Automata-Theoretic vs. Property-Oriented
Approaches for the Detection of
Feature Interactions in IN

Jan Bredereke

University of Kaiserslautern, Postfach 3049, D-67653 Kaiserslautern, Germany
E-mail: bredereke@informatik.uni-k1.de, Phone: +49 631 205-3287, Fax: -2640
URL: http://www.informatik.uni-k1.de/aggotz/bredereke

Abstract

The feature interaction problem in Intelligent Networks obstructs more and more
the rapid introduction of new features. Detecting such feature interactions turns out
to be a big problem. The size of the systems and the sheer computational complexity
prevents the system developer from checking manually any feature against any other
feature. We give an overview on current (verification) approaches and categorize
them into property-oriented and automata-theoretic approaches. A comparison
turns out that each approach complements the other in a certain sense. We propose
to apply both approaches together in order to solve the feature interaction problem.

1 Introduction

Telephone switching systems are a classical example for long-lived and perpetually evolv-
ing software in the telecommunications domain. The first software controlled switching
exchanges essentially still provided the Plain Old Telephone Service (POTS). Step by
step, new features have been added since then which were supposed to offer added value
to the customer (e.g. by call forwarding) and/or to the service provider (e.g. by improved
accounting).'

Up to now thousands of features have been developed [BrAt94, DSW*94, BDC*89]
(the DMS-100 switch of Northern Telecom alone supports over 800 telephony features
[Nor92]). Therefore the probability is high that augmenting such a system by one more
feature will influence another feature, especially in an undesired way. This is called a
feature interaction. Both the notion of feature and the notion of feature interaction are
used quite fuzzily and informally most of the time. This does not make a solution of the

!Example: the features defined in the ITU-T recommendations for Intelligent Networks (IN) [ITU93a].

problem easier. (Our formalization in [Bre95, Bre96] is intended as an attempt to improve
this situation.)

A simple example of a feature interaction is the joint subscription to Originating Call
Screening (OCS) and Abbreviated Dialling (ABD). The OCS feature allows to enter
directory numbers into a list, e.g., by a parent. The feature aborts a call if a number is
dialled, e.g., by an adolescent, which found on this list. The ABD feature translates a list
of short, i.e. one-digit, numbers into full directory numbers. If both features are executed
in the wrong order, i.e., OCS before ABD, the OCS feature can be circumvented by the
adolescent. He registers the desired number as an abbreviated number, and then dials
the abbreviated number, reaching a destination which he should not reach. A resolution
to this problem is to execute the OCS feature only after all number translating features
have been executed.

Another example of a feature interaction may occur between Credit Card Calling
(CCC) and VoiceMail. Pressing the # button is interpreted by CCC as a signal to
continue with a new call without redoing authorization. But the same symbol is recog-
nised by a VoiceMail box as a command. It can be interpreted only once; no matter which
feature interprets it, the other one cannot work properly.

Some features are just incompatible, e.g., Call Waiting (CW) and Call Forward on
Busy (CFB). When a customer is already engaged in a conversation, and another call
arrives, the CFB feature sends a signal tone. The customer may then switch to this other
call (and back again). The CW feature is activated in a busy state, too. If a call arrives
when the customer is busy, this call is forwarded to another directory number. Only one
of the two features can get control over the newly arriving call, and the other one must
fail to do so.

As has been pointed out by Cameron and Velthuijsen [CaVe93|, it is crucial to define
the problem before trying to solve it. They describe two views on the problem. In the
business view, “a feature is a tariffable unit”, and “a feature interaction occurs when the
behaviour of one feature is altered by the use of another”. “A second kind of interaction
occurs when the use of one feature should alter the behaviour of another, but does not.” In
the implementor’s view, “a feature is any increment of functionality added to an existing
system”. “Just as in the business view, a feature interaction occurs when one feature’s
behaviour is altered by the use of a second.” Other authors provide similar descriptions,
compare e.g. Kimbler and Velthuijsen [KiVe95, page 2|, Aho and Griffeth [AhGr95], and
Mierop et al. [MTJ93].

Even if they cannot present a clear (formal) concept of what a feature and a feature
interaction are, the notion of “behaviour of a feature” is surely a central one. It is
a necessary precondition for a feature interaction that this behaviour is changed. In
[Bre95, Bre96], we developed a formal definition which is based on the central notion
of the change in behaviour. We restricted our formalization of feature interactions to
the well-investigated functional aspects of the behaviour?, and made use of automata
[HoUI79).

2This excludes, for example, the treatment of a case where one feature is impaired because another
feature causes an overload on some shared resource.

e open telecommunications platforms
e signalling protocols
. e service creation guidelines
avoidance : .
e service creation processes
e service management processes
[]
e verification tools
. e validation tools . .
detection . . e behaviour analysis
e simulation tools
[]
e FI manager
. e redesign e negotiation
resolution .
e customer care e event-based resolution
° .
off-line on-line

Figure 1: Categorization of approaches to addressing feature interactions from [BoVe94|.

We did not discuss what a service is. Commonly, it is some collection of features,
but only if this collection is somehow self-contained. Since we concentrated on functional
aspects anyway, we had no need to take the pains with designing a formal definition of a
service; we sticked to the task of defining a feature and its interactions.

Bouma and Velthuijsen [BoVe94] have proposed a categorization of approaches to ad-
dressing feature interactions, which may be found in Figure 1. Awoidance would be the
best way to deal with the problem; unfortunately, a full coverage is impossible due to the
diversity of the problem. Therefore, we (additionally) need a detection step, and then a
resolution step. Both steps may be performed either off-line or on-line. Experience has
shown that detection is harder than resolution in the off-line case, and resolution is harder
than detection in the on-line case.

In the remainder of this paper, we will concentrate on the off-line verification approach-
es for the detection of feature interactions. We will categorize these approaches further
into property-oriented approaches (Section 2) and automata-theoretic approaches (Sec-
tion 3). In Section 4, we will propose to integrate these approaches, and we will present
conclusions in Section 5.

2 Property-Oriented Approaches

In Section 2.1, we will give a sketch of the mostly used property-oriented approach; in
Section 2.2, we will list several detailed references and describe the differences among these
approaches; and in Section 2.3, we will discuss some limitations of the property-oriented
approach.

2.1 The Standard Approach

The combinatory complexity of the problem (compare Section 1) strictly demands efficient
tool support. Automated tool support is only possible if the entire system is described
formally. Therefore, a formal description of the telephone system and of its features is a
basic prerequisite for any further work.

The level of such a description varies from one approach to another. Most work is done
on either the global functional plane (GFP) or on the distributed functional plane (DFP)
of the IN conceptual model (INCM) [ITU92].

The standard property-oriented approach requires two separate formal descriptions.
One is written in a lower-level, constructive® description technique. This may be, e.g.,
SDL [CCI87, FaOl94], Estelle [ISO89], LOTOS [ISO88|, or Promela [HoPe95, Gré95|.
Often, this description is used later to generate implementations automatically. Such a
description contains sufficient details which enable a compiler tool to generate relatively
efficient code. On the other hand, there is still a formal semantics for the description
which allows the further verification steps.

The second formal description is on a higher abstraction level and more property-
oriented. Generally, it abstracts away from the “how” of internal details and tries to take
a users’ view of the system. The expectations of the customers (and of the service provider)
at the system and at the additional features should be expressed as directly as possible.
The description language is mostly some variant of temporal logic [Pnu77, MaPn92]|.
Sometimes, LOTOS is used at this level, too. As with many property-oriented description
approaches in other fields of application, this description needs not to be complete in most
FT detection approaches. The specifier just writes down any relevant property he can think
of, and any property he has found out by interviewing customers.

The next step is to define an “implements” relation between the lower-level and the
higher-level specification of the system. This relation decides mathematically if the lower-
level specification fulfills all properties from the higher-level specification. (Compare Fig-
ure 2.) Often, this “implements” relation is only assumed implicitely by the authors. It
exists nevertheless.

Of course we expect that this “implements” relation is fulfilled. This can be checked
either by mathematical proof (manually or with tool support) or by model checking (with
tool support). A model checking tool generates every possible execution trace that the
lower-level description is capable of, and checks if all properties are true in all of the states.
An alternative approach to this is testing, where only a subset of the execution traces is

3“Constructive” means “executable” or that an implementation can be derived directly.

properties (p N f (tempord) logic

"implements" ’ﬂ‘
< e P
behaviour ‘\C/\D constructive language

Figure 2: The property-oriented verification approach.

abstraction

investigated. Obviously, this is weaker than a proof, but it may be the only choice left
when the state space is too big which has to be explored.

The interesting point comes when we add a new feature f to the system. We do
this by simultaneously adding a new part to the lower-level description and adding some
more properties to the higher-level description. Now, the extended lower-level description
should still satisfy all the properties of the higher-level description, and additionally all
the new properties of the new feature. This is checked by the same methods as above.

If we cannot prove the “implements” relation anymore, we may get hints instead in
which situations which property does not hold. E.g., a model checker may print out an
execution trace where a specific property has been violated. Such information may be
used for the (manual) analysis and resolution of the problem.

2.2 Overview of Several Specific Approaches

In the approach of Lin and Lin [LiLi94], specifications are written in temporal logic,
implementations are written in Promela, and the tool SPIN allows model-checking of the
properties.

Braithwaite and Atlee [BrAt94| describe a telephone system by automata, and they
perform an exhaustive state space analysis. They look for some automata-theoretic prop-
erties as non-determinism in the processing as well as for the violation of explicitely
specified properties (assertions). They restrict themselves to certain common classes of
of feature interactions, and they use a semi-formal tabular specification technique. There
is no tool support up to now.

Gammelgaard and Kristensen [GaKr94] write specifications in a more restricted form
(only predicates), and implementations are expressed by transition rules. The strict for-
malization is still for future research.

Combes and Pickin [CoPi94] write their lower-level descriptions in SDL. Since message
sequence charts (MSCs) [ITU93b] are a standard and well-supported method of specifying
test cases for SDL specifications, they write their higher-level specifications in temporal
logic and translate them to message sequence charts. The tool GEODE [Enc89] then
allows model-checking of the properties. It is planned to translate the higher-level speci-
fications to so-called SDL-observers which allow for more expressive power than MSCs.

Bouma and Zuidweg [BoZu93, BoZu92| write specifications in branching-time temporal
logic, and they write implementations in Lotos. (Manual) model checking is done with
the tool LITE. Korver [Kor93] extends this work by automatic model checking with the
tool Caesar/Aldébaran [FGM'92].

Faci and Logrippo [FaLo94, Fac95, BoLo93| write both the specifications and the im-
plementations in Lotos.

Blom et al. [BJK94| have only treated specifications up to now, and no implementa-
tions. They express everything in the Lamport’s temporal logic of actions (TLA) [Lam91].
They check by logical reasoning if the combined system can have a legal implementation.
The SCORE project [SCO95], too, proposes the idea that one can cross-check the high-
level specifications of the features beforehand. If the properties are inconsistent when put
together, one can save the pains of looking at the implementations.

2.3 Limitations

The property-oriented approach is promising, but it also has some limitations and prereq-
uisites. If the proof is done by logical reasoning, the work is painstaking even with tool
support, and the method is only applicable to small systems. Symbolic model checking,
used, e.g., in the SPIN tool (see, e.g., [HoPe95, Gré9s, LiLi94|), has brought some progress
with this respect, lately.

Furthermore, one can only verify those properties that are explicitly specified. And
in general, it is practically impossible to formalize all expectations at the system which
the service provider or the customer may have. E.g., Dankel et. al. [DSW*94] present a
natural language-based system that converts English-based telephony requirements into
a knowledge-based representation. Goals of this conversion are, according to them, to
create an unambiguous understanding of the requirements of the described telephony
feature, and to create [at least] less ambiguous written requirements documents. Even
such massive methodical and tool support does not allow them to write property-oriented
specifications which are complete.

Even worse, existing property descriptions may become “incomplete” or “inaccurate”
by a later addition of a new feature: Imagine that you have expressed all relevant prop-
erties concerning a “caller” in a telephone system, in order to specify a Terminating Call
Screening (TCS) feature. The TCS feature allows the customer to specify a list of callers
by whom he does not want to be disturbed. Then, add a new Call Forwarding (CF)
feature to this system. When a caller A calls a callee B, then B may forward this call
to a customer C (compare Figure 3). This way B may become a caller, too, in a sense.
Who is the caller for C? Is it A, who initiated the original call, or is it B, who initiated

= c
NN —D)L

caller to B forward to C ::=

reject A ::=
if callee then if caller = A then
become caller to C exception(reject)

Figure 3: Feature interaction between call forwarding and terminating call screening.

the forwarding call? Therefore, the notion of “caller” has become a little muddy, and
our carefully written formulae on properties of a caller may not denote the meaning any-
more which we wanted them to have. As a consequence, customer A may get through to
customer C, who might feel upset about the failure of his TCS feature.

3 Automata-Theoretic Approaches

Besides the property-oriented approaches discussed in Section 2, there is also a second
line of ideas to tackle the detection of feature interactions by a verification approach. It
does not use two descriptions of the system on different levels (compare Figure 2), but
only a single constructive description.

Any formal specification may be investigated for properties which are generally unde-
sirable. E.g., a specification which allows the system to deadlock is incorrect with high
probability. Similarly, an unspecified reception* should never happen. But in the specific
application domain of Intelligent Networks, one can determine more specific automata-
theoretic criteria that direct our attention to both errors and to feature interactions in
the system specification.

In Section 3.1, we will give an overview of some first ideas on such an automata-theoretic
approach; in Section 3.2, we will describe a formal framework for this approach; and in
Section 3.3, we will discuss the achievements and limitations of the automata-theoretic
approaches.

3.1 Overview

Cheng [Che94] proposes to use a specific layered architecture for the specification of the
system (in LOTOS). For the analysis of interactions, he concentrates on the links be-
tween these layers. He assumes that an interaction occurs if there exists non-determinism
between the entrance events of different features.

4 An unspecified reception is similar to a deadlock in that there is no more progress possible, but the
message queues are not empty. Often, a missing reception transition is the cause.

Besides for non-determinism, Ohta and Harada [OhHa94] check a state transition sys-
tem for several general criteria, such as deadlocks, unreachable transitions, undefined
states, duplicated identifiers etc.

Dworak [Dwo91] proposes informally to look for non-determinism and to look for state
combinations and transitions which violate constraints. (The latter is some rudimentary
kind of property-oriented approach as discussed in Section 2, again.)

Lee [Lee92] uses an object oriented specification language and analyses if two features
share the same data, which might be a source of feature interaction.

Kuisch et al. [KJMKO93] analyse (informally) if two features can be active at the same
time and can access the same resources. This idea is extended by Kimbler, Kuisch et
al. [KKM94] who categorize features and then check only pairs of features in interaction
prone category combinations. The aim of this idea is to reduce the manual part of the
analysis. Kimbler and Sgbirk [KiSg94| combine the idea with an analysis of shared data
between features for those features which are used most often together.

3.2 An Approach Based on a Formal Definition for FI

Automata-theoretic criteria for feature interactions (and other errors) have the advantage
that they can be checked by relatively simple means.> E.g., non-determinism among
the transitions of a state transition system may be found by comparing all transitions
pair-wise. No execution sequences have to be considered or constructed for this. A
disadvantage of the approaches described in the previous subsection is that they don’t
really look for feature interactions but only for some criteria which may indicate feature
interactions. If a feature interaction occurs, these criteria need not neccessarily be fulfilled,
so that some feature interactions may not be found. These approaches are able to find
some critical spots, but not all of them.

Therefore, we developed a formal definition of the notion of “feature” and “feature
interaction” in [Bre95, Bre96|, at least for the functional aspects of a system. The defini-
tion is based on the notion of “behaviour of a feature” which we discussed in Section 1.
The telephone system is formalized by a global, structured automaton. Both the (data)
structure of the automaton and the set of state transtions is partitioned into different fea-
tures. Adding a feature is realized by adding transitions and (maybe) extending the state
space. The behaviour of a feature is defined by the set of execution traces in which some
transition of this feature takes part. A feature interaction occurs if some other feature
modifies this behaviour of the feature. Based on the formal definition, we derive more
sophisticated detection criteria, which, e.g., make advantage of the typical structure of a
call processing automaton.

All the previous approaches had the disadvantage that they could not guarantee that
no more feature interactions are present in the system after the detection scheme has been
applied and after all the found feature interactions have been resolved. This is different
with our approch. It allows to prove that no more feature interactions are present in the

5As long as we don’t have to explore the entire state space, which may lead to an exponential growth
in processing time with increasing size of the specification.

behaviour of the system. This achievement is only restricted by the limits of our definition
of feature interaction.®

After the feature interactions have been detected, it is comparably easy to resolve them.
Details on the formal resolution procedure may be found in [Bre95, Bre96|.

Our formal framework can be mapped onto real formal description techniques. There
is already some tool support, applied to the FDT Estelle. The tool CONFINE detects non-
determinism between Estelle transitions of different features [ThBr95, The96]). (Such
non-determinism plays an important role in the detection criteria.) Furthermore, CON-
FINE also detects and automatically eliminates Estelle transitions which have become
non-executable because they are completely overlapped by new, higher-priorized Estelle
transitions. (This may happen due to feature interaction resolution steps.) Currently, we
work on incorporating more criteria into CONFINE [Bar96]. The tool set Pet/Dingo from
NIST [SiSt93] automatically generates executable code from an Estelle specification and
animates the execution.

A first case study [BrGo94, BrGo95] used a simple global service specification of a
telephone switching system. Our detection tool CONFINE did not only find the already
known feature interactions but also two interferences which escaped us while we speci-
fied this simple example. A manual analysis led to the conclusion that both cases are
harmless if an implementation is sufficiently fast. Nevertheless, we achieved a deeper un-
derstanding of some underlying problems. Furthermore, CONFINE detected and removed
automatically the inactive transitions which had become obsolete through the resolution
procedure for the known feature interactions.

Currently, we are working on a second case study which is based on a simplified version
of the IN conceptual model [ITU92], specified in Estelle again, and which takes into
account the distribution aspect, too [I1195, Jer96].

3.3 Achievements and Limitations

The result of an automata-theoretic analysis is a list of pairs of features which may possibly
interact. If there are sufficiently few cases left to analyze, the traditional manual analysis
can become effective again.

Such a list is of value for the management of detected possible feature interactions: for
each entry, we need to find an expert who knows both features and can determine how
the interaction is resolved best. This is an improvement to the current situation. Up
to now we need an expert who knows all features in the system, if we want to add one
new feature. And the larger the system becomes, the harder it is to find such an overall
expert.

Since the detection criteria presented in [Bre95, Bre96] render all potential feature
interactions, we have the chance to catch all feature interactions, even those that would go
unnoticed by property-oriented verification approaches because of incomplete descriptions
as described in Section 2.3.

6The most notable restriction is that we excluded non-functional aspects such as an overload on some
shared resource from the definition.

property-oriented approach automata-theoretic approach

two different specifications one specification

adding features incrementally adding features incrementally

needs formal specifications needs a formal specification

finds violations of users’ intentions only possible interactions found
incomplete list of can find all (possible) feature interactions

properties / feature interactions

expensive proof of properties computationally cheap®

%if no complete state space exploration

Table 1: Comparison of the two verification approaches

The main limitation of the automata-theoretic approach is that the detection criteria
point out possible feature interactions, but that they cannot tell if the resulting behaviour
is undesirable or even desired. The reason for this is that there is no additional information
on the intentions of the customers and of the provider, as with the property-oriented
approach discussed in Section 2.

Most automata-theoretic criteria are computationally cheap, e.g., the check for non-
determinism (compare the beginning of Section 3.2). Some of the more advanced auto-
mata-theoretic criteria may become computationally expensive. E.g., a check if the system
can deadlock may need to explore the entire state space, which can be huge even for small
systems.

4 Integrating the Approaches

Table 1 compares the key features [sic!] of the two approaches discussed in Sections 2
and 3. It can be seen that both approaches complement each other in a certain sense.
On the one hand, the automata-theoretic approach can only find possible interactions,
while the property-oriented approach can decide if actually harm is done. On the other
hand, only the automata-theoretic approach can find all interactions. Furthermore, it is
computationally cheaper.

Kimbler, Kuisch et al. [KKM94| (compare Section 3.1) have already proposed infor-
mally that the manual analysis should not be applied to any combination of features but
only to the interaction prone ones.

The property-oriented approach allows to check bigger specifications than manual work,
but it puts still severe restrictions on the size of the system which can be analyzed. This
leads to the idea that the property-oriented verification should be restricted to combi-
nations of features which are interaction prone, too, and that it need not be applied for

those combinations where we can exclude feature interactions by simpler means. These
simpler means can be automata-theoretic criteria. At least our approach [Bre95, Bre96|
can definitely exclude many combinations of features which surely cannot interact.

Automata-theoretic criteria can determine which pairs of features cannot interact by
any means. For example, if two features work in different “parts” of the system, are never
active at the same time, and have no other “relation among each other”, then we can be
sure that they don’t interact.

Such formal criteria may restrict the n x n space of possibly interacting features to
a much smaller list of possibly critical pairs of features. Then, this list can be analyzed
much more thoroughly. For this, we can apply the property-oriented approach.

Therefore, both the automata-theoretic and the property-oriented approach should be
applied together in order to achieve optimal results.

Of course, there is still the problem that the property-oriented approach may use
an incomplete property description or one that has become inacccurate, as discussed in
Section 2.3. Nevertheless, the use of a second, independent and complementary approach
has lowered the risk, and the higher degree of mechanisation which is possible now allows
for a deeper manual study of remaining problems.

5 Conclusions

We have introduced to the feature interaction problem in Intelligent Networks, which
obstructs more and more the rapid introduction of new features into telephone switching
systems. Since those feature interactions cannot be avoided (entirely), they have to be
detected and then resolved. The detection of feature interactions turns out to be the
hardest part in this, if we want to tackle them before the system is installed. The size
of the systems and the sheer computational complexity prevents the system developer
from checking manually any feature against any other feature. Most approaches to the
detection of feature interactions are off-line verification approaches. We categorized them
into property-oriented approaches and into automata-theoretic approaches. We sketched
both approaches and presented an overview of previous work.

We compared both verification approaches, the results may be found in Table 1. It
turned out that each approach complements the other in a certain sense.

This led to the idea that the computationally cheaper automata-theoretic approach
should be applied first, in order to reduce the number of pairs of features which can
possibly interact, and then the property-oriented approach should be applied to find out
if the found possible feature interactions are really undesired.

Therefore, both approaches will have to be applied together in order to solve the feature
interaction problem.

References

[AhGr95] Aho, A. V. and Griffeth, N. D. Feature interactions in the global information

[Bar96|

[BDC*89]

[BJK94]

[BoL093]

[BoVe94]

[BoZu92]

[BoZu93|

[BrAt94]

[Bre95|

[Bre96]

[BrGo94]

[BrGo95]

infrastructure. In “Proceedings of the 1995 Conference on Foundations of
Software Engineering” (1995).

Barthel, D. Implementation of criteria for the detection of feature interac-
tions. Master thesis (in German), Univ. of Kaiserslautern, Dept. of Comp.
Sci. (1996). To appear.

Bowen, T. F., Dworack, F. S., Chow, C. H., Griffeth, N., Herman, G. E., and
Lin, Y.-J. The feature interaction problem in telecommunication systems. In
“Seventh IEEE International Conference on Software Engineering for Telecom-
munication Systems” (July 1989).

Blom, J., Jonsson, B., and Kempe, L. Using temporal logic for modular specifi-
cation of telephone systems. In Bouma and Velthuijsen [BoVe94], pp. 197-216.

Boumezbeur, R. and Logrippo, L. Specifying telephone systems in LOTOS.
IEEE Commun. Mag. 31(8), 38—45 (Aug. 1993).

Bouma, L. G. and Velthuijsen, H., editors. Feature Interactions in Telecom-
munications Systems. 10S Press, Amsterdam (1994).

Bouma, W. and Zuidweg, H. Formal analysis of feature interactions by model
checking. In “1st International Workshop on Feature Interactions in Telecom-
munications Software Systems”, St. Petersburg, Florida, USA (Dec. 1992).

Bouma, W. and Zuidweg, H. Formal analysis of feature interactions by model
checking. Technical Report TI-PU-93-868, PT'T Research, The Netherlands
(1993).

Braithwaite, K. H. and Atlee, J. M. Towards automated detection of feature
interactions. In Bouma and Velthuijsen [BoVe94], pp. 36-59.

Bredereke, J. Automata-theoretic criteria for feature interactions in telecom-
munications systems. Tech. Rep. 273/95, Univ. of Kaiserslautern, Dept. of
Comp. Sci. (Dec. 1995).

Bredereke, J. Formal criteria for feature interactions in telecommunications
systems. In Iversen, V. B. and Ngrgaard, J., editors, “Intelligent Networks
and New Technologies”. Chapman & Hall (1996). To appear.

Bredereke, J. and Gotzhein, R. A case study on specification, detection and
resolution of IN feature interactions with Estelle. Tech. Rep. 245/94, Univ. of
Kaiserslautern, Dept. of Comp. Sci. (May 1994).

Bredereke, J. and Gotzhein, R. Specification, detection and resolution of IN
feature interactions with Estelle. In Hogrefe and Leue [HoLe95].

[CaVe93]

[CCI8T]

[Che94|

[CoPi94]

[DSW+94]

[Dwo91]

[Encs9)

[Fac95]

[FaLo94]

[FaO194]

[FGM*+92]

[GaKr94|

[GoBro5|

Cameron, E. J. and Velthuijsen, H. Feature interactions in telecommunications
systems. IEEE Commun. Mag. 31(8), 18-23 (Aug. 1993).

CCITT SG X, Contribution Com X-R15-E. Recommendation Z.100: Specifi-
cation and Description Language SDL (1987).

Cheng, K. E. Towards a formal model for incremental service specification
and interaction management support. In Bouma and Velthuijsen [BoVe94],
pp- 152-166.

Combes, P. and Pickin, S. Formalization of a user view of network and services
for feature interaction detection. In Bouma and Velthuijsen [BoVe94|, pp. 120—
135.

Dankel IT, D. D., Schmalz, M., Walker, W., Nielsen, K., Muzzi, L., and Rhodes,
D. An architecture for defining features and exploring interactions. In Bouma
and Velthuijsen [BoVe94|, pp. 258-271.

Dworak, F. S. Approaches to detecting and resolving feature interactions. In
“Proceedings of the IEEE Global Telecommunications Conference GLOBE-
COM’91”, vol. 2, pp. 13711377, Phoenix, Arizona (2-5 Dec. 1991).

Encontre, V. Geode: An industrial environment for designing real time dis-
tributed systems in SDL. In “4th SDL Forum, Proceedings”. North-Holland
(1989).

Faci, M. Detecting Feature Interactions in Telecommunications Systems De-
signs. PhD thesis, University of Ottawa, Dept. of Comp. Sce. (1995).

Faci, M. and Logrippo, L. Specifying features and analysing their interactions
in a LOTOS environment. In Bouma and Velthuijsen [BoVe94], pp. 136-151.

Faergemand, O. and Olsen, A. Introduction to SDL-92. Comp. Networks and
ISDN Syst. 26, 1143-1167 (1994).

Fernandez, J.-C., Garavel, H., Mounier, L., Rasse, A., Rodriguez, C., and
Sifakis, J. A toolboz for the verification of LOTOS programs. In “14th In-
ternational Conference on Software Engineering ICSE’14, Proceedings”, Mel-
bourne, Australia (1992).

Gammelgaard, A. and Kristensen, J. E. Interaction detection, a logical ap-
proach. In Bouma and Velthuijsen [BoVe94]|, pp. 178-196.

Gotzhein, R. and Bredereke, J., editors. 4. GI/ITG Workshop on Formal De-
scription Techniques for Distributed Systems, Univ. of Kaiserslautern, Dept. of
Comp. Sci. (22-23 June 1995). URL http://www.informatik.uni-kl.de/aggotz/
fachgespraech95.

[Gré95]

[HoLe95]

[HoPe95)]

[HoUl79]

[11195]

[ISO83]

1SO89]

[ITU92]

[ITU934]
[ITU93b]

[Jer96]

[KiSg94]

[KiVe95]

[KIMK93]

[KKMO4]

Grégoire, J.-C., editor. 1st SPIN Workshop (SPIN95), Montréal, Canada (16
Oct. 1995).

Hogrefe, D. and Leue, S., editors. Formal Description Techniques VII. Chap-
man & Hall (May 1995).

Holzmann, G. J. and Peled, D. An improvement in formal verification. In
Hogrefe and Leue [HoLe95].

Hopcroft, J. E. and Ullman, J. D. Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley (1979).

Illerich, J. Design of a telephone switching system in FEstelle. Projektarbeit
(in German), Univ. of Kaiserslautern, Dept. of Comp. Sci. (Oct. 1995).

ISO/TC 97/SC 21, ISO 8807. Information Processing Systems — Open Sys-
tems Interconnection — Lotos: A Formal Description Technique Based on the
Temporal Ordering of Observational Behaviour (1988).

ISO/TC 97/SC 21, ISO 9074. Information Processing Systems — Open Sys-
tems Interconnection — FEstelle: A Formal Description Technique Based on
an Extended State Transition Model (1989).

ITU-T, Recommendation Q.1201. Principles of Intelligent Network Architec-
ture (Oct. 1992).

ITU-T. Q12zz-Series Intelligent Network Recommendations (1993).

ITU-T. Recommendation Z.120: Message Sequence Chart (MSC) (1993). Re-
vised Version.

Jerusalem, D. FExtension of a telephone switching system in Estelle. Projekt-
arbeit (in German), Univ. of Kaiserslautern, Dept. of Comp. Sci. (1996). To
appear.

Kimbler, K. and Sgbirk, D. Use case driven analysis of feature interactions.
In Bouma and Velthuijsen [BoVe94], pp. 167-177.

Kimbler, K. and Velthuijsen, H. Feature interaction benchmark. Discussion
paper for the panel on benchmarking at FIW’95, Kyoto, Japan (Oct. 1995).

Kuisch, E., Janmaat, R., Mulder, H., and Keesmaat, I. A practical approach
to service interactions. IEEE Commun. Mag. 31(8), 24-31 (Aug. 1993).

Kimbler, K., Kuisch, E., and Muller, J. Feature interactions among pan-
European services. In Bouma and Velthuijsen [BoVe94], pp. 73-85.

[Kor93]

[Lam91]

[Lee92]

[LiLi94]

[MaPn92]

[MTJ93]

[Nor92]

[OhHa94]

[Pnu77]

[SCO95]

[SiSt93]

[ThBr95]

[The96]

Korver, H. P. Detecting feature interactions with CESAR and ALDEBARAN .
Report CS-R9370, Centrum voor Wiskunde en Informatica, Amsterdam, The
Netherlands (Dec. 1993).

Lamport, L. The temporal logic of actions. Report 79, Digital Equipment
Corp., Palo Alto, California, USA (Dec. 1991).

Lee, A. Formal specification — a key to service interaction analysis. In “Pro-
ceedings of the Eight International Conference on Software Engineering for
Telecommunication Systems and Services (SETSS 1992)”, pp. 62-66 (30 Mar.—
4 Apr. 1992).

Lin, F. J. and Lin, Y.-J. A building block approach to detecting and resolving
feature interactions. In Bouma and Velthuijsen [BoVe94], pp. 86-119.

Manna, Z. and Pnueli, A. The Temporal Logic of Reactive and Concurrent
Systems. Springer (1992).

Mierop, J., Tax, S., and Janmaat, R. Service interaction in an object-oriented
environment. IEEE Commun. Mag. 31(8), 46-51 (Aug. 1993).

Northern Telecom. DMS-100 Meridian Digital Centrex Library, 50039.08/12-
92 issue 1 ed. (1992).

Ohta, T. and Harada, Y. Classification, detection and resolution of service in-
teractions in telecommunication services. In Bouma and Velthuijsen [BoVe94],
pp. 60-72.

Pnueli, A. The temporal logic of programs. In “19th Annual Symposium on
Foundations of Computer Science”, pp. 46-57, Providence, RI, USA (1977).
IEEE.

SCORE-Technology Transfer. Service Creation in an Object-Oriented Reuse
Environment. Deliverable D409 — R2017/SCO/WP4/DS/P/029/bl, RACE
Project 2017 (SCORE) (4 Jan. 1995).

Sijelmassi, R. and Strausser, B. The PET and DINGO tools for deriving
distributed implementations from Estelle. Comp. Networks and ISDN Syst.
25(7), 841-851 (Feb. 1993).

Thees, J. and Bredereke, J. A tool for the analysis of feature interactions in
IN. In Gotzhein and Bredereke [GoBr95], pp. 199-208. URL http://www.
informatik.uni-kl.de/aggotz/fachgespraech95/thees.ps.gz (in German).

Thees, J. Confine — A Tool for the Analysis of Estelle Specifications (Tutorial).
Univ. of Kaiserslautern, Dept. of Comp. Sci. (in German) (1996).

