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Abstract

A geoscientifically relevant wavelet approach is established for the classi-
cal (inner) displacement problem corresponding to a regular surface (such
as sphere, ellipsoid, actual earth’s surface). Basic tools are the limit and
jump relations of (linear) elastostatics. Scaling functions and wavelets are
formulated within the framework of the vectorial Cauchy—Navier equa-
tion. Based on appropriate numerical integration rules a pyramid scheme
is developed providing fast wavelet transform (FWT). Finally multiscale
deformation analysis is investigated numerically for the case of a spherical
boundary.
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1 Introduction

First we recapitulate some results known from the theory of elasticity: we will
always regard the inner space %;,,; of a closed surface ¥ as a fixed reference con-
figuration of a body. By a deformation of ¥;,; we mean a one-to-one ¢'-function
2zt Bint — R3 such that det(V ® z) > 0. The function u : %;,; — R3, defined
by u(z) = z(x) —z, = € Siny, is called the displacement of ¥, relative to the
deformation z. The tensor field (V ® u)(z) is called the displacement gradient.
The (infinitesimal) strain tensor is defined by e = 2((V®u)+(V®ou)T) as the
symmetric part of the displacement gradient, while the antisymmetric part is
used to define the (infinitesimal) rotation tensor d as d = 3((Veu)—(Veu)T).
While d describes a 'rigid’ displacement field, e is responsible for the 'non-rigid’
displacements. According to Kirchhoft’s Theorem (see e.g., [21]) if two displace-
ment fields u and «’ correspond to the same strain field, then v = u’ +w where
w is a rigid displacement field. One calls trace(e) = V-u the (elastic) dilatation.
Thus the dilatation are determined by the diagonal elements of e, the remaining
elements of e prescribe torsions. Every displacement field can be decomposed
into a pure torsion (i.e. V-u = 0) and a pure dilatation (i.e. V Au = 0).

An elastic body in a strained configuration performs by definition a tendency of
recovering its original form: this tendency is materialized by a field of forces on
each part of the body by the other parts. This field of internal forces called (elas-
tic) stress, is due to the interaction of the molecules of the body which have been
removed from their relative position of equilibrium and to recover it, following
the principle of action and interaction. If z is a point of a (regular) surface
element in ¥;,; with unit normal v, then the stress vector s,(z) = T, (u)(z) is
the force per unit area at = exerted by the portion of ¥;,; on the side of the sur-
face element in Y;,; towards v(z) on the portion of ¥;,; on the other side. For
time-independent behavior and in the absence of body stress fields there exists
a symmetric tensor field s, called stress tensor field, such that s, = sv for each
vector v and V(sa) = 0 for each fixed a € R? (for more details see e.g., [12],[22]).

Hooke’s law relates the stress to strain, i.e. linear elasticity of the body implies
that for each = € ¥;,,; there exists a linear transformation C from the space of
all tensors into the space of all symmetric tensors such that s = Ce. The linear
theory of elasticity is based on the strain-displacement relation

e %((V@u)wL(V@u)T), (1.1)
the stress-strain relation
s = Ce (1.2)
and the equation of equilibrium

divs+b =0, (1.3)
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where b is the body force field in ¥;,,;. The above equations imply the displace-
ment equation of equilibrium in X;,;

div C(V®u) +b=0. (1.4)

For given C and b, this is a coupled linear system of partial differential equations
for the fields u, e and s. If the material is isotropic, C is given by

Ce = 2ue + A(trace e)i, (1.5)

where the scalars A and u are called the Lamé moduli. Moreover, if the material
is homogeneous, A and u are constants (typical requirements imposed on \ and p
are p > 0, 3A+2u > O(see, for example, [16])). Therefore, in the homogeneous
isotropic case, observing the identities

V-u(Veu) =pAu, V-(u(Veoul)=0 V-V u)i) =IV(V 'ZL), |
1.6

we are led to the displacement equation of equilibrium in the form
pAu+ A+ p)VVu+b = 0. (1.7)

Finally, assuming that the body force field b vanishes, this equation can be
reduced to the so-called Cauchy-Navier equation in X,

pAu 4 (A + p)VVu = 0. (1.8)

This equation plays the same part in the theory of elasticity as the Laplace
equation in the theory of harmonic functions and it formally reduces to it for
=1, A= —1. The Cauchy-Navier equation allows an equivalent formulation
in th

Au+oVV-u =0, (1.9)

where 0 = (1 —2p) ', p = A/2(A+pu), p # 0. pis the Poisson ratio. For
simplicity we let

Qu = pAu+ A+ p)VVu =0 (1.10)

in ;. It is easy to show that the displacement field « is biharmonic and its
divergence and curl are harmonic. This yields a deep relation between linear
elasticity and potential theory (see e.g., [17]).

The layout of this report on multiscale deformation analysis by Cauchy-Navier
wavelets is as follows: after a brief sketch of the theory of linear elasticity
given in the Introduction (Chapter 1), we deal with some preliminary concepts
of elastic potentials in Chapter 2. In analogy to the classical potential theo-
retic case we discuss (in Chapter 3) the limit and jump relations within the
framework of the Hilbert space of square-integrable vector fields on a regu-
lar surface . The uniqueness, existence and regularity of the solution of the
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displacement boundary-value problem of elastostatics are discussed in Chapter
4. Next (in Chapter 5) a wavelet approach is introduced based on the layer
potentials and their operator formulation in the nomenclature of the Hilbert
space of square integrable vector fields on the regular boundary . We in-
troduce the so-called (Cauchy-Navier) Y-scaling functions and wavelets. The
wavelet transform and the reconstruction formulae both in continuous and dis-
crete formulations are explicitly written down. The geomathematically relevant
(inner) three-dimensional displacement boundary-value problem of elastostatics
is treated within the multiscale structure of Cauchy-Navier wavelets. Finally,
Chapter 6 is devoted to numerical applications of wavelet approximation on the
sphere.

2 Preliminaries

We begin by introducing some preliminaries that will be used throughout this
report.

2.1 Notation

R? denotes the three-dimensional (real) Euclidean space. We consistently write
x,v, ... for the elements of R3. In components we have the representation z =
z1€' + 2962 4 x3€>, where the vectors €', €2, €3 form the canonical orthonormal
basis in R?. The inner product, vector product and the tensor product between

z and y, respectively, are defined as usual by

3
roy=zly= inyi, (2.1)
i=1
T Ay = (T2ys — T3Y2, T3Y1 — T1Y3, T1Y3 — Y3Y1) (2.2)

T1Y1 T1Y2 T1Y3
r@y=ay’ = | Doy Toy2 Toyz | . (2.3)
T3Y1 T3Y2 T3Y3

Furthermore, the Euclidean norm of z is denoted by |z|, i.e., || = (z - z)'/2.
The unit sphere in R? is denoted by Q. More explicitly, Q = {¢ € R3||¢] = 1}.
2.2 Regular Surfaces

A surface ¥ C R? is called regular if it satisfies the following properties:

(i) ¥ divides R? uniquely into the bounded region X;,,; (inner space) and the
unbounded region Yoy (outer space) given by Loy = B3\ Sipyy Ty =
Yt U X,

(ii) X is a closed and compact surface free of double points,
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(iii) Xj,¢ contains the origin,
(iv) ¥ is locally of class C(2).

Given a regular surface then there exist positive constants « and £ such that

a < o™ = inf |z < sup |z| = 0P < B. (2.4)
zeX TEXD
1, and Qg denote the spheres of radii o and 3, respectively. As usual, Q%”t, fot

(resp. Qint Qert ) denote the inner and outer spaces of Qg (resp. Q).

Figure 1: Configuration of a regular surface

A vector field f possessing k continuous derivatives is said to be of class k) 0 <
k< oo. () (= ¢(X)) is the class of continuous vector fields f defined on X.
The space ¢(X) is a complete normed space endowed with the norm || f||.x) =
Supgey | f(7)]. In ¢(3) we have the inner product (-,+)s(5) corresponding to the
norm

1l = ( / |f(z)|2dw(z)) (2.5)

where dw represents the surface element on X. Furthermore, for each f € ¢(X),
we have the norm-estimate

e < 12 sy, 150 = ( / dw) g (2.6)

By ¢%(X) we denote the space of (Lebesgue) square-integrable vector fields on
3. £2(%) is a Hilbert space with respect to the inner product (-, Je(s) and a
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Banach space with respect to || - [|p2(s)- ¢%(%) is the completion of ¢(X) with
respect to the norm || - [|2(x), i.e.

2) = o(m) e, (2.7)

pot(Xin:) denotes the space of potentials u € ¢? () satisfying the Cauchy-
Navier equation Qu = pAu+ (A + p)VVu =0 in 3¢ (with A, p being fixed).
With pot(X;,;) we denote the space of all vector fields u : 3;,; — R? satisfying
the properties

(1) (S C(Z)(Eint) N C(Eint)a

(2) 'U/|th € pOt(Eint)'

Moreover, pot(Z.;) denotes the space of all vector fields u € ¢?)(2.) sat-
isfying the Cauchy-Navier equation in Y.;; and being regular at infinity, i.e.

|u(z)] = of1).

3 Potential Operators

Elastostatics may be formulated by a vector potential theory which closely par-
allels classical scalar potential theory. As a matter of fact, the displacement
vector corresponds to the scalar harmonic function, whereas the traction vector
corresponds to the normal derivative. Well-known integral formulae parallel
the Gauss flux theorem, Betti’s and Somigliana’s formulae parallel Green’s for-
mulae. Moreover, vector potentials may be constructed in close orientation to
the scalar single- and double-layer potentials. The resulting boundary integral
equations show analogous properties to the scalar boundary integral equations.
As a consequence the fundamental existence-uniqueness theorems of classical
elastostatics can be formulated in analogy to the corresponding theorems of
harmonic function theory. For more details the reader is referred to [16], which
gives the theoretical treatment of the vector theory. Further theoretical aspects
can be found in many books, for example, [12], [15], [20].

At each point z of a regular surface ¥ we can construct a normal v(z) pointing
into the outer space Y.,;. The set

Y(1)={z; €R® |z, =z + Tv(x), T €X}, (3.1)

generates a parallel surface which is exterior for 7 > 0 and interior for 7 < 0. It
is known that, if |7| is sufficiently small the parallel surface is regular and the
normal to one parallel surface is normal to the other.

The matrix T'(z), z € R® with |z| # 0, given by

A3 Lk A+p) (z-e)(z-) 1
) (( ) >i,k:1,2,3 (32)

YT 2w A+3p z? Jo]

is constituted by the so-called fundamental solutions I'y(z) = T'(z)e*, &k =
1,2,3, associated to the operator ¢ (cf. [17]).
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The operator

<2M(A + 2;1)% + A+ p) A+ 2u)v div + p(X + p)v X rot)
(3.3)

:)\+3u

is called the (pseudo-)stress operator. Furthermore, N,I'y(z), z € R® with
|z| # 0, is given by

o 1
NTu(o) = (s o ) Aele) (5.9
where
Gk X))
M) = 5 i“gu (df + 3%: # ( le2) ) k=1,2,3. (3.5)
We let
A(z) = (Ai(w) - ), ik =1,2,3. (3.6)

Assuming |7| to be sufficiently small we define the so-called potential operators
P(7), Py(1) and Np(7), respectively, by the following integrals

P(r)g(z) = /E D(zr — y)g(y) dw(y) (3.7)

P(7) : operator of the single layer potential on 3 for values on X(7),

Pu(oe) = [ (G )M = ada) dats) (39

Py (1) : operator of the double layer potential on 3 for values on X(7),

Ne)g(o) = [ (5 ml—m)m ) dely)  (39)

_N/ y)dw(y)

Np(7) : N-derivative of the single layer potential on ¥ for values on (7).

The operators P(7), Py(7), Np(7) form mappings from ¢2(X) into ¢(X) pro-
vided that |7]| is sufficiently small. Furthermore, the integrals formally defined

(z —y)g(y) dw(y) (3.10)

r
Pe(Og(e) = [ (Gt A = g) dut) (310
( A= ua) dot) (312
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exist and define linear bounded operators P(0), Py (0), Np(0) mapping #?()
into ¢(X).

As mentioned before, the potential operators in elastostatics behave near the
boundary much like the ordinary harmonic potential operators. In particular,
limit formulae and jump relations can be formulated in close orientation to the
potential theoretic case. To be more explicit, let I be the identity operator in
¢%(¥). For all 7 > 0 sufficiently small the operators Lii(T) i =1,2,3, and
Ji(1), 1=1,2,3,4,5, are defined by

LE(1) = P(£7) — P(0), (3.13)
L3 (1) = Py(£7) — Py (0) F 271, (3.14)
LE (1) = Np(£7) — Np(0) £ 271, (3.15)
Ji(1) = P(1) — P(—7), (3.16)
Jo(1) = Py(7) — Pn(—7) — 4nl, (3.17)
J3(1) = Np(1) — Np(—7) + 4r1, (3.18)
J4(T) :PN(T)+PN(—T) —2PN(0), (3.19)
J5(7) = Np(1) + Np(—7) — 2Np(0), (3.20)
respectively. Then for all g € ¢(X)
lim | L (T)gllew) = 0 i = 1,2,3, (3.21)
and ll_Ig“Jl(T)g“C(z) = 0, 1= 1, 2, 3, 4, 5. (3.22)

In addition, the adjoint operators with respect to the inner product (-, )¢ (x) are
bounded, linear operators with respect to the norm || - [|(x) (see e.g. [2],[17]).

THEOREM 3.1 For all g € (%(%)

lim | 2 (7)glle2sy = 0, i = 1,2,3, (3.23)
I

and
lim || J;(7)glle2(zy = 0 @ = 1,2,3,4,5. (3.24)
>0

Proof. We use a modification of a technique due to [18]. Denote by T'(7) one
of the operators Lii(T) i =1,2,3, Ji(r), i=1,2,3,4,5. Let T*(7) be the
adjoint operator with respect to the inner product (-,-),2 (). According to the
Cauchy-Schwarz inequality we find

IT(N)gllz2(s) < Nlgle T ()T (1) lle ) (3.25)
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Therefore it follows that
2 *
170l ) < 912 IT* (T2 s, (3.26)
< 11915 Il (T* ()T (1)) 2l -
Induction states that for all n > 2,
IT ()92 5y < Mgl sy I TH(OT(P))* gllez(m)- (3.27)

Because of the boundedness of the operators T(7) and T'(7) with respect to
| - lle(s) there exists a positive constant D such that

2n—1

IT()glss) < 181D gl shllgllesys 151 = ( / dw)'?.(3.28)

Thus, for all n > 2 and g € ¢(X) with g # 0, we obtain

T SMgllesy N2
Ty Bl ) 529)
lglle2(s) lglle2(s)
Letting n tend to infinity we obtain for all g # 0
2—n
lim < I9lle(z) ) —1. (3.30)
n—o0\ [|g]l2(x)

This shows that [|T(7)|[,2(x) < D for all g € ¢(X). Since ¢(X) is a dense linear
subspace of £2(X), we are able to extend the operator T(7) from ¢(X) to £2(X)
without enlarging its norm (cf. [1],[3],[19]). Therefore, T'(7) is bounded with
respect to || - [|;2(x) and we have

IT(7)lle2 (s < \/IIT(T)Hc(z)IIT*(T)Hc(z)- (3.31)

Hence it follows that ||7(7)[|;2(s) = 0 as 7 — 0, 7 > 0. O

4 Uniqueness, Existence, and Regularity

In the notations given above the homogeneous isotropic elastic displacement
boundary-value problem can be formulated as follows: given f € ¢(X) find a
vector fields u € pot(3;,;) satisfying the boundary condition u|y = f. As it is
well-known, the boundary-value problem has a unique solution (see e.g. [16]).

In order to prove the existence we use the double layer potential
u(z) =Pn(0)g(z)
0 1

N /2 (au(y) = y|>A($ —y)g(y)dw(y), g€ (D). (4.1)

Observing the discontinuity of the double layer potential we obtain from (3.18)

0 1
@)= =290 + [ (G A = g dute). (42)
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for all z € ¥. The resulting integral equation —f = (21 — Py (0))g, g € ¢(X2)
fulfills all standard Fredholm theorems.

The homogeneous integral equation (27 — Py (0))g = 0 has no solution differ-
ent from g = 0. Thus, the solution of the boundary-value problem exists and is
representable by a double layer potential as indicated in (4.1). For details the
reader is referred to [17]. The operator T' = 2n] — Py(0) and its adjoint opera-
tor T (with respect to the scalar product (-,)s2(x)) form mappings from ()
into ¢(X) which are linear and bounded with respect to the norm || - [|,(s). The
operators T, T in ¢(X) are injective and, by the Fredholm alternative, bijective
in the Banach space ¢(3). Consequently, by the open mapping theorem (see
[23]) the operators T—!, T*~! are linear and bounded with respect to || - lle(s)-
Moreover, (T*)~! = (T'~')*. But this implies that both T~! and (T*)~! are
bounded with respect to the norm || - ||2(s) in ¢(3). As we have shown, for a
given f € ¢(X), there exists a vector field g € ¢(X) determined by (4.2) such
that v is representable in the form (4.1). Suppose that K is a subset of X,
with dist(/C,X) > 0. Then Cauchy-Schwarz inequality applied to (4.1) gives for

each z €
2dw(y>) : (L1stwPdst) g

u(z)] < ( /
(4.3)

But this means that

>

k=1

() e

sup [u(z)| < E lglle(s), (4.4)
zel

where

3

p=s( 3

k=1

)

2

(ava(y) ﬁ) Ax( =)

In connection with (4.2) this implies the existence of a positive constant B
(depending on ¥ and K) such that

sup u(z)| < BIT™ fllewy < Bllflem)- (4.6)

Summarizing our result we obtain the following regularity condition.

THEOREM 4.1 Let u be a vector field of class pot(Xin) and K a subset of Yy
with (IC,X) > 0. Then

supluta) < B( [ utol dw<x>)1/2. (47)
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5 Cauchy-Navier Wavelets

Next we introduce the so-called scaling and wavelet functions. Essential tools
are the layer potentials introduced in Chapter 3.

THEOREM 5.1 For f € /2(%),

([T (z —y)f(y) dw(y) i=1
0 ,1=4
lim [ @ (z,y)f(y) dw(y) = { /() ,1=2,3,5,6
Js Gl i) A = 9) () doly) =7
s (G ) Ale — 9)f (y) dw(y) =38,
(5.1)
where
& (z,y) = T(z- — ),
5 1 o) 1 o) 1
w0 = 5 (@m0 - (e e )
#0e0) = 5 (i) 0 (w2 )

ov(y) |z —yl ov(y) |z—r —y|
20w == 3 (@@ o)A 0 (@ s =)Mo )
2000 =3 (517 291) 2 =9+ (G s =)Ao )
w0 =3 (s =)Mo 0+ (e ) Mo )
>0, (,y) €L XY

5.1 Scaling and Wavelet Functions

For 7 >0andi=1,...,8, the family {&\"},¢ of kernels &% : 5 x & — R3x3

is called a (Cauchy-Navier) ¥—scaling function of type i. Moreover, <I>§Z) 12X
¥ — B33 (i.e. with 7 = 1) is called the mother kernel of the (Cauchy-Navier)
31— scaling function of type i. Correspondingly, for 7 > 0 and 2 =1,...,8, the
family {\115")}7>0 of kernels \115") : Y x X — R3*3 given by

¥ (a,9) = ~(a(r) " L8O (r,y), wye, (5.2)
is called a (Cauchy-Navier) YS—wavelet function of type i. Moreover, ‘Ilgl) :
¥ x ¥ — R3*3 defines the so-called mother kernel of the (Cauchy-Navier)
Y. —wavelet of type i. It should be noted that (5.2) is called the (scale contin-
uous) Y —scaling equation. The factor a(7)~! can be chosen in an appropri-
ate way. For simplicity, throughout the remainder of this article, we will use

a(t) =171
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DEFINITION 5.1 Let {<I>(Ti)}T>U be a X—scaling function of type i. Then the
associated L—wavelet transform of type i (WT)® : £2(2) — £2((0,00), %) of
a function f € £2(X) is defined by

(WT)O(f)(r,z) = /E WO (2,) f(y) deo(y). (5.3)

According to our definitions we obtain explicit formulae for the 3 —scaling and
Y—wavelet functions by means of the ordinary differential equation

W’S'Z) ($7 y) = _TdiQS'Z) ($7 y)7 Z. = ]‘7 tet 78' (5'4)
T

(5)

In particular, ®;(-,-) reads as follows.

LEMMA 5.1 For z,y € X3,

+3
() o) (5 5
+<3/(\>‘++3Z)> (z—y) - v(y)(z—y) ®(—y)) (m i 5 |x_71_ y|5>
+ (B2 (@ - ) o0) ©100) (s~ )
() ) v o - ) 9 o) +
w100 (S - )
(22 (-0 vl - ) @ (o) +

)@ (o) (- )

+
_y|5 |£E_7_ _y|5

() v e 06 =) (s + )

+<M>(y(m)-y(y)u(m)@u(y))( r 73 )} (5.5)

+
X+ 3 |z =y |z —yl

where i3 denotes the 3 X 3 identity matriz.

5.2 Scale Continuous Reconstruction Formula

It is not difficult to show that the X—wavelet functions \Il(Ti), 1 =1,...,8,
behave (componentwise) like O(7 1), hence the convergence of the integrals
occurring in the next theorem is guaranteed.
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Figure 2: Matrix norm, diagonal and non-diagonal components of the ¥ —scaling
function <I>(T5)(-, JforT =277, j=2,3,4
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THEOREM 5.2 Let {<I> }T>0 be a X—scaling function of type i. Suppose that
f is of class £*(X). Then the reconstruction formula

([ T(z —y)f(y) dw(y) =1

- 0 Li=4
| w0 =4 p@) =235
' Jo Gy ) Az — ) f(y) dwoly) =7
s (5 g Az = ) f (y) dwly) , i=8

(5.6)

holds in the sense of || - ||2(x)
Proof. Let R > 0 be arbitrary. Taking the identity

) = [ ¥ T eyer 5.7
we obtain

| om0 = [ [ 90 dmT
- [ ([ w0 )f(y) du(y)
- [ R wns) dato)

Letting R tend to 0 we get the desired result. O

Next we are interested in formulating the wavelet transform and the reconstruc-
tion formula by using the so-called ’shift’ and ’dilation’ operators. We define
the x—shift and 7—dilation of a mother kernel, respectively, by

72— e = el () = (), zex, (5.8)
D,: o) — Do =wl 750 (5.9)

Consequently, we obtain by composition

7,0,%" = 7,90 = ¢0) () = ¥

T7
We can thus state the following theorem.

THEOREM 5.3 For x € ¥ and f € /2(X)

([ T(z—y)f(y) dw(y) yi=1
0 yi=4
lim | @9 (5,9)f(y) dw(y) = { f(z) L i=2,3,5,6
meo T Jo (s A — ) f(y) dwly) i=7
s (Gl L Az —y)f(y) dwly) ,i=8

(5.11)
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and
(5T —y)fy) dwly) yi=1
d ,i=4
|7 [ e a4 1w L= 2.3,5,6
fs Gl ) M =) f ) dwly) i=T
s (ot ) A = ) f () deoly) i =8
(5.12)
hold in the sense of || - [|p2(x)
5.3 Scale Discrete Reconstruction Formula
Let (75) ez denote a sequence of numbers satisfying the properties
lim 7; =0, lim 7; = oo, (5.13)

T—00 T——00

(for example, 7; = 277, j € Z). Given a S—scaling function {<I> }T>0 of type

i, we define the (scale) discretized X —scaling function of type i by {<I>TJ }iez.
Then we are led to the following result.

THEOREM 5.4 For f € (?(X), the limit

([ Tz =) f(y) dw(y) yi=1
,1=4
lim | @0 (z,)f(y) dw(y) = { /() ,i=2,3,5,6
T Jy (s o)A@ — ) () dwly) =T
ka(au?w) \wiy\)A(aj - y)f(y) dw(y) ,1=38
(5.14)
holds in the || - ||p2(x)—sense.

DEFINITION 5.2 Let {Q%)}jez be a discretized Y—scaling function of type i.
Then the (scale) discretized X—wavelet function of type i is defined by
. 7 . dr
T (2,y) = OO (g, y)—, j€Z, zyes, i=1,...,8. (515
T

Tj+1
With the definition of \Il(Ti) we immediately obtain that

00y =— [+ L) T sl _a0) zyex.  (5.16)
A re AT T T T P mo Ty ' '

J
The equation (5.16) is called the (scale) discretized X—scaling equation of type
i. It should be remarked that, with a suitably chosen 7;, formula (5.16) can
easily be used to formulate the ¥ —wavelet function in a discrete form once the

Yl—scaling function has been given. To be more specific, assume that f is a
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vector field of class £2(X) and consider the discretized Y —scaling equation of
type ¢. Then, for J € Z and N € N, we have

[ 80, w01 doty) = [ 80 10) doty)
b X

+ Z /'Illacy ) dw(y), € X. (5.17)

By taking into account the property (5.15) together with Theorem 5.3 we find
the following theorem.

THEOREM 5.5 Let {@5? }icz be a (scale) discretized $— scaling function of type
i. Then the multiscale representation of a function f € £2(X)

/EU( y)dw(y +Z/-1: (z,9)f(y) dw(y)

rfz (y) dw(y) si=1
Li=4

= f(x) ,i=2,3,56 (5.18)
s (g ) Ao = ) f () deoly) i=T
L 2(31/8 )\xly\)A(fE—y)f(?/) dw(y) ,1=38

holds for all J € 7 (in the sense of || - || 2(x))-
Now defining the so-called (scale) discretized X—wavelet transform of type i by

(WT)!(f)(rj;z /\IITJ@, y) dw(y), = € X, (5.19)

we are able to derive the following corollary.

COROLLARY 5.1 Let {CP(Té)}jEz be a (scale) discretized ¥ —scaling function of
type i. Then, for all f € £?(%),

(5T (@ =) f(y) dw(y) yi=1
00 0 yi=4
> (WTY(f)(rj52) =} flw) L i=2,3,5,6 (5.20)
j=o0 Js Gl ) Az =) fy) doly) =7
s (5 ) A = 9)f (y) deoly) i =8
holds in the || - ||p2(x)—sense.

5.4 Scale and Detail Spaces

As in the spherical theory of wavelets (see [6],[7],[9] for more details), the op-
erators PT(;), R%) defined by

P = [ $0C10) dota), 1 € ), (5.21)
/‘IlZ z,y) f(y) dw(y), [ €(D) (5.22)
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may be referred as low pass filter and band pass filter, respectively. The scale
spaces VT(;) and details spaces WT(;) of type ¢ are defined by

VD ={PD(f)| f € (D)}, (5.23)
(1) —1 R0 2
W2 ={R(f) | f € £(2)}, (5.24)
respectively. It is clear that
PO () =PO(f)+ R, JeL. (5.25)
Consequently,
Vi, =vE e Wl (5.26)
J
Vi =V ey wi, (5.27)
7=0

However, it should be remarked that the sum (5.26), in general, is neither direct
nor orthogonal. Furthermore,

oo Hle2(s)

U VI =2(%), i=2356 (5.28)
j=-—00
M2

U v = P0)(* (%)), (5.29)
J=—00
o Hlees)

U VD = Py (0)(£*(2)), (5.30)
j=—00
oo IHle2(s)

U V) = Np(0)(£()). (5.31)
j=—00

The notion of a multiresolution analysis is prescribed by the following definition.

DEFINITION 5.3 A family of subspaces {V‘I'(i)}'re(o,oo) c (%), ief{l,...,8},
is called multiresolution analysis if it satisfies the following properties:

(i) {0} c VD cviD c () for0< 7 <7 < 0,

(i6) {limr—oo( [y @ (2,9)f(y) dw(y))|f € ()} = {0},

”'Hﬂ(z)

(iii) {f € 2(D)|f € V(D) for some T € (0,00)} = 2(%).

The framework of a multiresolution analysis can be provided by using the so-
called /2 — closure properties of the Cauchy-Navier vector fields (see e.g., [5])
and taking the Fourier series representation of the scaling function. To be more
specific, the multiresolution can be characterized as follows (cf. [8],[10]).
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THEOREM 5.6 Let X be a reqular surface. If the %—scaling function <I>(Ti) sat-
isfies the property

189 sy < 187 sy, 7 <7, i=2.3,56,  (5.32)
then the scale spaces VT(i)(E) satisfy the inclusion
Vi) c v (x). (5.33)

5.5 A Tree Algorithm

In what follows, we present a particular scheme which utilizes the computational
process of the reconstruction and decomposition of the wavelet approximation.
This is known as a pyramid scheme i.e. a tree algorithm that provides a re-
cursive process to compute the integrals PT(J.Z) (f) and R%.)( f) on different levels,
starting from an initial approximation of a given f € ¢2(X) without falling upon

the original vector field f in each step.

Let {(y,]cvj ,w,ivj)} be an appropriate integration rule on ¥ with given nodes
y,]cvj € Y and weights w,]cvj € R Assume that for sufficiently large J € N there

exist coefficient vectors afch €R? k=1,...,Ny, such that
Ny
PO(f)(z) = @V (z,yp)ay’, i=1,...,8 z€X. (5.34)
k=1

Now we want to introduce an algorithm to obtain the coefficients ai =

(ai\’j’___’a%j) eR3 xRNi, j=Jy,...,J, such that

(a) the vector a™i is obtainable from a™i+1, j = Jy,...,J — 1

(b) the expressions PT(;)(f)(ac), R%)_l (f)(z) can be written as

Nj
i ; N;\ N; .
PO(f)(x) = 80 @,y )y, §=Jos-... T, (5.35)
k=1
. Nj71 .
RO (M) =Y 99 (@ )ay ", G=Jo+1,....0  (5.36)
k=1

For this scheme, we use appropriately chosen approximate integration rules such
that PT(f )( f) and R%.)( f) can be represented by

N;
PO(f)(z) = > wy @D @,y ) f (yp), (5.37)
k=1

N1
RO (@)~ > wp @D (w0 ) f ), (5.38)
k=1
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where {(y,]cvj ,w,]cvj ) € ¥ x R} are the prescribed integration points and nodes
and ' &' means that the remainder terms can be neglected.

The tree algorithm (pyramid scheme) can be divided into two parts namely
the initial step and the pyramid step. For the initial step we consider (5.34)
that J € N sufficiently large and thus we see that

ap? = w f(yp?), k=10, Ny . (5.39)

The aim of the pyramid step is to construct a’¥i from i+ by recursion. At
this point, it is essential to assume that there exist (tensor) kernel functions

Eg.’) .Y % 3 — B33 such that

V) (z,y) ~ / 20 (2,2)2 (2,y) dw(z), (5.40)
»
=) (z,y) ~ /2 2 (2, 2)8Y), (2,y) dwl(2) (5.41)
for j = Jy,...,J. A reasonable choice for E(-i) is

J

EEZ):@(Z) j:J07"'7J;IL.E{2’3’5’6}

TJ+L’

with L € N suitably large. By the aforementioned approximate integration
rules we obtain

[ 29 ans) dut = [ | [ #9022 () doe)| 10) daty

P
= [0 [ 2P Gniwa)|
N7
~ Y 80w,y )y, (5.42)
k=1
where
ay’ =wy’ | 0 ) dwly), §=Jo.....J. (5.43)

Hence, in connection with (5.34), we find

N; — (1 N; N; N
—w,” Y :§-’) (v sy 7 a7 (5.44)
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forj=J—1,...,Joand k=1,..., Nj.

We see that once the coefficients o are calculated, the coefficients a™i-! are

obtained by (5.44). Starting from an initial value ™7 all the coefficient vectors

can be calculated recursively in. Note that the coefficients a7 in the initial
step do not depend on the choice of Eg) = <I>$ZJ)+L.
= ()
E;7 .
used in the integrals PT(]Z)(f) and Rg)(f).

)
J

Furthermore, the functions

j = Jo,...,J, can be chosen independently of the X—scaling function

Finally, with the proposed pyramid scheme prescribed by (5.39) and (5.44), the
decomposition and reconstruction process of the wavelet approximation can be
illustrated briefly as follows:

f - alN7 - gNia S eee Nt N aNJo
| { . N
RY(f) RY . (f) RY () R PY(f)

(decomposition scheme)

aNJo aNJo+1 aNo-1
RY) (f) RY) .(f) RY (f)

ng(f) — + = PT(ﬁ) (f) —=+---+— P7£‘ZI)71(f)_>+_> Pr(ﬁ)(f)

o+l

(reconstruction scheme).

5.6 Multiscale Solution of the (Inner) Displacement Boundary-
Value Problem

In what follows, we discuss the solution of the (inner) displacement boundary-
value problem by means of the wavelet approximation techniques derived in
preceding chapters. The existence, uniqueness and the regularity of the solu-
tions of such problems are known from Chapter 4.

For given f € ¢(X) the solution u € pot(Xin:) with uly = f (more accurately,

u~ = f) of the (inner) displacement problem can be expressed uniquely by a
double layer potential
0 1
u(z) = — Az —y)g(y) dwly), g€ (). 5.45
@) = | Goy s A = 0)a(0) dty) @ (64)

The corresponding integral equation reads as follows

o2l — Py(0))g = —f, g€ 3(D). (5.46)
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More explicitly,

0 1
2mg(0) ~ [ (G A —)aly) dly) = —F(@), g€ A(S), z €%
(5.47)

To approximate u given by the double layer potential in (5.45), we use the
concept stated in Theorem 5.1. In accordance with this approach we are able
to rewrite (5.47) approximately in the form

2g(x) - /2 &0 (2, y)gly) dw(y) = —f(z), z €%, (5.48)

provided that L € N is sufficiently large. Once the boundary integral equation
(5.46) is solved, the density function g is inserted into (5.45) and, thereby the
(approximate) solution u is obtained in ¥;,;. Like in many cases of boundary
integral equations, there is, in general, no straightforward way of constructing
the unknown function g. It is, therefore, necessary to apply a suitable approx-
imation method. In this respect we again go back to Theorem 5.1 that enables
us to formulate

gly) = lim | @) (y,2)g(2) dw(y). (5.49)
J—=0 Jn
Using an appropriate numerical integration technique, an approximation of g
of level J, denoted by g, can be expressed by

Ny
9s(y) =Y w @0 (y, 4" )g(y]")
=1

Ny
= 0 (y,y,")a;", (5.50)

where wlN 7, 1 =1,..., Ny are the integration weights corresponding to the
nodal points le" €¥, l=1,...,N; and afv" eER}I=1,...,Ny.

The unknowns afVJ € R* 1 =1,...,Ny, are deducible from (5.46) by solv-
ing a system of linear equations obtained by a suitable approximation method
such as collocation, Galerkin procedure, least square approximation etc. (see
for example, [4]). In consequence we are led to the following system of equations

for the unknowns afv"’,l =1,...,Ny,

Ny
Z(mg g7 N Zw,{\”‘}” Wy )0 (Y )) o = —f),

=1
(5.51)

m:l,...,NJ.

However, such a consideration leads to a system of linear equations with a ’full’
matrix which seems to require much computational work for the definition of the
matrix as well as for the solution. In this context, taking into consideration the
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localization behavior of the kernel functions, suitable accelerating techniques
such as panel clustering, domain decomposition etc. can efficiently be used (see

g. [11],[13],[14]). However, further modifications of such techniques relevant to
this particular consideration will be needed. This is a challenge for future work.

In this respect, a variant of our tree algorlthm comes into play: once the starting
values (see (5.50)) a7 = (a{v"’ %‘]) € R3*NJ are given, the coefficients

alVi = (aivj,...,a%j)T € R¥>Ni | j=Jy,...,J — 1, are obtained by the recur-
sion formula
Njt1
ay =wy Y E y e, k=1, N, (5.52)

=1
The corresponding approximate integrals are obtained by

Nj
] N;i\y N; .
P%) (g)(x) ~ Z @g?)(x’ykf)akJ,x ey, j= Joy .oy d, (5_53)
k=1
and
R Z‘I’mxy Lbwel, j=JD+1,....7 (5.54)
where
RY (9)(z) = P (g)(x) — P (9)(0)- (5.55)

Hence, we finally arrive at the following theorem for the (inner) displacement
boundary-value problems of the Cauchy-Navier theory.

THEOREM 5.7 Let ¥ be a reqular surface. For given f € c¢(X), let u be the
potential of class pot(Xin;) with u~ = f. Then the function f1 € c(X) given by

N,
27TZ<I> xyl 70) JO—i—ZQWZ'I’ xyl
j=Jo =
NJO N N
—ZZ( [ #0088, 0" ot )™
J—1 Nj N
- ZZ(/ D) dot) o (550)
j=Jo =1

T € X, represents a J—scale approzimation of f € c(X), in the sense of ||| 2(x)
where 1 = 2,3,5,6 and L € N is sufficiently large. Furthermore,

R .
wy = Z/ &0 ()2 (5., ") dw(y)a "

J—1 Ny

T ZZ/ DT (y,y7) doly)a,”  (5.57)

7=Jo I=1
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represents a J—scale approzimation of u in the sense of || - ||, (x) for every

K C i with (K,%) > 0.

In other words, locally uniform approximation on proper subsets of 3, is
established by means of Cauchy-Navier wavelets.

6 Numerical Examples

Next, we present some sample examples for the geoscientifically important case
of a sphere (i.e. ¥ = Q).

6.1 Spherical Approximation of Vector Fields by Layer
Potentials

For this purpose, we first consider the vector field f : O — R? given by
0€® , —1<é-E<h
2
3(h=te) 3 .3 < 24h
flz) = 2<h—1>€ yh<&-e <55 (6.1)

2
(1—3(5',;?3;1> >e3 VHb < @<l

forx € Q, & =x/|z|, h=1/2.

The third component of the boundary function f is illustrated in Figure 3.

We are particularly interested in approximating (the third component) of the
vector function f by our wavelet approach based on layer potentials (as pre-
scribed above). Figure 4 shows the sectional illustration of approximations of
the boundary function corresponding to the ¥—scaling function <1>$f) for differ-
ent levels, i.e. 7; = 277, j = 1,2,3,4. Note that, in each evaluation step, a
sufficiently large number of equiangular longitude-latitude grid points on the
unit sphere have been used in order to avoid oscillations in the approximation
process.
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Boundary values

1 T T T
Boundary values Saal i
= 0.8
[}
= 5
=
S S o6t g
) 1]
c o
Q 0. o
=3 )
g : £ 04r 7
g0 3
T [s2]
'E =02 il
2
2]
2
0 L L L L L
0 0.5 1 15 2 25 3 3
0
(a) (b)

Figure 3: Functional values of f (third component): (a) on a longitude-latitude
grid of points on §2 (b) one-dimensional sectional illustration

Boundary approximations at levels 1,2,3 & 4

1 ‘ ‘ ‘ ‘

exact

levell ------
= level 2 ----
= level3 - - - -
@ 0.8 level 4 — — 4
C
o
g.
S 06 i
[&]
o
=
§0.4 i
™
Y

0.2 i
o ~ = L I ITIoITIomoIrTooogos
15 2 25 3 35

Figure 4: Sectional illustration of the scale approximations of f (third compo-
nent) associated to the Y —scaling function Q%’) for j =1,2,3,4

In accordance with Theorem 4.1 it may be expected that our multiscale proce-
dure also provide a good approximation of u € pot(§i,;) with u|qg = f inside
Q. However, we did not make effort to make a more detailed quantitative

description.
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6.2 Solution of the Displacement Problem Corresponding to a
Sphere

Finally our multiscale method will be considered for a simple inner displacement
boundary-value problem of which the boundary is assumed to be the unit sphere
Q and an analytical solution is explicitly known in €;,;. In contrast to the
example discussed in Chapter 6.1 this one enables us to check the accuracy of
the scale approximation in €2;,;.

To be more explicit, we consider the solution u € pot(€2i,:) corresponding to
the boundary field u|q = f given by

Tix2 1

ag
2 20 +3)

(23 4 25 + 23)e® + %63, o #0. (6.2)

fla) = .

We choose, in particular, o = 2.5 (i.e. A = 2, u = 3). Figure 5(b) shows
the evaluated scale approximations of the boundary displacements using the
Q-scaling function of type 5.

Deformation of a (Spherical) Elastic Body

L9655 oooo
LooRvoRRGmER

Boundary Approximation

" Comp. 1 (exact) ——
S Comp. 1 (appx.) ===
02 e o Comp. 2 (exact) -~
Comp. 2 (appx.)
- - Comp. 3 (exact) -~
015 e Comp. 3 (appx.) ==~ |

Displacement Vector (Componentwise)
o

0 05 1 15 2 25 3 35
Theta (Phi = Pi/4 (fixed))

(b)

Figure 5: (a) Reference (spherical) and deformed configuration (b) Sectional
illustration of the approximation of the field u|q = f.
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Figure 6 shows that the scale approximations of the radial displacements on €2
become closer to the exact solution for increasing orders of scales (and simul-
taneously chosen increasing numbers of nodal points on Q).

(a) exact (b) level 1

Radial Displacement

(c) level 2 (d) level 3

Figure 6: Exact and the approximations of radial displacements for the levels
1,2 and 3.

7 Concluding Remarks

In this paper we introduced a multiscale method for solving the inner dis-
placement problem using Cauchy-Navier wavelets. The method is particularly
suitable for the deformation analysis corresponding to geoscientifically relevant
boundaries (such as sphere, ellipsoid, actual earth’s surface etc) that involve ef-
ficient rules of numerical integration. The principal idea of the Cauchy-Navier
wavelets is based on the classical limit and jump relations of elastostatics. In
conclusion, this paper can be viewed as a first attempt to ‘short-wavelength
modelling’, i.e. high resolution of the fine structure of displacement fields. The
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method is restricted to the homogeneous and isotropic case of linear elasticity,
hence, it needs to be formulated under more complex (geo-)physical assump-
tions. Nevertheless, we believe that the ‘zoom-in’ procedure as presented here
will become a flexible and useful technique of microstructural analysis of elas-
tic fields (such as the earth’s displacement field) on (geoscientifically relevant)
regular boundaries.
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