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ABSTRACT. In this short note we prove some general results on semi-stable sheaves on Py and
P3 with arbitrary linear Hilbert polynomial. Using Beilinson’s spectral sequence, we compute
free resolutions for this class of semi-stable sheaves and deduce that if p and x are coprime the
smooth moduli spaces M, (P2) and M, (,—y)(IP2) are birationally equivalent.

1. INTRODUCTION

Moduli of torsionfree semi-stable sheaves on Py and P3 with fixed Hilbert polynomial were
introduced by Maruyama and others. They have been intensively studied during the last
decades. In 1994, Simpson [9] showed that the family of arbitrary semi-stable sheaves with
fixed Hilbert Polynomial P on a smooth projective variety X is bounded. Using this, he proved
the existence of a projective scheme Mp(X) corepresenting the moduli functor Mp(X)(S) of
S-flat coherent sheaves over X x S with semi-stable fibers F; and Pz, = P. For dim(X) > 2
and linear Hilbert polynomial P(m) = pm + x, id est if all the sheaves in Mp(X) have torsion
and are supported on degree p curves, there is not much known about these spaces.

LePotier [7] proved that the coarse moduli spaces M, (P2) are irreducible, locally factorial
projective varieties of dimension p? + 1. They are rational at least if Y = &1 (mod u), x =
+2 (mod ) and for small multiplicities pu < 4.

Furthermore, he described for 1 < 4 the geometrical properties of M+, (IP2) and the birational
map [6] to the Maruyama scheme Mpy (11; 0, 1) of semi-stable, torsionfree rank p sheaves with
second Chern class p on the dual projective plane Py .

We investigated in [1], [2] the geometry of Ms,,1(P3) which has two smooth, rational com-
ponents of dimension 12 and 13 intersecting each other transversally along an 11-dimensional
smooth subvariety. It is in some sense the “smallest” example for a reducible Simpson space
and plays a role similar to Hilbg,,1(P3) in the case of Hilbert schemes.

Doing this, we noted as in [7] that in the planar case Mz, 1(P2) and Ms,, o(IPy) are both
isomorphic to the universal cubic C — P5. This is not an accident and turned out to be part
of a more general “symmetry” result which is the subject of this short note.
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FIGURE 1. Schematic Picture. Each box corresponds to an M), 4 (P2).
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Theorem 1. Let P(m) = pm +x, 0 < x < p, p and x coprime, be a linear polynomial *,
and define its “dual” by PV (m) := pum + p— x. Denote by N C Mp(Py) and NV C Mpv (Py)
respectively the closed subvarieties of isomorphism classes of sheaves with non-vanishing first
cohomology. Then there is a natural isomorphism

®: Mp(Py)\ N == Mpv(Py) \ NV.

Thus, the moduli spaces Mp(Ps) and Mpv (Ps) are birationally equivalent. Moreover, the spaces

M,y mi1(Ps) and M, py,—1(P2) are isomorphic.

Finally, we can extend LePotier’s result cited above in a way certainly known to him:

Theorem 2. If i and x are coprime, the fine Simpson moduli spaces M, (P2) are smooth
projective varieties of dimension u? + 1.

The author would like to thank Gunther Trautmann for useful discussions.

2. PRELIMINARIES

We call the a projective scheme over an algebraically closed field k a variety. One can equip
the support of a coherent sheaf F on a smooth variety X in several ways with the structure

Note that M, m4r(P2) = M, iy (P2) if 7= x (mod p) since the Hilbert polynomial involved is linear.
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of a (not necessarily reduced) variety. One is using the annihilator ideal sheaf Ann(F) C Ox.
We write Z,(F) := (Supp(F), Ox/Ann(F)). Another way is the following: Let

P Ox(~b,) - P Ox(~a,) = F -0
pn=1

v=1

be an arbitrary presentation of F and denote by Fitt;(F) C Ox the ideal sheaf generated by
the (s —14) x (s — i)-minors of the homogeneous matrix A. Due to Fitting’s lemma, the sheaf
Fitt;(F) does not depend on the choice of the presentation. Furthermore, one has

Fitto(F) C AnnF  and  (Ann F) Fitt,(F) C Fitt,_1(F) Vi>0
Now define
Zf("f) = (Supp(f)a OX/Fltt()(JT) ) - (X7 OX)
Z,(F) is obviously a subvariety of Z¢(F) and Zy(F)red = Z(F)rea = Supp(F).
Let X be a variety and S be a Noetherian (base-)scheme of finite type over k£ and call the
projections from X xS to the first and second factor by ¢ and p respectively. If F € Coh(X),

G € Coh(S) and H € Coh(X x S) are coherent sheaves, we will write F X G := ¢*F ® p*G,
F(m)X Og := ¢*F(m), Hs := H|xx(s) and H(m) == H @ ¢*Ox(m).

A purely 1-dimensional coherent sheaf F with linear Hilbert polynomial P(m) = um + y on
a smooth variety X is called semi-stable resp. stable if for all proper coherent submodules

0A£F CF
X(F')

1(F)
w(F) is called the multiplicity and p(F) :

X(F) x

<
w(F) p
f the slope of the sheaf F.

< resp.

I ==

We collect now some properties of (semi-)stable sheaves supported on curves in the projective
plane or projective space in the following theorem:

Theorem 3. Let F be a semi-stable sheaf on P,, n = 2,3, with linear Hilbert polynomial
Pr(m) =pum+x, 0 < x < p and C := Z,(F) be its support.

1. F is Cohen-Macaulay, or equivalently: F has no zero-dimensional torsion.
2. If C' is smooth then F is locally free. If C is integral F is still locally free on an open
dense subset U = C'\ {p1,...p:}.

3. Let n = 2. Then (r;ci,co) = (O;u,@ —X). If n = 3, we have (r;ci,c9,c3) =
(0;0, —p, 2x — 4p) In both cases, r = rkp, (F) denotes the rank and ¢; = ¢;(F) are the
Chern classes w.r.t. P,.

4. The not necessarily reduced curve C' C P, has no zero-dimensional components and no
embedded points.

5. = x(F|u) where H=Z(l) € | Op, (1) | is F-regular. Thus,
p=HFla) = 3 dimi(F)

peCNH
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6. 1(Oc,.,) < W(Oc) < p and W(F ® Oc,,,) <
7. If x > 0 and (x, ) = Z then F is stable.
8. There are the following bounds for the cohomology and the Castelnuovo-Mumford regularity
of the sheaf F:
o Y <MWF<u—1.
e 0<HF<pu—x-1.
o reg(F) < pu— X, in particular H'F (i) =0 for all i > p—x — 1.

Proof. Cf. [1]. The only part which is not obvious is 8.: Let H be a F-regular hyperplane.
Then 0 — F(—1) - F — F|g — 0 induces an exact sequence

1) 00— HFn—1)— HF(n) L5 = H'F(n—1) > HFn) =0 YnezZ

This implies that n — h'F(n) is decreasing and x < h°F < h°F(—1)+p. But Hom(Ox(1), F)
vanishes because of the semi-stability, and thus y < h°F < pu.
Now assume that f,, is surjective. The commutative diagram

HYF(n) ® HO1) 225 k0 HOO(1) —— 0

| |

fn+1

HOF(n+1) — 2 g

|

0

implies that f,.1 is also a surjection. Therefore we get
H'Fn—1)2H'Fn)2H'Fh+1) =20

by Serre’s theorem B. If f,, is not surjective, then we see from the sequence (1) that h'F(n—1) >
h'F(n). Thus, the function n — h'F(n) is strictly decreasing until it reaches 0.

Next, we show that h°F < pu — 1. Suppose h’(F) = p. Then the injective (!) map fo is an
isomorphism and g — x = h!F(—1) = 0. Contradiction.

Since h°F < p the homomorphism f; cannot be surjective. The situation is then the following:
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htF(n)
31— X

2p—x

=X

worst case. ..
n
—5 —2-1 p—x—1
This implies that reg(F) < p — x. O

3. THE RESOLUTIONS

The key idea in the proof of theorem 1 is to find a common free resolution for all sheaves in an
open subset of the moduli space M), ,,+, (P2) and then to dualize this resolution. An appropriate
tool for this are the Beilinson complexes:

Given a coherent sheaf F on P, one has the following two complexes

0 B_, - B_; By B, Tt B, — 0
where
B, = H P, Flp—q) @ % "(q—p), pEL
q=0
and
0 —— C_, e C_y Co G T Cn 0
with

Cp = @Hq—i_p(]?naf@ Q](I]Pn(Q)) Ok OPn(_Q)a pE Z
q=0
They are exact except at By resp. Cy, where the homology is F, and can be obtained from the
Beilinson I/II spectral sequences. For example the second complex comes from the sequence
with Ei-term
B = H"(Pn, F @ Qp(—5)) ® Op,(s)
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which converges to Ef, = ¢ 7 =0 Nore detailed: E7* =0 for r = —s and @"_, EZ"" is

0, otherwise

the associated graded sheaf of a filtration of F. For more details on the Beilinson sequence we
refer for example to [8].

Applying this technique to semi-stable sheaves in Py, we get:

Theorem 4. Let F be a semi-stable sheaf on Py with linear Hilbert polynomial P(m) = pm+x,
0 < x < pt. Furthermore, let a := h°(Py, F @ Qp,(1)).

(i) There are complexes

0— (24— X)Op,(~1) — H°F @ Op, @ (u — x) p,(1) — H'F © Op, — 0

and

0— aOPz(_l) D (:u - X)Oﬂ’z(_z) - HOF@ OIP’Q D ((L +p— 2X) O]P’z(_l) - Hlf@ O]P’z —0

(2)

(3)

and

which are exact with exception of the homology sheaf in the middle which is isomorphic to
F. In particular, if H'(F) = 0 we have free resolutions

0— (20— X)Op,(—1) — X Op, & (11 — X)), (1) — F — 0

0 — aOp,(—1) ® (1 — Xx)Op,(—2) — x Op, @ (a + p — 2x)Op, (1) — F — 0.
(i) If p(Oc) < 4 — 2% then h'F = 0.

Proof. In our case, all the B, resp. C, vanish if p # —2, —1,0, 1. Using the facts that h®F(—j) =
0 for all j > 0 because of the semi-stability and Q?(2) = Op,(—1), we obtain

and
Ci
Co
Cq
C2

B = H'F®Op,

By = HFQOp, ®H'F(-1) Q' (1) = H'F @ Op, ® (un — x) Q*(1)
By = HF(-1)®Q'(1) e H'F(-2) ® 0*(2) = (2u — x) Op,(—1)
B, = HF(-2)®0*2)=0

H'F @ Op,

H°F @ Op, ® H'(F @ Q'(1)) ® Op,(—1)

HY(F @ Q1) ® Op,(—1) ® HY(F @ 9*(2)) ® Op,(—2) = a Op,(—1) ® (1 — x) Op,(—2)
HY(F @ Q*(2)) @ Op,(—2) = 0.

Now consider the Euler sequence tensored with F

0 —— Q) eF 3F F(1) —— 0

in order to see that h'(F @ Q'(1)) = a + x(F(1)) — 3x(F) = a+ p — 2x.
To show (ii), let C' := Z,(F). Then H°(C,F ® Qp (1)) = Hom(Oc(-1) ® (Q')Y,F) =
Hom(Oc(2) ® Q', F). Oc¢ is stable and thus p-stable. Q! is p-stable, too. The stability of
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Oc(2) ® Q! implies the vanishing of HO(F ® Q'(1)) if p(Q' @ Oc(2)) > p(F). But a straight-
forward computation using the exact sequence

and lpa(C) = 1(deg(C) —1)(deg(C) — 2) gives p(Q' ® O¢(2)) =2 — @ and consequently the
result. U

Remark: The inequality u(O¢) < 4— 27" or H'(F) = 0 is for example fullfilled in the following
cases:

| P(m) | Resolution |
m 0— Op,(—2) — Op,(—1) = F =0

2m 0—20p,(—2) - 20p,(—1) - F -0
2m + 1 0— Op,(—2) = Op, - F —0

3m 0—30p,(—2) - 30p,(—1) - F =0
3m—+1 0—>20p2(—2>HOPQ@OPQ(—D—)JP"—)O
3m+2|0— Op,(—2) D Op,(—1) - 20p, - F — 0

For these resolutions, one can verify that the space of matrices occuring in the resolutions
modulo automorphisms is isomorphic to the corresponding moduli space Mp(P2). This helps
getting a more explicit description of the spaces: M, (IPy) is clearly isomorphic to Py since
F = Op(—1) for some line L. Leopold [5] showed that My, (Py) = Moyi1(Py) = Ps. In
[1] or [7] one can find a proof for Mz, 1(Py) = Mz, o(Py) = C, where C —— Py denotes
the universal cubic on the projective plane. One problem occuring here is that the groups
Aut(2 Op,(—2) x Aut(Op, ® Op,(—1)) and Aut(Op,(—2) ® Op,(—1)) x Aut(2 Op,) divided out

are not reductive.
O

Now we assume for the moment H*F = 0. One would like to determine a = h°(F ® Q!(1)) in
the theorem above in terms of the integers u and x. For this, we consider the following diagram
where the second column is induced by the Koszul resolution

0 — Op,(~2) 253 0s,(—1) —5 QL (1) —0
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of the twisted cotangent bundle Qp, (1):

0
0— (21— X) Op,(—1) —— x Op, ® (1t — X) 0, (1) F 0
H idx B
(21— x)Op, (—1) X Op, @ 3 (11— x) Op,(—1)

An application of the mapping cone lemma yields the exact sequence

(40— (21— X) Op,(—1) & (1t — X) Op, (—2) = X Op, &3 (1 — x) Op(—1) = F — 0

where the blockmatrix B has the shape

L,| C
B= .
(1)
Q € Mat(u — x, X, k[Zo, Z1, Zs]2 )is a matrix of quadratic forms, L; and L, are matrices of
linear forms and C' € Mat(2u — x,3u —3x, k).

This resolution is in fact not minimal. Using the semi-stability of the sheaf F we can prove the
following lemma:

Lemma 1. 7k(C) = r':= min{2u — x, 3 — 3x }.

Proof. By contradiction. Suppose 7 := rk(C') < r’. After deleting the appropriate rows and
columns of the matrix B with the Gaufl algorithm, we get

0— (Q/J/_X_T) OP2(_1> ©® (N_X) OP2<_2) i/ XOPz ® (3:“_ BX_T> OPz(_l) —-F—=0

Ly 0
QT

with



ON MODULI SPACES OF STABLE SHEAVES ON P; 9

where we identify the isomorphic cokernels F and Coker(B') by abuse of notation. Thus, let
us investigate the diagram

0
0 ’52
0—— (21— x — 1) Os,(~1) — L, (1= X) O, (—2) ———0

C, ! F C, 0
0 0 0

Here we write £, := (2u—x—7r) Op,(—1) B (—x) Op,(—2), Lo := x Op,® (3pu—3x—7) Op,(—1)
and Cy, Cy, KCy for the cokernels respectively kernels of L] and L. The snake lemma implies
Ker(f) = Ky and the injectivity of the map L. The latter also implies forces 2 —r 4+ x < x
and consequently we obtain the following bounds for r:

(5) 2(p—x) <r<min{2p—x,3(p—x)}

If x = 0, we get the contradiction. Suppose now 0 < y < p. After taking A?*~X~"(e) of the
map L} in the first column and after dualizing and twisting, we obtain an exact sequence:

X

0 — (2,ufxfr

)OP2(T+X_2:U) - O]P’Q - OZf(Cl) — 0

where Z¢(C;) C Py denotes the Fitting support of C;. Thus

1 X 2
P =_11—=
N 2{ (QM—X—T)}m i
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This forces the binomial coefficient <2u _XX_T) to be 0 or 1. Using the inequalities in (5), we

deduce that r = 2 (u — x). The diagram above simplifies now to

0
0 0 Ks
0——XOp,(=1) — Ly — (1 — x) Op,(=2) — 0
L] B’ L
00— xOp, Ly (= x) Opy(—=1) —0
0 ICQ \é/]_ ‘} é; /0
0 0 0

Since Z,(Cy) C Z,(F) is zero- or one-dimensional, it follows from
1 = exp.codimp, Z;(C2) > codimp, Z;(Cy) = codimp, Z,(Cs) > 1

that Cy is supported on a curve and that the morphism L, is regular. Therefore the kernel sheaf
Ko vanishes. An easy computation shows that the subsheaf C; C F has Hilbert polynomial
Pe,(m) = xm + x. Thus we have found a 1-dimensional subsheaf of the semi-stable sheaf F

with
. g () D Y
x  pC) T op
Contradiction. Thus, r = rk(C') = min{ 2 — x, 3u — 3x }. O

Corollary 1. Let [F|] € M piy(P2), 0 < x < p with H'F = 0. Then F has one of the
following two minimal free resolutions:

(6) 0 —— (14— x)Op,(~2) 252 Op, ® (11— 2X) Opy(—1) F 0,
if x < 5.
(7) (d)

0 — (QX—/L) OPz(_l)@(M_X) Oﬁ”z(_z) - XO]P’z F 07
ifx > §.
Furthermore,

NSNS
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Proof. Consider the blockmatrix B = ( g LCQ

rk(C') = min{ 2u — x, 3p — 3x }. Therefore, the resolution (6) can be obtained by deleting the
last 3 — 3 x columns of B if rk(C') = 3 — 3. Similarly, one gets (7) by killing the first
20— x rows of B with Gauf’ algorithm in case of rk(C') = 2u — x. Comparing (6) and (7)
with the resolution (3) in theorem 4.(i), we also obtain the value for a = h°(F @ Q3 (1)). O

) in the exact sequence (4). Lemma 1 says that

Remark: In the case x = 1 — 1 one has H'F = 0 for all [F] € M, 4,-1(P2) since reg(F) < 1
according to theorem 3.(8). The resolution is therefore in this case:

0 —— Op,(—2)® (1 —2) Op,(—1) - (= 1) Op, F 0

M. Maican used this free resolution in order to prove that the moduli spaces M, 4,—1(P2) can
be described as geometric quotients of maps A by the non-reductive group

G = Aut( (:LL - 2) OP2(_2) 57 OPz(_l) ) X AUt( (/~L - 1) OIP’2)
using a suitable polarization.

O

We also need a ‘“relative version” of corollary 1 for families. As in the absolute case, there
exists for any F € Coh(P, x S) a Beilinson-type spectral sequence with Fi-term

E{® = Op, (1) R R°p(F @ Qp°, 5/5(—5))

. ; for i= . _ .
which converges to E! = {30"- a0 de B = 0forr+s # 0 and @)_jEL™" is the

associated graded sheaf of a filtration of F (cf. [8], p.306). Again, the spectral sequence gives
rise to a complex

0 — C_, C_1 Co G Cn 0

C, = @ Op, (—q) W R"Pp(F @ Q%nxs/s(Q»
q=0

which is exact everywhere with exception of Cy, where the homology is F.

Now let F € Coh(P, x S) be a family of semi-stable sheaves F, with Hilbert polynomial
Pg (m) = pm + x and H'(Py, F,) = 0 for all s € S. Using the base change theorem and
exactly the same arguments as in the proof of theorem 4,(i), we obtain a non-minimal (!) exact
sequence

Bs

0 —— [Op,(-1) W p(F @ Q' (1)]© [Op,(-2) W R'p.F(-1)] ——

Bs

_Be, [Op, X p,F|] @ [Op,(—1) K R'p, (F @ Q' (1)) ] F 0
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Proof. To give a flavour of how to proceed, we show for example why p.(F ® Q3 ¢ 15(2)) =0
(and consequently C_o = 0):

Since all the sheaves F, are supported on curves one has H?*(Py, F(—1)) = 0. The base
change theorem implies that R'p,F(—1)(s) —=» H'(Py, F,(—1)) for all s € S. Therefore

Y

R'p,F(—1)islocally free. Another application of the base change theorem yields p,F(—1)(s) =
H°(Py, Fs(—1)). But then

0= HOHI(OPQ,FS(—l)) = HO(]P)%]:S(_l)) Vse Sa
due to the semi-stability of F. Thus, p.(F ® Qf  ¢/5(2)) = p.F(-1) = 0. O

By looking at the rank of the constant block in the family of matrices (Bj)ses as we did it
for the absolute case in lemma 1, we can simplify the resolution and obtain the analogon to
corollary 1:

Theorem 5. Let [F| € M,y (P2)(S), 0 < x < p with H'(Py, Fs) =0 for all s € S. Then

F has one of the following two minimal free resolutions:

(8)
0 — Op,(=2) M R'p.F(—1) — Op, ®p.F & Op,(—1) R R'pu(F @ U, 55(1)) — F — 0,

ifx<5%.

(9)
0 — Op,(—1) B p.(F @ U, 5/5(1)) & Op,(=2) K R'p, F(—1) — Op, K p,F — F — 0,

if x> 5.
Moreover,

o p.F and R'p,F(—1) are locally free of rank x and yu — x respectively.
® (F @, ,g/5(1) and R'p(F @ Qp, g/5(1)) are locally free.

— If x < 5 then p(F ® Qéws/s(l)) =0 and 7k [Rlp*(}-@ Q]%Dﬂs/s(l)) =u—2x.
— If x > & then 1k |p.(F ® Q%bxs/s(l))} =2x —p and R'p(F @Qp,,55(1) = 0.

Proof. Left to the reader. O

4. DUAL SHEAVES

We define for a (semi-)stable sheaf F on Py with linear Hilbert polynomial P(m) = pm + x its
dual sheaf by

FV .= ExtIOPQ (F,wp,)(1)

Hom o, (F,wp,) = 0 since F is pure with one-dimensional support. Thus, dualizing the
minimal free resolution (6) or (7) of F from the corollary above and twisting by e ® Op,(—2)
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implies that FV is (semi-)stable with Hilbert-polynomial P¥(m) := um+ (u—x). For example,
if x < £ we obtain

|

0 —— X Op,(=2)® (t—2x)Op,(~1) —— (p—x)Op, —— F" —— 0
by this procedure.

Moreover, one can verify immediately that:

o« FVV=F
e H'F =0 <+« H'F'=0

Thus, we get our main result:

Theorem 6. Let P(m) = um + x be a linear polynomial with 0 < x < p and (u,x) = Z.
Denote by N C Mp(IPy) respectively NV C Mpv(Py) the closed subvarieties of isomorphism
classes of sheaves with non-vanishing first cohomology. Then there is a natural isomorphism

¢ : Mp(P2) \ N == Mp=(Py) \ N7, [F] [FY]
Thus, the moduli spaces Mp(Py) and Mpv(Py) are birationally equivalent.
Proof. Clearly, the remarks above show that ¢ is set-theoretically a bijection. In order to show
that ¢ is actually a morphism, note that M := Mp(Ps) is a fine moduli space with universal

family U € Mp(P2)(M) since p and x are coprime. Without loss of generality, we can assume
that x < £. Now consider the minimal free resolution (8) of C := U|p,xann from theorem 5:

0 — Op,(=2) K R'p,C(—1) — Op, K p,C & Op,(—1) K R'p.(C ® Uy, 5/5(1)) — C — 0.

An application of Homo,_, v ( @ Op,(—2) K Oy ) yields:

0 — Op,(=2) B [p. C]" @ Op, (—1) K[ R'p:(C @ s, 5/5(1)) | — Op, B [R'p.C(-1)]" — G — 0,
where G = Sxt(lg]P’2><M\N<C’ Op,(—2) K Opp\n ).

According to theorem 5, the bundles [p. C*, [R'p.(C ® O, /5(1))]* and [ R'p.C(—1)]* have
rank x, i — 2x and p — x respectively. Thus, the restriction of the resolution to a fiber Gz is

0 —— X Op,(—2)® (1t —2x)Op,(~1) —— (p—x)Op, —— G5y —— 0

which is exactly the resolution of FV obtained above. Therefore Gz = FV. Obviously, the
sheaves G| are stable with Hilbert polynomial PY(m) = pm+ (u— x) and H' Gz = 0 for all
[F] € M\ N. In other words, G € Mpv(Py)(M \ N). Per construction, the morphism

CI)g . M\N — MPV(]P)Q)

induced by the family G maps to Mpv(P2) \ NV and is indeed equal to the set-theoretical map
¢. Similarly, one proves that ¢! is a morphism. U
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5. SMOOTHNESS

In this section we want to reprove LePotier’s result that A, ., (P2) for coprime coefficients
and show that the irreducible moduli space [7] is then indeed smooth.

Theorem 7. Let P(m) := pm + x with (u,x) = (1). Then

1. M := Mp(Py) is a smooth projective variety of dimension pu* + 1.
2. The moduli space M is fine with universal family U € Mp(Py)(M).

Proof. Without loss of generality we can assume that 0 < x < pu. By theorem 3.(7), we have
that all semi-stable sheaves F with polynomial P are stable.

1. Serre duality gives Ext*(F,F) = Hom(F,F ® wp,)" = Hom(F,F(-3))" = 0 for every
[F] € M. The last equality is due to the stability of F. Id est, there are no obstructions
and M is smooth in neighbourhood of [F]. Consequently, M is a smooth projective variety.
We are left to compute dim M. Every sheaf in the open, dense subset M \ N = { [F] €
Mp(Py) : H'F = 0} has a resolution (2). If we apply Hom(-, F) to that sequence, we
end up with

0 — End(F) — xH'F @ (1 — x) Hom(Q%Q(l),]—") — (2u — \)H°F(1) — Ext'(F,F) —

= X H'F @ (= x) Ext! (Q5,(1), F) — (2u — x)H'F(1) — Ext*(F,F) — 0
The stable sheaf F is simple and therefore End(F) = k. We also have Hom(Qp, (1), F) =
HY(F(-1) ® (Qp,)Y) = H'(F(2) ® Qp,) and Ext'(Qp, (1), F) = H'(F(2) ® Q,). Using
the Euler sequence
0— F(2) ® Qp, — 3F(1) — F(2) — 0,
we get x(F(2) ® Qp,) = 3x(F(1)) — x(F(2)) = 1+ 2x. But then:
ext'(F,F) = 1—xh"F—(u—x)h°(F(2) @ Q") + (2u — x) h°F(1) +
XRWF + (= x) W (F(2) @ ) = (2n — x) h' F(1)
= 1-x" = (b= x)x(F(2) @ Q") + 2u — x)x(F(1))
= 1=x"— (=) (u+2x) + 2u = x) (1 +x)
= u*+1.
Thus dim M = p® + 1 because dimy Tjs M = p? + 1 for all [F] € M \ N.

. The existence and construction of the universal family in this case is standard and can be
found for example in [3].

O

Remark 1: Let again Y = u — 1, u > 1. In this case we have N = (). Thus, there is an
isomorphism between the smooth, (u? + 1)-dimensional, fine moduli spaces M, ,,+1(P2) and

m+pu—1 (PQ) .
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Remark 2: [7]. If u and x are not coprime and p > 2 then the complement of the open subset
of stable stable sheaves in M), ,,+,(P2) has codimension at least 2y — 3, and no matter what
open set U in M), ,,,+,(IP2) one chooses, there does not exist a universal sheaf over Py x U.
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