element
of the annihilator of � with � � 	 '

for all � 4 - ������� � .
(b) P � � P 
 � '

for all � �4  .
(c) Since P is connected there is no non-trivial partition

� ��� of
� - ������ �  such

that P � � P 
 4 '
for all � : �

and
 :�� .

Thus [BPV84] I.2.10 implies that , � is positive semi-definite.
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B.10 Lemma
Under the hypotheses of Proposition B.1 let P  P � : � � �  be two distinct curves,
then P � P � 4 � .
Proof: Suppose P 4 " T � and P � 4 " T � � such that � and � � have no
common component.

We have ' 4 � % 4 	 " T � � % 4 	 " T � � � % 4 	 " TZ� � � 	 "ZTZ� � � 
and thus 	 " T � � % T 	 " T � � � % 4 1 	 " TZ� � � 	 "ZTZ� � � 
which implies that

� % T � � % 4 1 � � � � 
where each summand on the left hand side is less than or equal to zero by
Proposition B.9, and the right hand side is greater than or equal to zero, since
the curves � and � � have no common component. We thus conclude

� % 4 � � % 4 � � � � 4 ' �
But then again Proposition B.9 implies that � 4 P and � � 4 P � , that is, P and
P�� have no common component.

Suppose P � P � 4 � �
��������� � �  , then

� % 4 P � P � � � 	 '
would be a contradiction

to
� % 4 '

. Hence, P � P � 4	� .
B.11 Lemma
Under the hypotheses of Proposition B.1 consider once more the universal fam-
ily (B.3) together with its projection onto � ,

� � �  � �

pr � � � 

**

pr
�

��� � �
//

�

��

2 R

ddJJJJJJJJJJ �

� � �  �

(B.4)

Then � is an irreducible projective surface, � � �  is an irreducible curve, and � �
is surjective.

Proof:

Step 1: � is an irreducible projective surface and � � is surjective.

The universal property of � � �  implies that � is an effective Cartier divisor of
� � �  � � , and thus in particular projective of dimension at least 1 ( dim � � � &T
dim 	 � � , - . Since � � is projective, its image is closed in � and of dimension 2,
hence it is the whole of � , since � is irreducible.

By Lemma B.10 the fibres of � � are all single points, and thus, by [Har92]
Theorem 11.14, � is irreducible. Moreover, dim 	 � � 4 dim 	 � � T dim 	 fibre

� 4 1 .
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Step 2: dim � � �  4 dim 	 � � �  � � � , dim 	 � � 4 dim 	 � � T - ,21 4 - �
Step 3: � � �  is irreducible.

Let � be any irreducible component of � � �  of dimension one, then we have
a universal family over � and the analogue of Step 1 for � shows that the
curves in � cover � . But then by Lemma B.10 there can be no further curve in
� � �  , since any further curve would necessarily have a non-empty intersection
with one of the curves in � .

B.12 Lemma
Let’s consider the following commutative diagram of projective morphisms

� � �
//

�

��

�

� � �  � � � �0 P

bbDDDDDDDDD �
�

OO

�
oo

(B.5)

The map � � � � � � � 5 � � is birational.20

Proof: Since � � � � and � are irreducible and reduced, and since � � is surjec-
tive, we may apply [Har77] III.10.5, and thus there is an open dense subset� : � � � � such that � � � � � � � is smooth. Hence, in particular � � � is flat and
the fibres are single reduced points.21 Since � � � � � � � � 	 � � is projective and
quasi-finite, it is finite (cf. [Har77] Ex. III.11.2), and it follows from Proposi-
tion B.2 that � � � is an isomorphism onto its image, i. e. � � is birational.

B.13 Lemma
If � � � ���

� � � � � denotes the rational inverse of the map � � in (B.5), then � is
indeed a morphism, i. e. � � is an isomorphism.

Proof: By Lemma B.10 the fibres of � � over the possible points of inde-
terminacy of � � are just points, and thus the result follows from [Bea83]
Lemma II.9.

B.14 Lemma
The map � � � � � � �  assigning to each point

� : � the unique curve P : � � � 
with

� : P is a morphism, and is thus a fibration whose fibres are the curves
in � � �  .
Proof: We just have � 4 �

� � .

Proof of Proposition B.1: Let 
 �8# � � � �  be the normalisation of the irre-
ducible curve � � �  . Then # is a smooth irreducible curve.

20The proof uses that the characteristic of the ground field is zero, even though one might
perhaps avoid this.

21By definition � � � is étale, and hence the completed local rings of the fibres are isomor-
phic to the completed local rings of their base points and hence regular. But then the local
rings themselves are regular and thus reduced.
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Moreover, since � is irreducible and smooth, and since � � �	� � � �� is surjec-
tive, � factorises over # , i. e. we have the following commutative diagram

� �
//

�
�

��

� � � 

# �
� >>||||||||

Then � is the desired fibration.

C. Some Facts used for the Proof of the Lemma of Geng Xu

In this section we are, in particular, writing down some identifications of cer-
tain sheaves respectively of their global sections. Doing this we try to be very

formal. However, in a situation of the kind � � � � //  �

// � we do not distin-
guish between 
'� and � � 
�� , or between � and the restriction of � to � .

C.1 Lemma
Let � 	 Q  Y  � � 4 , ���� � � � 	 Q  Y

� / � �E: � � Q  Y  �  with � 	 Q  Y  � � : 	 Q  Y � ; for every
fixed

�
in some small disc

�
around

'
. Then � � 	 Q  Y � : 	 Q  Y � ; for every � : < � .

Proof: We write the power series as � 4 ,��
� 	 � �

� V ,����� � �
�
�

�

� � / � �
[ / Q � Y �

.� 	 Q  Y  � � : 	 Q  Y � ; for every
� : �

implies

��
� � �

�
�
�

�

� � / � � 4 '	

� T	� 
 6 and

� : � �
The identity theorem for power series in � then implies that

�
�
�

�

� � 4 '	

� T	� 
 6 and � � ' �

C.2 Lemma
Let � be a noetherian scheme, � � P � � � a closed subscheme, � a sheaf of
modules on P , and

�
a sheaf of modules on � . Then

(C.1) � � � �4 � � ���'� � 
�� ,

(C.2) # � 	 P  � � 4 # � 	 � �� � ��������
�� � ,
(C.3)

� ������
�� �4 � � � � 	 � ������
�� � , and

(C.4) # � VAP �� � 	 � ��� � 
�� � [ 4 # � 	 �  � �'� � 
�� � .
Proof:

(C.1) For
� :(� open, we define

� 	 � �� � � � � � 	 � �� � � � ��� > � �
� � B � 	 �  
�� � : � 	 � �� � ���'� � 
�� �

� �� � � - �
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This morphism induces on the stalks the isomorphism

� � � � 4 �� � � �  (if Q�:2P ) 4 � � ����� � � 
�� � � 2 � � � �'  (else) 4 ' ����� � � 
�� � � 2 � � � �
� �
� �4 � � � � ��� � � � 
�� � � 

where
� �

� � is the ideal defining P in � locally at Q .
(C.2) The identification (C.1) together with [Har77] III.2.10 gives:

# � 	 P  � � 4 # � 	 � �� � � � 4 # � 	 � �� � ����� � 
 � � �
(C.3) The adjoint property of � � and � � together with � � � � �4 id gives rise to the

following isomorphisms:

End V � � � � 	 � ��
�� � [ �4 Hom V � � � � � � 	 � ��
�� � �� � 	 � � 
�� � [

�4 End V � � 	 � ��
�� � [ �4 Hom V � � 
�� �� � � � 	 � � 
�� � [ �
That means, that the identity morphism on � � � � 	 � � 
 � � must correspond
to an isomorphism from

� �(
�� to � � � � 	 � � 
�� � via these identifications.
(C.4) follows from (C.3) and once more [Har77] III.2.10.

C.3 Corollary
In the situation of Lemma II.2.4 we have:

(C.5) # � VAP  � � 
��� 	 � � ���76�
�� 	 P � [ 4 # � V �  � � 
 �� 	 � � �'� � 
�� 	 P � [ , and

(C.6) # � VAP  � � 
 �� 	 � � ��� � 
�� 	 P � [ 4 # � V+�  � � 
 �� 	 � � �'� � 
�� 	 P � [ .
Proof: We denote by

 � �P � � �� and � � P � � � respectively the given embed-
dings.

(C.5) By (C.2) in Lemma C.2 we have:

# � V P  � � 
 �� 	 � � �'� 6�
�� 	 P � [ 4 # � � � �� � V � � 
 �� 	 � � ���76�
�� 	 P � [ �'� � 
 � � �
By the projection formula this is just equal to:

# � � �  V � � � � 
��� 	 � � ��� � 
 � 	 P � [ �'� � 
�� � 4 # � V �  � �  � 
��� 	 � � �'� � 
�� 	 P � [
4 def #

� V �  � � 
 �� 	 � � �'� � 
�� 	 P � [ �
(C.6) Using (C.4) in Lemma C.2 we get:

# � VAP  � � 
 �� 	 � � �'� � 
�� 	 P � [ 4 def #
� � P �� �OV � � 
 �� 	 � � �'� � 
�� 	 P � [ � 4

# � V+�  � � 
 �� 	 � � �'� � 
�� 	 P � [ �
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C.4 Lemma
Let � be any coherent sheaf on � . Then the kernel of the natural map

� ���� � ! � > ; � � � � B # � � � �
// ! � > ; � � B # � / �

has support contained in
� U �I������� U �  .

Moreover, if � is locally free, then � is an isomorphism.

Proof: We have Ker 	 � � � 4 Ker 	 � � � and for U �: � U ��������� U �	 the map � � is given
by

� ���� � 
 � � � � ��� // 
 �
�
� / ���

� � � /�/�/ � � � � � � // � � /�/�/ � � / � 
and is thus an isomorphism.

Suppose now that � is locally free and that U�: � U ��������� U �	 . Then � � is given by


 �
�
� � �

/�/�/ � ) ; ��
�
� � �

/�/�/ � 
 �
�
� � � 
 � � � � // ) ; ��

�
� �

� � � /�/�/ � � � � � � // � � /�/�/ � � / � 
which again is an isomorphism.

C.5 Lemma
With the notation of Lemma II.2.4 we show that supp V Ker 	 � � [ : � U ��������� U �  .
Proof: Since � � �� � V � ���� �

� �
[ 5 � � � � U ��������� U �  is an isomorphism, we have

for any sheaf � of 
 �� -modules and Y : �� �)V � ���� �
� �
[
:

	 � � � � � > � B 4 lim
� >
�
B . � � 	 � @ � 	 � �N� 4 lim

� . � �
	 � � 4 � � �

In particular,

V � � 
 �� 	 � � �'� � 
�� 	 P � [ � >
�
B �4 
 ��

� �
�'� � � � � � � 
��

�
� >
�
B �4 
 �

�
� >
�
B �'� � � � � � � 
 �

�
� >
�
BG

and

V � � 
 �� 	 � � ��� � 
 � 	 P � [ � > � B �4 
���
� �
��� � � � ��� � 
 �

�
� >
�
B �4 
 �

�
� >
�
B ��� � � � � � � 
 �

�
� >
�
B �

Moreover, the morphism � � > � B becomes under these identifications just the
morphism given by �+�  4 - � �  �� ���  4 - � �  , which is injective. Thus,' 4 Ker 	 � � > � B � 4 Ker 	 � � � > � B , and � 	 Y � �: supp 	 Ker 	 � �N� .
C.6 Lemma
Let � be an irreducible noetherian scheme, � a coherent sheaf on � , and � :
# � 	 �  � � such that dim V supp 	 � � [ 
 dim 	 � � . Then � :;# � V&�  Tor 	 � � [ .
Proof: The multiplication by � gives rise to the following exact sequence:

'
// Ker 	 / � � // 
��

H ! // � �
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Since 
�� and � are coherent, so is Ker 	 / � � , and hence supp V Ker 	 / � � [ is closed
in � . Now,

supp 	 Ker 	 / � �N� 4 � U�: � � � ' �4 � � : 
��
�
� � � � / � � 4 '

4 � U�: � � � � : Tor 	 � � �  �
But then the complement

� U2: � � � � �: Tor 	 � � �  is open and is contained in
supp 	 � � (since � � 4 '

implies that � �3: Tor 	 � � � ), and is thus empty since � is
irreducible and supp 	 � � of lower dimension.

D. Some Facts on Divisors on Curves

D.1 Remark
Let P 4 P � � ����� � P 7 be a reduced curve on a smooth projective surface � over
� , where the P � are irreducible, and let

�
be a line bundle on P . Then we

define the degree of
�

with the aid of the normalisation 
 �CP � � P . We have
# % 	 P  � � �4 � 7

� � �S# % 	 P ��  �
� 4 � 7 , and thus the image of

�
in # % 	 P  � � , which is

the first Chern class of
�

, can be viewed as a vector 	 � ��������� � 7 � of integers, and
we may define the degree of

�
by

deg 	 � � � 4 �
� T /�/�/ T � 7 �

In particular, if P is irreducible, we get:

deg 	 � � 4 deg 	 
 � � � 4 � � 	 
 � � � �
Since # � 	 P  � � �4 '

implies that # � 	 P �  
 � � � �4 '
, and since the existence of a

non-vanishing global section of 
 � � on the smooth curve P � implies that the
corresponding divisor is effective, we get the following lemma. (cf. [BPV84]
Section II.2)

D.2 Lemma
Let P be an irreducible reduced curve on a smooth projective surface � , and let
�

be a line bundle on P . If # � 	 P  � � �4 '
, then deg 	 � � � '

.

When studying divisors on geometrically ruled surfaces or on products of
curves, we need the following estimation of the number of independent sec-
tions of a divisor on a curve.

D.3 Lemma
Let P be a smooth projective curve over � of genus � and let �E: Div 	 P � with
deg 	 � � � '

. Then �
� 	 P  � � ( deg 	 �

� T - .
Proof: Let us suppose that � is effective, since otherwise �

� 	 P  � � ( - anyway.
Then the inclusion


�� 	 � � , �
�

� �
	��

// 
�� 	 � � �
implies that �

� 	 P  � � , �
� ( �

� 	 P  � � � 4 � . Hence by the Riemann-Roch For-
mula we get

�
� 	 P  � � 4 deg 	 � � T - , � T � � 	 P  � � , �

� (
deg 	 � � T - �
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E. Some Facts on Divisors on Surfaces

In this section we gather some simple facts on divisors on smooth surfaces
which are used throughout the paper.

E.1 Lemma
If NS 	 � � 4 � / � , then either � or , � is ample.

Proof: Since � is projective, there exists some very ample divisor # , and by
assumption # �  � / � for some

' �4 � :�� . W. l. o. g. � 	 '
. Thus

� % 4 �
� � / # % 	 ' 

and for any irreducible curve P	�.�
� � P 4 �

�

/ # � P 	 ' �
Therefore, by the Nakai-Moishezon Criterion � is ample.

E.2 Lemma
Let � be any smooth projective surface and let "  � : Div 	 � � be such that " is
effective and , " % 	 " � � � '

. Then

(a) �
� 	 �  " T � � 4 � � 	 �  � � .

(b) If 	 � , ��� � � " 	 '
, then � � 	 �  " T � � 4 � � 	 �  � � .

Proof:

(a) We note that the divisor 
 � 	 "2T � � has degree " � 	 " T � � 
 '
and is thus

not effective, i. e. �
� VG"  
 � 	 " T � � [ 4 '

.
Considering the exact sequence

'
// 
 � 	 � � 	 �

// 
 � 	 " T � � // 
 � 	 " T � � //
'  (E.1)

the statement is implied by its long exact cohomology sequence
'

// # � 	 �  � � // # � 	 �  " T � � // # � V "  
 � 	 " T � � [ 4 ' �
(b) By assumption

' 	 " � 	 ��� , � � 4 deg V 
 � 	 ��� , � � [ 4 deg V 
 � 	 � � � �

 � 	W, " , � � [ . Hence' 4 � � VG"  
 � 	 � � � � 
 � 	�, " , � � [ 4 � � V "  
 � 	 " T � � [ �
Hence once more the long exact cohomology sequence of (E.1) finishes
the proof:

' // # � 	 �  � � // # � 	 �  " T � � // # � V "  
 � 	 " T � � [ 4 ' �

E.3 Lemma
Let � be very ample over � on the smooth projective surface � .
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(a) Given two distinct points U  U �3: � , there is a smooth connected curve
through U and U � in � � � � . Indeed, a generic curve in � � � � through U and U �
will be so.

(b) Given distinct points U ��������� U � :;� , the set
�

of points U � such that for any
point U � there is a smooth connected curve through U � and U � containing
at most one of the U 
 for

 4 - ������� � is open and dense in � .

Proof: Considering the embedding � : $ �
	 defined by � the curves in � � � � are

in one-to-one correspondence with the hyperplane sections.

(a) There is an � , 1 –dimensional family of hyperplane sections going
through two fixed points of � , which in local coordinates w. l. o. g. is
given by the family of equations � 4 5 � � Q � T ����� T � � @ � Q � @ � 4 ' 77 	 � � ������ � � � @ � � : $ � @ %	 < . Since the local analytic rings of � in every point
are smooth, hence, in particular complete intersections, they are given
as � � Q ��������� Q �  modulo some ideal generated by � , 1 power series
� ��������� � � @ % forming a regular sequence. Thus, having � , 1 free inde-
terminates in our family � of equations, a generic equation � will lead
to a regular sequence � ��������� � � @ %  � , i. e. the hyperplane section defined
by � is smooth in each of the two points, and thus everywhere. Moreover,
by [Har77] III.7.9 it is connected.22

(b) Given ��  : � - ������� �  , � �4 
, there is a unique line � � 
 in $ �

	 through U �
and U 
 . We set

� � 
 4 � � � � 
 , which is an open and dense subset of � .
Let U � : � � 
 and U � : � be given. W. l. o. g. U � �4 U � . Since U � �: � ��

a generic hyperplane in $ �

	 through U � and U � does not contain � � 
 , and
thus a generic hyperplane section through U � and U � does not contain
both U � and U 
 . However, by part (a) a generic hyperplane section is a
smooth connected curve through U � and U � . Setting

� 4 � � ���

� � 
 , which

is open and dense in � , we are done.

We reformulate the Hodge Index Theorem from [BPV84] in the following well
known equivalent form which suits our purposes better.

E.4 Theorem (Hodge Index Theorem)
Let #  � : Div 	 � � � � be � -divisors with # % 	 '

. Then # % / ��% ( 	 # � � � % with
equality if and only if � � � � # for some � : � .

Proof: We set �
4 , � � �� � : � . Then # � 	 � T � #

� 4 '
and by the standard

Hodge Index Theorem (cf. [BPV84] Corollary 2.15) we have
' � 	 � T � #

� % 4 # % / � % T 1 / # � � /
� TZ� % �

22See also [Har77] Proof of Corollary III.9.13.
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We define a polynomial function
� � � � � � � �� # % / � % T 1 / # � � / � T � % �

Since the leading term # % is positive, there is some value � : � such that� 	 � � 	 '
. However, � 	 �

� ( '
, and thus by the Intermediate Value Theorem� has at least one zero. This, in turn, implies that the discriminant of the

polynomial � is non-negative, i. e.� / 	 � � # � % , � / � % / # % � ' �
Moreover, equality holds precisely if � has just one zero and is thus always
non-negative, in particular we must have

' 4 � 	
�
� 4 # � 	 � T � #

�
. But then

by the standard Hodge Index Theorem we get �2T � # � � '
, i. e. � � � ,

� # .

Finally we state the Theorem of Bertini in a version which is suitable for our
purposes and which can be found in [Wae73] � 47, Satz 3 and Satz 4.

E.5 Theorem (Theorem of Bertini)
Let � be a smooth projective surface, � : Div 	 � � a divisor and � : � � � � a linear
system without fixed part. Suppose that every curve in � is reducible.

(a) Two generic curves in � intersect only in the base points of � .

(b) There exists a one-dimensional algebraic family � of curves in � such
that the irreducible components of any curve in � belong to � .

F. The Hilbert Scheme Hilb
� �

Hilb
� � denotes the Hilbert scheme of zero-dimensional schemes of degree � .

F.1 Lemma
Let � : Div 	 � � be a divisor and � �5� be a zero-dimensional scheme of degree
� with � � V �  ! � # � 	 � � [ 4 '

. Then there is an open, dense, irreducible neigh-
bourhood

� 4 � 	 � � : Hilb
� � of � such that � � V+�  ! % # � 	 � � [ 4 '

for any  2: �
.

Proof: We consider the universal family of Hilb
� � :

� � � //

�

��

Hilb
� � � �

pryyssssssss
ss

pr
�

// � 

Hilb
� �

(F.1)

where pr and pr � denote the canonical projections. In particular � and pr are
flat, that is 
 Hilb � � � � and 
�� are flat 
 Hilb � � -modules via pr and � respectively.
From the exact sequence' � !�� � 
 Hilb � � � � � 
�� � '
it thus follows that the ideal sheaf !�� of � is flat over 
 Hilb � � . Moreover, by
Lemma F.3 also the sheaf !�� 	 � � � 4 !�� ���

Hilb � ��� � pr �� 
 � 	 � � is flat over 
 Hilb � � .
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The Semicontinuity Theorem (cf. [Har77] III.12.8) therefore implies that the
function

� � Hilb
� � � � �  �� dim 7 > % B # � V pr

@ � 	  �  ! � 	 � � % [
is upper semi continuous.

Now, for  : Hilb
� � the restriction pr � � � pr

@ � 	  � 4 �   � � � � is an isomor-
phism, and this isomorphism induces

 �4 �   �  4 � @ � 	  � � � pr
@ � 	  � 4 �   � � �4 �

and !��
�
% �4 pr � � !�� �

% 4 ! % # � . With the aid of the projection formula we deduce

V&!�� 	 � � [ % �4 pr � � V@! � ��� Hilb � � � � pr �� 
 � 	 � � [ �4 pr � � !�� ��� � 
 � 	 � � �4 !9% # � 	 � � �
Thus dim 7 > % B # � V pr

@ � 	  �  ! � 	 � � % [ 4 � � V �  !9% # � 	 � � [ , and the upper semicon-
tinuity of � implies that the set

� 4 5  : Hilb
� � 77 �

� V �  ! % # � 	 � � [ 4 ' < is a
non-empty open subset of Hilb

� � . Since the latter is smooth and connected,
hence irreducible,

�
is dense and irreducible.

F.2 Lemma
Let � � � � " and � �XP�� " be morphisms of rings. If the " -module

�
is flat

over
�

and if
�

is a free P -module, then
� ��� �

is a flat
�

-module.

Proof: Let
' � � � � � � � � � � '

be an exact sequence of
�

-modules. Since
�

is flat over
�

, we have
' � � � � � � � � � � � � � � � � � � � '

is an exact sequence of
�

-modules, and thus via � also of " -modules, but then
via � of P -modules. Since

�
is free, hence flat, over P we moreover have

' � � � � � � � � � � � � � � � � � � � � � � � � ��� � � '
is an exact sequence of P -modules, and thus it is exact as a sequence of

�
-

modules.

F.3 Lemma
Let � ��� �  and � ��� � � be two morphisms of schemes. If the 
'� -module
� is flat over 
'% and if

�
is a locally free 
 � -module, then � ��� � � � �

is a flat

�% -module.

Proof: Let Q5: � be given. We set Y 4 � 	 Q � , U 4 � 	 Q � , " 4 
��
� � ,
� 4 
�%

� � ,P 4 
 �
�
� , � 4 � # � � � " , � 4 � # �SP�� " ,

� 4 � � and
� 4 � � . By assumption

�
is flat over

�
and

�
is free over P . Moreover,

V � �'� � � � �
[
�
4 V ����� � 
���� � � � ��� � @ � �

[
�
4 � � ����� � � � � 4 � ��� � �

Thus the statement follows from Lemma F.2
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G. Examples of Surfaces

G.a. Geometrically Ruled Surfaces

Let � 4 $ 	�� � � // P be a geometrically ruled surface with normalised bundle
� (in the sense of [Har77] V.2.8.1). The Néron–Severi group of � is

NS 	 � � 4 P � � � � � 
with intersection matrix �� , � -

- '
��


where � �4 $ �	 is a fibre of � , P � a section of � with 
 � 	 P � � �4 
 � >�� B 	+- � , � 4 � 	 P �
the genus of P , � 4  % � and � 45, deg 	 � � � , � .23 For the canonical divisor we
have ��� �  , 1 P � T 	�1 � ,21 , � �0/ � 
where � 4 � 	 P � is the genus of the base curve P .

In [Har77] V.2.18, V.2.20 and V.2.21 there one finds numerical criteria for an
algebraic divisor class � P � T  � to be ample respectively to contain irreducible
curves. The following lemma on the nefness of � P � T  � is an easy deduction
of these statements.

G.1 Lemma
Let P �  � P � T  � be given.

(a) If � � '
, then P is nef if and only if � � '

and  � � � .
(b) If � ( '

, then P is nef if and only if � � '
and  �  �% .

(c) If � ( '
, then any curve P	�.� is nef.

Proof: For (a) and (b) we note that a divisor is nef if and only if it belongs to
the closure of the ample cone in NS 	 � � � � (cf. [IsS96] p. 162 and p. 175). The
results thus follow from [Har77] V.2.20 b. and V.2.21 b.

It suffices to show (c) for irreducible curves, since the sum of nef divisors is
nef. If, however, P is irreducible, then by [Har77] V.2.20 a. and V.2.21 a. the
divisor is nef in view of (a) and (b).

In Chapter II we have to examine special irreducible curves on � . Thus the
following Lemma is of interest.

G.2 Lemma
Let

� : � � P � T  � �  be an irreducible curve with
� % 4 '

and dim � � �  � - . Then
we are in one of the following cases

23By [Nag70] Theorem 1 there is some section � � 
 $ � � 	 �
with �

� �  � � 	 �  . Since
� is irreducible, by [Har77] V.2.20/21 	 � �

, and thus � ���  .
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(G.1) � 4 '
,  4 - , and

� �  � ,
(G.2) � 4 '

, � � - ,  4 '
, and

� �  � P � , or

(G.3) � 
 '
, � �Z1 ,  4  �% 
 '

, and
� �  � P � T  �% / � .

Moreover, if � 4 - , then � �4 P � � $ �	 .

Proof: Since
�

is irreducible, we have

')( � � � 4 � and
' ( � � P � 4  , � � � (G.4)

If � 4 '
, then � � �  4 �  � �  , but since the general element of � � �  is irreducible,

 has to be one, and we are in case (G.1).

We, therefore, may assume that � � - . Since
� % 4 '

we have

' 4 � % 4 1 � V  ,  �% [  hence  4  �% � (G.5)

Combining this with (G.4) we get � (.'
.

Moreover, if � 4 '
, then of course  4 '

, while, if � 
 '
, then � � 1 by [Har77]

V.2.21, since otherwise  would have to be non-negative. This brings us down
to the cases (G.2) and (G.3).

It remains to show, that
� � � 4 � 4 - implies � �4 P � � $ �	 . But by assump-

tion the elements of � � �  are disjoint sections of the fibration � . Thus, by
Lemma G.3, � �4 P � $ �	 .

G.3 Lemma
If � �O� � P has three disjoint sections, then � is isomorphic to P � $ �	 as a ruled
surface, i. e. there is an isomorphism � �C� � P � $ �	 such that the following
diagram is commutative:

� �
//

�

��9
99

99
99

P � $ �	
pr

}}{{
{{

{{
{{

P �
Proof: � is a locally trivial $ �	 -bundle, thus P is covered by a finite number of
open affine subsets

� � � P with trivialisations

� @ � 	 � � � ��
� �

//

�

""E
EE

EE
EE

E

� � � $ �	
pr

||yy
yy

yy
yy

� � 
which are linear on the fibres.

The three disjoint sections on � , say � � , � � , and � � , give rise to three sections
� � � , � � � , and � � � on

� � � $ �	 . For each point U : � � there is a unique linear
projectivity on the fibre

� U  � $ �	 mapping the three points
� �

�
� 4 � � � � V � U  � $ �	 [ ,�

�
�
� 4 � � � � V � U  � $ �	 [ , and

� � �
� 4 � � � � V � U  � $ �	 [ to the standard basis

' � V U  	 - �
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, - � V U  	+- � - � [ , and �

� V U  	 ' � - � [ of $ �	 �4 � U  � $ �	 . If
� �

�
� 4 V U  	 Q � �KY � � [ ,�

�
�
� 4 VGU  	 Q � �8Y � � [ , and

� � �
� 4 VGU  	 Q � �8Y � �

[
, the projectivity is given by the

matrix

" 4
�� >

� � �
� @
� � �
� B
� �

� � �
�
�
�
�

@
� � �
�
� � � �

@
� � �
�
� � � � 	 � � �

�
� �

>
� � �
� @
� � �
� B
� �

� � �
�
�
�
�

@
� � �
�
� � � �

@
� � �
�
� � � � 	 � � �

�
� �

� �

� � � �
@
� � � �

� �

� � � �
@
� � � �

��


whose entries are rational functions in the coordinates of
� �

�
� , � �

�
� , and

� � �
� .

Inserting for the coordinates local equations of the sections, " finally gives
rise to an isomorphism of $ �	 -bundles, i. e. a morphism which is a linear iso-
morphism on the fibres,

� � �
� � � $ �	 � � � � $ �	

mapping the sections � � � , � � � , and � � � to the trivial sections.

The transition maps

� � 
 � $ �	 �
� �
� �

//
� � 
 � $ �	 �

� �
� �

// � @ � 	 � ��
 � � � �
//
� ��
 � $ �	 � � �

//
� ��
 � $ �	 

with
� � 
 4 � � � �


 , are linear on the fibres and fix the three trivial sections.
Thus they must be the identity maps, which implies that the � � �

� � , � 4
- ������I � , glue together to an isomorphism of ruled surfaces:

� �
//

�

��9
99

99
99

P � $ �	
pr

}}{{
{{

{{
{{

P �
See also [IsS96] p. 229.

Knowing the algebraic equivalence classes of irreducible curves in � which
satisfy the assumptions in Condition (II.1.5) we can give a better formulation
of the vanishing theorem in the case of geometrically ruled surfaces.

In order to do the same for the existence theorems, we have to study very
ample divisors on � . These, however, depend very much on the structure of
the base curve P ,24 and the general results which we give may be not the best
possible. Only in the case P 4 $ �	 we can give a complete investigation.

G.4 Remark
The geometrically ruled surfaces with base curve $ �	 are, up to isomorphism,
just the Hirzebruch surfaces � � 4 $)V@
 �

�
	 � 
 �

�
	 	W, � � [ , � � '

. Note that
Pic 	 � � � 4 NS 	 � � � , that is, algebraic equivalence and linear equivalence co-
incide. Moreover, by [Har77] V.2.18 a divisor class � 4 � P

� T � � is very ample

24Cf. [Har77] V.2.22.2, Ex. V.2.11 and Ex. V.2.12.
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over � if and only if � 	
'

and � 	 � � . The conditions throughout the exis-
tence theorems turn out to be optimal if we work with �)4 P � T 	 � T - � / � , while
for other choices of � they become more restrictive.25

In the case P ��4 $ �	 , we may choose an integer
� � max

� � T -  1  such that the
algebraic equivalence class �DP � T � � �  contains a very ample divisor � , e. g.

� 4
� T 6

will do, if P is an elliptic curve.26 In particular,
� � 1 as soon as � ��4

$ �	 � $ �	 .

With the above choice of � we have � 	 � � 4 - T � � 	 � � ���% 4 - T > @ � 	 % � B 	 > � @ % � 	 % � @ % B% 4 � ,
and hence the generic curve in � � � � is a smooth curve whose genus equals the
genus of the base curve.

Finally, in several situations we need a thorough knowledge on the cohomol-
ogy groups of a divisor on a surface. We therefore prove the following lem-
mata.

G.5 Lemma
Let � ��� � P � T � � with � : Div 	 P � of degree  4 deg 	 � � , let � � 4 max

� 9 � � �
9 � ' � � 9 �  , � � � 4 min

� 9Z� � � 9 � ' � � 9 �  , � � 4 min
� 9Z� � � 9 � ' � (

9 �&T 1 � , 1  and � � � 4 max
� 9 � � � 9 � ' � ( 9 � T 1 � ,21  .27

(a) Let � 
 '
, then �

� 	 �  � � 4 '
.

(b) Let � � '
. If � � '

, then

�
� 	 �  � � 4 � � 	 �  � � P � T � � � (

 ��
7 � �

�
� VAP  
�� 	 9 / �0T �

� [
( � �  T � � T  T - , � /  � >  � 	 �+B% 

while if � ( '
, then

�
� 	 �  � � (

�
7 �  � �

�
� V P  
�� 	 9 / �CT �

� [

( � �  T �3T  T - , � /  > 
	 �+B% � , � � � �  T � � � , � /  � � >  � � @ �+B% � �
25 Let

� � � � $ � � 	 � , then � � � � � ����� � # � � � � � & ��$ � � # 	 � � �  � 	 & � � , and thus
the optimality of the conditions follows from

(III.1.8b) #&� � � � � ����� &  � # � � � � � & � � � ��# 	 � � �  � 	 & � # � � � � � & �  # � � � # � 	 �
�  & � # �  �  � � � � 	 & # � � � # � 	 � �  & � #&� � � � ����� &  ,

(III.1.9b) #&� � � � � ����� & ? � � � � � � � � � � #&� � � � ����� & ? � , and for  � �
, #�� � � � � ����� & ? $ � �	�� � � 	 � 	 � #&� � � � � � � & ? $ � , and

(III.1.11b) 	 � � �  � 	 �  # � � � � � & implies 	 � 	 �  � � � � 	 � �  .
26 � will be the degree of a suitable very ample divisor � on $ . Now � defines an embedding

of $ into some � �� such that the degree of the image $ �
is just deg # � & . Therefore, deg # � & � �

,
unless $ �

is linear (cf. [Har77] Ex. I.7.6), which implies $ �� � �� .
27If a minimum does not exist, we set its value to � � � , and likewise we set a non-existing

maximum to � � .
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(c) Let � � '
. If � � '

, then

� � 	 �  � � (
�

7 �  �
� � VNP  
 � 	 9 / �CT �

� [ 
while if � ( '

, then

� � 	 �  � � (
 � ��
7 � �

� � VAP  
�� 	 9 / �CT �
� [ �

(d) If � is decomposable and � � '
, then for any � :�� and � � '

� � 	 �  � � 4
 ��
7 � �

� � V P  
 � 	 9 / �CT �
� [ �

(e) If � 4 '
and � nef, then � � 4 � and � � � 4 '

.

(f) Let � 	 P � 4 - and � � '
. If � � '

, then

�
� 	 �  � � ( � �  T  T - , � /  � >  � 	 �+B% 

and if in addition  	�� � � , then even

�
� 	 �  � � ( � �  T  , � /  � >  � 	 �+B% �

If 28 � 4 ,�- , then

�
� 	 �  � � (

���������
�������

�
�  T  T  > 
	 �+B

%  if  	 ' 
�  T  > 
	 �+B

% T � > � 	 � B
%  if

' �  �., % and � �� �  /
� �  T - T  > 
	 � B

% T � > � 	 � B
%  if

' �  �., % and � � �  /
� '  if , % 	  �

(g) If � 
 '
and � � '

, then setting  � 4  ,  �%
�
� 	 �  � � ( �  � T ��T  � T - , �

% � / V  T - T �% [ % �
Moreover, if � is effective, then

�
� 	 �  � � ( �  � T ��T  � T - , �

% � / V  � T  � F [ %
and

�
� 	 �  � � ( �  � T �3T  � T - , R � % / � % �

Proof:

(a) If � 
 '
, then

' 	 � 4 � � � , which is impossible for any curve.

(b) We consider the exact sequence'
// 
 � V 	 � ,5- � P � T � �

[
// 
 � 	 � P � T � � � // 
�� � 	 � P � T � � � //

' � (G.6)

Taking into account that 
�� � 	 � P � T � � � �4 
�� 	 � � T �
�

the long exact
cohomology sequence of (G.6) gives

�
� 	 �  � P � T � � � ( � � V �  	 � ,5- � P � T � �

[ T � � V P  
 � 	 � �0T �
� [ �

28If � ��� and  � �
, then  � � � .
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By induction on � , starting with � 4 '
, we thus get

�
� 	 �  � � (

�
7 � �

�
� V P  
�� 	 9 / �0T �

� [ �
For the induction basis � 4 '

we note that by [Har77] Ex. III.8.3 and
Ex. III.8.4 and by the projection formula we have for all � 	 '

� � � � 	 � � � 4 � � � � 	 
 � �	� � � � 4 � � � � 
 � � � 4 ' 
and thus by [Har77] Ex. III.8.1,

� � 	 �  � � � 4 � � 	 P  � � for all � � ' � (G.7)

If � � '
and 9 	 ��� respectively if � ( '

and 9 
 � � � , then deg 	 9 ��T �
� 4

, 9 �&T  
 '
and

�
� V P �  
�� � 	 9 P � T � � � [ 4 � � V P  
 � 	 9 �0T �

� [ 4 ' �
Thus, if � � '

we have

�
� 	 �  � � (

 ��
7 � �

�
� VAP  
�� 	 9 / �0T �

� [ 
and if � ( '

�
� 	 �  � � (

�
7 �  � �

�
� VNP  
�� 	 9 / �0T �

� [ �
By Lemma D.3 for � � '

and 9 ( � � respectively � ( '
and 9 � � � � we

have �
� V�P  
�� 	 9 / �CT �

� [ (  , 9 � T - . Thus if � � '
 ��
7 � �

�
� V P  
 � 	 9 / �CT �

� [ ( � �  T � � T  T - , � /  � >  � 	 � B% 
and

�
7 �  � �

�
� V P  
�� 	 9 / � T �

� [

( � �  T ��T  T - , � /  > �	 �+B% � , � � � �  T � � � , � /  � � >  � � @ � B% � �
It remains to show that for � � '

and � 	�� � ,
�
� 	 �  � P � T � � � 4 � � V+�  � � P � T � �

[ �
Since � 	 � � , deg 	 � � T �

� 4 , � ��T  
 '
, the long exact cohomology

sequence of (G.6) implies

�
� 	 �  � P � T � � � 4 � � V �  	 � ,5- � P � T � �

[ �
The result thus follows by descending induction on � for � 	 � � .
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(c) The long exact cohomology sequence of (G.6) gives

# � V �  	 � ,5- � P � T � �
[

// # � V �  � P � T � �
[

// # � V P �  
�� � 	 � P � T � � � [ �
We thus get

� � 	 �  � P � T � � � ( � � V+�  	 � ,5- � P � T � �
[ T � � VAP  
 � 	 � �0T �

� [ 
and by induction on � , starting with � 4 '

– see (G.7) –, we find

� � 	 �  � � (
�
7 � �

� � V P  
�� 	 9 / �CT �
� [ �

However, if � � '
and 9 
 � � respectively if � ( '

and 9 	 � � � , then
deg 	 9 �0T �

� 4  , 9 � 	 1 � ,21 and thus � � 	 P  9 � T �
� 4 '

.

(d) See [FuP00] Lemma 2.10. Replacing the section P � by a section in
�DP � , � � �  , which only exists in the decomposable case, they do basically
the same considerations as in (a) – however, they get surjectivity at the
important positions in the long exact cohomology sequence.

(e) If � 4 '
and � nef, then by Lemma G.1 we know that � � � '

and thus� � 4 � and � � � 4 '
.

(f) Let us consider the case � � '
first. By part (a) we know �

� 	 �  � � (
,  �7 � � �

� VNP  
�� 	 9 / �0T �
� [

. Moreover, we have

deg 	 9 / �CT �
� 4  , 9 �

������
����

� 	
'  if 9 4 ' ������� � � ,5- 

and if 9 4 � � and  	 � � � 
� '  if 9 4 � � �

By Lemma G.14 we thus get

�
� V P  
�� 	 9 / �CT �

� [ ( ������
����

�  , 9 �  if 9 4 ' ������� ��� ,.- 
and if 9 4 � � and  	�� � � 

 , 9 �&T -  if 9 4 � � �
Thus the claim for � � '

follows. Let now � 4 ,�- . The claim then is
implied by the following considerations.
If  	 '

, then obviously  	 , 9 4 � 9 for all 9 4 ' ������� � and thus � � � 4 '
.

Moreover, as above we see deg 	 9 / � T �
� 4  T=9 	 '

for all 9 4 ' ������� � in
this case, and thus �

� V P  
�� 	 9 / �0T �
� [ 4  T 9 for all 9 .

If
' �  � , � , then � � � 4 ,  and deg 	 9 /

� T �
� 4  T 9 	 '

for 9 4
,  T - ������� � . Therefore we get �

� VAP  
 � 	 9 / � T �
� [ 4  T 9 for all 9 4

,  T - ������� � . If, moreover, � ,  /
� ���� ' , then �

� V P  
 � 	W,  /
� T �

� [ 4 '
,

while if � ,  /
� ��� ' , then �

� VNP  
�� 	W,  / �0T �
� [ 4 - .

Finally, if , % 	  then � � � � is empty by [Har77] V.2.21.
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(g) Since � is negative, any of the expressions , �% � / V  T - T �% [ % , , �% � / V  � T  � F [ %
and , R � % / � % is non-negative. Moreover, for  � '

we have � � � 4 '
and

thus �
� 	 �  � � 4 �  �OT � T  � T - . The inequalities are thus fulfilled for

 � '
.

It remains to verify them for  
 '
, that is, for  
 '

we have to show
that , � � � �  T � � � , � /  � � H >  � � @ � B% � is bounded from above by any of these
three expressions.
Let  
 '

be given, and consider the function

� � � � � � � �� �% / � % , V  T - T �% [ / � �
The derivative � �� � 	

� � 4 � / � , V  T - T �% [ has its unique zero at
� 4

�� / V  T - T �% [ and � thus takes its maximum there. That is,

, � � � �  T � � � , � /  � � H >  � � @ �+B% � 4 � V � � � [
( � � �� / V  T - T �% [ � 45, �% � / V  T - T �% [ % �

This proves the first inequality.
If � is effective and  
 '

, then by [Har77] V.2.21 � �Z1 and
' 	  �  �% .

But then  � T  � F 4  T � F 
  T - T �% 
 '
and therefore

, �% � / V  T - T �% [ % 
 , �% � / �  � T  � F � % 
which gives the second inequality. And finally, since  � 4  ,  �% � '

in
this situation, we get

 � F (  � T  � F 
 '
and thus

, �% � / �  � T  � F � % ( , R � % / � % �
G.6 Lemma
Let � 4 � � and let � 4 � P � T  � , ��� 4 max

� 9 � � � 9 � � 9 �  and � � 4
max

� 9 � , � , 1 � 9 � T 1 T � ( 9 �  .

(a) � � 	 �  � � 4

����������������������
��������������������

�

'  if � 45,�- or 	 � � '
and  � � � , - �

or 	 � ( , 1 and  ( ,)	 ��T - �C/ � , - � 
� /  H > �	 �+B% , �  , � ,  ,5- �4 '  if � � '

and  
 '
and 	 � � � �4 	 '  ,�- � 

� / � H > � 	 �+B% , � / 	 93T - � �4 '  if � 	 '
and')(  4 	 � , � � / � T 9 ( � � , 1

with - 
 � ( �  ' ( 9 
 � 
� � 	 �  ��� , � �  if � ( , 1 �
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(b) �
� 	 �  � � 4

������
����

�
'  if � 
 '

or  
 ' 
�  T �3T  T - , � /  H > 
	 �+B%  if

')( � and �'� (  
���  T ��� T  T - , � /  � >  � 	 �+B%  if

')( � and
' (  ( � � �

(c) � % 	 �  � � 4
���������
�������

�
'

if � 	 , 1 or  	 , 1 , � �  T �3T  T - , � /  H > 
	 �+B% if � ( , 1 � T 1 T � ( � � � �  T � � T  T - , � /  � >  � 	 �+B% if � ( , 1 and� � 
  T 1 T � ( ' �
Proof:

(a) By the Theorem of Riemann-Roch we have
� 	 � � 4 � % , � �����1 T � 	 
 � � 4 �  T ��T  T - , � /  > 
	 �+B% �

The result is thus an application of part (b) and (c).

(b) This follows from Lemma G.5 (d) taking into account that for a divisor

 �
�
	 	+* � on $ �	 of non-negative degree we have �

� V $ �	  
 �
�
	 	+* � [ 4 * T - .

(c) By Serre duality we have

� % 	 �  � � 4 � � 	 �  ��� , � � 4 � � V+�  	W, � , 1 �0/ P � T 	W,  , 1 , � � / � [ �
The result thus follows by simple calculations from part (b).

G.b. Products of Curves

Let P � and P % be two smooth projective curves of genera � � � '
and � % � '

respectively. The surface � 4 P � � P % is naturally equipped with two fibrations
pr � �0� � P � , � 4 -  1 , and by abuse of notation we denote two generic fibres
pr
@ �
% 	 � % � 4 P � � � � %  resp. pr

@ �
� 	 � � � 4 � �

�  � P % again by P � resp. P % .
G.7 Lemma
Let � : Div 	 � � be a divisor such that �-��� pr �% � T pr � ��� with � : Div 	 P % � of
degree � and � : Div 	 P � � of degree  .

(a) � �  � P � T  P % .
(b) If � is very ample on P % and � is very ample on P � , then pr �% � � pr � � � is

very ample on � .

(c) If � �Z1 � % T - and  �Z1 � � T - , then pr �% � � pr � � � is very ample on � .

(d) � is ample if and only if � � 	 '
.

(e) � is nef if and only if � � � '
.

(f) � is effective if and only if � � � '
and 	 � � � �4 	 '  ' � .
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(g) ��� �4 pr �% � � � T pr � � � � � �  	�1 � % , 1 � P � T 	�1 � � ,21 � P % .
Proof:

(a) Obviously � ��� pr �% � T pr � � � �  � � P � T  � P % for some � � � � : � . But then� � 4 � � P % 4 deg V/
 � � 	 � � [ 4 deg 	 � � and  � 4 � � P � 4 deg V 
�� � 	 � � [ 4
deg 	 � � .

(b) � and � induce embeddings of P % and P � into some projective spaces $ �
	

and $ ;	 respectively. Thus pr �% � � pr � � � induces the embedding into the
product of these spaces and is the pullback of the very ample line bundle

 � �	 	+- � � 
 � �	 	 - � which induces the Segre embedding of $ �

	 � $ ;	 .

(c) By [Har77] IV.3.2 then � and � are very ample, and we are done with
(b).

(d) If � is ample, then � 4 � � P % 	 '
and  4 � � P � 	 '

. On the other
hand, if � � 	 '

we may choose some � 	 '
such that � � �51 � % T - and

�  �51 � � T - , and thus � � is very ample, which implies that � itself is
ample.

(e) If � is nef, then � 4 � � P % � '
and  4 � � P � � '

.
Now let � � � '

. Since any irreducible curve which is not a fibre of pr � is
intersected by some fibre of pr � , the fibres of pr � are nef, � 4 -  1 . Hence,
� is nef if � 4 '

or  4 '
. If, however, both are strictly positive, then �

is even ample, hence in particular nef.

(f) If � is effective, then
' 
 � � 	 � P � T 6 P % � 4 6 �LT �  for all �  6 	 '

.
Hence, neither � nor  can be negative. The converse is obvious.

(g) See [Har77] Exercise II.8.3 and Example IV.1.3.3.

In many situations we are interested in the cohomology groups of a divisor
of the type pr � � � T pr �% � . The Künneth-Formula implies the following useful
results.

G.8 Lemma
Let � : Div 	 P % � and � : Div 	 P � � and let � : � , then

� � 	 �  pr �% � T pr � � � � 4 ��
7 � �

� 7 	 P %  � �C/ � �
@ 7 	 P �� � � �

In particular, �
� 	 �  pr �% � T pr � ��� � 4 � � 	 P %  � �C/ � � 	 P �� � � .

Proof: The Künneth-Formula (cf. [Dan96] I.1.7) gives

# � 	 �  pr �% � T pr � � � � 4 ��
7 � �

# 7 	 P %  � � � # � @ 7 	 P �� � � 
and thus the result follows.
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G.9 Corollary
Let � : Div 	 � � be a divisor such that � ��� � P � T � P % with � : Div 	 P % � of degree� � '

and � : Div 	 P � � of degree  � '
. Then:

�
� 	 �  pr �% � T pr � � � � ( 	 ��T - �C/ 	  T - � �

Proof: By Lemma G.8 it suffices to show that for a divisor � : Div 	 P � on a
smooth projective curve P we have �

� 	 P  � � ( deg 	 �
� T - . This, however, follows

from Lemma D.3.

G.10 Corollary
Suppose that � % 4 '

and � � 4 - , and let � : Div 	 � � be a divisor such that
� � � pr �% � T pr � � � with � : Div 	 P % � of degree � � '

and � : Div 	 P � � of degree
 � - . Then:

�
� 	 �  pr �% � T pr � � � � 4 	 ��T - �0/  �

Proof: This follows by Lemma G.8, taking into account that �
� 	 P %  � � 4 ��T -

(cf. Lemma G.6) and �
� 	 P �� � � 4  (cf. Lemma G.14).

G.11 Remark
We are going to show that for a generic choice of the curves P � and P % the
Néron–Severi group NS 	 � � 4 P � � � P % � of � is two-dimensional29 with inter-
section matrix

	 P � � P 
 � � � 
 4
�� ' -
- '

��
�

Thus, the only irreducible curves
� � � with selfintersection

� % 4 '
are the

fibres P � and P % , and for any irreducible curve
� �  � P � T  P % the coefficients� and  must be non-negative.

Supposed that one of the curves is rational, the surface is geometrically ruled
and the Picard number of � is two. Whereas, if both P � and P % are of strictly
positive genus, this need no longer be the case as we will see in Remark G.18.
Thus the following proposition is the best we may expect.

G.12 Proposition
For a generic choice of smooth projective curves P � and P % the Néron–Severi
group of � 4 P � � P % is NS 	 � � �4 P � � � P % � .

More precisely, fixing � � and � % there is a very general subset
� : �

� � � �
� �

such that for any 	 P �� P % � : �
the Picard number of P ��� P % is two, where

�
�
�

denotes the moduli space of smooth projective curves of genus � � , � 4 -  1 .

Proof: As already mentioned, if either � � or � % is zero, then we may take� 4 �
� � � �

� � .
29In the case that $ � and $

 are elliptic curves, generic means precisely, that they are not
isogenous - see Section G.c.
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Suppose that � � 4 � % 4 - . Given an elliptic curve P � there is a countable
union � of proper subvarieties of

�
� such that for any P % : �

� � � the Picard
number of P � � P % is two - namely, if � � and � % denote the periods as in Section
G.c, then we have to require that there exists no invertible integer matrix	 � � � �� � � � � such that � % 4 � � @ � � � �� � @ � � � � . (Compare also [GrH94] p. 286.)

We, therefore, may assume that � � � 1 and � % � - . The claim then follows
from Lemma G.13, which is due to Denis Gaitsgory.

G.13 Lemma (Denis Gaitsgory)
Let P % be any smooth projective curve of genus � % � - . Then for any � � � 1
there is a very general subset

�
of the moduli space

�
� � of smooth projective

curves of genus � � such that the Picard number of P ��� P % is two for any P � : �
.

Proof: We note that a curve
� � � 4 P � � P % with P � ��  � �� �P % induces a

non-trivial morphism � � � P � � Pic 	 P % � � � �� pr % � V pr � � 	 � � [ . It thus makes
sense to study the moduli problem of (non-trivial) maps from curves of genus
� � into Pic 	 P % � .
More precisely, let 9 : < and let

' �4 � : # % V Pic 7 	 P % �  �
[ 4 � % � � be given,

where Pic 7 	 P % � is the Picard variety of divisors of degree 9 on P % . Following
the notation of [FuP97] we denote by

�
� �

�

� V Pic 7 	 P % �  � [ the moduli space of
pairs 	 P �� � � , where P � is a smooth projective curve of genus � � and � �CP � �
Pic 7 	 P % � a morphism with � � V � P � � [ 4 � . We then have the canonical morphism

� 7
�

� � � � �
�

� V Pic 7 	 P % �  � [ � �
� � � 	 P �� � � �� P ��

just forgetting the map � , and the proposition reduces to the following claim.

Claim: For no choice of 9 : < and
' �4 � : # % V Pic 7 	 P % �  �

[
the morphism � 7

�

�

is dominant.

Let � � P � � Pic 7 	 P % � be any morphism with � � V �?P � � [ 4 � . Then � is not a
contraction and the image of P � is a projective curve in the abelian variety
Pic 7 	 P % � . Moreover, we have the following exact sequence of sheaves

' // ��� �
� �

// � � � Pic � > ��� B 4 
 � �� � // � � � 4 coker 	+* � � // ' � (G.8)

Since * � is a non-zero inclusion, its dual

* ��� � 	 � � � Pic � > ��� B � � 4 
 � �� � ��� � � 4�� � �
is not zero on global sections, that is

# � V * � � [ � # � V�P �� 
 � �� � [ // # � 	 P �� � � � �
Hom � 6 � V 
 � �� �  
�� � [ Hom � 6 � V ��� �  
�� � [

is not the zero map.
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Since � � � 1 we have �
� 	 P �� � � � � 4 1 � � ,51 	 '

, and thus � � � has global
sections. Therefore, the induced map # � V P �� � � � � 
 � �� � [ � # � 	 P �� � � � � � � � �
is not the zero map, which by Serre duality gives that the map

# � 	+* � � � # � 	 P �� ��� � � � # � V P �� � � � Pic � > � � B [
from the long exact cohomology sequence of (G.8) is not zero. Hence the
coboundary map � � # � 	 P �� � � � � # � 	 P �� ��� � �
cannot be surjective. According to [Har98] p. 96 we have� 4 * � 7

�

� � ��� � � � �
>
Pic � > � � B

�

� B 4 # � 	 P �� � � �5 � ��� � � 4 # � 	 P �� ��� � � �
But if the differential of � 7

�

� is not surjective, then � 7
�

� itself cannot be domi-
nant.

G.c. Products of Elliptic Curves

Let P � 4 � 2  � and P % 4 � 2  % be two elliptic curves, where  � 4 � � � � � � �
is a lattice and � � is in the upper half plane of � . We denote the natural group
structure on each of the P � by T and the neutral element by

'
.

Our interest lies in the study of the surface � 4 P ��� P % . This surface is
naturally equipped with two fibrations pr � � � � P � , � 4 -  1 , and by abuse of
notation we denote the fibres pr

@ �
% 	 ' � 4 P ��� � '

 resp. pr
@ �
� 	 ' � 4 � '

 � P % again
by P � resp. P % . The group structures on P � and P % extend to � so that � itself
is an abelian variety. Moreover, for

� 4 	 � �I � % � : � the mapping � � �S� � � �	 � � � �� 	 � T � ��� T � % � is an automorphism of abelian varieties. Due to these
translation morphisms we know that for any curve

� �.� the algebraic family
of curves � � �  covers the whole of � , and in particular dim � � �  � - . This also
implies

� % � '
.

Since � is an abelian surface, NS 	 � � 4 Num 	 � � , � � 4 '
, and the Picard num-

ber ��4 � 	 � � ( � (cf. [LaB92] 4.11.2 and Ex. 2.5). But the Néron–Severi group
of � contains the two independent elements P � and P % , so that � � 1 . The
general case30 is indeed � 4 1 , however � might also be larger (see Exam-
ple G.17), in which case the additional generators may be chosen to be graphs
of surjective morphisms from P � to P % (cf. [IsS96] 3.2 Example 3). This shows:

� 	 � � 4 1 if and only if P � and P % are not isogenous.

The following lemma provides a better knowledge on the dimension of the
global sections of a divisor on an elliptic curve, and leads to better results in
the irreduciblity and smoothness theorems, when products of elliptic curves
are studied.

30The abelian surfaces with �
���

possessing a principle polarisation are parametrised
by a countable number of surfaces in a three-dimensional space, and the Picard number of
such an abelian surface is two unless it is contained the intersection of two or three of these
surfaces (cf. [IsS96] 11.2). See also [GrH94] p. 286, and Proposition G.12.
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G.14 Lemma
Let P be a smooth elliptic curve over � and let � be a divisor on P of degree� 4 deg 	 � � . Then:

(a) �
� 	 P  � � 4 � 	 � � 4 deg 	 � � and � � 	 P  � � 4 '

, if � 	 '
.

(b) �
� 	 P  � � 4 � � 	 P  � � 4 '

, if � 4 '
and � �� � 
�� .

(c) �
� 	 P  � � 4 � � 	 P  � � 4 - , if � 4 '

and � � � 
�� .

Proof:

(a) Since deg 	W, � � 4 , � 
 '
and since � � is trivial, � � 	 P  � � 4 � � 	 P  , � � 4 '

.
Thus the Theorem of Riemann-Roch gives

�
� 	 P  � � 4 � 	 � � 4 deg 	 � � T(� 	 P � , - 4 deg 	 � � �

(b) and (c) follow from [Har77] IV.1.2.

G.15 Lemma
Let � �.� be an effective divisor such that � ��� pr � � � T pr �% � , where � : Div 	 P � �
with � 4 deg 	 � � � '

and � : Div 	 P % � with  4 deg 	 � � � '
.

(a) If � � 	 '
, then �

� 	 �  � � 4 �  and � � 	 �  � � 4 '
.

(b) �
� 	 �  � � 4 � � 	 �  � � ( �� � �  if � 	 ' � 4 '

  if � 4 ' � 	 ' �
(c) �0% 	 �  � � 4 '

.

Proof: We first of all note, that � � � '
and 	 � � � �4 	 '  ' � by Lemma G.7.

Since � is effective,
' 4 � � 	 �  , � � 4 �0% 	 �  ��� T � � 4 � % 	 �  � � .

By Lemma G.8 we know that

�
� 	 �  � � 4 � � 	 P %  � �C/ �

� 	 P �� � �
and

� � 	 �  � � 4 � � 	 P %  � �C/ �
� 	 P �� � � T � � 	 P %  � �C/ � � 	 P �� � � �

The result thus follows from Lemma G.14.

G.16 Lemma
Let

� �.� be an irreducible curve,
� �� EP 7 , 9 4 -  1 , and

� ��   4 � -  1  .
(a) If

� % 4 '
, then

�
is smooth, � 	 � � 4 - , and pr � � �

� � P � is an unramified
covering of degree

� � P 
 .
(b) If

� % 4 '
, then # V � � � � 	 P � �

[ 4 � � P 
 for any
� : � , and if �  � � : � , then� � @ � � 	 � � 4 � .

(c) If
� % 4 '

, then the base curve # in the fibration � � �(� # with fibre
�

,
which exists according to Proposition B.1, is an elliptic curve.

(d) If
� � P � 4 - , then

� % 4 '
and P 
 �4

�
.
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(e) If
� � P � 4 - 4 � � P 
 , then P � �4 P % .

(f) If
�

is the graph of a morphism � � P � � P 
 , then
� � P 
 4 - and

� % 4 '
.

Proof:

(a) The adjunction formula gives
�  	 � � 4 - T

� % T ��� � �
1 4 - �

Since �DP % �  covers the whole of � and
� �� EP % , the two irreducible curves�

and P % must intersect properly, that is,
�

is not a fibre of pr � . But
then the mapping pr � � � � � P � is a finite surjective morphism of degree� � P % . If

�
was a singular curve its normalisation would have to have

arithmetical genus
'

and the composition of the normalisation with pr � �
would give rise to a surjective morphism from $ �	 to an elliptic curve,
contradicting Hurwitz’s formula. Hence,

�
is smooth and � 	 � � 4 �  	 � � 4- . We thus may apply the formula of Hurwitz to pr � � and the degree of

the ramification divisor
�

turns out to be

deg 	 � � 4 1 / � � 	 � � , - T V � 	 P � � , - [ / deg 	 pr � � � � 4 ' �
The remaining case is treated analogously.

(b) W. l. o. g. � 4 1 . For
� 4 	 � �I � % � : � we have � � 	 P % � 4 pr

@ �
� 	 � � � is a fibre

of pr � , and since pr � � is unramified, # V � � � � 	 P % �
[ 4 deg V pr � � [ 4 � � P % .

Suppose �  � � : � with � � @ � � 	 � � �4 �
. Then � 4 � � @ � � 	 � � � : � � � � @ � � 	 � � ,

and hence
� % 4 � � � � @ � � 	 � � 	 '

, which contradicts the assumption
� % 4 '

.

(c) Since
� 	 � � 4 '

, [FrM94] Lemma I.3.18 and Proposition I.3.22 imply that
� 	 # � 4 � � 	 � � 4 � � 	 �  ��� � 4 - .

(d) W. l. o. g.
� � P % 4 - . Let

' �4 � : P % . We claim that
� � � � 	 � � 4 � , and

hence
� % 4 � � � � 	 � � 4 '

.
Suppose 	 � � � : � � � � 	 � � , then there is an 	 ��� � � � : � such that 	 � � � 4� � 	 � � � � � 4 	 � � � � T � � , i. e. � 4 � � and  4  � T � . Hence, 	 ' � �  	 ' � � � :� @  	 � � � P % . But, � @  	 � � � P % 4 � � P % 4 - , and thus  � 4  4  � T � in
contradiction to the choice of

�
.

P � �4 �
via pr � � follows from (a).

(e) By (d) we have P � �4 � �4 P % .
(f) pr � � �

� � P � is an isomorphism (cf. [GrD67] I.5.1.4), and has thus degree
one. But deg 	 pr � �

� 4 � � P 
 . Thus we are done with (d).

G.17 Example

(a) Let P � 4 P % 4 P 4 � 2  with  4 � � � � , and � 4 P � � P % 4 P �
P . The Picard number � 	 � � is then either three or four, depending on
whether the group End � 	 P � of endomorphisms of P fixing

'
is just � or
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larger. Using [Har77] Theorem IV.4.19 and Exercise IV.4.11 we find the
following classification.

Case 1: � * : < such that �L: � � � ,�* � , i. e. � � End � 	 P � .
Then � 	 � � 4 � and NS 	 � � 4 P � � � P % � � P  � � P F � where P  is the
diagonal in � , i. e. the graph of the identity map from P to P , and P F
is the graph of the morphism � � P � P � � �� 	  � � / � of degree �  � � % ,
where

' �4  : < minimal with  / 	 � T � � : � and  � � : � . Setting� � 4 P  � P F � - , the intersection matrix is

	 P 
 � P 7 � 
 � 7 � � � � � � � F 4
�
�
�
�
�
�
�
�
�

' - - �  � � %
- ' - -
- - ' �

�  � � % - � '

�
�
�
�
�
�
�
�
� �

If e. g. � 4 � , then P F 4 5 	 � �� �
� � � : P < and

	 P 
 � P 7 � 
 � 7 � � � � � � � F 4
�
�
�
�
�
�
�
�
�
' - - -
- ' - -
- - ' -
- - - '

�
�
�
�
�
�
�
�
� �

Case 2:
� * : < such that � : � � � ,�* � , i. e. � 4 End � 	 P � .

Then � 	 � � 4 6
and NS 	 � � 4 P � � � P % � � P  � where again P  is the

diagonal in � . The intersection matrix in this case is

	 P 
 � P 7 � 
 � 7 � � � % �  4
�
�
�
�
�
� ' - -
- ' -
- - '

�
�
�
�
�
� �

(b) Let P � 4 � 2  � and P % 4 � 2  % with  � 4 � � � � � , � � 4 � , and  % 4
� � � % � , � % 4 �

% � . Then P � ��4 P % .31

We consider the surjective morphisms � 
 � P � � P % ,  4 6  � , induced by
multiplication with the complex numbers � 

4 - and �
F 4 � respectively.

Denoting by P 
 the graph of � 
 , we claim, P ��� P  4 deg 	 � 
� 4 1 and

P �I� P F 4 deg 	 �
F � 4 1 . � 
 being an unramified covering, we can calculate

its degree by counting the preimages of
'
. If

� 4 � � T �+ � : � 2  � 4 P �
31Suppose $ � �� $

 , then there are integers � � 	 ��� ��� � � with � � � 	 � ����� such that�
 ! � 
 � �
	

� � � ? (cf. [Har77] Theorem IV.15B). But this leads to � ! � 	 �
�
 � !

� �
 � , i. e.

� � ���
and � � 	 ��� . Inserting these relations in the determinant equation we get ��� � � �  � � 	  �� # �� � 	  & which would say that two divides one.
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with
' ( � � 
 - , then

� 
	 � � 4 '�� �3T �� 4

� 
/ 	 ��T �+ � :  %

� ��� �� :�� � � 4 � and  4 �

%
/ �

� � 4 '
and  : 5 '  �% < �

and

�
F 	 � � 4 '�� � � ,  4

�
F / 	 �3T �+ � :� %

� ��� �� :�� � ,  4 � and � 4 �

%
/ �

�  4 '
and � : 5 '  �% < �

Moreover, the graphs P  and P F intersect only in the point 	 '  ' � and the
intersection is obviously transversal, so P  � P F 4 - .
Thus � 4 P ��� P % is an example for a product of non-isomorphic elliptic
curves with � 	 � � 4 � , NS 	 � � 4 P � � � P % � � P  � � P F � , and intersection
matrix

	 P 
 � P 7 � 
 � 7 � � � � � � � F 4
�
�
�
�
�
�
�
�
�
' - 1 1
- ' - -
1 - ' -
1 - - '

�
�
�
�
�
�
�
�
� �

(c) See [HuR98] p. 4 for examples � 4 P � � P % with � 	 � � 4 6
and intersec-

tion matrix �
�
�
�
�
� ' - �
- ' -
� - '

�
�
�
�
�
�  � �4 - �

G.18 Remark

(a) If P � and P % are isogenous, then there are irreducible curves
� �.� with� � P � arbitrarily large.

For this just note, that we have a curve � � � which is the graph of an
isogeny � �CP � � P % . Denoting by �������CP % � P % the morphism induced
by the multiplication with � : < , we have a morphism � ��� � � whose
degree is just � % / deg 	 �

�
. But the degree is the intersection number

of the graph with P � . The dual morphism of ����� � � has the the same
degree, which then is the intersection multiplicity of its graph with P % .
(Cf. [Har77] Ex. IV.4.7.)

(b) If P � and P % are isogenous, then � might very well contain smooth irre-
ducible elliptic curves

�
which are neither isomorphic to P � nor to P % ,

and hence cannot be the graph of an isogeny between P � and P % . But
being an elliptic curve we have

� % 4 '
by the adjunction formula. If now

NS 	 � � 4 � � > � B
��� � P � � , where the additional generators are graphs, then� �  , � > �OB

��� � � � P � with some � � 
 '
. (Cf. [LaB92] Ex. 10.6.)
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Throughout the remaining part of the subsection we will restrict our attention
to the general case, that is that P � and P % are not isogenous. This makes the
formulae look much nicer, since then NS 	 � � 4 P � � � P % � .

G.19 Lemma
Let P � and P % be non-isogenous elliptic curves, � : Div 	 � � with � �� � P � T  P % .
(a) � is nef if and only if � � � '

.

(b) � is ample if and only if � � 	 '
.

(c) � is very ample if and only if � � � 6
.

(d) � % 4 '
if and only if � 4 '

or  4 '
.

(e) If � is an irreducible curve, then we are in one of the following cases:
(1) � 4 '

and  4 - ,
(2) � 4 - and  4 '

,

(3) � � 	 '
,

and, conversely, if we are in one of these cases, then there is an irreducible
curve algebraically equivalent to � .

(f) If � is an irreducible curve and � % 4 '
, then either � � EP � or � � EP % .

Proof: (a) and (b) follow from Lemma G.7.

(c) In Lemma G.7 we proved that � � � 6
if � is very ample.

Conversely, if � 
 6
, then � � P % is a divisor of degree � � P % 4 � 
 6

on the elliptic curve P % and hence not very ample (cf. [Har77] Exam-
ple IV.3.3.3). But then � is not very ample. Analogously if  
 6

.

(d)
' 4 � % 4 1 �  if and only if � 4 '

or  4 '
.

(e) Let us first consider the case that � is irreducible.
If � 4 '

or  4 '
, then � is algebraically equivalent to a multiple of a

fibre of one of the projections pr � , � 4 -  1 . In this situation � % 4 '
and

thus the irreducible curve � does not intersect any of the fibres properly.
Hence it must be a union of several fibres, and being irreducible it must
be a fibre. That is we are in one of the first two cases.
Suppose now that � � �4 '

. Thus � intersects P � properly, and
' 


� � P � 4  and
' 
 � � P % 4 � .

It now remains to show that the mentioned algebraic systems contain
irreducible curves, which is clear for the first two of them. Let therefore� and  be positive. Then obviously the linear system � � P � T  P % � � con-
tains no fixed component, and being ample by (v) its general element is
irreducible according to [LaB92] Theorem 4.3.5.

(f) Follows from (d) and (e).
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G.d. Surfaces in $ 	 and Complete Intersections

A smooth projective surface � in $ 	 is given by a single equation � 4 '
with

��: � � �  Q  Y  U � homogeneous, and by definition the degree of � , say � , is just
the degree of � – for � 4 - , � �4 $ %	 ; for � 4 1 , � �4 $ �	 � $ �	 ; and for � 4 6

, � is
isomorphic to $ %	 blown up in six points in general position. Thus the Picard
number � 	 � � , i. e. the rank of the Néron–Severi group, in these cases is - , 1 ,
and � respectively.32 Note that these are also precisely the cases where � is
rational.

In general the Picard number � 	 � � of a surface in $ 	 may be arbitrarily
large,33 but the Néron–Severi group always contains a very special member,
namely the class # : NS 	 � � of a hyperplane section with # % 4 � . And the
class of the canonical divisor is then just 	 � , � � / # . Moreover, if the degree of
� is at least four, that is, if � is not rational, then it is likely that NS 	 � � 4 # � .
More precisely, if � � � , Noether’s Theorem says that

� � � � 	 � � 4 -  deg 	 � � 4 � 
is a very general subset of the projective space of smooth projective surfaces
in $ 	 of fixed degree � , i. e. it’s complement is an at most countable union of
lower dimensional subvarieties (cf. [Har75] Corollary 3.5 or [IsS96] p. 146).

In Chapter V we need to know that hypersurface sections on surfaces in $ 	 ,
or more generally on complete intersections, are always non-special. If � 4
# � � ����� � # � @ % : $ �	 is a complete intersection of hypersurfaces # � � $ �	 of
degree * � , � 4 - ������� � , 1 , with * � � ����� � * � @ % 	 - , we say � is a complete
intersection of type 	+* ��������� * � @ % � .
G.20 Proposition
Let � 4 # � � ����� � # � @ % : $ �	 be a smooth complete intersection of type	+* �I������� * � @ % � , and let # �.� be a hyperplane section.

Then ��� � �&V , � , - T , �
@ %��� � * �

[ / # , # % 4 * � /�/�/ * � @ % and34 for * : �
(a) � � 	 �  * # � 4 '

,

(b) �
� 	 �  * # � 4 V � 	 �� [ T �

@ %,7 � �
,

� � 
 ��� � � � � 
 � � � @ % 	�,�- � 7 / � � 	 �N@ � � 
 � � � � 
�
�  and

(c)
� 	 
 � � 4 - T � @ � 	 � � � �

���
� �

�
�

� T �
@ %,7 � �

,
� � 
 � � � � � � 
 � � � @ % 	W,�- � 7 / � @ � 	 � � � �

���
� �

�
@ � � 


�
� � � 


�
� �

Proof: Denoting by # � a hyperplane section in � � 4 # � � ����� � # � , � 4 ' ������� � ,
1 , we claim that we have indeed ���

� � � V , � , - T , � 7 � � * 7
[ / # � and for * :��

(a’) � 7 V � �  * # �
[ 4 '

for all
' 
 9 
 � , � .

32See e. g. [Har77] Example II.8.20.3 and Remark V.4.7.1.
33E. g. the � -th Fermat surface, given by � � � � � � � � � = � � �

has Picard number
�

��� � # � � � &�� # � � � & � � , with equality if gcd # � ��� & � � (cf. [Shi82] Theorem 7, see also
[AoS83] pp. 1f. and [IsS96] p. 146).

34If � � � , we set the binomial coefficient � � � # � �
.
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(b’) �
� V � �  * # �

[ 4 �
� V@
 �

�
	 	+* � [ T �,7 � �

,
� � 
 � � � � � � 
 � � �	W,�- �W7 / � � � 
 �

�
	 V *3, , 7 � � � * 
 
 [ �

4 V � 	 �� [ T �,7 � �
,

� � 
 � � � � � � 
 � � � 	W,�- � 7 / � � 	 �A@ � � 
 � � � � 
�
� �

We do the proof by induction on � , where for � 4 '
we are in the case � � 4 $ �	

with � �
�
	 � � 	W, � , - � # � and (a’) follows from [Har77] III.5.1, while (b’) is

obvious. We may thus assume that � � - .
The inclusion � � � � � � @ � gives rise to the exact sequence

'
// 
 � � � � V ,.* � # �

@ � [ H �
� // 
 � � � � // 
 � � //

'  (G.9)

and by [Har77] II.8.20 � � � �4 � � � � � � 
 � � V * � # � [ . But then by induction���
�
4


, � , - T ��

7 � �
* 7 � / # � �

The long exact cohomology sequence of (G.9) twisted by * #�� @ � then gives

' // # � V � � @ �� 	+*�, * � � # �
@ � [

// # � V � � @ �� * # �
@ � [

// # � V � �  * # �
[

��# � V+� � @ �� 	+*E,5* � � # �
@ � [

(G.10)

and for any 9 � -
# 7 V � � @ �� * # �

@ � [
// # 7 V � �  * # �

[
// # 7 	 � V � � @ �� 	+*E,5* � � # �

@ � [ � (G.11)

(a’) If
' 
 9 
 � , � , then � 7 V � � @ �� * # �

@ � [ 4 ' 4 � 7 	 � V � � @ �� 	 *�,.* � � / # �
@ � [

for
any * by induction. Thus by G.11 also � 7 V � �  * # �

[ 4 '
.

(b’) Since � � V � �  * # �
[ 4 '

, by (G.10) and induction we get

�
� V � �  * # �

[ 4 �
� V � � @ �� * # �

@ � [ T � � V � � @ �� 	+*�,.* � �0/ # �
@ � [

4 �
� V@
 �

�
	 	+* � [ T � @ �,7 � �

,
� � 
 � � � � � � 
 � � � @ �	W,�- � 7 / � � � 
 �

�
	 V *�, , 7 � � � * 
 
 [ �

, � � V 
 �
�
	 	+*�, * � �

[ , � @ �,7 � �
,

� � 
 � � � � � � 
 � � � @ �	�,�- � 7 / � � � 
 �
�
	 V *3,.* � , ,

7 � � � * 
 
 [ � �
4 �

� VG$ �	  
 �
�
	 	+* � [ T �,7 � �

,
� � 
 � � � � � � 
 � � � � � � $ �	  
 �

�
	 V *�, , 7 � � � * 
 
 [ � �

Knowing that for any � : � the dimension �
� VG$ �	  
 �

�
	 	 � � [ 4 V � 	 �

�

[
we

have proved (b’).

(c) This follows immediately by (a), (b) and Serre duality, since� 	 
 � � 4 - T � � V+�  ��� [ �
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Finally, we note that # % is just the degree of �	: $ �	 , which is just * � /�/�/ * � @ %
by the Theorem of Bézout (cf. [Har77] I.7.7.).

We note that complete intersections of type (4), (3,2) and (2,2,2) are the only
smooth complete intersection surfaces which are K3-surfaces, since for no
other choice of the * � and

�
we can achieve that , �

@ %��� � * � ,
� ,.- 4 '

.

Since a smooth hypersurface in $ 	 is a complete intersection, we get the fol-
lowing corollary.

G.21 Corollary
Let � � $ 	 be a smooth hypersurface of degree � in $ 	 , and let # � $ 	 be any
hyperplane section.

Then ��� � � 	 � , � � / # and35 for * :��
(a) � � 	 �  * # � 4 '

,

(b) �
� 	 �  * # � 4 V � 	  [ , V �N@ � 	  [

, and

(c)
� 	 
 � � 4 - T V � @ � [ .

G.e. K3-Surfaces

We note that if � is a K3-surface then the Néron–Severi group NS 	 � � and
the Picard group Pic 	 � � of � coincide, i. e. � � �  4 � � � � for every divisor � on
� . The Picard number � 	 � � of a K3-surface may take values between - and1 ' , and there are K3-surfaces � with � 	 � � 4 � for each � : � - ������� 1 '  . The
generic case is � 	 � � 4 - – more precisely, the K3-surfaces with � 	 � � 4 � are
parametrised by points of an at most countable union of irreducible varieties
of dimension 1 ' , � (cf. [IsS96] 12.5 Corollary 4). Moreover, if NS 	 � � 4 � / � ,
then � � 4 �

%
/ � % may be any even positive number (cf. [IsS96] 12.5 Corollary

2). In general, we denote by � � 4 min 5 � % � � : NS 	 � �  � % 	 '
 . E. g. if � is a

double cover of $&%	 branched along a sextic, then � � 4 - ; if � is quartic in $ 	 ,
then � � 4 1 ; if � is a complete intersection of type (3,2) in $ F	 , then � � 4 6

;
if � is a complete intersection of type (2,2,2) in $ \	 , then � � 4 � (cf. [IsS96]
p. 219). Moreover, the surfaces of this these types are each parametrised by a
19-dimensional variety (cf. [Mér85] 5.4), and thus by [IsS96] 12.5 Corollary
2 a generic member must have Picard number one.

An irreducible curve
�

has self-intersection
� % 4 '

if and only if the arith-
metical genus of

�
is one. In that case � � � � is a pencil of elliptic curves with-

out base points endowing � with the structure of an elliptic fibration over
$ �	 (cf. [Mér85] or Proposition B.1). However, a generic K3-surface does not
possess an elliptic fibration.

35If � � � , we set the binomial coefficient � � � # � �
.
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