ON SIMPSON MODULI SPACES OF STABLE SHEAVES ON \mathbb{P}_{2} WITH LINEAR HILBERT POLYNOMIAL

HANS GEORG FREIERMUTH
Preprint - Universität Kaiserslautern

Abstract

In this short note we prove some general results on semi-stable sheaves on \mathbb{P}_{2} and \mathbb{P}_{3} with arbitrary linear Hilbert polynomial. Using Beilinson's spectral sequence, we compute free resolutions for this class of semi-stable sheaves and deduce that if μ and χ are coprime the smooth moduli spaces $M_{\mu m+\chi}\left(\mathbb{P}_{2}\right)$ and $M_{\mu m+(\mu-\chi)}\left(\mathbb{P}_{2}\right)$ are birationally equivalent.

1. Introduction

Moduli of torsionfree semi-stable sheaves on \mathbb{P}_{2} and \mathbb{P}_{3} with fixed Hilbert polynomial were introduced by Maruyama and others. They have been intensively studied during the last decades. In 1994, Simpson [9] showed that the family of arbitrary semi-stable sheaves with fixed Hilbert Polynomial P on a smooth projective variety X is bounded. Using this, he proved the existence of a projective scheme $M_{P}(X)$ corepresenting the moduli functor $\mathcal{M}_{P}(X)(S)$ of S-flat coherent sheaves over $X \times S$ with semi-stable fibers \mathcal{F}_{s} and $P_{\mathcal{F}_{s}}=P$. For $\operatorname{dim}(X) \geq 2$ and linear Hilbert polynomial $P(m)=\mu m+\chi$, id est if all the sheaves in $M_{P}(X)$ have torsion and are supported on degree μ curves, there is not much known about these spaces.
LePotier [7] proved that the coarse moduli spaces $M_{\mu m+\chi}\left(\mathbb{P}_{2}\right)$ are irreducible, locally factorial projective varieties of dimension $\mu^{2}+1$. They are rational at least if $\chi \equiv \pm 1(\bmod \mu), \chi \equiv$ $\pm 2(\bmod \mu)$ and for small multiplicities $\mu \leq 4$.

Furthermore, he described for $\mu \leq 4$ the geometrical properties of $M_{\mu m+\chi}\left(\mathbb{P}_{2}\right)$ and the birational map [6] to the Maruyama scheme $\mathcal{M}_{\mathbb{P}_{2}^{v}}(\mu ; 0, \mu)$ of semi-stable, torsionfree rank μ sheaves with second Chern class μ on the dual projective plane \mathbb{P}_{2}^{\vee}.
We investigated in [1], [2] the geometry of $M_{3 m+1}\left(\mathbb{P}_{3}\right)$ which has two smooth, rational components of dimension 12 and 13 intersecting each other transversally along an 11-dimensional smooth subvariety. It is in some sense the "smallest" example for a reducible Simpson space and plays a role similar to $\operatorname{Hilb}_{3 m+1}\left(\mathbb{P}_{3}\right)$ in the case of Hilbert schemes.
Doing this, we noted as in [7] that in the planar case $M_{3 m+1}\left(\mathbb{P}_{2}\right)$ and $M_{3 m+2}\left(\mathbb{P}_{2}\right)$ are both isomorphic to the universal cubic $\mathcal{C} \longrightarrow \mathbb{P}_{2}$. This is not an accident and turned out to be part of a more general "symmetry" result which is the subject of this short note.

Figure 1. Schematic Picture. Each box corresponds to an $M_{\mu m+\chi}\left(\mathbb{P}_{2}\right)$.

Theorem 1. Let $P(m)=\mu m+\chi, 0<\chi \leq \mu, \mu$ and χ coprime, be a linear polynomial ${ }^{1}$, and define its "dual" by $P^{\nabla}(m):=\mu m+\mu-\chi$. Denote by $N \subset M_{P}\left(\mathbb{P}_{2}\right)$ and $N^{\nabla} \subset M_{P \nabla}\left(\mathbb{P}_{2}\right)$ respectively the closed subvarieties of isomorphism classes of sheaves with non-vanishing first cohomology. Then there is a natural isomorphism

$$
\Phi: M_{P}\left(\mathbb{P}_{2}\right) \backslash N \xrightarrow{\approx} M_{P \nabla}\left(\mathbb{P}_{2}\right) \backslash N^{\nabla} .
$$

Thus, the moduli spaces $M_{P}\left(\mathbb{P}_{2}\right)$ and $M_{P \nabla}\left(\mathbb{P}_{2}\right)$ are birationally equivalent. Moreover, the spaces $M_{\mu m+1}\left(\mathbb{P}_{2}\right)$ and $M_{\mu m+\mu-1}\left(\mathbb{P}_{2}\right)$ are isomorphic.

Finally, we can extend LePotier's result cited above in a way certainly known to him:
Theorem 2. If μ and χ are coprime, the fine Simpson moduli spaces $M_{\mu m+\chi}\left(\mathbb{P}_{2}\right)$ are smooth projective varieties of dimension $\mu^{2}+1$.

The author would like to thank Günther Trautmann for useful discussions.

2. Preliminaries

We call the a projective scheme over an algebraically closed field k a variety. One can equip the support of a coherent sheaf \mathcal{F} on a smooth variety X in several ways with the structure

[^0]of a (not necessarily reduced) variety. One is using the annihilator ideal sheaf $\operatorname{Ann}(\mathcal{F}) \subset \mathcal{O}_{X}$. We write $Z_{a}(\mathcal{F}):=\left(\operatorname{Supp}(\mathcal{F}), \mathcal{O}_{X} / \operatorname{Ann}(\mathcal{F})\right)$. Another way is the following: Let
$$
\bigoplus_{\mu=1}^{r} \mathcal{O}_{X}\left(-b_{\mu}\right) \xrightarrow{A} \bigoplus_{\nu=1}^{s} \mathcal{O}_{X}\left(-a_{\nu}\right) \rightarrow \mathcal{F} \rightarrow 0
$$
be an arbitrary presentation of \mathcal{F} and denote by $\operatorname{Fitt}_{i}(\mathcal{F}) \subset \mathcal{O}_{X}$ the ideal sheaf generated by the $(s-i) \times(s-i)$-minors of the homogeneous matrix A. Due to Fitting's lemma, the sheaf $\operatorname{Fitt}_{i}(\mathcal{F})$ does not depend on the choice of the presentation. Furthermore, one has
$$
\operatorname{Fitt}_{0}(\mathcal{F}) \subset \operatorname{Ann} \mathcal{F} \quad \text { and } \quad(\operatorname{Ann} \mathcal{F}) \operatorname{Fitt}_{i}(\mathcal{F}) \subset \operatorname{Fitt}_{i-1}(\mathcal{F}) \quad \forall i>0
$$

Now define

$$
Z_{f}(\mathcal{F}):=\left(\operatorname{Supp}(\mathcal{F}), \mathcal{O}_{X} / \operatorname{Fitt}_{0}(\mathcal{F})\right) \hookrightarrow\left(X, \mathcal{O}_{X}\right)
$$

$Z_{a}(\mathcal{F})$ is obviously a subvariety of $Z_{f}(\mathcal{F})$ and $Z_{a}(\mathcal{F})_{\text {red }}=Z_{f}(\mathcal{F})_{\text {red }}=\operatorname{Supp}(\mathcal{F})$.
Let X be a variety and S be a Noetherian (base-)scheme of finite type over k and call the projections from $X \times_{k} S$ to the first and second factor by q and p respectively. If $\mathcal{F} \in \operatorname{Coh}(X)$, $\mathcal{G} \in \operatorname{Coh}(S)$ and $\mathcal{H} \in \operatorname{Coh}(X \times S)$ are coherent sheaves, we will write $\mathcal{F} \boxtimes \mathcal{G}:=q^{*} \mathcal{F} \otimes p^{*} \mathcal{G}$, $\mathcal{F}(m) \boxtimes \mathcal{O}_{S}:=q^{*} \mathcal{F}(m), \mathcal{H}_{s}:=\left.\mathcal{H}\right|_{X \times\{s\}}$ and $\mathcal{H}(m):=\mathcal{H} \otimes q^{*} \mathcal{O}_{X}(m)$.
A purely 1-dimensional coherent sheaf \mathcal{F} with linear Hilbert polynomial $P(m)=\mu m+\chi$ on a smooth variety X is called semi-stable resp. stable if for all proper coherent submodules $0 \neq \mathcal{F}^{\prime} \subset \mathcal{F}$

$$
\frac{\chi\left(\mathcal{F}^{\prime}\right)}{\mu\left(\mathcal{F}^{\prime}\right)} \leq \frac{\chi}{\mu} \text { resp. } \frac{\chi\left(\mathcal{F}^{\prime}\right)}{\mu\left(\mathcal{F}^{\prime}\right)}<\frac{\chi}{\mu}
$$

$\mu(\mathcal{F})$ is called the multiplicity and $p(\mathcal{F}):=\frac{\chi}{\mu}$ the slope of the sheaf \mathcal{F}.
We collect now some properties of (semi-)stable sheaves supported on curves in the projective plane or projective space in the following theorem:

Theorem 3. Let \mathcal{F} be a semi-stable sheaf on $\mathbb{P}_{n}, n=2,3$, with linear Hilbert polynomial $P_{\mathcal{F}}(m)=\mu m+\chi, 0 \leq \chi<\mu$ and $C:=Z_{a}(\mathcal{F})$ be its support.

1. \mathcal{F} is Cohen-Macaulay, or equivalently: \mathcal{F} has no zero-dimensional torsion.
2. If C is smooth then \mathcal{F} is locally free. If C is integral \mathcal{F} is still locally free on an open dense subset $U=C \backslash\left\{p_{1}, \ldots p_{r}\right\}$.
3. Let $n=2$. Then $\left(r ; c_{1}, c_{2}\right)=\left(0 ; \mu, \frac{\mu(\mu+3)}{2}-\chi\right)$. If $n=3$, we have $\left(r ; c_{1}, c_{2}, c_{3}\right)=$ $(0 ; 0,-\mu, 2 \chi-4 \mu)$ In both cases, $r=r k_{\mathbb{P}_{n}}(\mathcal{F})$ denotes the rank and $c_{i}=c_{i}(\mathcal{F})$ are the Chern classes w.r.t. \mathbb{P}_{n}.
4. The not necessarily reduced curve $C \subset \mathbb{P}_{n}$ has no zero-dimensional components and no embedded points.
5. $\mu=\chi\left(\left.\mathcal{F}\right|_{H}\right)$ where $H=Z(l) \in\left|\mathcal{O}_{\mathbb{P}_{n}}(1)\right|$ is \mathcal{F}-regular. Thus,

$$
\mu=h^{0}\left(\left.\mathcal{F}\right|_{H}\right)=\sum_{p \in C \cap H} \operatorname{dim}_{k}\left(\mathcal{F}_{p}\right)
$$

6. $\mu\left(\mathcal{O}_{C_{r e d}}\right) \leq \mu\left(\mathcal{O}_{C}\right) \leq \mu$ and $\mu\left(\mathcal{F} \otimes \mathcal{O}_{C_{\text {red }}}\right) \leq \mu$
7. If $\chi>0$ and $(\chi, \mu)=\mathbb{Z}$ then \mathcal{F} is stable.
8. There are the following bounds for the cohomology and the Castelnuovo-Mumford regularity of the sheaf \mathcal{F} :

- $\chi \leq h^{0} \mathcal{F} \leq \mu-1$.
- $0 \leq h^{1} \mathcal{F} \leq \mu-\chi-1$.
- $\operatorname{reg}(\mathcal{F}) \leq \mu-\chi$, in particular $H^{1} \mathcal{F}(i)=0$ for all $i \geq \mu-\chi-1$.

Proof. Cf. [1]. The only part which is not obvious is 8 .: Let H be a \mathcal{F}-regular hyperplane. Then $\left.0 \rightarrow \mathcal{F}(-1) \rightarrow \mathcal{F} \rightarrow \mathcal{F}\right|_{H} \rightarrow 0$ induces an exact sequence

$$
\begin{equation*}
0 \rightarrow H^{0} \mathcal{F}(n-1) \rightarrow H^{0} \mathcal{F}(n) \xrightarrow{f_{n}} k^{\mu} \rightarrow H^{1} \mathcal{F}(n-1) \rightarrow H^{1} \mathcal{F}(n) \rightarrow 0 \quad \forall n \in \mathbb{Z} \tag{1}
\end{equation*}
$$

This implies that $n \mapsto h^{1} \mathcal{F}(n)$ is decreasing and $\chi \leq h^{0} \mathcal{F} \leq h^{0} \mathcal{F}(-1)+\mu$. $\operatorname{But} \operatorname{Hom}\left(\mathcal{O}_{C}(1), \mathcal{F}\right)$ vanishes because of the semi-stability, and thus $\chi \leq h^{0} \mathcal{F} \leq \mu$.
Now assume that f_{n} is surjective. The commutative diagram

implies that f_{n+1} is also a surjection. Therefore we get

$$
H^{1} \mathcal{F}(n-1) \cong H^{1} \mathcal{F}(n) \cong H^{1} \mathcal{F}(n+1) \cong \ldots \cong 0
$$

by Serre's theorem B. If f_{n} is not surjective, then we see from the sequence (1) that $h^{1} \mathcal{F}(n-1)>$ $h^{1} \mathcal{F}(n)$. Thus, the function $n \mapsto h^{1} \mathcal{F}(n)$ is strictly decreasing until it reaches 0 .
Next, we show that $h^{0} \mathcal{F} \leq \mu-1$. Suppose $h^{0}(\mathcal{F})=\mu$. Then the injective (!) map f_{0} is an isomorphism and $\mu-\chi=h^{1} \mathcal{F}(-1)=0$. Contradiction.
Since $h^{0} \mathcal{F}<\mu$ the homomorphism f_{0} cannot be surjective. The situation is then the following:

$$
\begin{aligned}
& 3 \mu-\chi \\
& 2 \mu-\chi \\
& \mu-\chi
\end{aligned}
$$

worst case. . .

$$
-5-2-1 \quad \mu-\chi-1
$$

This implies that $\operatorname{reg}(\mathcal{F}) \leq \mu-\chi$.

3. The Resolutions

The key idea in the proof of theorem 1 is to find a common free resolution for all sheaves in an open subset of the moduli space $M_{\mu m+\chi}\left(\mathbb{P}_{2}\right)$ and then to dualize this resolution. An appropriate tool for this are the Beilinson complexes:
Given a coherent sheaf \mathcal{F} on \mathbb{P}_{n}, one has the following two complexes

$$
0 \longrightarrow \mathcal{B}_{-n} \longrightarrow \cdots \longrightarrow \mathcal{B}_{-1} \longrightarrow \mathcal{B}_{0} \longrightarrow \mathcal{B}_{1} \longrightarrow \cdots \longrightarrow \mathcal{B}_{n} \longrightarrow 0
$$

where

$$
\mathcal{B}_{p}=\bigoplus_{q=0}^{n} H^{q}\left(\mathbb{P}_{n}, \mathcal{F}(p-q)\right) \otimes_{k} \Omega_{\mathbb{P}_{n}}^{q-p}(q-p), \quad p \in \mathbb{Z}
$$

and

$$
0 \longrightarrow \mathcal{C}_{-n} \longrightarrow \cdots \longrightarrow \mathcal{C}_{-1} \longrightarrow \mathcal{C}_{0} \longrightarrow \mathcal{C}_{1} \longrightarrow \cdots \longrightarrow \mathcal{C}_{n} \longrightarrow 0
$$

with

$$
\mathcal{C}_{p}=\bigoplus_{q=0}^{n} H^{q+p}\left(\mathbb{P}_{n}, \mathcal{F} \otimes \Omega_{\mathbb{P}_{n}}^{q}(q)\right) \otimes_{k} \mathcal{O}_{\mathbb{P}_{n}}(-q), \quad p \in \mathbb{Z}
$$

They are exact except at \mathcal{B}_{0} resp. \mathcal{C}_{0}, where the homology is \mathcal{F}, and can be obtained from the Beilinson I/II spectral sequences. For example the second complex comes from the sequence with E_{1}-term

$$
E_{1}^{r s}:=H^{r}\left(\mathbb{P}_{n}, \mathcal{F} \otimes \Omega_{\mathbb{P}_{n}}^{-s}(-s)\right) \otimes_{k} \mathcal{O}_{\mathbb{P}_{n}}(s)
$$

which converges to $E_{\infty}^{i}=\left\{\begin{array}{l}\mathcal{F}, \\ \text { for } i=0 \\ 0,\end{array}\right.$ otherwise. . More detailed: $E_{\infty}^{r s}=0$ for $r=-s$ and $\bigoplus_{r=0}^{n} E_{\infty}^{-r, r}$ is the associated graded sheaf of a filtration of \mathcal{F}. For more details on the Beilinson sequence we refer for example to [8].
Applying this technique to semi-stable sheaves in \mathbb{P}_{2}, we get:
Theorem 4. Let \mathcal{F} be a semi-stable sheaf on \mathbb{P}_{2} with linear Hilbert polynomial $P(m)=\mu m+\chi$, $0 \leq \chi<\mu$. Furthermore, let $a:=h^{0}\left(\mathbb{P}_{2}, \mathcal{F} \otimes \Omega_{\mathbb{P}_{2}}^{1}(1)\right)$.
(i) There are complexes

$$
0 \rightarrow(2 \mu-\chi) \mathcal{O}_{\mathbb{P}_{2}}(-1) \longrightarrow H^{0} \mathcal{F} \otimes \mathcal{O}_{\mathbb{P}_{2}} \oplus(\mu-\chi) \Omega_{\mathbb{P}_{2}}^{1}(1) \longrightarrow H^{1} \mathcal{F} \otimes \mathcal{O}_{\mathbb{P}_{2}} \rightarrow 0
$$

and
$0 \rightarrow a \mathcal{O}_{\mathbb{P}_{2}}(-1) \oplus(\mu-\chi) \mathcal{O}_{\mathbb{P}_{2}}(-2) \rightarrow H^{0} \mathcal{F} \otimes \mathcal{O}_{\mathbb{P}_{2}} \oplus(a+\mu-2 \chi) \mathcal{O}_{\mathbb{P}_{2}}(-1) \rightarrow H^{1} \mathcal{F} \otimes \mathcal{O}_{\mathbb{P}_{2}} \rightarrow 0$
which are exact with exception of the homology sheaf in the middle which is isomorphic to \mathcal{F}. In particular, if $H^{1}(\mathcal{F}) \cong 0$ we have free resolutions

$$
\begin{equation*}
0 \rightarrow(2 \mu-\chi) \mathcal{O}_{\mathbb{P}_{2}}(-1) \longrightarrow \chi \mathcal{O}_{\mathbb{P}_{2}} \oplus(\mu-\chi) \Omega_{\mathbb{P}_{2}}^{1}(1) \longrightarrow \mathcal{F} \rightarrow 0 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
0 \rightarrow a \mathcal{O}_{\mathbb{P}_{2}}(-1) \oplus(\mu-\chi) \mathcal{O}_{\mathbb{P}_{2}}(-2) \longrightarrow \chi \mathcal{O}_{\mathbb{P}_{2}} \oplus(a+\mu-2 \chi) \mathcal{O}_{\mathbb{P}_{2}}(-1) \longrightarrow \mathcal{F} \rightarrow 0 . \tag{3}
\end{equation*}
$$

(ii) If $\mu\left(\mathcal{O}_{C}\right)<4-\frac{2 \chi}{\mu}$ then $h^{1} \mathcal{F}=0$.

Proof. In our case, all the \mathcal{B}_{p} resp. \mathcal{C}_{p} vanish if $p \neq-2,-1,0,1$. Using the facts that $h^{0} \mathcal{F}(-j)=$ 0 for all $j>0$ because of the semi-stability and $\Omega^{2}(2)=\mathcal{O}_{\mathbb{P}_{2}}(-1)$, we obtain

$$
\begin{aligned}
\mathcal{B}_{1} & =H^{1} \mathcal{F} \otimes \mathcal{O}_{\mathbb{P}_{2}} \\
\mathcal{B}_{0} & =H^{0} \mathcal{F} \otimes \mathcal{O}_{\mathbb{P}_{2}} \oplus H^{1} \mathcal{F}(-1) \otimes \Omega^{1}(1)=H^{0} \mathcal{F} \otimes \mathcal{O}_{\mathbb{P}_{2}} \oplus(\mu-\chi) \Omega^{1}(1) \\
\mathcal{B}_{-1} & =H^{0} \mathcal{F}(-1) \otimes \Omega^{1}(1) \oplus H^{1} \mathcal{F}(-2) \otimes \Omega^{2}(2)=(2 \mu-\chi) \mathcal{O}_{\mathbb{P}_{2}}(-1) \\
\mathcal{B}_{-2} & =H^{0} \mathcal{F}(-2) \otimes \Omega^{2}(2)=0
\end{aligned}
$$

and

$$
\begin{aligned}
\mathcal{C}_{1} & =H^{1} \mathcal{F} \otimes \mathcal{O}_{\mathbb{P}_{2}} \\
\mathcal{C}_{0} & =H^{0} \mathcal{F} \otimes \mathcal{O}_{\mathbb{P}_{2}} \oplus H^{1}\left(\mathcal{F} \otimes \Omega^{1}(1)\right) \otimes \mathcal{O}_{\mathbb{P}_{2}}(-1) \\
\mathcal{C}_{-1} & =H^{0}\left(\mathcal{F} \otimes \Omega^{1}(1)\right) \otimes \mathcal{O}_{\mathbb{P}_{2}}(-1) \oplus H^{1}\left(\mathcal{F} \otimes \Omega^{2}(2)\right) \otimes \mathcal{O}_{\mathbb{P}_{2}}(-2)=a \mathcal{O}_{\mathbb{P}_{2}}(-1) \oplus(\mu-\chi) \mathcal{O}_{\mathbb{P}_{2}}(-2) \\
\mathcal{C}_{-2} & =H^{0}\left(\mathcal{F} \otimes \Omega^{2}(2)\right) \otimes \mathcal{O}_{\mathbb{P}_{2}}(-2)=0
\end{aligned}
$$

Now consider the Euler sequence tensored with \mathcal{F}

$$
0 \longrightarrow \Omega^{1}(1) \otimes \mathcal{F} \longrightarrow 3 \mathcal{F} \longrightarrow \mathcal{F}(1) \longrightarrow 0
$$

in order to see that $h^{1}\left(\mathcal{F} \otimes \Omega^{1}(1)\right)=a+\chi(\mathcal{F}(1))-3 \chi(\mathcal{F})=a+\mu-2 \chi$.
To show (ii), let $C:=Z_{a}(\mathcal{F})$. Then $H^{0}\left(C, \mathcal{F} \otimes \Omega_{\mathbb{P}_{2}}^{1}(1)\right) \cong \operatorname{Hom}\left(\mathcal{O}_{C}(-1) \otimes\left(\Omega^{1}\right)^{\vee}, \mathcal{F}\right) \cong$ $\operatorname{Hom}\left(\mathcal{O}_{C}(2) \otimes \Omega^{1}, \mathcal{F}\right)$. \mathcal{O}_{C} is stable and thus p-stable. Ω^{1} is p-stable, too. The stability of
$\mathcal{O}_{C}(2) \otimes \Omega^{1}$ implies the vanishing of $H^{0}\left(\mathcal{F} \otimes \Omega^{1}(1)\right)$ if $p\left(\Omega^{1} \otimes \mathcal{O}_{C}(2)\right)>p(\mathcal{F})$. But a straightforward computation using the exact sequence

$$
0 \longrightarrow \Omega^{1} \otimes \mathcal{O}_{C}(2) \longrightarrow 3 \mathcal{O}_{C}(1) \longrightarrow \mathcal{O}_{C}(2) \longrightarrow 0
$$

and $p_{a}(C)=\frac{1}{2}(\operatorname{deg}(C)-1)(\operatorname{deg}(C)-2)$ gives $p\left(\Omega^{1} \otimes \mathcal{O}_{C}(2)\right)=2-\frac{\mu\left(\mathcal{O}_{C}\right)}{2}$ and consequently the result.

Remark: The inequality $\mu\left(\mathcal{O}_{C}\right)<4-\frac{2 \chi}{\mu}$ or $H^{1}(\mathcal{F})=0$ is for example fullfilled in the following cases:

$P(m)$	Resolution
m	$0 \rightarrow \mathcal{O}_{\mathbb{P}_{2}}(-2) \rightarrow \mathcal{O}_{\mathbb{P}_{2}}(-1) \rightarrow \mathcal{F} \rightarrow 0$
$2 m$	$0 \rightarrow 2 \mathcal{O}_{\mathbb{P}_{2}}(-2) \rightarrow 2 \mathcal{O}_{\mathbb{P}_{2}}(-1) \rightarrow \mathcal{F} \rightarrow 0$
$2 m+1$	$0 \rightarrow \mathcal{O}_{\mathbb{P}_{2}}(-2) \rightarrow \mathcal{O}_{\mathbb{P}_{2}} \rightarrow \mathcal{F} \rightarrow 0$
$3 m$	$0 \rightarrow 3 \mathcal{O}_{\mathbb{P}_{2}}(-2) \rightarrow 3 \mathcal{O}_{\mathbb{P}_{2}}(-1) \rightarrow \mathcal{F} \rightarrow 0$
$3 m+1$	$0 \rightarrow 2 \mathcal{O}_{\mathbb{P}_{2}}(-2) \rightarrow \mathcal{O}_{\mathbb{P}_{2}} \oplus \mathcal{O}_{\mathbb{P}_{2}}(-1) \rightarrow \mathcal{F} \rightarrow 0$
$3 m+2$	$0 \rightarrow \mathcal{O}_{\mathbb{P}_{2}}(-2) \oplus \mathcal{O}_{\mathbb{P}_{2}}(-1) \rightarrow 2 \mathcal{O}_{\mathbb{P}_{2}} \rightarrow \mathcal{F} \rightarrow 0$

For these resolutions, one can verify that the space of matrices occuring in the resolutions modulo automorphisms is isomorphic to the corresponding moduli space $M_{P}\left(\mathbb{P}_{2}\right)$. This helps getting a more explicit description of the spaces: $M_{m}\left(\mathbb{P}_{2}\right)$ is clearly isomorphic to \mathbb{P}_{2} since $\mathcal{F} \cong \mathcal{O}_{L}(-1)$ for some line L. Leopold [5] showed that $M_{2 m}\left(\mathbb{P}_{2}\right) \cong M_{2 m+1}\left(\mathbb{P}_{2}\right) \cong \mathbb{P}_{5}$. In [1] or [7] one can find a proof for $M_{3 m+1}\left(\mathbb{P}_{2}\right) \cong M_{3 m+2}\left(\mathbb{P}_{2}\right) \cong \mathcal{C}$, where $\mathcal{C} \xrightarrow{\pi} \mathbb{P}_{2}$ denotes the universal cubic on the projective plane. One problem occuring here is that the groups $\operatorname{Aut}\left(2 \mathcal{O}_{\mathbb{P}_{2}}(-2) \times \operatorname{Aut}\left(\mathcal{O}_{\mathbb{P}_{2}} \oplus \mathcal{O}_{\mathbb{P}_{2}}(-1)\right)\right.$ and $\operatorname{Aut}\left(\mathcal{O}_{\mathbb{P}_{2}}(-2) \oplus \mathcal{O}_{\mathbb{P}_{2}}(-1)\right) \times \operatorname{Aut}\left(2 \mathcal{O}_{\mathbb{P}_{2}}\right)$ divided out are not reductive.

Now we assume for the moment $H^{1} \mathcal{F}=0$. One would like to determine $a=h^{0}\left(\mathcal{F} \otimes \Omega^{1}(1)\right)$ in the theorem above in terms of the integers μ and χ. For this, we consider the following diagram where the second column is induced by the Koszul resolution

$$
0 \longrightarrow \mathcal{O}_{\mathbb{P}_{2}}(-2) \xrightarrow{\alpha} 3 \mathcal{O}_{\mathbb{P}_{2}}(-1) \xrightarrow{\beta} \Omega_{\mathbb{P}_{2}}^{1}(1) \longrightarrow 0
$$

of the twisted cotangent bundle $\Omega_{\mathbb{P}_{2}}^{1}(1)$:

An application of the mapping cone lemma yields the exact sequence

$$
\begin{equation*}
0 \rightarrow(2 \mu-\chi) \mathcal{O}_{\mathbb{P}_{2}}(-1) \oplus(\mu-\chi) \mathcal{O}_{\mathbb{P}_{2}}(-2) \xrightarrow{B} \chi \mathcal{O}_{\mathbb{P}_{2}} \oplus 3(\mu-\chi) \mathcal{O}_{\mathbb{P}_{2}}(-1) \rightarrow \mathcal{F} \rightarrow 0 \tag{4}
\end{equation*}
$$

where the blockmatrix B has the shape

$$
B=\left(\begin{array}{c|c}
L_{1} & C \\
\hline Q & L_{2}
\end{array}\right)
$$

$Q \in \operatorname{Mat}\left(\mu-\chi, \chi, k\left[Z_{0}, Z_{1}, Z_{2}\right]_{2}\right)$ is a matrix of quadratic forms, L_{1} and L_{2} are matrices of linear forms and $C \in \operatorname{Mat}(2 \mu-\chi, 3 \mu-3 \chi, k)$.

This resolution is in fact not minimal. Using the semi-stability of the sheaf \mathcal{F} we can prove the following lemma:

Lemma 1. $r k(C)=r^{\prime}:=\min \{2 \mu-\chi, 3 \mu-3 \chi\}$.

Proof. By contradiction. Suppose $r:=\operatorname{rk}(C)<r^{\prime}$. After deleting the appropriate rows and columns of the matrix B with the Gauß algorithm, we get

$$
0 \rightarrow(2 \mu-\chi-r) \mathcal{O}_{\mathbb{P}_{2}}(-1) \oplus(\mu-\chi) \mathcal{O}_{\mathbb{P}_{2}}(-2) \xrightarrow{B^{\prime}} \chi \mathcal{O}_{\mathbb{P}_{2}} \oplus(3 \mu-3 \chi-r) \mathcal{O}_{\mathbb{P}_{2}}(-1) \rightarrow \mathcal{F} \rightarrow 0
$$

with

$$
B^{\prime}=\left(\begin{array}{c|c}
L_{1}^{\prime} & 0 \\
\hline Q^{\prime} & L_{2}^{\prime}
\end{array}\right)
$$

where we identify the isomorphic cokernels \mathcal{F} and $\operatorname{Coker}\left(B^{\prime}\right)$ by abuse of notation. Thus, let us investigate the diagram

Here we write $\mathcal{L}_{1}:=(2 \mu-\chi-r) \mathcal{O}_{\mathbb{P}_{2}}(-1) \oplus(\mu-\chi) \mathcal{O}_{\mathbb{P}_{2}}(-2), \mathcal{L}_{0}:=\chi \mathcal{O}_{\mathbb{P}_{2}} \oplus(3 \mu-3 \chi-r) \mathcal{O}_{\mathbb{P}_{2}}(-1)$ and $\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{K}_{2}$ for the cokernels respectively kernels of L_{1}^{\prime} and L_{2}^{\prime}. The snake lemma implies $\operatorname{Ker}(f) \cong \mathcal{K}_{2}$ and the injectivity of the map L_{1}^{\prime}. The latter also implies forces $2 \mu-r+\chi \leq \chi$ and consequently we obtain the following bounds for r :

$$
\begin{equation*}
2(\mu-\chi) \leq r<\min \{2 \mu-\chi, 3(\mu-\chi)\} \tag{5}
\end{equation*}
$$

If $\chi=0$, we get the contradiction. Suppose now $0<\chi<\mu$. After taking $\Lambda^{2 \mu-\chi-r}(\bullet)$ of the map L_{1}^{\prime} in the first column and after dualizing and twisting, we obtain an exact sequence:

$$
0 \longrightarrow\binom{\chi}{2 \mu-\chi-r} \mathcal{O}_{\mathbb{P}_{2}}(r+\chi-2 \mu) \longrightarrow \mathcal{O}_{\mathbb{P}_{2}} \longrightarrow \mathcal{O}_{Z_{f}\left(\mathcal{C}_{1}\right)} \longrightarrow 0
$$

where $Z_{f}\left(\mathcal{C}_{1}\right) \subset \mathbb{P}_{2}$ denotes the Fitting support of \mathcal{C}_{1}. Thus

$$
P_{Z_{f}\left(\mathcal{C}_{1}\right)}(m)=\frac{1}{2}\left[1-\binom{\chi}{2 \mu-\chi-r}\right] m^{2}+\cdots
$$

This forces the binomial coefficient $(\underset{2 \mu-\chi-r}{\chi})$ to be 0 or 1. Using the inequalities in (5), we deduce that $r=2(\mu-\chi)$. The diagram above simplifies now to

Since $Z_{a}\left(\mathcal{C}_{2}\right) \subset Z_{a}(\mathcal{F})$ is zero- or one-dimensional, it follows from

$$
1=\exp \cdot \operatorname{codim}_{\mathbb{P}_{2}} Z_{f}\left(\mathcal{C}_{2}\right) \geq \operatorname{codim}_{\mathbb{P}_{2}} Z_{f}\left(\mathcal{C}_{2}\right)=\operatorname{codim}_{\mathbb{P}_{2}} Z_{a}\left(\mathcal{C}_{2}\right) \geq 1
$$

that \mathcal{C}_{2} is supported on a curve and that the morphism L_{2}^{\prime} is regular. Therefore the kernel sheaf \mathcal{K}_{2} vanishes. An easy computation shows that the subsheaf $\mathcal{C}_{1} \subset \mathcal{F}$ has Hilbert polynomial $P_{\mathcal{C}_{1}}(m)=\chi m+\chi$. Thus we have found a 1-dimensional subsheaf of the semi-stable sheaf \mathcal{F} with

$$
1=\frac{\chi}{\chi}=\frac{\chi\left(\mathcal{C}_{1}\right)}{\mu\left(\mathcal{C}_{1}\right)} \leq \frac{\chi}{\mu}<1 .
$$

Contradiction. Thus, $r=\operatorname{rk}(C)=\min \{2 \mu-\chi, 3 \mu-3 \chi\}$.
Corollary 1. Let $[\mathcal{F}] \in M_{\mu m+\chi}\left(\mathbb{P}_{2}\right), 0 \leq \chi<\mu$ with $H^{1} \mathcal{F}=0$. Then \mathcal{F} has one of the following two minimal free resolutions:

$$
\begin{equation*}
0 \longrightarrow(\mu-\chi) \mathcal{O}_{\mathbb{P}_{2}}(-2) \xrightarrow{\left(Q \mid L_{2}\right)} \chi \mathcal{O}_{\mathbb{P}_{2}} \oplus(\mu-2 \chi) \mathcal{O}_{\mathbb{P}_{2}}(-1) \longrightarrow \mathcal{F} \longrightarrow 0, \tag{6}
\end{equation*}
$$

if $\chi \leq \frac{\mu}{2}$.

$$
\begin{equation*}
0 \longrightarrow(2 \chi-\mu) \mathcal{O}_{\mathbb{P}_{2}}(-1) \oplus(\mu-\chi) \mathcal{O}_{\mathbb{P}_{2}}(-2) \xrightarrow{\binom{L_{1}}{Q}} \chi \mathcal{O}_{\mathbb{P}_{2}} \longrightarrow \mathcal{F} \longrightarrow 0, \tag{7}
\end{equation*}
$$

if $\chi \geq \frac{\mu}{2}$.
Furthermore,

$$
a=h^{0}\left(\mathbb{P}_{2}, \mathcal{F} \otimes \Omega_{\mathbb{P}_{2}}^{1}(1)\right)= \begin{cases}0 & , \quad \chi \leq \frac{\mu}{2} \\ 2 \chi-\mu & , \quad \chi>\frac{\mu}{2}\end{cases}
$$

Proof. Consider the blockmatrix $B=\left(\begin{array}{c|c}L_{1} & C \\ \hline Q & L_{2}\end{array}\right)$ in the exact sequence (4). Lemma 1 says that $\operatorname{rk}(C)=\min \{2 \mu-\chi, 3 \mu-3 \chi\}$. Therefore, the resolution (6) can be obtained by deleting the last $3 \mu-3 \chi$ columns of B if $\operatorname{rk}(C)=3 \mu-3 \chi$. Similarly, one gets (7) by killing the first $2 \mu-\chi$ rows of B with Gauß' algorithm in case of $\operatorname{rk}(C)=2 \mu-\chi$. Comparing (6) and (7) with the resolution (3) in theorem 4.(i), we also obtain the value for $a=h^{0}\left(\mathcal{F} \otimes \Omega_{\mathbb{P}_{2}}^{1}(1)\right)$.

Remark: In the case $\chi=\mu-1$ one has $H^{1} \mathcal{F}=0$ for all $[\mathcal{F}] \in M_{\mu m+\mu-1}\left(\mathbb{P}_{2}\right)$ since $\operatorname{reg}(\mathcal{F}) \leq 1$ according to theorem 3.(8). The resolution is therefore in this case:

$$
0 \longrightarrow \mathcal{O}_{\mathbb{P}_{2}}(-2) \oplus(\mu-2) \mathcal{O}_{\mathbb{P}_{2}}(-1) \longrightarrow \underset{A}{\longrightarrow}(\mu-1) \mathcal{O}_{\mathbb{P}_{2}} \longrightarrow \mathcal{F} \longrightarrow 0
$$

M. Maican used this free resolution in order to prove that the moduli spaces $M_{\mu m+\mu-1}\left(\mathbb{P}_{2}\right)$ can be described as geometric quotients of maps A by the non-reductive group

$$
G:=\operatorname{Aut}\left((\mu-2) \mathcal{O}_{\mathbb{P}_{2}}(-2) \oplus \mathcal{O}_{\mathbb{P}_{2}}(-1)\right) \times \operatorname{Aut}\left((\mu-1) \mathcal{O}_{\mathbb{P}_{2}}\right)
$$

using a suitable polarization.

We also need a "relative version" of corollary 1 for families. As in the absolute case, there exists for any $\mathcal{F} \in \operatorname{Coh}\left(\mathbb{P}_{n} \times S\right)$ a Beilinson-type spectral sequence with E_{1}-term

$$
E_{1}^{r s}=\mathcal{O}_{\mathbb{P}_{2}}(r) \boxtimes R^{s} p_{*}\left(\mathcal{F} \otimes \Omega_{\mathbb{P}_{n} \times S / S}^{-s}(-s)\right)
$$

which converges to $E_{\infty}^{i}=\left\{\begin{array}{cc}\mathcal{F}, & \text { for } i=0 \\ 0, & \text { otherwise }\end{array}\right.$, i.e. $E_{\infty}^{r s}=0$ for $r+s \neq 0$ and $\bigoplus_{r=0}^{n} E_{\infty}^{-r, r}$ is the associated graded sheaf of a filtration of \mathcal{F} (cf. [8], p.306). Again, the spectral sequence gives rise to a complex

$$
0 \longrightarrow \mathcal{C}_{-n} \longrightarrow \cdots \longrightarrow \mathcal{C}_{-1} \longrightarrow \mathcal{C}_{0} \longrightarrow \mathcal{C}_{1} \longrightarrow \cdots \longrightarrow \mathcal{C}_{n} \longrightarrow 0
$$

with

$$
\mathcal{C}_{p}=\bigoplus_{q=0}^{n} \mathcal{O}_{\mathbb{P}_{n}}(-q) \boxtimes R^{q+p} p_{*}\left(\mathcal{F} \otimes \Omega_{\mathbb{P}_{n} \times S / S}^{q}(q)\right)
$$

which is exact everywhere with exception of \mathcal{C}_{0}, where the homology is \mathcal{F}.
Now let $\mathcal{F} \in \operatorname{Coh}\left(\mathbb{P}_{2} \times S\right)$ be a family of semi-stable sheaves \mathcal{F}_{s} with Hilbert polynomial $P_{\mathcal{F}_{s}}(m)=\mu m+\chi$ and $H^{1}\left(\mathbb{P}_{2}, \mathcal{F}_{s}\right)=0$ for all $s \in S$. Using the base change theorem and exactly the same arguments as in the proof of theorem 4,(i), we obtain a non-minimal (!) exact sequence

$$
\begin{aligned}
& 0 \longrightarrow \\
& \xrightarrow{B_{s}} {\left[\mathcal{O}_{\mathbb{P}_{2}}(-1) \boxtimes p_{*}\left(\mathcal{F} \otimes \Omega^{1}(1)\right)\right] \oplus\left[\mathcal{O}_{\mathbb{P}_{2}}(-2) \boxtimes R^{1} p_{*} \mathcal{F}(-1)\right] \xrightarrow{B_{s}} } \\
& \quad\left[\mathcal{O}_{\mathbb{P}_{2}} \boxtimes p_{*} \mathcal{F}\right] \oplus\left[\mathcal{O}_{\mathbb{P}_{2}}(-1) \boxtimes R^{1} p_{*}\left(\mathcal{F} \otimes \Omega^{1}(1)\right)\right] \quad \longrightarrow \mathcal{F} \longrightarrow 0
\end{aligned}
$$

Proof. To give a flavour of how to proceed, we show for example why $p_{*}\left(\mathcal{F} \otimes \Omega_{\mathbb{P}_{2} \times S / S}^{2}(2)\right)=0$ (and consequently $\mathcal{C}_{-2}=0$):
Since all the sheaves \mathcal{F}_{s} are supported on curves one has $H^{2}\left(\mathbb{P}_{2}, \mathcal{F}_{s}(-1)\right)=0$. The base change theorem implies that $R^{1} p_{*} \mathcal{F}(-1)(s) \xrightarrow{\approx} H^{1}\left(\mathbb{P}_{2}, \mathcal{F}_{s}(-1)\right)$ for all $s \in S$. Therefore $R^{1} p_{*} \mathcal{F}(-1)$ is locally free. Another application of the base change theorem yields $p_{*} \mathcal{F}(-1)(s) \cong$ $H^{0}\left(\mathbb{P}_{2}, \mathcal{F}_{s}(-1)\right)$. But then

$$
0=\operatorname{Hom}\left(\mathcal{O}_{\mathbb{P}_{2}}, \mathcal{F}_{s}(-1)\right) \cong H^{0}\left(\mathbb{P}_{2}, \mathcal{F}_{s}(-1)\right) \quad \forall s \in S
$$

due to the semi-stability of \mathcal{F}_{s}. Thus, $p_{*}\left(\mathcal{F} \otimes \Omega_{\mathbb{P}_{2} \times S / S}^{2}(2)\right) \cong p_{*} \mathcal{F}(-1)=0$.
By looking at the rank of the constant block in the family of matrices $\left(B_{s}\right)_{s \in S}$ as we did it for the absolute case in lemma 1, we can simplify the resolution and obtain the analogon to corollary 1 :

Theorem 5. Let $[\mathcal{F}] \in \mathcal{M}_{\mu m+\chi}\left(\mathbb{P}_{2}\right)(S), 0 \leq \chi<\mu$ with $H^{1}\left(\mathbb{P}_{2}, \mathcal{F}_{s}\right)=0$ for all $s \in S$. Then \mathcal{F} has one of the following two minimal free resolutions:
$0 \rightarrow \mathcal{O}_{\mathbb{P}_{2}}(-2) \boxtimes R^{1} p_{*} \mathcal{F}(-1) \longrightarrow \mathcal{O}_{\mathbb{P}_{2}} \boxtimes p_{*} \mathcal{F} \oplus \mathcal{O}_{\mathbb{P}_{2}}(-1) \boxtimes R^{1} p_{*}\left(\mathcal{F} \otimes \Omega_{\mathbb{P}_{2} \times S / S}^{1}(1)\right) \longrightarrow \mathcal{F} \rightarrow 0$, if $\chi \leq \frac{\mu}{2}$.

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{\mathbb{P}_{2}}(-1) \boxtimes p_{*}\left(\mathcal{F} \otimes \Omega_{\mathbb{P}_{2} \times S / S}^{1}(1)\right) \oplus \mathcal{O}_{\mathbb{P}_{2}}(-2) \boxtimes R^{1} p_{*} \mathcal{F}(-1) \longrightarrow \mathcal{O}_{\mathbb{P}_{2}} \boxtimes p_{*} \mathcal{F} \longrightarrow \mathcal{F} \rightarrow 0 \tag{9}
\end{equation*}
$$

if $\chi \geq \frac{\mu}{2}$.
Moreover,

- $p_{*} \mathcal{F}$ and $R^{1} p_{*} \mathcal{F}(-1)$ are locally free of rank χ and $\mu-\chi$ respectively.
- $p_{*}\left(\mathcal{F} \otimes \Omega_{\mathbb{P}_{2} \times S / S}^{1}(1)\right)$ and $R^{1} p_{*}\left(\mathcal{F} \otimes \Omega_{\mathbb{P}_{2} \times S / S}^{1}(1)\right)$ are locally free.
- If $\chi \leq \frac{\mu}{2}$ then $p_{*}\left(\mathcal{F} \otimes \Omega_{\mathbb{P}_{2} \times S / S}^{1}(1)\right)=0 \quad$ and $r k\left[R^{1} p_{*}\left(\mathcal{F} \otimes \Omega_{\mathbb{P}_{2} \times S / S}^{1}(1)\right)\right]=\mu-2 \chi$.
- If $\chi>\frac{\mu}{2}$ then $r k\left[p_{*}\left(\mathcal{F} \otimes \Omega_{\mathbb{P}_{2} \times S / S}^{1}(1)\right)\right]=2 \chi-\mu$ and $R^{1} p_{*}\left(\mathcal{F} \otimes \Omega_{\mathbb{P}_{2} \times S / S}^{1}(1)\right)=0$.

Proof. Left to the reader.

4. Dual Sheaves

We define for a (semi-) stable sheaf \mathcal{F} on \mathbb{P}_{2} with linear Hilbert polynomial $P(m)=\mu m+\chi$ its dual sheaf by

$$
\mathcal{F}^{\nabla}:=\mathcal{E} x t_{\mathcal{O}_{\mathbb{P}_{2}}}^{1}\left(\mathcal{F}, \omega_{\mathbb{P}_{2}}\right)(1)
$$

$\mathcal{H o m}_{\mathcal{O}_{\mathbb{P}_{2}}}\left(\mathcal{F}, \omega_{\mathbb{P}_{2}}\right)=0$ since \mathcal{F} is pure with one-dimensional support. Thus, dualizing the minimal free resolution (6) or (7) of \mathcal{F} from the corollary above and twisting by $\bullet \otimes \mathcal{O}_{\mathbb{P}_{2}}(-2)$
implies that \mathcal{F}^{∇} is (semi-)stable with Hilbert-polynomial $P^{\nabla}(m):=\mu m+(\mu-\chi)$. For example, if $\chi \leq \frac{\mu}{2}$ we obtain

$$
0 \longrightarrow \chi \mathcal{O}_{\mathbb{P}_{2}}(-2) \oplus(\mu-2 \chi) \mathcal{O}_{\mathbb{P}_{2}}(-1) \longrightarrow(\mu-\chi) \mathcal{O}_{\mathbb{P}_{2}} \longrightarrow \mathcal{F}^{\nabla} \xrightarrow{!} 0
$$

by this procedure.
Moreover, one can verify immediately that:

- $\mathcal{F}^{\nabla \nabla \cong \mathcal{F}}$
- $H^{1} \mathcal{F}=0 \quad \Longleftrightarrow \quad H^{1} \mathcal{F}^{\nabla}=0$

Thus, we get our main result:
Theorem 6. Let $P(m)=\mu m+\chi$ be a linear polynomial with $0 \leq \chi<\mu$ and $(\mu, \chi)=\mathbb{Z}$. Denote by $N \subset M_{P}\left(\mathbb{P}_{2}\right)$ respectively $N^{\nabla} \subset M_{P \nabla}\left(\mathbb{P}_{2}\right)$ the closed subvarieties of isomorphism classes of sheaves with non-vanishing first cohomology. Then there is a natural isomorphism

$$
\phi: M_{P}\left(\mathbb{P}_{2}\right) \backslash N \xrightarrow{\approx} M_{P \nabla}\left(\mathbb{P}_{2}\right) \backslash N^{\nabla}, \quad[\mathcal{F}] \mapsto\left[\mathcal{F}^{\nabla}\right]
$$

Thus, the moduli spaces $M_{P}\left(\mathbb{P}_{2}\right)$ and $M_{P \nabla}\left(\mathbb{P}_{2}\right)$ are birationally equivalent.
Proof. Clearly, the remarks above show that ϕ is set-theoretically a bijection. In order to show that ϕ is actually a morphism, note that $M:=M_{P}\left(\mathbb{P}_{2}\right)$ is a fine moduli space with universal family $\mathcal{U} \in \mathcal{M}_{P}\left(\mathbb{P}_{2}\right)(M)$ since μ and χ are coprime. Without loss of generality, we can assume that $\chi \leq \frac{\mu}{2}$. Now consider the minimal free resolution (8) of $\mathcal{C}:=\left.\mathcal{U}\right|_{\mathbb{P}_{2} \times M \backslash N}$ from theorem 5:
$0 \longrightarrow \mathcal{O}_{\mathbb{P}_{2}}(-2) \boxtimes R^{1} p_{*} \mathcal{C}(-1) \longrightarrow \mathcal{O}_{\mathbb{P}_{2}} \boxtimes p_{*} \mathcal{C} \oplus \mathcal{O}_{\mathbb{P}_{2}}(-1) \boxtimes R^{1} p_{*}\left(\mathcal{C} \otimes \Omega_{\mathbb{P}_{2} \times S / S}^{1}(1)\right) \longrightarrow \mathcal{C} \longrightarrow 0$.
An application of $\mathcal{H o m}_{\mathcal{O}_{\mathbb{P}_{2} \times M \backslash N}}\left(\bullet, \mathcal{O}_{\mathbb{P}_{2}}(-2) \boxtimes \mathcal{O}_{M \backslash N}\right)$ yields:
$0 \rightarrow \mathcal{O}_{\mathbb{P}_{2}}(-2) \boxtimes\left[p_{*} \mathcal{C}\right]^{*} \oplus \mathcal{O}_{\mathbb{P}_{2}}(-1) \boxtimes\left[R^{1} p_{*}\left(\mathcal{C} \otimes \Omega_{\mathbb{P}_{2} \times S / S}^{1}(1)\right)\right]^{*} \longrightarrow \mathcal{O}_{\mathbb{P}_{2}} \boxtimes\left[R^{1} p_{*} \mathcal{C}(-1)\right]^{*} \longrightarrow \mathcal{G} \rightarrow 0$, where $\mathcal{G}=\mathcal{E} x t_{\mathcal{O}_{\mathbb{P}_{2} \times M \backslash N}}^{1}\left(\mathcal{C}, \mathcal{O}_{\mathbb{P}_{2}}(-2) \boxtimes \mathcal{O}_{M \backslash N}\right)$.
According to theorem 5 , the bundles $\left[p_{*} \mathcal{C}\right]^{*},\left[R^{1} p_{*}\left(\mathcal{C} \otimes \Omega_{\mathbb{P}_{2} \times S / S}^{1}(1)\right)\right]^{*}$ and $\left[R^{1} p_{*} \mathcal{C}(-1)\right]^{*}$ have rank $\chi, \mu-2 \chi$ and $\mu-\chi$ respectively. Thus, the restriction of the resolution to a fiber $\mathcal{G}_{[\mathcal{F}]}$ is

$$
0 \longrightarrow \chi \mathcal{O}_{\mathbb{P}_{2}}(-2) \oplus(\mu-2 \chi) \mathcal{O}_{\mathbb{P}_{2}}(-1) \longrightarrow(\mu-\chi) \mathcal{O}_{\mathbb{P}_{2}} \longrightarrow \mathcal{G}_{[\mathcal{F}]} \longrightarrow 0
$$

which is exactly the resolution of \mathcal{F}^{∇} obtained above. Therefore $\mathcal{G}_{[\mathcal{F}]} \cong \mathcal{F}^{\nabla}$. Obviously, the sheaves $\boldsymbol{\mathcal { G }}_{[\mathcal{F}]}$ are stable with Hilbert polynomial $P^{\nabla}(m)=\mu m+(\mu-\chi)$ and $H^{1} \mathcal{G}_{[\mathcal{F}]}=0$ for all $[\mathcal{F}] \in M \backslash N$. In other words, $\mathcal{G} \in \mathcal{M}_{P^{\nabla}}\left(\mathbb{P}_{2}\right)(M \backslash N)$. Per construction, the morphism

$$
\Phi_{\mathcal{G}}: M \backslash N \longrightarrow M_{P^{\nabla}}\left(\mathbb{P}_{2}\right)
$$

induced by the family \mathcal{G} maps to $M_{P^{\nabla}}\left(\mathbb{P}_{2}\right) \backslash N^{\nabla}$ and is indeed equal to the set-theoretical map ϕ. Similarly, one proves that ϕ^{-1} is a morphism.

5. Smoothness

In this section we want to reprove LePotier's result that $M_{\mu m+\chi}\left(\mathbb{P}_{2}\right)$ for coprime coefficients and show that the irreducible moduli space [7] is then indeed smooth.

Theorem 7. Let $P(m):=\mu m+\chi$ with $(\mu, \chi)=(1)$. Then

1. $M:=M_{P}\left(\mathbb{P}_{2}\right)$ is a smooth projective variety of dimension $\mu^{2}+1$.
2. The moduli space M is fine with universal family $\mathcal{U} \in \mathcal{M}_{P}\left(\mathbb{P}_{2}\right)(M)$.

Proof. Without loss of generality we can assume that $0 \leq \chi<\mu$. By theorem 3.(7), we have that all semi-stable sheaves \mathcal{F} with polynomial P are stable.

1. Serre duality gives $\operatorname{Ext}^{2}(\mathcal{F}, \mathcal{F})=\operatorname{Hom}\left(\mathcal{F}, \mathcal{F} \otimes \omega_{\mathbb{P}_{2}}\right)^{\vee}=\operatorname{Hom}(\mathcal{F}, \mathcal{F}(-3))^{\vee}=0$ for every $[\mathcal{F}] \in M$. The last equality is due to the stability of \mathcal{F}. Id est, there are no obstructions and M is smooth in neighbourhood of $[\mathcal{F}]$. Consequently, M is a smooth projective variety. We are left to compute $\operatorname{dim} M$. Every sheaf in the open, dense subset $M \backslash N=\{[\mathcal{F}] \in$ $\left.M_{P}\left(\mathbb{P}_{2}\right): H^{1} \mathcal{F}=0\right\}$ has a resolution (2). If we apply $\operatorname{Hom}(\cdot, \mathcal{F})$ to that sequence, we end up with
$0 \longrightarrow \operatorname{End}(\mathcal{F}) \longrightarrow \chi H^{0} \mathcal{F} \oplus(\mu-\chi) \operatorname{Hom}\left(\Omega_{\mathbb{P}_{2}}^{1}(1), \mathcal{F}\right) \longrightarrow(2 \mu-\chi) H^{0} \mathcal{F}(1) \longrightarrow \operatorname{Ext}^{1}(\mathcal{F}, \mathcal{F}) \longrightarrow$
$\cdots \longrightarrow H^{1} \mathcal{F} \oplus(\mu-\chi) \operatorname{Ext}^{1}\left(\Omega_{\mathbb{P}_{2}}^{1}(1), \mathcal{F}\right) \longrightarrow(2 \mu-\chi) H^{1} \mathcal{F}(1) \longrightarrow \operatorname{Ext}^{2}(\mathcal{F}, \mathcal{F}) \longrightarrow 0$
The stable sheaf \mathcal{F} is simple and therefore $\operatorname{End}(\mathcal{F}) \cong k$. We also have $\operatorname{Hom}\left(\Omega_{\mathbb{P}_{2}}^{1}(1), \mathcal{F}\right) \cong$ $H^{0}\left(\mathcal{F}(-1) \otimes\left(\Omega_{\mathbb{P}_{2}}^{1}\right)^{\vee}\right) \cong H^{0}\left(\mathcal{F}(2) \otimes \Omega_{\mathbb{P}_{2}}^{1}\right)$ and $\operatorname{Ext}^{1}\left(\Omega_{\mathbb{P}_{2}}^{1}(1), \mathcal{F}\right) \cong H^{1}\left(\mathcal{F}(2) \otimes \Omega_{\mathbb{P}_{2}}^{1}\right)$. Using the Euler sequence

$$
0 \rightarrow \mathcal{F}(2) \otimes \Omega_{\mathbb{P}_{2}}^{1} \longrightarrow 3 \mathcal{F}(1) \longrightarrow \mathcal{F}(2) \rightarrow 0
$$

we get $\chi\left(\mathcal{F}(2) \otimes \Omega_{\mathbb{P}_{2}}^{1}\right)=3 \chi(\mathcal{F}(1))-\chi(\mathcal{F}(2))=\mu+2 \chi$. But then:

$$
\begin{aligned}
\operatorname{ext}^{1}(\mathcal{F}, \mathcal{F})= & 1-\chi h^{0} \mathcal{F}-(\mu-\chi) h^{0}\left(\mathcal{F}(2) \otimes \Omega^{1}\right)+(2 \mu-\chi) h^{0} \mathcal{F}(1)+ \\
& \chi h^{1} \mathcal{F}+(\mu-\chi) h^{1}\left(\mathcal{F}(2) \otimes \Omega^{1}\right)-(2 \mu-\chi) h^{1} \mathcal{F}(1) \\
= & 1-\chi^{2}-(\mu-\chi) \chi\left(\mathcal{F}(2) \otimes \Omega^{1}\right)+(2 \mu-\chi) \chi(\mathcal{F}(1)) \\
= & 1-\chi^{2}-(\mu-\chi)(\mu+2 \chi)+(2 \mu-\chi)(\mu+\chi) \\
= & \mu^{2}+1
\end{aligned}
$$

Thus $\operatorname{dim} M=\mu^{2}+1$ because $\operatorname{dim}_{k} T_{[\mathcal{F}]} M=\mu^{2}+1$ for all $[\mathcal{F}] \in M \backslash N$.
2. The existence and construction of the universal family in this case is standard and can be found for example in [3].

Remark 1: Let again $\chi=\mu-1, \mu>1$. In this case we have $N=\emptyset$. Thus, there is an isomorphism between the smooth, $\left(\mu^{2}+1\right)$-dimensional, fine moduli spaces $M_{\mu m+1}\left(\mathbb{P}_{2}\right)$ and $M_{\mu m+\mu-1}\left(\mathbb{P}_{2}\right)$.

Remark 2: [7]. If μ and χ are not coprime and $\mu \geq 2$ then the complement of the open subset of stable stable sheaves in $M_{\mu m+\chi}\left(\mathbb{P}_{2}\right)$ has codimension at least $2 \mu-3$, and no matter what open set U in $M_{\mu m+\chi}\left(\mathbb{P}_{2}\right)$ one chooses, there does not exist a universal sheaf over $\mathbb{P}_{2} \times U$.

References

[1] Freiermuth, H.-G.: On the Moduli Space $M_{P}\left(\mathbb{P}_{3}\right)$ of Semi-stable Sheaves on \mathbb{P}_{3} with Hilbert Polynomial $P(m)=3 m+1$. Diplomarbeit, Universität Kaiserslautern, (2000).
[2] Freiermuth, H.-G., Trautmann, G.: On the Moduli Scheme of Stable Sheaves Supported on Cubic Space Curves. In preparation (2001).
[3] Huybrechts, D. and Lehn, M.: The geometry of moduli spaces of sheaves. Aspects of Math., Vol. E 31, Vieweg (1997).
[4] Kleiman, S.: Les theorems de finitude pour le foncteur de Picard SGA 6, ex. XIII, Springer LNM 225 (1966/67).
[5] Leopold, P.: Die Modulräume von semistabilen Garben der Multiplizität 2 auf Kurven der Projektiven Ebene. Diplomarbeit, Universität Kaiserslautern (1998).
[6] Maruyama, M.: Vector bundles and torsionfree sheaves. In: International Colloquium on Vector Bundles on Algebraic Varieties (1984), Oxford Univ. Press (1987), 275-339.
[7] Le Potier, J.: Faisceaux semi-stables de dimension 1 sur le plan projectif. Rev. Roumaine math. pures appl., 38 (1993), 7-8, 635-678.
[8] Okonek, C., Schneider, M. and Spindler, H.: Vector bundles on complex projective spaces. Progress in Math. 3, Birkhäuser (1980).
[9] Simpson, C.T.: Moduli of representations of the fundamental group of a smooth projective variety I. Publ. Math. I.H.E.S., 79 (1994), 47-129.

Department of Mathematics, Columbia University, 2990 Broadway, New York, NY 10027
E-mail address: freiermuth@math.columbia.edu

[^0]: ${ }^{1}$ Note that $M_{\mu m+\tau}\left(\mathbb{P}_{2}\right) \cong M_{\mu m+\chi}\left(\mathbb{P}_{2}\right)$ if $\tau \equiv \chi(\bmod \mu)$ since the Hilbert polynomial involved is linear.

