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Abstract

A natural extension of point facility location problems are those prob-
lems in which facilities are extensive, i.e. those that can not be represented
by isolated points but as some dimensional structures, such as straight
lines, segments of lines, polygonal curves or circles. In this paper a review
of the existing work on the location of extensive facilities in continuous
spaces 1s given. Gaps in the knowledge are identified and suggestions for
further research are made.

1 Introduction

Given a set of demand points, the goal of classical location problems is to find
one or several points for placing new facilities such that they optimize one or
several possibly constrained objective functions. Usually the objective functions
depend on the interactions among demand points and new facilities. When the
new facilities cannot be represented as points but as some kind of dimensional
sets then extensive facility location problems arise. Loosely speaking these prob-
lems consist of choosing an element in a class of (geometric) sets representing
the candidate facilities, that best fits the set of demand points according to some
specified criterion. In particular, the location of straight lines, line segments,
hyperplanes, spheres and some types of polygonal curves has been studied to
some extent. In this way, the location of dimensional structures can be consid-
ered as a natural extension of point location. However, as a consequence of the
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different nature of the candidate elements some specific clarifications should be
remarked on.

First, the shape and the features of the facilities has to be specified (according
to the problem instance) in order to choose the family of geometrical structures
to represent them. Secondly, some clarifications should be provided in order to
distinguish the field of extensive facility location from others such as routing or
network design. While classical location problems are trivially solvable when all
the given demand points can be directly covered by the point facilities, this is in
general not true when the facilities are represented by dimensional structures.
This means that problems consisting in directly covering all the demand points
by the facility, with the Fuclidean TSP being a paradigmatic example, arise
in the area of placing or choosing a dimensional structure among a given set
of candidates. In order to make a coherent extension of the concept of facility
location problem from points to dimensional structures, the inherent features
must be maintained. Thus, a problems will be categorized as extensive facility
location if a function dependent on the location of both the given points and the
facility is given in order to measure the (spacial) interaction between demand
points and facility. This function often is given through a metric (or a more
general distance function) measuring the distance from a demand point to the
set of new facilities.

Continuous location of dimensional structures can in general be described as
follows: Given a set of existing facilities or demand points P = {p1,...,par} in
a n-dimensional space &, a weight set W = {w1, ..., wr}, a distance d in £, a
family S of subsets of £ and an objective function F, find the subset(s) S € §
such that the function

F(d(p1,S),...,d(p, S))

i1s minimized, where the distance between a point p, and a set S is given by
d(pma S) = minges d(pma l‘)
Note that the elements in § are given by means of a common geometric property,
possibly with some contraints on the size.
Since P, E, W, d are fixed data for each instance, the problem may be summa-
rized as

optimizeg ¢ g F(.5)

As a consequence, extensive facility location, however, overlaps (when a phys-
ical interpretation of the facility is not required but only a mathematical one)
with other classical areas like curve fitting of a set of points and metrology of



geometrical tolerancing. Taking into account the ample variety of location prob-
lems that arises when considering different objective functions, constraints, and
metrics occurring in the various applications, the inclusion of these problems
within the area of extensive facility location leads to a wider point of view that
provides insight and allows to define new problems with potential applications
in the fields from which they come.

The literature about locating dimensional facilities is quite heterogeneous. One
reason is that results in this area are strongly dependent on the type of curve
representing the facility. For the location of straight lines or circles, good char-
acterization results for the optimal elements are available. However, due to the
higher degree of freedom of polygonal shaped facilities, no such results have been
published for the location of polygonal curves. Hence, in this area, a lot of re-
search aims to directly obtain efficient algorithms. Another reason is due to the
fact that extensive facility location problems arise in different mathematical dis-
ciplines, meaning that sometimes different approaches have been used in proofs
of the same result. Furthermore, also the suggested algorithms show a wide
variety, since they are based on different techniques, among them case analysis,
convex analysis, computational geometry, and linear and dynamic programming
as the most usual approaches in this field.

Although the problems dealt with in this paper have a continuous formulation
they can be classified as discrete ones, in the usual sense that a finite procedure
for finding an optimal solution exists. For this reason discrete characterizations
of the optimal solutions and exact algorithms have been stressed, and only a
few 1terative algorithms will be briefly mentioned.

The study has been divided according to the type of facility to be located. Since
a lot of research has been done in the field of locating linear facilities, Sections
2, 3 and 4 present results for line location in the plane, some extensions and the
location of other linear structures, respectively. In Section 5, circle and, more
general, sphere location is described and literature dealing with such problems is
reviewed. Section 6 is dedicated to polygonal curve location problems. Only in
special cases structural properties for locating a polygonal curve exist. There-
fore, the section emphasizes the research on algorithmic results. Finally, in
Section 7 some comments on locating other structures — almost not dealt with
in the literature so far — are given, including some conclusions and suggestions
for further research.



2 Locating lines in the plane

Given a set of points (also called existing facilities) P = {p1, p2,...,pp} in the
plane the line location problem is to find a straight line ! which 1s as close as
possible to the points in P, i.e., it is a good linear approximation for the set P.
The following two objective functions are based on the L, and the L., norm
and are of particular interest for location theory. Let d be a distance measure
and w,, > 0 be nonnegative weights, then the median objective for a line [ can
be formulated as
F)= S wnd(pm, D).
meM
while the center objective function is given by

0= md(pm . ).
g(l) = max wnd(pm, )

A line [ minimizing f is called a median line and an optimal line with respect
to g 1s a center line.

Line location problems have applications not only in operations research and lo-
cation theory, but also in robust statistics and in computational geometry, e.g.,
in pattern recognition and in cartography. In statistics, line location problems
are known as regression line problems, or as Li-fit or L.,-fit problems; in com-
putational geometry mainly the generalization to hyperplane location problems
is interesting (see Section 4.3).

A line [ in the plane can formally be defined as
Loy sop =42 =(21,22) € R?: xy8] + X989 + b = 0}.

Note that the slope s of the line [, ,, 5 is given by —z—;.
The main focus of this section is to discuss line location problems with a distance
d derived from a norm (i.e., there exists a norm 7y such that d is given by
d(z,y) = y(y — x)). But before turning our attention to norms, we mention
the following simple case of, namely line location problems with respect to the
vertical distance d,. For two points p = (p1,p2),q = (q1,¢2) € IR?, the vertical

distance 1s defined as follows:

lp2 —q2| ifpr=aq
d =
v(p,4) { 00 otherwise

The vertical distance between a point p = (p1, p2) and a non-vertical line I, _1 5
can hence be calculated by

dy(p,1) = [p1s —p2 + b



In fact, if we assume that not all points of P lie on the same vertical line, we
can restrict ourselves to non-vertical lines, since there exists a point p € P such
that dy(p,{) = oo if [ is a vertical line. This means that we can assume that
both objective functions f and ¢ are piecewise linear and convex for the vertical
distance. (Convexity of the problem is not true any more if d is a distance
derived from a norm, even for the rectangular distance that property does not
hold.) Consequently, line location problems with the vertical distance are easy
to solve. Fortunately, many results for the vertical distance can be transferred
to any distance d derived from a norm by using the following basic result (see
[126]), leading to proofs for most of the results presented in this section.

Lemma 1 Let d be the vertical distance or a distance derived from a norm ~
and let s € R. Then there exists a constant C' = C(y,s) such that for any line
[ with slope s and for any point p € IR? the following holds.

dy(p, 1) = Cd(p,!)

Given a line [ let Bl‘" and B; denote the two open halfplanes separated by the
lineland let W = 3" 14wy be the sum of all weights. Then we can formulate
the first theorem for the line location problem with median objective function.

Theorem 2 Let d be a distance derived from a norm. Then for any median
line I* the following hold.

(’) meegl—* Wn < %W
(i) 3, it i < S

Note that (i) and (ii) are equivalent to

(iii) Z Wy, — Z Wy | < Zwm.

Pm€B, PmEBY Pm€l

A line satisfying this property will be called pseudo-halving.

The proof of Theorem 2 for the Euclidean distance can be found in [145, 106,
103, 81]. The general versions for the vertical distance, for all distances derived
from norms can be found in [128]. The following is the main result for finding
a median line.

Theorem 3 For the vertical distance and for all distances d derived from norms
there exists a median line passing through at least two of the points in P.



This has first been shown for ds, i.e. for the Euclidean distance, by [145]. Proofs
for the same result can also be found in [106, 103, 90] and [81]. Most of these
proofs use Theorem 2 and that f(/) is concave when rotating the line about
one of the points in P. The minima of this function are attained when the line
touches another point in P.

For the rectangular distance, Theorem 3 has been shown in [146, 103] by sep-
arating the problem into two problems with vertical distance. A similar gen-
eralization makes it possible to prove Theorem 3 for all distances derived from
block norms (see [124]).

Finally, by using a reduction to the vertical distance with the help of Lemma 1
it has been shown in [126] that Theorem 3 is valid for all distances derived from

norms.

If the symmetry property of a norm is not satisfied, i.e., y(#) = y(—=) does not
hold, v is called a gauge ([105]). For gauges, Theorem 3 does in general not
hold. But it can be shown that there exists a median line containing at least
one of the points in P (see [128, ?]). For metrics and mixed norms, however,
it even can happen that none of the optimal lines contains a point of P (for
examples we refer to Chapter 5 of [128]).

Now we turn to the center problem.

Theorem 4 For the vertical distance and for all distances d derived from norms
or gauges there exists a center line which is at marimum distance from at least
three of the points in P.

Formally, Theorem 4 states that there exists an optimal line [* and a subset
MO C M with cardinality at least 3 such that

g(I) = wid(py, I*) = max wy, d(pm, I*) for all k € M".

This has been proven first by [130] for the vertical distance d,, and later by
[107] for the rectangular and for the Euclidean distance. The generalization to
all distances derived from norms can be found in [126], the generalization to
distances derived from gauges is obtained by geometric methods in [128§].

Note that, in contrast to the incidence property stated in Theorem 3 for median
line location problems the above Theorem 4 can be transferred to distances
derived from gauges, even if we allow different gauges d,, for each of the points
in P. Also for strictly monotone metrics this property can be verified, but for
arbitrary metrics it is in general not true. For details we refer to Chapter 5 of

[128].



From an algorithmic point of view, the following property dealing with the
convex hull CH(P) of the set of existing facilities, is also interesting for line
location problems with center objective.

Theorem 5 For the vertical distance and for all distances d derived from norms
or gauges the following holds. If the weights are all equal there exists a center

line which is parallel {0 a facet of CH(P).

For the vertical and the rectangular distance this has been shown in [130]; the
generalization to all distances derived from norms or gauges can be found in
[126] and [128], respectively.

In the next result the set of all optimal lines is studied. Recall that a smooth
norm is a norm such that each point on the boundary of its unit ball B = {« €
IR™ : y(x) < 1} is supported by exactly one hyperplane (see e.g., [L11]).

Theorem 6 Let d be a distance derived from a norm.

(i) Any median line with respect to any weighted set P with weights wy, and
distance d passes through at least two of the points in P if and only if d
has been derwved from a smooth norm.

(ii) Any center line with respect o any weighted set P with weights wy,, and
distance d s at maximum distance from at least three of the points in P
of and only if d has been derived from a smooth norm.

Theorem 6 has been shown in [128], where it has been used to derive an algo-
rithm for calculating all optimal lines — even in the case of non-smooth norms.

Algorithms for line location problems

Using Theorems 3 and 4, a simple enumeration of all lines passing through two
of the points in P in the median case, or being at maximum distance from three
points in P in the center case is possible. This can be done in polynomial time,
for any distance d derived from a norm (assuming that a norm evaluation can
be done in constant time). However, for some distance measures, there exist
the following better algorithms.

Again, we first discuss the case of median lines.

e For the Euclidean distance, [106] proved Theorem 3 and proposed an enu-
meration algorithm with running time in O(M?3). In [103] this algorithm
was improved to O(M?log M) and finally [86] succeeded in an O(M?) time



algorithm for the median problem with Euclidean distance. However, for
the problem with identical weights [148] derived an algorithm with time
complexity of O(M% log2 M) by using that the number of pseudo-halving
lines is bounded by M?%. Using a sharper bound (by [109]) for the number
of pseudo-halving lines, [82] could derive an O(M% ]ng—ﬁ M) time ap-
proach. Recently, [26] showed that the number of pseudo-halving lines is
at most O(M%) in the unweighted case. This suggests a further reduction
of the worst-case complexity of the Euclidean line-location problem. The
question about a time optimal algorithm remains open yet. The known
lower bound is (M log M), proven in [148] by reduction from the uniform
gap on a circle problem.

e Line location problems with the rectangular distance can be approached
by solving two line location problems with vertical distance. This can
be done in O(M) time, see [149] and later also [75], both using the linear
programming methods of Megiddo ([100, 101]). Earlier approaches include
an O(Mlog? M) time algorithm by [103] and a polynomial approach by
[132, 116] evaluating all breakpoints of the function. In older statistics
literature, e.g., in [78], infinite iterative processes were applied to find a
median line minimizing the sum of weighted vertical distances. Another
approach used in statistics is formulated by [21, 54, 143], but also here
no polynomial bounds on the running time are given. In [107] a similar
approach based on solving a small linear program is used.

e For solving line location problems with respect to block norms, [124] shows
that this can be done in O(GM) time, when G is the number of extreme
points of the block norm. The idea of the algorithm is to decompose the
problem into G line location problems with respect to the vertical distance
and for them use the linear approach of [149] mentioned above.

For finding center lines, we mention the following specialized procedures.

e For the vertical and for the rectangular distance the problem can easily
be solved in linear time by linear programming (using the methods of

Megiddo, see [100, 101]).

e For block norms, the same decomposition as in the median case has been
proposed in [128], also leading to an algorithm which runs in O(GM) time.

e In the case of the Euclidean distance [27] used Theorems 4 and 5 to present
an O(M log M) time algorithm for the unweighted problem, while [?] pre-
sented an O(M log M) time algorithm for computing the width of a set



— a problem in computational geometry which is equivalent to finding a
center line in the unweighted case. The optimality of these algorithms was
shown in [89]. In this paper, also the weighted case has been discussed
and an O(M?2logM) time algorithm for this case has been suggested. This
approach could be improved to the optimal running time of O(M log M)
in [49].

There 1s another objective function, which is sometimes referred to in the liter-
ature, namely to find a straight line maximizing the minimum distance to the
existing facilities. For the Fuclidean distance, this problem has been studied
in IR? ([70]) and in IR® ([56, 55]). In IR? the presented algorithm runs in time
O(M?), while in IR? the time complexity has been improved from O(Mlog® M)
([56]) to O(Mlog*M) ([55]). In the case of polyhedral norms the problem has
been discussed in [69], where the existing facilities in P are given not by points,
but by polygonal sets which must not be intersected by the line.

3 Extensions of line location problems

3.1 Locating more than one line

In [102] it has been shown that for general r it is NP-hard to decide wether or
not there exist r straight lines 1, ... . in the plane such that

rc |J

i=1,...r

where P is a given set of M points (the so called line cover problem). Con-
sequently, it 1s NP-hard to locate r lines in the plane such that the sum of
distances or the maximum distance between the points in P and the set of lines
1s minimized.

In Section 2 we have shown that for » = 1 both problems are polynomially
solvable, if the distance is derived from a norm. For r > 1 only little research
has been done so far. Apart from [97] who solved the location of r lines heuris-
tically as an intermediate step in their procedure, the only exception we are
aware of refers to the Fuclidean 2-line-center problem: Given a finite set P
of (unweighted) points in the plane, find two lines ;1 and I3, such that they
minimize the maximal distance from the given points to their closest line, i.e.
minimize

I}}gg(miﬂ{dz(l% l), da(p, 1)}

For this problem, in [6] an an O(M?log® M) time algorithm was developed,
using the parametric searching technique of Megiddo [99]. The corresponding



fixed-size problem which is used is the following: Given a width w determine
wether P can be covered by two strips of width w each. In [6] it is shown
that this problem can be solved in O(M?log® M) time (by using the results of
[5] about the off-line dynamic maintenance of the width of a planar point set),
while in [77] this time bound is improved to O(M?logM ) time, leading directly
to an O(M?log® M) algorithm for the 2-line-center problem. Other approaches
for solving the 2-line-center problem have been provided in [79] and [59], both
resulting in O(M?log* M) time procedures.

The best known approach has been presented by [77]. It leads to an O(M?log® M)
algorithm, using a data structure called anchored chains for efficiently updating
rotated feasible solutions. Note that this algorithm allows to find all opti-
mal solution of the 2-line-center problem within the same time complexity of
O(M?3log? M).

3.2 Restricted line location problems

When applying location theory to model real-life problems one often has to take
into account restrictions for the set of feasible solutions. Such additional con-
straints often change the whole structure of the model, and thus many theore-
tical results may be useless in practice. Therefore, in classical (point-shaped)
location theory many papers deal with different types of restrictions. One kind
of restriction that is often used is the introduction of a forbidden region R (also
called a restricting set) in the interior of which the new facilities cannot be lo-
cated. For the case of line location, a given forbidden region K must not be
intersected by the new line-shaped facility.

Instead of looking at a forbidden set one might wish to look at an enforced
set I i.e. we require that I[N F # . For the case that the line is forced to
pass through one specified point pg the anchored line location problem has first
been considered by [107] for the median objective function and the Euclidean
distance. They have shown the following theorem.

Theorem 7 All optimal lines for the anchored line location problem with Fu-
clidean distance and median objective pass through at least one point in P.

In [82] the anchored line location problem appears as a subprocedure for the
unrestricted line location problem with median objective function, and has been
solved in O(MlogM) time for the Euclidean distance. Recently, Theorem 7 has
been generalized to all distances derived from norms (see [129]).

Now we turn to restricted line location problems with a forbidden sets R through
the interior of which the new line is not allowed to pass. As possible applications
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for restricted line location problems one can think of a highway that is not
allowed to pass through a natural habitat, or a conveyor belt that must not be
within a dangerous area. To formalize the restricted line location problem let R
be a given area in the plane that must not be intersected by any line. Then the
problem is the following.

min f({) or min g({)
st. INint(R) =10 sd. INint(R) = 0, respectively.

Among the few problems of this type which have been mentioned in the lit-
erature of linear facility location so far i1s the location of a center hyperplane
with respect to the Euclidean distance where the forbidden region is given by

CH(P), see [118].

In a more general context, [127] investigated restricted line location problems
with polygonal forbidden sets R for the vertical distance d, by looking at the
dual version of the problem (in which lines have been transformed to points
and points have been transformed to lines, see e.g., [119, 67, 127]). The result
which was obtained by transforming the forbidden set R to dual space could be
adapted first to block norm distances and then also to all distances d derived
from norms. The result is the following (see [127] for details).

Theorem 8 Let R be a polygon and d be a distance derived from a norm.

e For the restricted line location problem with median objective there exists
an optimal line which
— contains a facet of R or
— passes through one of the points in P and through a vertex of R or
— passes through two of the points in P.
e For the restricted line location problem with center objective there exists
an optimal line which
— contains a facet of R or

— 15 at marimum distance from two of the points in P and passes
through a vertez of R or

— 15 at maximum distance from three of the points in P.
By enumerating all candidate lines of Theorem 8, polynomial time algorithms
are possible. Note that Theorem 7 appears as a special case in the theory

developed in [127] and can easily be generalized to all distances d derived from
norms.
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3.3 Linear Approximation of Simple Objects

In the following generalization of line location problems we consider a set P
which does not consist of points, but of M polygonal convex sets. The line
stabbing problem or line transversal problem is to find out, if there exists a line
! which intersects all objects in P. Such problems can be solved in optimal in
O(M log M) time by the algorithm of Hershberger [66, 10], even if the sets in P
are convex, but not polygonal sets. For the case of M polygonal sets py, ..., pap
with G, extreme points, m = 1,2,..., M the time complexity can be improved
to O3 ,emt Gm10g (e aq Gm)), see [66]. If all p € P are translates of one
polyhedral set with G extreme points, the line stabbing problem can be solved
in O(GM) time, see [49]. Finally, M rectangles can be stabbed in O(M) time,
see also [49].

In the case that no stabbing line exists, the goal is to find a line ! which is close
to a line transversal in the following sense:

e In the case of the median objective, the goal is to find a line, minimizing
the weighted sum of distances to the given objects in P.

e the center problem consists of finding a line minimizing the weighted max-
imal distance to the objects in P.

For the Euclidean distance both problems are discussed extensively in [119].
The methods used are the dual interpretation already mentioned in Section 3.2
and well-known techniques from computational geometry. The main results are
the algorithms for finding median and center lines, if the given set P consists
of M polygonal sets with a total of G vertices. For determining a median line
an O(MGlogM) time algorithm is suggested, while the proposed procedure for
solving the center line problem runs in O(G?logG) time. In the case of circles and
line segments, better procedures can be obtained. Many other complexity results
for constrained versions of both problems; and even for finding a hyperplane in
IR? are given. We refer to [119] for details.

4 Locating other linear facilities

4.1 Locating line segments

Probably the first paper in which line segment problems have been mentioned is
due to McKinnon and Barber [97]. In the context of designing a transportation
network, the authors try to find » line segments such that the sum of distances
from each point in P to its nearest line segment is minimized. They propose a

12



heuristic 1terative approach, in which they first partition the set P into “appar-
ently linear” subsets and then approximate a median line for each of the subsets
(without knowing any of the exact algorithms of Section 2), before re-allocating
each point to its closest facility and repeating the procedure. Their heuristic
has been applied in the area of Southern Ontario and Quebec (for M=55).

While for general distance measures very few research has been done in the
field of locating line segments, there are some papers about the segment center
problem in the Euclidean case. This is specified as follows.

Given a planar and finite set of points P and { > 0 find a line segment S of
length { such that

d
max 2(S,p)

1s minimized.

The first solution approach for this problem has been given in [76] with a running
time of O(M®*logM). Using the parametric searching technique of Megiddo
([99]) [4] improved this approach to O(M?Za(M )log® M) time, where (M) is the
inverse Ackermann function. Finally, [50] presented an algorithm that solves
the problem in nearly linear time, also using Megiddo’s parametric searching
technique. To apply this technique the authors solved the following fixed-size
problem: Given P, { and ¢° determine if there exists a line segment S with
length { such that all points of P lie within distance ¢° from S.

As has been already mentioned in [76], this problem is equivalent to determine,
if a given polygonal set C'H(P) can be located within a hippodrome of size !
and ¢Y, i.e., within a rectangle of dimension [ x 2¢° with two semicircles with
radius ¢° attached to its sides. In [50], the number of critical placements of
such a polygon within the hippodrome could be bounded, leading to a O(M*1+¢)
algorithm for locating a center line segment.

It should be mentioned that there exists one case in which segment location
problems can be solved efficiently: If the distance considered is the vertical
distance dy, it has been shown in [128] that the location of a line segment with
given length [ can be transformed to a restricted line location problem which
can be solved in O(M) time.

Finally, we discuss the following extension of the line-segment problem. Instead
of fixing the length [ of the new line segment facility, a bicriterial approach is
possible, i.e., the goal is to minimize not only the median or the center objective
function, but also the length {(.S) of the new facility S, that gives an estimation
for the costs of building up and operating the facility. This approach has been
discussed in Chapter 6 of [128]. The main result is a characterization of the
efficient line segments in the case that the distance d is derived from a strictly
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convex norm. Let [..;; denote the smallest length { to obtain the optimal ob-
jective value of the corresponding line location problem with a line segment.
Then all optimal solutions of the fixed length line segment location problem
with given length [ are efficient, if | < /...

4.2 Location of half-lines

The half-line location problem 1s the following. Given a set of points P find a
half-line h emanating from a given point py such that

E wpd(p, h) or max wpd(p, h)
pPEP
pPEP

1s minimized, respectively.

In [107] the half-line location problem has been considered for the Euclidean
distance and the median objective function f and the following result has been
shown.

Theorem 9 For the half-line location problem with median objective and Fu-
clidean distance, the following holds:
All optimal half-lines pass through at least one point in P.

In [89] the center objective function is considered for the half-line location prob-
lem with Euclidean distance, and an O(MlogM) algorithms has been suggested.
The case of the rectangular and the Chebychef distance has been discussed in
[32]. For the center objective function, an O(M?) time algorithms is proposed,
which can be improved to an O(M) algorithm, if p; € CH(P), i.e. in the case
that the ray should emanate from a point outside of the convex hull of the given
points in P.

Another interesting objective function which has been considered mainly for
halflines is the maxmin objective. In this case the goal is to find a new facility,
such that the minimal distance to the points in P is maximized. The resulting
problem is called the maxzmen half-line location problem. This problem has been
studied in the plane by [55] and can be solved in O(MlogM) optimal time.

Its three-dimensional conterpart is to find a ray emanating from a given point pg
such that the minimal distance to a point in the finite set 7 € IR? is maximized.
This problem is motivated by applications in neurosurgery where a line shaped
instrument should be intruded into the patient’s brain to remove a sample from
a specific point pg without damaging critical brain areas (see [55]). In [56] an
O(Mlog® M) time algorithm is suggested to find a half-line in IR? with Euclidean
distance and maxmin objective, which has been improved to O(Mlog? M) time

14



in [55]. In this paper, also extensions are studied, e.g., to locate a line or to
consider a point set P not consisting of points, but of lines, or of line segments.

4.3 Locating hyperplanes in normed spaces

Most of the results of Section 2 can be generalized to hyperplane location prob-
lems. Since the used methods are very similar to those used for line location in
the plane, we only mention the results here and refer to [82, 72] for an extensive
discussion of hyperplane location problems with Euclidean and rectangular dis-
tance and to [94] for a recent survey on hyperplane location problems in normed
spaces. For the details of the proofs in this section, see [128, 95].

A hyperplane H-; can be described as

H-3; ={xe€R": (x,n)+b=0}.

Hyperplane location problems can now be defined as follows. Given a set of
n-dimensional points P C IR" one wants to find a hyperplane H that minimizes

f(H) = Z W d(pm, 1), or

meM

¢(H) = max wnd(pm,!), respectively.

meM

The optimal solutions are called median hyperplane and center hyperplane, re-
spectively. Using the same notation as in Section 2 we can summarize the main
results for hyperplane location problems.

Theorem 10 For hyperplane location problems in IR" and all distances d de-
rived from norms the following hold.

1. There exists a median hyperplane which passes through n affinely indepen-
dent points in P.

2. All median hyperplanes are pseudo-halving.

3. There exists a center hyperplane which is at mazimum distance from n41
affinely independent points in P.

To prove this theorem one first shows all three results for the convex case of the
vertical distance in IR". To prove (3.) one can use a result of [39] (based on
Hellys Theorem, see [65]) which states that for convex minmax problems

min max gpy, with ¢m = wndy(pm, H)
meM
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there always exists a solution which 1s only determined by n + 1 different func-
tions g, . The generalization from the vertical distance to all distances d derived
from norms works analogously to the methods in the plane.

Using a result of [19] of multicriteria optimization problems and that the dis-
tance from a point p to a hyperplane H-; can be given by the following formula

[(p,7) — b
7°(m)

where 7% denotes the dual norm, [114] gave another proof for the first property

d(pa H_,b) =

in Theorem 10. Additionally, they showed the following result for distances d
derived from gauges.

Theorem 11 If d has been derived from a gauge, then there exists a median
hyperplane which passes through at least M — 1 points in P.

The extension of Theorem 6 to normed spaces leads to the following character-
ization of smooth norms (see [93]).

Theorem 12 Let d be a distance derived from a norm v. Then v is a smooth
norm, if and only if for all instances of the hyperplane location problem one of
the following two (equivalent) conditions holds.

(i) All median hyperplanes are passing through n affinely independent points
m P.

(ii) All center hyperplanes are at mazimum distance from n+ 1 points in P.

Recently, the anchored hyperplane location problem has been considered. In this
context, not only the weighted set P of existing facilities, but also another set
of points, @, is given. The objective is to find a hyperplane minimizing the
distances to the points in P, but passing through all points in @. In [129] the
following result has been shown.

Theorem 13 Let d be a distance derived from a norm v, and let k < n be the
number of affinely independet points in P. Furthermore, let Q CIR" be a given
set.

(i) There exists an anchored median hyperplane passing through at least n—k
affinely independent points of ).

(ii) There exists an anchored center hyperplane which is at mazimum distance
from at least n — k + 1 affinely independent points of Q).
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(iii) If v is a smooth norm, all anchored median hyperplanes are passing through
at least n — k affinely independent points of @), and all anchored center
hyperplanes are at maxrimum distance from at least n — k + 1 affinely in-
dependent points of Q.

Note that Theorem 13 contains the incidence properties for unrestricted line-
and hyperplane location problems in the special cases that @ = 0.

A further generalization of hyperplane location problems should briefly be men-
tioned. Given a set P of M points in IR, find a k-dimensional plane (k < n)
such to minimize the sum of distances or the maximum distance to the given
point set P. This problem has been considered in [92], where it has been shown
that for the median objective function it is at least as difficult as the location
of a point in IR*™* minimizing the median objective function i.e. as the classi-
cal Weber problem in n — & dimensions. In the special case k = 1,n = 3, i.e.
for locating a line in IR®, the problem with center objective function has been
previously studied in [71] and also in [133]. For the median objective function,
some first models and solution approaches have recently been developed by [17].

Algorithms for hyperplane location

Asin the planar case, Theorem 10 shows that polynomial algorithms are possible
for solving hyperplane location problems when the distance d is derived from a
norm. Some special case algorithms should also be mentioned for hyperplane
location problems.

e For the vertical distance or the rectangular norm the algorithms of [149,
101] run in linear time, also for hyperplane location problems for each
fixed dimension n, resulting in O(M) time algorithms for the median and
for the center problem.

e For block norms this can be used to derive an O(G M )time algorithm for
any fixed dimension n (where GG as usual denotes the number of extreme
points of the block norm), see [95].

e In the case of the Euclidean distance, both [82] and [72] suggest O(M™)
time algorithms for solving the median problem. For the center prob-
lem [72] succeeded to develop an O(ML3+) time algorithm for all fixed
dimensions n > 3.

For n = 3, however, further improvements are possible. Since finding a
center hyperplane in IR3 is equivalent to computing the width of a point
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set in IR? it is possible to use the O(M?) time algorithm of [71]. In [22]
its complexity has been improved to O(M%‘l'e), and further improvements
up to O(M 17+¢) have been suggested by [3]. Finally, [7] succeeded in de-
veloping a randomized algorithm for the 3-dimensional set width problem
with an expected running time of O(M3+¢).

To solve center hyperplane location problems in the case of an arbitrary
norm, algorithms from transversal theory can be used (see [128]). In par-
ticular the algorithm developed in [66] for stabbing arbitrary convex sets
can be applied together with a binary search to find a center hyperplane
even if we allow different metrics d,, for each of the points in P. Note
that, on the other hand, algorithms for the location of a center hyperplane
can be used to solve transversal problems (see [96]).
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5 Sphere location

The majority of research carried out has been orientated towards solving prob-
lems in a planar setting. After describing the above mentioned, some extensions
to higher dimensions will be briefly described.

Given a set of points P C IR? circle location problems consist of finding a circle
C such that it minimizes some function of the distance from the given points to
the circle. As far as the authors are aware the only metric used for distances in
these problems is the (orthogonal) Euclidean.

In the field of facility location, an example of a potential application of these
models, is to determine the alignment of a rapid transit underground line when
the points in P (demand points) are the centroids of the census tracks and
weights represent the corresponding populations. In particular, in already con-
structed metro networks, and for the purpose of improving the mobility of the
citizens, the introduction of a circle line contributes to improving several effec-
tivity measures of the network [85].

The approximation criteria applied are the corresponding to Li, Lo, and L2,
which lead, respectively, to the following objective functions:

fle,R)y= D |d(pm,c)— R,

meM

= d m - .
gle. 1) = mas [d(pm, ) — R

h(e,R) =Y |d(pm,c) — RI*.
neM

in which ¢ = (#,y) is the center of the circle, R is the radius and d(-,) is the
Fuclidean distance. Note that |d(pm,c) — R| = d(pm,8C), i.e. it gives the
distance from p,, to the boundary of C.
The corresponding non-convex minimization problems give rise to the concept
of median, center and least-squares circles, respectively. One of the reasons for
including the last one is the frequent application in practice as an alternative
to the center problem.
The following characterizations of the optimal solutions have been described.

Theorem 14 The center of the optemal circle solving the Least Squares Problem
1s the point at which the variance of the distances to the points 1s minimized.
The optimal R is the average of all distances.

This result can be found in [43] and shows that this problem is equivalent to
that of locating a point that minimizes the variance in the plane with Euclidean
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distances, for which no algorithm is known for finding an exact solution. There-
fore, only iterative algorithms ([147], [43]) have been proposed. Now we turn to
the median objective.

Theorem 15 (i) If M = 3 and the points are affinely independent then there
exists exactly one circle containing the points. Otherwise, i.e. they are co-
linear, no optimal circle with finite radius exists. If M > 3 then there
always exists an median circle that contains one of the given points. Fur-
thermore, all median circles are pseudo-halving (2).

(ii) There exists a median circle whose center is the point at which the mean
absolute deviation of the distances to the points is minimized, and the
radius is the median of all distances.

The first part of the theorem can be found in [128], while (ii) in [43].

Let us note, that the these results are not sufficient to construct an algorithm
for finding the exact solution of the median circle problem, since there is no
similar known algorithm for the minimum absolute deviation problem in the
plane. For this reason, up to now, only iterative algorithms have been devised.
The center circle problem is equivalent to finding a minimum radius annulus
enclosing all the points, and 1s also known as the out-of-roundness problem in
Computational Metrology. In this area the problem of determining whether or
not a manufactured object fits to the previously prescribed shape arises. For
this, a sample of points in the boundary of the object is obtained and, according
to a specified criterium, the best curve of the family is fitted in order to evaluate
the quality of the object. Sample points can be interpreted as demand points
in location models and the curve to be fitted as the facility structure to be
located. For instance when producing circle planar pieces the problem known as
roundness inspection arises [147]. This problem has been treated with Statistics
and Computational Geometry techniques. In several areas of production, such
as car or precision machinery manufacturing the problem of sphericity inspection
of produced ball bearings appears [?].

For the center planar problem or equivalently the minimum width enclosing
annulus the main discretization results are the following.

Theorem 16 If M > 4 then at least two are on the inner circle and two are on
the outer circle. Furthermore, the points on the inner circle interlace angle-wise
with the points on the outer circle as viewed from the center of the annulus.

This theorem was first stated by [117] and its application leads to an O(M®)
time naive algorithm ([142]). However, the annulus can degenerate to a slab
([134]) which can be viewed as an annulus centered at oo.
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In order to obtain a non trivial algorithm the following result is crucial.

Theorem 17 The center of the concentric circles providing the enclosing an-
nulus of minimum radius is in the set of vertices of the farthest-point (nearest-
point) Voronoi diagram lying in vertices or edges of the nearest-point (farthest-
point) Voronoi diagram.

This theorem was proved in two steps which are contained, respectively, in [4§],
[144] and [47], and leads to the first non-trivial algorithm with O(M log M + 1)
time, where I is the number of candidate points in the above theorem and can
be cuadratic in the worst case.

Subsequently applying Megiddo’s parametric search, O(M%‘l'e) [?], and O(M%‘H)
[2] time theoretical algorithm have been obtained, while in [?] an algorithm with
expected running time O(M%‘l'e) has been proposed.

Round about the same time, some efforts have been given to clarify the im-
plementation of the practical algorithm based on the Voronoi diagrams ([121],
[122]).

Further research has been done on the application of the characterization of
local minima. When the points in P are given in circular order, as happens
when computing roundness, there is at most one local minimum and it can be
computed in O(M log M) time ([57]). The corresponding problem to the special
case in which the points of P are in convex position only has a local minimum
inside the convex hull, and can be computed in O(M) ([57]).

The problem in which the existing facility is a simple polygon, has been studied
by [?], who obtained an O(M log M + I) time algorithm, where I is the quoted
number of intersections, and an O(M) time algorithm has been devised by [135]
for the special case in which the polygon is convex containing the center of the
annulus.

A related but simpler problem is that of finding an annulus of minimum area
that contains P. This problem can be formulated as a linear programming
problem in IR* and, therefore can be solved in O(M) time ([101]). In [?] this
model, called the algebraic Chebychev problem of fitting circles, is considered as
an approximation to the geometric Chebychev or zone problem, i.e. the above
called the circle center problem. Also the constrained version of the center circle
problem in which the radius is given has been under research and an O(M log M)
time algorithm provided [28].

The extension of the circle center problem to higher dimensions consists in
finding a hyperspherical surface such that it minimizes the orthogonal distances
from the given points. The essence of the characterization of local minima
remains true for dimensions higher than two ([57]). In the recent past, an
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iterative algorithm based on a combination of polyhedral outer approximation,
branch-and-bound and cutting plane techniques ([25]) and an O(M3~15%¢) time
algorithm ([2]) for dimension three have been described. Finally, for the harder
problem of finding a cylindrical shell (a region enclosed between two concentric
cylinders) of smallest width (difference between radii), which contains the set
P, no solution improving the brute-force technique is known.
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6 Location of polygonal curves

The natural extension of the linear facility problem in the plane is that of locat-
ing a polygonal facility which provides in some sense, the best approximation
for a point set.

The optimal location of a polygonal route among a set of points in the plane
has been dealt with from different points of view according to the objectives
and applications which have suggested them.

In this sense, two optimization criteria have been applied. On the one hand,
when we ask for a route for distributing goods to a set of customers represented
by points in the plane, the application of the min-max criterion has been taken
into account. On the contrary, when designing an obnoxious route (with po-
tential undesirable effects, for instance a pipeline) or in the robotic field, the
max-min criterion has to be applied in order to locate the facility as far as pos-
sible from the population. Note that although the min-sum criterion is common
in facility location theory, has not been considered for locating polygonal curves
yet.

consequently, we limit our attention to the location of a monotone polygonal
curve connecting two points (the endpoints) using the min-max and the max-
min criteria.

Note that for a general polygonal structure do not exist any characterization
properties for a solution of these optimization problems. Therefore, in this
section we will only sketch the general and conceptual methods for solving the
problems efficiently. However, there are certain cases where we will also show
some nice properties.

Hereafter we will call P = {a = po,p1,...,pm,pm+1 = b} the given set of
points and will denote the z-coordinate of a point ¢ by #(¢). Furthermore,
we will assume that the points in P are given in lexicographical order. The
points a and b are the endpoints (can be fixed or not), and are assumed to
satisfy #(a) < #(p1) and z(p,) < ®(b). These endpoints have been added in the
notation to the point set to be approximated, which is really P\ {a, b}, for the
sake of making later descriptions easier. Then, denoting the polygonal curve
facility by C' and by d the distance measure from a point to a polygonal facility,
the two problems are, respectively, minimizing the function

C) = maxd(p;, C
9(C) p,eaP (pi, C)
and maximizing the function

h(C) = min d(p;, C).
(€) = min d(p:, C)
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6.1 k-Bend polygonal curves

The optimization of the function g(C') has a trivial solution. In fact, the polyg-
onal curve passing through all the points minimizes g(C'), but leads to very high
costs for building it. Thus it is necessary to consider constrained problems. In
this scene, the usual constraints on the route to be constructed arise from two
factors. First, the number of bends (vertices or corners) of the polygonal curve
plays an important role in the design of paths in robotics or electronic design
problems. On the other hand, in the routing context, the length of the polygo-
nal route could be more important than the number of vertices. Therefore, we
will refer to the Bend(Length)-Constrained Min-max Problem:

minmaxd(p;, C) st. b(C)<k (I(C) <)

C pieP

A great number of such problems has been solved from the Computational
Geometry viewpoint. In fact, a problem closely related to the search of bend-
constrained min-max polygonal facilities is that of the approximation of polyg-
onal curves. In various situations and applications, images of a scene have to be
represented at different resolutions. A topic studied in Computational Geometry
and applied to approximate boundaries of complicated figures in cartography,
pattern recognition and graphic design [110, 18, 23], is that of approximating
piecewise linear curves by more simple ones.

Among the research undertaken in these fields, [74, 140, 104, 20, 62] can be
selected, in which the problem of approximating a given polygonal curve by
another has been studied. In these papers, the vertices of the new curve are
assumed to have either the same abscissas as the given vertices in P or they
consist of a subset of the vertices of the original polygonal curve.

In fact two types of approximation problems have been solved,

Min-# problem: Given ¢ > 0, find an approximating polygonal curve C' with
minimum number of bends whose error i1s not greater than e.

Min-¢ problem: Given k, find an approximating polygonal curve C' minimizing
the error among those with a bend number not greater than k.

This type of problems admits several variants that arise when imposing con-
straints on the location of the vertices or considering various types of errors
[74]. In order to remain focused on facility location, two approximation er-
rors are considered, ea(C') = maxds(p;,C) and e,(C) := maxd,(p;, C') when
da(p;, C) and dy(p;,C) are respectively, the distance from the point to the
polygonal curve induced by the Euclidean distance and the vertical distance.
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Therefore, from the point of view of Facility Location Analysis, the Min-¢ prob-
lem with ds and d, distances becomes an Fuclidean min-maz problem and a
Filting min-maz problem, respectively. The idea proposed in [30] is to use
the known methods in Computational Geometry to approximate the polygonal
chain {a = po,p1,...,pMm, Pa+1} whose vertices are the demand points. In this
way, since the set P is given in lexicographical order, a x-monotone polygonal
facility can be found.

The general method for solving the Bend-Constrained Min-max Problem is pro-
posed in [74] and works as follows: We first generate a set T’ of candidate error
values, in such a way that the polygonal curve C* we are looking for has one
of these values as error. To each candidate e in the set we can associate the
minimal number of bends of a polygonal curve C(e) that can be constructed
with error at most e (the solution of a Min-# problem). Finally, we look for
the smallest e € T' whose associated length i1s not greater than %, and so get

C* = Cle).

The most efficient algorithms for the Euclidean distance problems were devised
by Chan and Chin [20]. They give an O(M?) and an O(M?logM) time com-
plexity algorithm for the Min-# and Min-¢ problem, respectively. They further
show that if the curve to be approximated forms part of a convex polygon, the
two problems can solved in O(M) time. Note that the Euclidean case has only
been solved when the vertices or bends of new polygonal curve are a subset of
the original set of points. This is the so-called discrete k-bend polygonal curve.

On the other hand, the problem with respect to the vertical distance appears
in several and important disciplines with applications. Not only in operational
research and location theory, but also in Statistics, computer to graphics or
artificial intelligence the vertical distance is considered. In this case we refer to
fitting a polygonal curve to a point set.

The k-bend constrained min-max problem with the vertical distance was posed
in [63]. They solve two variants of the problem: when C' is required to have
its vertices on points in P, the discrete problem, and when its bends can be
on any point in the plane, the so-called free problem. For both of them, they
have devised O(M?%logM) time algorithms which do not work in the presence
of degeneracies, i.e. they do not admit points with the same x-coordinate. The
approach is similar to the general method used in [74].

However, in the context of Facility Location, the points of P (potential users)
are to be found in any position. For this reason, a dynamic programming
procedure is applied in [33] to remove the non-degeneracy assumption in the
discrete case. Besides, a nice observation made here is that the algorithm to
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solve the Discrete k-Bend Constrained Min-Max problem can be adapted to find
the length constrained min-max problem.

The location of a special type of a polygonal chain is considered in [30]. A
rectilinear path i1s a path consisting of only vertical or horizontal segments.
Generally, this kind of path appears in problems involving transportation rout-
ing design with applications such as floor planning, manufacturing environment
design, VLSI layout design, robot moving, etc. In this sense, a Computational
Geometry topic is that of finding shortest paths in the presence of obstacles.
Even though these problems cannot be considered as location problems, they
are useful as tools.

There exists a characterization property of the k-Bend Constrained Problem
with vertical distance, proved in [36].

Theorem 18 There exists a solution to the rectilinear polygonal center problem
constrained by the bend number, such that each horizontal segment is a segment
center of its allocation set and for each wvertical segment there exists a point
p € P with the same abscissa.

By enumerating all candidate rectilinear paths of Theorem 18, a polynomial
time (but not efficient) algorithm is possible.

However, in [37], this property is used to find efficient algorithms for two in-
stances of the min-max problem. In fact, min-max problems of location a mono-
tone rectilinear route with constraints both on the bend number 6(R) and on
the length [(R) when using the vertical distance have been studied:

minmaxd, (p;, R) st. b(R)<by (I(R)< ).

C pieP

In the second case (with length constraint), an O(M?) time algorithm based on

geometric properties of an optimum route has been designed. For the second

problem, the property of centrality for the horizontal segments of a solution

of Theorem 18 is crucial and the search on a finite set of candidate routes

devises an O(M?logM) time algorithm. Finally, both problems can be solved

in O(Mlog? M) time [31], by using the Parametric Search Technique of Megiddo
[99].

Now, we turn our attention to maximize the function h(C'). This concerns the
location of obnoxious routes that has recently been considered by the Facility
Location community. Most of the papers deal with models within an under-
lying discrete space. Therefore, when the path has to be integrated into a
network, shortest path [11], multiobjective [1] and other problems considering
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the possibility of road accidents [11], [15] have been studied. However, in the
continuous case, in which the path can be located anywhere, the research has
made very little progress. First of all, it is necessary to consider a restriction on
the path, otherwise the problem admits a trivial solution. Two problems arise
when considering constraints either on the spacial situation or on the length of
the polygonal curve, namely:

o the region-constrained problem: given a polygonal region R containing the
point set P, finding a polygonal curve path C' within R maximizing h(C),
le.,

in d(p;,C').
max min (pi,C)

o the length-constrained problem: given a positive value [y, finding a polyg-
onal curve path C with length-bound ly maximizing h(C), i.e.,

in d(p;, C).
(B8, )

Note that the number of bends (k) is not fixed in the input of such problems.
For the Euclidean region-constrained problem, Drezner and Wesolowsky [44]
provide an approximate algorithm for calculating a polygonal curve route C'
in a polygonal region with entry and exit segments. A similar approximation
procedure with rectilinear distance was studied by Hinojosa [68]. However, in
a recent paper [35], Diaz-Banez and Hurtado devise an exact O(MlogM) time
algorithm for this problem by using Voronoi Diagrams.

The length-constrained problem can be solved with an approximation algorithm
for general polygonal curves and by an O(MlogM) time algorithm when the
polygonal has only one free-corner [35].

6.2 1-Bend polygonal curves

A particular and important case of polygonal curve location is worth mentioning.
The approximation of a point set by a 1-bend polygonal curve has interesting
applications in approximation theory and in statistics. For instance, we can
think of min-max approximation by two anchored lines, assuming that the whole
population is split into two unknown groups with distinct characteristics.

First, we refer to the use of the Euclidean distance. The so-called double-ray
center problem is defined as follows. Given a set of M points P in the plane,
we want to find a configuration, C = (O, rq,r2), consisting of a point O in the
plane and two rays, r1, 72, emanating from O, such that the Hausdorft distance
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from P to C is minimized. The Hausdorff distance from P to C is defined by

h(P,C) = glezg(min[dz(p, 1), da(p, 72)]
where da(p, r) denotes the Euclidean distance between the point p and the ray
r. The distance between a point p and a ray r starting at point O is defined
by the distance between p and the line [ through r if the perpendicular line to
[ through p intersects r, it is the distance between O and p otherwise.

In the paper [60] an algorithm that finds a double-ray center of P is proposed.
(Note that the double-ray configuration is not necessarily unique). The main
theoretical result allows to modify a given double-ray configuration C with dis-
tance d = h(P,C) to a special double-ray configuration with distance d.

Theorem 19 Let C be a double-ray configuration C = (O, 1, rq) with distance
d=h(P,C). Then, either

1. P is of width not greater than 4d, or

2. P can be covered by two parallel strips of width 2d each, say (L1, L2) and
(L3, Ly), such that both Ly and Ly pass through a point of CH(P), and

(a) FEither Ly or Ly passes through an edge of CH(P), or,
(b) One of the strips has points of P on both of its boundaries, or

3. There exists a configuration C' = (O,r)],r}) with distance d, such that
there are four poinits of P with distance d to C'.

Theorem 19 shows that the cardinality of the sequence D of all possible values
of Hausdorff distance d is O(M?*). Hence, we can find the optimal distance
d* by performing a binary search over D. However, in order to produce an
efficient algorithm an implicit searching technique for locating d* by using the
Megiddo’s parametric search technique can be applied . In [60] it was shown
that the sequential version of the decision algorithm runs in time O(M3a(M))
where a(M) is the inverse Ackermann function and the parallel version runs in
O(logM) time using O(M?3) processors. Thus, by applying parametric search
this yields an O(M3a(M)log? M) time algorithm for the double-ray center prob-
lem.

On the other hand, the most efficient algorithms for finding 1-bend polygonal
curves are developed in a recent paper. In fact, the paper [34] corresponds
to variations of the problem of fitting 1-bend polygonal chains where vertical
distance is used instead of the Euclidean distance. Although the restriction that
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the chain must start and end at specified anchor points a and b is imposed, it 1s
shown that the algorithms can be extended to deal with non anchored polygonal

curves.

Several problems arise by considering constraints on the bend position or on
the endpoints of the chain. In [34], an O(MlogM) time algorithm for the 1-
bend discrete min-max problem, and an O(MlogM) time algorithm for the
1-bend free min-max problem is proposed, none of them making degeneracy
assumptions. Besides, the 1-bend discrete case can be solved within the same
time bound as the problem in which a and b are not fixed but must both satisfy
a feasible set of linear constraints.

Such problems lead to algorithms of quadratic complexity as it is shown in
[30]. However, by using more structure and suitable incremental updating, more
efficient solutions are possible. A technical result, crucial for the procedure, that
uses the convex hull of the point set C'H(P) is the following;

Theorem 20 Let P be a point set, and let £ and r be the leftmost pownt and
the rightmost point in P, respectively. The following properties hold:

(1) The maximum distance between P and the line {r is attained at some
vertex of the polygon CH(P);

(2) furthermore, the distance function to the line {r is unimodal along the
boundary of the upper hull, and analogously along the lower hull of P.

(3) Letr* be the ray from € which minimizes the mazimum distance to the set
P: this mazimum distance must be attained by one vertex from the upper
hull and another one from the lower hull

Consequently, if CH(P) is already available in a given suitable data structure,
7* can be computed in O(log2 M) time using nested binary search. Neverthe-
less, a technique that allows to avoid nested binary search in some cases is the
tentative prune-and-search described in [80]. In this paper, problems that in-
volve searching for a special k-tuple with one element drawn from each of & lists
are considered, and general techniques for computing fixed-points of monotone
continuous functions efficiently are provided. For one function binary search is
enough, for three functions they develop the tentative prune-and-search tech-
nique, and for two functions they prove that standard prune-and-search solves
the problem. The later result is repeatedly used in [34] for computing r* in
O(log M) time. This procedure helps to calculate the solutions of 1-bend polyg-
onal curve problems with vertical distance in O(MlogM) time.
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7 Other problems, further research and conclu-

sions

It can be appreciated that two kinds of problems have not almost been re-
searched. The first one is the planar location of curves different from circles.
The papers [?], [?] deal with circle, hyperbola and ellipse fitting problems. How-
ever the function to be minimized is the sum of vertical (orthogonal) squared
distances and he proposes iterative algorithms.

The second one consist in the location of two-dimensional objects in a planar
setting. In this case the shape of the facility may be fixed or not, but some
geometric features have to be imposed. For orientated rectangles and non-
finite demand sets, in [?] have been considered the problem of locating and
determining the dimensions of the rectangle that minimizes the average distance
to the given set. By using dynamic Voronoi diagrams, in [?] the problem of
locating a convex polygon inside a given polygon (which may be seen as the
border of the location of the population affected by the facility) with a convex
shape, so that it maximizes the minimum Euclidean distances between pairs of
points, one on the polygon to be placed and the other on the given polygon. The
time complexity of the resulting algorithm depends on the numbers of edges of
both polygons as well as the maximum length of a kind of Davenport-Schinzel
sequences.

For polygonal curves location, different problems occur when the demand is
assumed to be continuously distributed in a certain region of IR%. In this case,
Voronoi diagrams have been used (Okabe et al. [108]). Indeed, Takeda [136]
proposes a computational method for the case that the demand is uniform over
a region. The objective function is the average travel cost to the nearest point
on the service line and the length of the facility is restricted to be smaller than
a given bound.
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