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Abstract. In this short note we prove some general results on semi-stable sheaves on P2 and
P3 with arbitrary linear Hilbert polynomial. Using Beilinson’s spectral sequence, we compute
free resolutions for this class of semi-stable sheaves and deduce that if µ and χ are coprime the
smooth moduli spaces Mµm+χ(P2) and Mµm+(µ−χ)(P2) are birationally equivalent.

1. Introduction

Moduli of torsionfree semi-stable sheaves on P2 and P3 with fixed Hilbert polynomial were
introduced by Maruyama and others. They have been intensively studied during the last
decades. In 1994, Simpson [9] showed that the family of arbitrary semi-stable sheaves with
fixed Hilbert Polynomial P on a smooth projective variety X is bounded. Using this, he proved
the existence of a projective scheme MP (X) corepresenting the moduli functor MP (X)(S) of
S-flat coherent sheaves over X × S with semi-stable fibers F s and PFs = P . For dim(X) ≥ 2
and linear Hilbert polynomial P (m) = µm+ χ, id est if all the sheaves in MP (X) have torsion
and are supported on degree µ curves, there is not much known about these spaces.

LePotier [7] proved that the coarse moduli spaces Mµm+χ(P2) are irreducible, locally factorial
projective varieties of dimension µ2 + 1. They are rational at least if χ ≡ ±1 (mod µ), χ ≡
±2 (mod µ) and for small multiplicities µ ≤ 4.

Furthermore, he described for µ ≤ 4 the geometrical properties of Mµm+χ(P2) and the birational
map [6] to the Maruyama scheme MP

∨
2
(µ; 0, µ) of semi-stable, torsionfree rank µ sheaves with

second Chern class µ on the dual projective plane P∨2 .

We investigated in [1], [2] the geometry of M3m+1(P3) which has two smooth, rational com-
ponents of dimension 12 and 13 intersecting each other transversally along an 11-dimensional
smooth subvariety. It is in some sense the “smallest” example for a reducible Simpson space
and plays a role similar to Hilb3m+1(P3) in the case of Hilbert schemes.

Doing this, we noted as in [7] that in the planar case M3m+1(P2) and M3m+2(P2) are both
isomorphic to the universal cubic C −→ P2. This is not an accident and turned out to be part
of a more general “symmetry” result which is the subject of this short note.

Date: 10/21/2001.
1



2 H. G. FREIERMUTH

Figure 1. Schematic Picture. Each box corresponds to an Mµm+χ(P2).
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Theorem 1. Let P (m) = µm + χ, 0 < χ ≤ µ, µ and χ coprime, be a linear polynomial 1,
and define its “dual” by P∇(m) := µm+ µ− χ. Denote by N ⊂MP (P2) and N∇ ⊂MP∇(P2)
respectively the closed subvarieties of isomorphism classes of sheaves with non-vanishing first
cohomology. Then there is a natural isomorphism

Φ : MP (P2) \N ≈−→MP∇(P2) \N∇.

Thus, the moduli spaces MP (P2) and MP∇(P2) are birationally equivalent. Moreover, the spaces
Mµm+1(P2) and Mµm+µ−1(P2) are isomorphic.

Finally, we can extend LePotier’s result cited above in a way certainly known to him:

Theorem 2. If µ and χ are coprime, the fine Simpson moduli spaces Mµm+χ(P2) are smooth
projective varieties of dimension µ2 + 1.

The author would like to thank Günther Trautmann for useful discussions.

2. Preliminaries

We call the a projective scheme over an algebraically closed field k a variety. One can equip
the support of a coherent sheaf F on a smooth variety X in several ways with the structure

1Note that Mµm+τ (P2) ∼= Mµm+χ(P2) if τ ≡ χ (mod µ) since the Hilbert polynomial involved is linear.
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of a (not necessarily reduced) variety. One is using the annihilator ideal sheaf Ann(F) ⊂ OX .
We write Za(F) := (Supp(F),OX/Ann(F)). Another way is the following: Let

r⊕
µ=1

OX(−bµ)
A−→

s⊕
ν=1

OX(−aν)→ F → 0

be an arbitrary presentation of F and denote by Fitti(F) ⊂ OX the ideal sheaf generated by
the (s − i) × (s − i)-minors of the homogeneous matrix A. Due to Fitting’s lemma, the sheaf
Fitti(F) does not depend on the choice of the presentation. Furthermore, one has

Fitt0(F) ⊂ AnnF and (AnnF) Fitti(F) ⊂ Fitti−1(F) ∀ i > 0

Now define
Zf (F) := ( Supp(F),OX/Fitt0(F) ) ↪→ (X,OX )

Za(F) is obviously a subvariety of Zf (F) and Za(F)red = Zf (F)red = Supp(F).

Let X be a variety and S be a Noetherian (base-)scheme of finite type over k and call the
projections from X ×k S to the first and second factor by q and p respectively. If F ∈ Coh(X),
G ∈ Coh(S) and H ∈ Coh(X × S) are coherent sheaves, we will write F � G := q∗F ⊗ p∗G,
F(m)�OS := q∗F(m), Hs :=H|X×{s} and H(m) :=H⊗ q∗OX(m).

A purely 1-dimensional coherent sheaf F with linear Hilbert polynomial P (m) = µm + χ on
a smooth variety X is called semi-stable resp. stable if for all proper coherent submodules
0 6= F ′ ⊂ F

χ(F ′)
µ(F ′)

≤ χ

µ
resp.

χ(F ′)
µ(F ′)

<
χ

µ

µ(F) is called the multiplicity and p(F) := χ
µ

the slope of the sheaf F .

We collect now some properties of (semi-)stable sheaves supported on curves in the projective
plane or projective space in the following theorem:

Theorem 3. Let F be a semi-stable sheaf on Pn, n = 2, 3, with linear Hilbert polynomial
PF(m) = µm+ χ, 0 ≤ χ < µ and C := Za(F) be its support.

1. F is Cohen-Macaulay, or equivalently: F has no zero-dimensional torsion.
2. If C is smooth then F is locally free. If C is integral F is still locally free on an open

dense subset U = C \ {p1, . . . pr}.
3. Let n = 2. Then (r; c1, c2) = (0;µ, µ (µ+3)

2
− χ). If n = 3, we have (r; c1, c2, c3) =

(0; 0,−µ, 2χ − 4µ) In both cases, r = rkPn(F) denotes the rank and ci = ci(F) are the
Chern classes w.r.t. Pn.

4. The not necessarily reduced curve C ⊂ Pn has no zero-dimensional components and no
embedded points.

5. µ = χ(F|H) where H = Z(l) ∈ |OPn(1) | is F-regular. Thus,

µ = h0(F|H) =
∑

p∈C∩H

dimk(Fp)
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6. µ(OCred) ≤ µ(OC) ≤ µ and µ(F ⊗OCred) ≤ µ
7. If χ > 0 and (χ, µ) = Z then F is stable.
8. There are the following bounds for the cohomology and the Castelnuovo-Mumford regularity

of the sheaf F :
• χ ≤ h0F ≤ µ− 1.
• 0 ≤ h1F ≤ µ− χ− 1.
• reg(F) ≤ µ− χ, in particular H1F(i) = 0 for all i ≥ µ− χ− 1.

Proof. Cf. [1]. The only part which is not obvious is 8.: Let H be a F -regular hyperplane.
Then 0→ F(−1)→ F → F|H → 0 induces an exact sequence

0→ H0F(n− 1)→ H0F(n)
fn−→ kµ → H1F(n− 1)→ H1F(n)→ 0 ∀n ∈ Z(1)

This implies that n 7→ h1F(n) is decreasing and χ ≤ h0F ≤ h0F(−1)+µ. But Hom(OC(1) , F )
vanishes because of the semi-stability, and thus χ ≤ h0F ≤ µ.
Now assume that fn is surjective. The commutative diagram

H0F(n)⊗H0O(1)
fn⊗id

//

��

kµ ⊗H0O(1) //

��

0

H0F(n+ 1)
fn+1

// kµ

��

0

implies that fn+1 is also a surjection. Therefore we get

H1F(n− 1) ∼= H1F(n) ∼= H1F(n+ 1) ∼= · · · ∼= 0

by Serre’s theorem B. If fn is not surjective, then we see from the sequence (1) that h1F(n−1) >
h1F(n). Thus, the function n 7→ h1F(n) is strictly decreasing until it reaches 0.
Next, we show that h0F ≤ µ − 1. Suppose h0(F) = µ. Then the injective (!) map f0 is an
isomorphism and µ− χ = h1F(−1) = 0. Contradiction.
Since h0F < µ the homomorphism f0 cannot be surjective. The situation is then the following:
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n

worst case. . .

µ− χ

2µ− χ

3µ− χ

µ− χ− 1−1−2−5

h1F(n)

This implies that reg(F) ≤ µ− χ.

3. The Resolutions

The key idea in the proof of theorem 1 is to find a common free resolution for all sheaves in an
open subset of the moduli space Mµm+χ(P2) and then to dualize this resolution. An appropriate
tool for this are the Beilinson complexes:

Given a coherent sheaf F on Pn, one has the following two complexes

0 −−−→ B−n −−−→ · · · −−−→ B−1 −−−→ B0 −−−→ B1 −−−→ · · · −−−→ Bn −−−→ 0

where

Bp =
n⊕
q=0

Hq(Pn,F(p− q))⊗k Ωq−p
Pn

(q − p), p ∈ Z

and

0 −−−→ C−n −−−→ · · · −−−→ C−1 −−−→ C0 −−−→ C1 −−−→ · · · −−−→ Cn −−−→ 0

with

Cp =
n⊕
q=0

Hq+p(Pn,F ⊗ Ωq
Pn

(q))⊗k OPn(−q), p ∈ Z

They are exact except at B0 resp. C0, where the homology is F , and can be obtained from the
Beilinson I/II spectral sequences. For example the second complex comes from the sequence
with E1-term

E rs
1 := Hr(Pn,F ⊗ Ω−s

Pn
(−s) )⊗k OPn(s)
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which converges to Ei
∞ =

{
F ,
0,

for i=0
otherwise

. More detailed: Ers
∞ = 0 for r = −s and

⊕n
r=0 E

−r,r
∞ is

the associated graded sheaf of a filtration of F . For more details on the Beilinson sequence we
refer for example to [8].

Applying this technique to semi-stable sheaves in P2, we get:

Theorem 4. Let F be a semi-stable sheaf on P2 with linear Hilbert polynomial P (m) = µm+χ,
0 ≤ χ < µ. Furthermore, let a := h0(P2,F ⊗ Ω1

P2
(1)).

(i) There are complexes

0→ (2µ− χ)OP2(−1) −→ H0F ⊗OP2 ⊕ (µ− χ) Ω1
P2

(1) −→ H1F ⊗OP2 → 0

and

0→ aOP2(−1)⊕ (µ− χ)OP2(−2)→ H0F ⊗OP2 ⊕ (a+ µ− 2χ)OP2(−1)→ H1F ⊗OP2 → 0

which are exact with exception of the homology sheaf in the middle which is isomorphic to
F . In particular, if H1(F) ∼= 0 we have free resolutions

0→ (2µ− χ)OP2(−1) −→ χOP2 ⊕ (µ− χ)Ω1
P2

(1) −→ F → 0(2)

and

0→ aOP2(−1)⊕ (µ− χ)OP2(−2) −→ χOP2 ⊕ (a+ µ− 2χ)OP2(−1) −→ F → 0.(3)

(ii) If µ(OC) < 4− 2χ
µ

then h1F = 0.

Proof. In our case, all the Bp resp. Cp vanish if p 6= −2,−1, 0, 1. Using the facts that h0F(−j) =
0 for all j > 0 because of the semi-stability and Ω2(2) = OP2(−1), we obtain

B1 = H1F ⊗OP2

B0 = H0F ⊗OP2 ⊕H1F(−1)⊗ Ω1(1) = H0F ⊗OP2 ⊕ (µ− χ) Ω1(1)

B−1 = H0F(−1)⊗ Ω1(1)⊕H1F(−2)⊗ Ω2(2) = (2µ− χ)OP2(−1)

B−2 = H0F(−2)⊗ Ω2(2) = 0

and

C1 = H1F ⊗OP2

C0 = H0F ⊗OP2 ⊕H1(F ⊗ Ω1(1))⊗OP2(−1)

C−1 = H0(F ⊗ Ω1(1))⊗OP2(−1)⊕H1(F ⊗ Ω2(2))⊗OP2(−2) = aOP2(−1)⊕ (µ− χ)OP2(−2)

C−2 = H0(F ⊗ Ω2(2))⊗OP2(−2) = 0.

Now consider the Euler sequence tensored with F
0 −−−→ Ω1(1)⊗F −−−→ 3F −−−→ F(1) −−−→ 0

in order to see that h1(F ⊗ Ω1(1)) = a+ χ(F(1))− 3χ(F) = a+ µ− 2χ.
To show (ii), let C := Za(F). Then H0(C,F ⊗ Ω1

P2
(1)) ∼= Hom(OC(−1) ⊗ (Ω1)∨,F) ∼=

Hom(OC(2) ⊗ Ω1,F). OC is stable and thus p-stable. Ω1 is p-stable, too. The stability of
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OC(2)⊗ Ω1 implies the vanishing of H0(F ⊗ Ω1(1)) if p(Ω1 ⊗OC(2)) > p(F). But a straight-
forward computation using the exact sequence

0 −−−→ Ω1 ⊗OC(2) −−−→ 3OC(1) −−−→ OC(2) −−−→ 0

and pa(C) = 1
2
(deg(C)− 1)(deg(C)− 2) gives p(Ω1⊗OC(2)) = 2− µ(OC)

2
and consequently the

result.

Remark: The inequality µ(OC) < 4− 2χ
µ

or H1(F) = 0 is for example fullfilled in the following
cases:

P (m) Resolution

m 0→ OP2(−2)→ OP2(−1)→ F → 0
2m 0→ 2OP2(−2)→ 2OP2(−1)→ F → 0
2m+ 1 0→ OP2(−2)→ OP2 → F → 0
3m 0→ 3OP2(−2)→ 3OP2(−1)→ F → 0
3m+ 1 0→ 2OP2(−2)→ OP2 ⊕OP2(−1)→ F → 0
3m+ 2 0→ OP2(−2)⊕OP2(−1)→ 2OP2 → F → 0

For these resolutions, one can verify that the space of matrices occuring in the resolutions
modulo automorphisms is isomorphic to the corresponding moduli space MP (P2). This helps
getting a more explicit description of the spaces: Mm(P2) is clearly isomorphic to P2 since
F ∼= OL(−1) for some line L. Leopold [5] showed that M2m(P2) ∼= M2m+1(P2) ∼= P5. In

[1] or [7] one can find a proof for M3m+1(P2) ∼= M3m+2(P2) ∼= C, where C π−→ P2 denotes
the universal cubic on the projective plane. One problem occuring here is that the groups
Aut(2OP2(−2)×Aut(OP2 ⊕OP2(−1)) and Aut(OP2(−2)⊕OP2(−1))×Aut(2OP2) divided out
are not reductive.

�

Now we assume for the moment H1F = 0. One would like to determine a = h0(F ⊗ Ω1(1)) in
the theorem above in terms of the integers µ and χ. For this, we consider the following diagram
where the second column is induced by the Koszul resolution

0 // OP2(−2)
α

// 3OP2(−1)
β

// Ω1
P2

(1) // 0
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of the twisted cotangent bundle Ω1
P2

(1):

0

0 // (2µ− χ)OP2(−1) // χOP2 ⊕ (µ− χ) Ω1
P2

(1) //

OO

F // 0

(2µ− χ)OP2(−1) χOP2 ⊕ 3 (µ− χ)OP2(−1)

id×β

OO

(µ− χ)OP2(−2)

α

OO

0

OO

An application of the mapping cone lemma yields the exact sequence

0→ (2µ− χ)OP2(−1)⊕ (µ− χ)OP2(−2)
B−→ χOP2 ⊕ 3 (µ− χ)OP2(−1)→ F → 0(4)

where the blockmatrix B has the shape

B =

(
L1 C
Q L2

)
.

Q ∈ Mat(µ − χ, χ, k[Z0, Z1, Z2]2 )is a matrix of quadratic forms, L1 and L2 are matrices of
linear forms and C ∈ Mat( 2µ− χ, 3µ− 3χ, k ).

This resolution is in fact not minimal. Using the semi-stability of the sheaf F we can prove the
following lemma:

Lemma 1. rk(C) = r ′ := min{ 2µ− χ, 3µ− 3χ }.

Proof. By contradiction. Suppose r := rk(C) < r ′. After deleting the appropriate rows and
columns of the matrix B with the Gauß algorithm, we get

0→ (2µ− χ− r)OP2(−1)⊕ (µ− χ)OP2(−2)
B ′−→ χOP2 ⊕ (3µ− 3χ− r)OP2(−1)→ F → 0

with

B ′ =

(
L′1 0
Q ′ L′2

)
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where we identify the isomorphic cokernels F and Coker(B ′) by abuse of notation. Thus, let
us investigate the diagram

0

��

0

��

K2

��

0 // (2µ− χ− r)OP2(−1) //

L′1
��

L1

B ′

��

// (µ− χ)OP2(−2) //

ssfffffffffffffffffffffffffff
L′2

��

0

0 // χOP2

��

// L0
//

��

(3µ− 3χ− r)OP2(−1)

��

// 0

C1

f
//

��

F //

��

C2
//

��

0

0 0 0

.

Here we write L1 := (2µ−χ−r)OP2(−1)⊕(µ−χ)OP2(−2), L0 := χOP2⊕(3µ−3χ−r)OP2(−1)
and C1, C2, K2 for the cokernels respectively kernels of L′1 and L′2. The snake lemma implies
Ker(f) ∼= K2 and the injectivity of the map L′1. The latter also implies forces 2µ− r + χ ≤ χ
and consequently we obtain the following bounds for r:

2 (µ− χ) ≤ r < min{ 2µ− χ, 3 (µ− χ) }(5)

If χ = 0, we get the contradiction. Suppose now 0 < χ < µ. After taking Λ2µ−χ−r( • ) of the
map L′1 in the first column and after dualizing and twisting, we obtain an exact sequence:

0
!−−−→

(
χ

2µ−χ−r

)
OP2(r + χ− 2µ) −−−→ OP2 −−−→ OZf (C1) −−−→ 0

where Zf (C1) ⊂ P2 denotes the Fitting support of C1. Thus

PZf (C1)(m) =
1

2

[
1−

(
χ

2µ− χ− r

)]
m2 + · · ·
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This forces the binomial coefficient
(

χ
2µ−χ−r

)
to be 0 or 1. Using the inequalities in (5), we

deduce that r = 2 (µ− χ). The diagram above simplifies now to

0

��

0

��

0

��

K2

��

0 // χOP2(−1) //

L′1
��

L1

B ′

��

// (µ− χ)OP2(−2) //

L′2
��

0

0 // χOP2

��

// L0
//

��

(µ− χ)OP2(−1)

��

// 0

0 // K2
// C1

//

��

F //

��

C2
//

��

0

0 0 0

.

Since Za(C2) ⊂ Za(F) is zero- or one-dimensional, it follows from

1 = exp.codimP2Zf (C2) ≥ codimP2Zf (C2) = codimP2Za(C2) ≥ 1

that C2 is supported on a curve and that the morphism L′2 is regular. Therefore the kernel sheaf
K2 vanishes. An easy computation shows that the subsheaf C1 ⊂ F has Hilbert polynomial
PC1(m) = χm + χ. Thus we have found a 1-dimensional subsheaf of the semi-stable sheaf F
with

1 =
χ

χ
=
χ(C1)

µ(C1)
≤ χ

µ
< 1.

Contradiction. Thus, r = rk(C) = min{ 2µ− χ, 3µ− 3χ }.

Corollary 1. Let [F ] ∈ Mµm+χ(P2), 0 ≤ χ < µ with H1F = 0. Then F has one of the
following two minimal free resolutions:

0 −−−→ (µ− χ)OP2(−2)
(Q |L2 )−−−−→ χOP2 ⊕ (µ− 2χ)OP2(−1) −−−→ F −−−→ 0,(6)

if χ ≤ µ
2
.

0 −−−→ (2χ− µ)OP2(−1)⊕ (µ− χ)OP2(−2)
(L1
Q )

−−−→ χOP2 −−−→ F −−−→ 0,(7)

if χ ≥ µ
2
.

Furthermore,

a = h0(P2, F ⊗ Ω1
P2

(1) ) =

{
0 , χ ≤ µ

2
2χ− µ , χ > µ

2
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Proof. Consider the blockmatrix B =
(

L1 C

Q L2

)
in the exact sequence (4). Lemma 1 says that

rk(C) = min{ 2µ− χ, 3µ− 3χ }. Therefore, the resolution (6) can be obtained by deleting the
last 3µ − 3χ columns of B if rk(C) = 3µ − 3χ. Similarly, one gets (7) by killing the first
2µ − χ rows of B with Gauß’ algorithm in case of rk(C) = 2µ − χ. Comparing (6) and (7)
with the resolution (3) in theorem 4.(i), we also obtain the value for a = h0(F ⊗ Ω1

P2
(1)).

Remark: In the case χ = µ− 1 one has H1F = 0 for all [F ] ∈Mµm+µ−1(P2) since reg(F) ≤ 1
according to theorem 3.(8). The resolution is therefore in this case:

0 −−−→ OP2(−2)⊕ (µ− 2)OP2(−1) −−−→
A

(µ− 1)OP2 −−−→ F −−−→ 0

M. Maican used this free resolution in order to prove that the moduli spaces Mµm+µ−1(P2) can
be described as geometric quotients of maps A by the non-reductive group

G := Aut( (µ− 2)OP2(−2)⊕OP2(−1) ) × Aut( (µ− 1)OP2)

using a suitable polarization.

�

We also need a “relative version” of corollary 1 for families. As in the absolute case, there
exists for any F ∈ Coh(Pn × S) a Beilinson-type spectral sequence with E1-term

E rs
1 = OP2(r)�Rsp∗(F ⊗ Ω−s

Pn×S/S(−s))

which converges to Ei
∞ =

{
F ,
0,

for i=0
otherwise

, i.e. Ers
∞ = 0 for r + s 6= 0 and

⊕n
r=0 E

−r,r
∞ is the

associated graded sheaf of a filtration of F (cf. [8], p.306). Again, the spectral sequence gives
rise to a complex

0 −−−→ C−n −−−→ · · · −−−→ C−1 −−−→ C0 −−−→ C1 −−−→ · · · −−−→ Cn −−−→ 0

with

Cp =
n⊕
q=0

OPn(−q)�Rq+pp∗(F ⊗ Ωq
Pn×S/S(q))

which is exact everywhere with exception of C0, where the homology is F .

Now let F ∈ Coh(P2 × S) be a family of semi-stable sheaves F s with Hilbert polynomial
PFs(m) = µm + χ and H1(P2,F s) = 0 for all s ∈ S. Using the base change theorem and
exactly the same arguments as in the proof of theorem 4,(i), we obtain a non-minimal (!) exact
sequence

0 −−−→ [OP2(−1)� p∗(F ⊗ Ω1(1)) ]⊕ [OP2(−2)�R1p∗F(−1) ]
Bs−−−→

Bs−−−→ [OP2 � p∗F ]⊕ [OP2(−1)�R1p∗(F ⊗ Ω1(1)) ] −−−→ F −−−→ 0
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Proof. To give a flavour of how to proceed, we show for example why p∗(F ⊗ Ω2
P2×S/S(2)) = 0

(and consequently C−2 = 0):

Since all the sheaves F s are supported on curves one has H2(P2,F s(−1)) = 0. The base

change theorem implies that R1p∗F(−1)(s)
≈−→ H1(P2,F s(−1)) for all s ∈ S. Therefore

R1p∗F(−1) is locally free. Another application of the base change theorem yields p∗F(−1)(s) ∼=
H0(P2,F s(−1)). But then

0 = Hom(OP2 ,F s(−1)) ∼= H0(P2,F s(−1)) ∀ s ∈ S,

due to the semi-stability of F s. Thus, p∗(F ⊗ Ω2
P2×S/S(2)) ∼= p∗F(−1) = 0.

By looking at the rank of the constant block in the family of matrices (Bs)s∈S as we did it
for the absolute case in lemma 1, we can simplify the resolution and obtain the analogon to
corollary 1:

Theorem 5. Let [F ] ∈ Mµm+χ(P2)(S), 0 ≤ χ < µ with H1(P2,F s) = 0 for all s ∈ S. Then
F has one of the following two minimal free resolutions:

0→ OP2(−2)�R1p∗F(−1) −→ OP2 � p∗F ⊕OP2(−1)�R1p∗(F ⊗ Ω1
P2×S/S(1)) −→ F → 0,

(8)

if χ ≤ µ
2
.

0→ OP2(−1)� p∗(F ⊗ Ω1
P2×S/S(1))⊕OP2(−2)�R1p∗F(−1) −→ OP2 � p∗F −→ F → 0,

(9)

if χ ≥ µ
2
.

Moreover,

• p∗F and R1p∗F(−1) are locally free of rank χ and µ− χ respectively.
• p∗(F ⊗ Ω1

P2×S/S(1)) and R1p∗(F ⊗ Ω1
P2×S/S(1)) are locally free.

– If χ ≤ µ
2

then p∗(F ⊗ Ω1
P2×S/S(1)) = 0 and rk

[
R1p∗(F ⊗ Ω1

P2×S/S(1))
]

= µ− 2χ.

– If χ > µ
2

then rk
[
p∗(F ⊗ Ω1

P2×S/S(1))
]

= 2χ− µ and R1p∗(F ⊗ Ω1
P2×S/S(1)) = 0.

Proof. Left to the reader.

4. Dual Sheaves

We define for a (semi-)stable sheaf F on P2 with linear Hilbert polynomial P (m) = µm+χ its
dual sheaf by

FO := Ext1OP2 (F , ωP2)(1)

HomOP2 (F , ωP2) = 0 since F is pure with one-dimensional support. Thus, dualizing the
minimal free resolution (6) or (7) of F from the corollary above and twisting by • ⊗ OP2(−2)
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implies that FO is (semi-)stable with Hilbert-polynomial PO(m) := µm+(µ−χ). For example,
if χ ≤ µ

2
we obtain

0 −−−→ χOP2(−2)⊕ (µ− 2χ)OP2(−1) −−−→ (µ− χ)OP2 −−−→ FO
!−−−→ 0

by this procedure.

Moreover, one can verify immediately that:

• FOO ∼= F
• H1F = 0 ⇐⇒ H1FO = 0

Thus, we get our main result:

Theorem 6. Let P (m) = µm + χ be a linear polynomial with 0 ≤ χ < µ and (µ, χ) = Z.
Denote by N ⊂ MP (P2) respectively NO ⊂ MP O(P2) the closed subvarieties of isomorphism
classes of sheaves with non-vanishing first cohomology. Then there is a natural isomorphism

φ : MP (P2) \N ≈−→MP O(P2) \NO, [F ] 7→ [FO]

Thus, the moduli spaces MP (P2) and MP O(P2) are birationally equivalent.

Proof. Clearly, the remarks above show that φ is set-theoretically a bijection. In order to show
that φ is actually a morphism, note that M := MP (P2) is a fine moduli space with universal
family U ∈MP (P2)(M) since µ and χ are coprime. Without loss of generality, we can assume
that χ ≤ µ

2
. Now consider the minimal free resolution (8) of C := U|P2×M\N from theorem 5:

0 −→ OP2(−2)�R1p∗C(−1) −→ OP2 � p∗C ⊕OP2(−1)�R1p∗(C ⊗ Ω1
P2×S/S(1)) −→ C −→ 0.

An application of HomOP2×M\N ( • ,OP2(−2)�OM\N ) yields:

0→ OP2(−2)� [ p∗ C ]∗ ⊕OP2(−1)� [R1p∗(C ⊗ Ω1
P2×S/S(1)) ]∗ −→ OP2 � [R1p∗C(−1) ]∗ −→ G → 0,

where G = Ext 1
OP2×M\N

( C,OP2(−2)�OM\N ).

According to theorem 5, the bundles [ p∗ C ]∗, [R1p∗(C⊗Ω1
P2×S/S(1))]∗ and [R1p∗C(−1) ]∗ have

rank χ, µ− 2χ and µ− χ respectively. Thus, the restriction of the resolution to a fiber G[F ] is

0 −−−→ χOP2(−2)⊕ (µ− 2χ)OP2(−1) −−−→ (µ− χ)OP2 −−−→ G[F ] −−−→ 0

which is exactly the resolution of FO obtained above. Therefore G[F ]
∼= FO. Obviously, the

sheaves G[F ] are stable with Hilbert polynomial PO(m) = µm+ (µ−χ) and H1G[F ] = 0 for all
[F ] ∈M \N . In other words, G ∈MPO(P2)(M \N). Per construction, the morphism

ΦG : M \N −→MPO(P2)

induced by the family G maps to MPO(P2) \NO and is indeed equal to the set-theoretical map
φ. Similarly, one proves that φ−1 is a morphism.
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5. Smoothness

In this section we want to reprove LePotier’s result that Mµm+χ(P2) for coprime coefficients
and show that the irreducible moduli space [7] is then indeed smooth.

Theorem 7. Let P (m) := µm+ χ with (µ, χ) = (1). Then

1. M := MP (P2) is a smooth projective variety of dimension µ2 + 1.
2. The moduli space M is fine with universal family U ∈MP (P2)(M).

Proof. Without loss of generality we can assume that 0 ≤ χ < µ. By theorem 3.(7), we have
that all semi-stable sheaves F with polynomial P are stable.

1. Serre duality gives Ext2(F ,F) = Hom(F ,F ⊗ ωP2)∨ = Hom(F ,F(−3))∨ = 0 for every
[F ] ∈ M . The last equality is due to the stability of F . Id est, there are no obstructions
and M is smooth in neighbourhood of [F ]. Consequently, M is a smooth projective variety.
We are left to compute dimM . Every sheaf in the open, dense subset M \ N = { [F ] ∈
MP (P2) : H1F = 0 } has a resolution (2). If we apply Hom(·,F) to that sequence, we
end up with

0 −→ End(F) −→ χH0F ⊕ (µ− χ) Hom(Ω1
P2

(1),F) −→ (2µ− χ)H0F(1) −→ Ext1(F ,F) −→
· · · −→ χH1F ⊕ (µ− χ) Ext1(Ω1

P2
(1),F) −→ (2µ− χ)H1F(1) −→ Ext2(F ,F) −→ 0

The stable sheaf F is simple and therefore End(F) ∼= k. We also have Hom(Ω1
P2

(1),F) ∼=
H0(F(−1) ⊗ (Ω1

P2
)∨) ∼= H0(F(2) ⊗ Ω1

P2
) and Ext1(Ω1

P2
(1),F) ∼= H1(F(2) ⊗ Ω1

P2
). Using

the Euler sequence

0→ F(2)⊗ Ω1
P2
−→ 3F(1) −→ F(2)→ 0,

we get χ(F(2)⊗ Ω1
P2

) = 3χ(F(1))− χ(F(2)) = µ+ 2χ. But then:

ext1(F ,F) = 1− χh0F − (µ− χ)h0(F(2)⊗ Ω1) + (2µ− χ)h0F(1) +

χh1F + (µ− χ)h1(F(2)⊗ Ω1)− (2µ− χ)h1F(1)

= 1− χ2 − (µ− χ)χ(F(2)⊗ Ω1) + (2µ− χ)χ(F(1))

= 1− χ2 − (µ− χ)(µ+ 2χ) + (2µ− χ)(µ+ χ)

= µ2 + 1.

Thus dimM = µ2 + 1 because dimk T[F ]M = µ2 + 1 for all [F ] ∈M \N .
2. The existence and construction of the universal family in this case is standard and can be

found for example in [3].

Remark 1: Let again χ = µ − 1, µ > 1. In this case we have N = ∅. Thus, there is an
isomorphism between the smooth, (µ2 + 1)-dimensional, fine moduli spaces Mµm+1(P2) and
Mµm+µ−1(P2).
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Remark 2: [7]. If µ and χ are not coprime and µ ≥ 2 then the complement of the open subset
of stable stable sheaves in Mµm+χ(P2) has codimension at least 2µ − 3, and no matter what
open set U in Mµm+χ(P2) one chooses, there does not exist a universal sheaf over P2 × U .
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