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Abstract

We consider the problem of locating a line with respect to some existing
facilities in 3-dimensional space, such that the sum of weighted distances
between the line and the facilities is minimized. Measuring distance using
the [, norm is discussed, along with the special cases of Euclidean and rect-
angular norms. Heuristic solution procedures for finding a local minimum
are outlined.

1 Introduction

The problem of locating a line in two-dimensional space was first considered
by Wesolowsky [19] and further developed by Morris and Norback [13, 14, 15].
Many generalizations (like general distance measures, restrictions, or the location
of hyperplanes) have been summarized in [17]. In computational geometry line
and hyperplane location problems are also of interest [9, 10]. An overview about
the more general case of locating any kind of dimensional facility has recently
been given by [5].

In contrast to the two-dimensional line location problem, literature on finding a
good line in IR? is rather rare. There are a few papers about finding the largest
cylinder not containing a set of given points in IR® which can be considered as
the location of an obnoxious line in three dimensions, see [6, 7]. This research has
been motivated by problems in treating brain diseases, where radiation beams
should not destroy the important organs within the brain. Finding the smallest



cylinder enclosing a set of given points, on the other hand, is equivalent to locating
a line in IR* with center objective function and has been studied in [18]. The
same problem has also been considered in the context of determining the width
of a set by [8].

Another practical application for finding lines in IR? can be found in mining (see
[2, 1]). Suppose that an area contains deposits of some mineral in various known
locations underground. Instead of digging down separately to each deposit, it
may be cheaper to construct a main shaft and reach the deposits by tunnels.
The goal is to locate the shaft so as to minimize the annual transportation costs
of moving the mineral through the tunnels (and up the shaft).

Line location problems in IR? can be formalized as follows. Given a set of existing
facility locations, A = {A;, Ag,..., Ay}, with Ay = (@i, Gma, ams) € IR? and
non-negative weights w,, for m € M = {1,2,..., M}, along with a distance
measure d, we want to find a straight line I C IR? so as to minimize

f(L) = Z wmd(AmaL)a

meM

where the distance between a point A € IR* and a line L C IR? is given by the
shortest distance based on the distance measure d, i.e.
d(A,L) = mind(A, X).
XeL

In the mining example mentioned above the existing facilities represent the de-
posits and the line L models the mining shaft. The objective is to minimize the
costs of the tunnel system which we assume to be related to the length of the
tunnels. The length of a tunnel from a deposit located at A to the shaft L is
given by d(A, L) where d is mainly dependent on the properties of the tunnel
system.

In the research carried out so far, see [2], it was assumed that the paths connecting
the line to the existing facilities (the tunnels from the deposits to the shaft in
the mining example) have to be horizontal. Within a horizontal plane, any p-
norm may be considered as a distance measure. Such a distance measure is called
horizontal [, distance. Although it is by definition a three-dimensional distance,
it reduces to the two-dimensional distance [, in the horizontal plane through A,
which significantly simplifies the line location problem. In [2] solution approaches
for horizontal p-norm distances have been developed. For example, locating a line
minimizing the sum of weighted horizontal Euclidean distances can be solved by a
Weiszfeld type approach, which can be extended to /,-distances with 1 < p < oo.
For the rectangular distance [; special procedures have been suggested.

In this paper we relax the assumption that the tunnels connecting the shaft to
the deposits have to be horizontal, i.e. we deal with p-norm distances instead of



horizontal p-norm distances. For 1 < p < oo the corresponding p-norm is given as
Ip(X) = lp(21, 20, 23) = (7, |z;|P)!/P. For the distance between a point A € IR?
and a line L C IR? the shortest distance based on the [, norm is hence given by

l,(A, L) =minl,(A - X).

XelL

Given two parameters a, § € IR?, we define an arbitrary line L,z by
Log={X€eR?: X =)\a+ 3, )€ R} (1)
The following results of [2] are important for this research.

Lemma 1 Locating a vertical line in IR with distance measure l, is equivalent
to a Weber problem with distance measure l, in the plane.

Lemma 2 Locating a line in IR® with fived origin (B, B2, 0), using the horizontal
l, distance, is equivalent to a Weber problem with distance measure [, in the plane.

The remainder of the paper is organized as follows. After discussing how to
measure distances using [, norms in the next section, we treat the theoretical
aspects of the location models in Section 3. For some of the models, heuristic
solution procedures are outlined in Section 4.

To clarify the various results found in this paper, we classify three-dimensional
line location problems according to the following two properties:

The locational structure of the existing facilities :

e They all lie in the horizontal plane F,
e or in some given hyperplane H,

e or they are located arbitrarily in IR?.
Restrictions on the line :

e The line must lie within the horizontal plane F,
e or within some given hyperplane H,

e or no restriction is given, i.e. we look for the best line in IR?.

In the last section, a short summary according to this classification will be given.



2 Measuring Distances

We consider the problem of finding a line L such that

= > wpuly(An, L)
meM

is minimized, where the A,, are given points in IR* with nonnegative weights w,,.
Given two vectors, a = (ay, a9, a3) and 3 = (B, B2, 43), a line in IR® can be
represented by

Log={X€eR’: X =)la+ 3, )€ R}

In the following we assume that of + o3 + a3 = 1. Before solving the problem we
need to discuss the distance £,(A,,, Ly ) from a point to a line in IR*. We start
with the Euclidean distance [,.

2.1 The Euclidean distance

For any given point A,, = (am1, Gm2, Gm3z) € IR? the closest point on the line is
found as the one with A being the inner product A}, = (o, A,, — 3), i.e., we get the
following formula for calculating the distance between A,, € IR? and L = L, g, if
« is normed to 1.

3
loy(Ap, L) = \jzamy aj Ay, — B3;)?

j=1
= (=B, A= ) = (An = B,0)(An — B0)
The objective function is hence given by
F(Lap) = 3 wmy/(An — ) = (A — B,0) (A — B, 0).
mEM

Unfortunately, this objective function is neither convex nor concave. The follow-
ing property for the Euclidean distance will be helpful for developing an algo-
rithm.

Lemma 3 Let L = L,p3 C IR? be a line and A € R? be a point. Then the
shortest Euclidean path from A to L is a line segment orthogonal to L, i.e. it lies
in a plane with normal vector .



2.2 p-norm distances

If we use a p-norm distance [, instead of the Euclidean distance, the property of
Lemma 3 is in general not true.

To determine the distance between a point A,, and a line L = L, g we have to
find \!, such that P,, = X, a + [ is the closest point on the line (by solving a
one-dimensional minimization problem). We get

ly(Ap, L) = minl, (A, — P) = [,(A, — A\r,a — ).

PelL
Again, the objective function
i 1
F(Lag) = > wa(D_ lam; — o, — BF)»
meM 7=1

is neither convex nor concave.

2.3 The rectangular distance

In the special case of the rectangular distance [; we present the following formula
for determining the distance between a point and a line in IR?.

Lemma 4 Let A = (a1,as,a3) € R® and let Lo, 3 C IR* be a line defined by the
parameters o, 3 € IR3. Then
,1=1,2, 3}

ai—ﬁi

Q;

aj — a; — f

(1(A, Ly p) = min {Z

J=1

Proof:

gl(A,Layﬁ) = g(nellgll(A—X)
= minli(A —Aa—f)
= min(lar = Aoy = Bi| + a2 = Az — Baf + |az — Aas — fis])
3

= grg]ggjzllaﬂ

a—F
a;

Y

assuming without loss of generalization that a; # 0, otherwise the j’th term is
a constant and can hence be neglected. Since this is a weighted median problem
there exists ¢ € {1,2,3} such that

:ai—ﬁi

Q;

A



is optimal. Defining

:ai—ﬁi

G

b a+BelR’, i=1,2,3,

the distance between A and L, g is given by
gl(A, La,ﬁ) = mlﬂ{ll(A - Pl), ll(A — PQ), ll(A - Pg)},
which proves the result. QED

Note that one shortest rectangular path from the point A to the line L in three-
dimensional space is confined to a plane (since P; and A share the same coordinate
i). In particular, if the index ¢ for the optimal A in the proof of Lemma 4 is given
by i = 3 then the path from A to [ stays completely in the horizontal plane
passing through A. Analogously, if i = 1,2 the path lies completely in a plane
perpendicular to respectively the xq,xy axis. Unfortunately, the choice of the
index ¢ for A is not only dependent on the parameters of the line (as in the two-
dimensional case), but also on the position of the point A, so the property of
Lemma 3 does not hold for the rectangular distance [;.

3 Theoretical results

For the line location problem in the plane it has been shown by several authors
(the earliest proof is in [19]) that with Euclidean distance there always exists
an optimal line passing through two of the existing facilities. In [9] this state-
ment was sharpened: For the Euclidean distance, all optimal lines pass through
two of the existing facilities. Generalizations of this incidence property to other
distances than the Euclidean can be found in [17]. With this background one
might suspect that such an incidence property is also true for locating a line in
three-dimensional space. But in the following counterexample no optimal line
passes through two existing facilities, so the two-dimensional incidence property
cannot be generalized.

Assume M = 8 existing facilities as the vertices of a cuboid, given by the following
coordinates.

A; = (0,0,—1), Ay = (0,0,1), A3 = (0,2,1), A, = (0,2, —1),

A5 = (6, 0, —1),A6 = (6,0, 1),A7 = (6,2, ].),Ag = (6,2, —]_),

where e > 0.
Consider the line L; passing through the points (0, 1,0) and (e, 1,0). We get that
lo(Anm, L) =2 for allm=1,...,8, such that

f(Ly) = 8V2,

6



independent of e, when all weights are one.

We want to show that for large e the line L, is better than any line passing through
two of the existing facilities. For the line Ly = L, 3 with a = ﬁ(e, 2,2) and
B =(0,0,—1), passing through A; and A; we get

l(A1, Ly) = (5(A7, Ly) =0,

e?+4
lo(Ag, Ly) = lo(Ay, Ly) = lr(As, Lo) = lo(Ag, Ly) = 2 L
(A L) = Oo(As, Ly) = 2,/ 2%
2 3y 42 - 2 5y L2) — €2+8,

— f(Ly) = _624+ (VT4 V2,

For e — oo we get f(Ly) — 8+4+v/2 > 82 = f(L;). The vertical and horizontal
lines passing through two of the facilities are even worse, and the lines which
are diagonals in one of the faces (as the line through A, and A7) are also worse
than Ls. This means that, for large enough e, the line L; is better than all lines
passing through two of the existing facilities, so no such line is optimal.

We now deal with some special configurations of the existing facilities and the
new line. Assume, e.g., that all existing facilities lie in one common plane H. In
the following lemma we consider the special case that this plane is

E :=1R? x {0} = {(x1, 73, 73) : 23 = 0},

meaning that a,,3 = 0 for all m € M. In this case, all optimal lines with respect
to any [,-norm, p < 0o, are also contained in .

Lemma 5 Let a,,3 = 0 for all m € M. Then there exists an optimal line L, g
with respect to 1, which satisfies

a3 =0 and B3 = 0.
Moreover, if p < oo all optimal lines satisfy the condition.

Proof: For X = (21,79, 73) € IR* let P(X) = (71, 72,0) be its projection onto
IR* x {0}. Note that for all /,-norms it holds that

(X =Y) 2 1,(P(X) - P(Y))

and moreover, for p < co , X # P(X), and Y = P(Y) it can easily be verified
that
L(X-Y)>[,(P(X)-Y).



Now let L = L, g be any line in IR?, and let
P(L) = Lp(a),p(s)

be its projection onto IR* x {0}. Using the above inequalities, the distance be-
tween a point A = (a1, a2,0) = P(A) and the line [ satisfies
l,(A,L) = minl,(A—X)

XelL

> minl,(A - P(X))

XelL

T Xern) (A = X)

= (,(A, P(L)).

where the above inequality holds strictly if p < oo and L # P(L).
QED

Corollary 1 Let all eristing facilities be contained in E = IR? x {0}. For all
l,-norms, 1 < p < oo there exists an optimal line passing through two of the
existing facilities.

Corollary 2 Let H be a plane in IR* containing all existing facilities. Then all
optimal lines with respect to the FEuclidean distance ly are contained in H.

Proof: Since [, is rotation invariant, we can assume without loss of generality that
H = FE = {(x1,29,23) : x3 = 0} and the result follows directly from Lemma 5.

QED

Lemma 5 deals with a plane containing all existing facilities. In the next property,
however, arbitrary existing facilities are allowed, but only lines within £ = IR* x
{0} will be considered.

Lemma 6 Let L be a line in the plane E = IR” x {0} C R?, A = (ay,as,a3) €
R?, and P(A) = (a1, ay,0) the projection of A onto E. Then

KP(AaL) = ZP[EP(P(A)aL)aa?)]'

Note that the symbol £, refers to a distance measure in IR? while [, on the right-
hand-side is the p-norm in only two dimensions. Moreover, ¢,(P(A),L) can be
replaced by a 2-dimensional distance, since both P(A) and L liein E = IR* x {0}.
Proof: Given two points X = (z1,x9,23) and Y = (y1,¥2,y3) we will use the
following property for the /,-norms:

lp(X - Y) = lp[lp(P(X) - P(Y)),x3 - ?J3]-

8



Noting that all X € L satisfy 3 = 0, yields

(A L) = minly(A - X)
= min{,[l,(P(4) — P(X)), a3 — 0]}
= Lmin{l,(P(4) = P(X))}, as]

= bl (P(A), L), as].
QED

Lemma 6 motivates the definition of the following planarly restricted line location
problem (PRL):

(PRL) Given a set A of existing facilities in IR?, find a line L within the plane
E =1R* x {0} that minimizes f(L) = ¥ ci Winlp(Am, L).

Using the constraint L C E and Lemma 6 the objective function of (PRL) can
be reformulated as

f(L) = Z wmlp[gp(P(Am)a L)a am3]'
meM

Theorem 1 Problem (PRL) with rectangular distance 1y is equivalent to a line
location problem in the plane, where the existing facilities are given by the pro-
jections of the given points A,, onto E, and the distance function is given by the
two-dimensional distance ly.

Proof: Using Lemma 6 we get for /y:

FL) = > wali[(P(An), L), as]

meM
= Y wnli(P(An), L)+ Y walamsl,
meM meM

meaning that for [y (PRL) is equivalent to

min Z W1 [(Ama s amz), L.
meM

The latter problem is a planar line location problem, with the two-dimensional
projections of the A,, as existing facilities.

QED

This result leads to the following consequences.

Corollary 3 For problem (PRL) with distance ly there exists an optimal line
passing through at least two of the projection points P(Ay,).

9



Proof: The Corollary follows directly from the properties of planar line location
problems, see, e.g. [14, 17]. QED

Note that since separation of the coordinates does not hold for 1 < p < oo, the
results of Theorem 1 and Corollary 3 are not extendable to general p-norms. As
counterexample (for the Euclidean distance [ly), consider the problem instance
given earlier on page 6. If we are looking for an optimal line within F, the line
L, with objective value f(L;) = 8y/2 (which is not passing through any of the
projection points of A) is better than the best line passing through two of the
projection points (with objective value f(L) — 4(1 ++/5) for e — 00).

From the symmetry properties of the rectangular distance we also get the follow-
ing.

Corollary 4 Let H be a given hyperplane with normal vector n, satisfying
n € {(1,0,0),(0,1,0),(0,0,1)}.

Then, for the rectangular distance ly, the problem of finding an optimal line within
H is equivalent to a line location problem in the plane. Moreover, all optimal lines

are passing through at least two of the projection points of the existing facilities
A,, onto H.

Another special case occurs, when also all the existing facilities are contained in
some given hyperplane H. For the rectangular distance and the set of hyper-
planes mentioned in Corollary 4 we directly know that there exists an optimal
line passing through two of the existing facilities. Corollary 2 shows the same
result for the Euclidean distance [y, independent of the hyperplane H, and Corol-
lary 1 yields this incidence property for one special hyperplane E, but allows all
distances [,. In the last result of this section we generalize this property to all
distances [,, and to arbitrary hyperplanes H. We first formulate the line location
problem within a hyperplane (LH):

(LH) Given a set A of existing facilities within some hyperplane H C IR?, find
a line L within H that minimizes f(L) = ¥, ,ca Wimlp(Am, L).

Lemma 7 If a line L = Ly, . is a solution to the problem of minimizing f(L) =
>omemt Winlyp(Am, L), then the translated line L = Loy gera is a solution to the
translated problem of minimizing g(L) = Y ner Winlp(Am + A, L).

Proof: First we note that similar translation of a point and a line does not change
the distance: (,(A+ A, Lygia) =miny [(A+ A —aX—[F—-A) =

min, [,(A — aX — B) = (,(A, Lo g).

For all lines L = L, g we have ¢(Lax gita) = Ymemt Winlp(Am + A, Los gatn) =

10



ZmeM wmgp (Ama La*,ﬁ*) < ZmeM wmgp (Ama La,B—A) =
Somem Winlyp (Am + A, La,ﬁ) = g(La,B)-
QED

Theorem 2 Given a hyperplane H C IR®. For all lp-norms, 1 < p < oo there
exists an optimal line for (LH) passing through two of the existing facilities.

Proof: Let H = H,, = {X € IR? : nyxy + nety + nyry = b} be a hyperplane
with normal vector n # 0. According to Lemma 7 we can assume without loss of
generality that the origin is contained in H, i.e. b = 0. We denote the unit ball
of the [,-norm by B,, i.e.

B, ={X e R*: [,(X) < 1}.

As unit ball of a norm, B, is a convex set, containing the origin in its interior,
and symmetric with respect to the origin. Note that B := B, N H is a two-
dimensional set, which still is convex, contains the origin in its (relative) interior
and is symmetric with respect to the origin. Consequently (see [12]), B defines a
norm on H, given by

F(X):=inf{A>0:X € AB},X € H.

This means that (LH) is equivalent to a planar line location problem, with respect
to some norm 7, (not necessarily /,) and for such problems it is known ([16, 17])
that there exists an optimal line passing through two of the existing facilities.

QED

Note that an equivalent planar problem in the previous proof can be defined
analytically as follows: Let H = H,; be the hyperplane and assume that nz # 0,
and b = 0. Define P : H — E as the (bijective) projection from H onto the
zy-plane, and let P! be its inverse mapping. Let A := {P(A4) : A € A} and
define

3(X) = 1,(P7(X).

From the previous proof it follows that ¥ is a norm on H (which can also be
easily checked by calculation). Moreover, since [,(X —Y) = 5(P(X) — P(Y)) for
all X,Y € H we obtain

lp(Aa L) :’NY(P(A),P(L)),

yielding that (LH) is, in fact, equivalent to the planar line location problem.

11



4 Local search procedures

As mentioned before, the objective function of the three-dimensional line location
problems introduced in the previous sections are neither convex nor concave.
Hence, without extensive search we can only expect a local minimum. Again, we
first consider the Euclidean distance.

4.1 The Euclidean case

Lemma 3 states that if the slope of the line L, g is fixed (i.e. the vector « is
given) then the distances from the existing facilities to the line can be calculated
according to the Euclidean distance within the plane orthogonal to L, 3. Thus,
our problem may be approximated as the location of an arbitrary line with respect
to the horizontal Euclidean distance after applying a rotation r : IR> — IR?, such
that L initially becomes a vertical line. By applying Algorithm 2 in [2], an
improved solution L, is found for horizontal Euclidean distances which then re-
transforms into an even better solution for shortest Euclidean distances. The
details are outlined in the following heuristic.

Algorithm 1 (for locating a line with shortest Euclidean distance)
Step 1. Choose an initial solution L°, g = 0.

Step 2. Find a rotation r which maps LY to a vertical line. Determine

A" ={r(A): A e A}.

Step 3. Determine L, by solving the problem with respect to A" using
the horizontal Euclidean distance using Algorithm 2 of [2]
Calculate L9™! = r~1(L,) by retransforming L,.

Step 4. If f(L9) — f(L9") < §, STOP;
else set ¢ = g + 1 and return to step 2.

For a quicker solution, step 3 in Algorithm 1 may be replaced by

Step 3a. For the rotated axes, fix o = (0,0, 1) and find the best starting point
B9t = (B9 B9, 0) for the vertical line LY by using Lemma 1.

Step 3b. Fix 49t and optimize for a9*! with respect to the horizontal Euclidean
distance by using Lemma 2. Retransform LIt = r (Lye+1 go+1).

12



4.2 The p-norm case

If we use a p-norm distance instead of the Euclidean distance, the objective
function (developed in Section 2.2)

3 1
f(Lag) = D win(d |amj — aj X, — B;[P)»
meM j=1

is neither convex nor concave, but a local minimum may be found by the following
scheme.

Algorithm 2 (for locating a line with shortest [, distance)

Step 1. Choose an initial solution (a°, 3°), compute the \* values and
the objective function value f(Lgoﬂo), and set counter g = 0.

Step 2a. Holding o and the A values fixed find the best starting point
BItt = (B9t BT, B9 for the line by a generalized Weiszfeld

algorithm (e.g., see [3]) for the Weber problem.

Step 2b. Holding 397! and the \*, values fixed, perform Weiszfeld-type
iterations on « until a stopping criterion is reached.

Denote the current solution by (a9+!, 39+1).

Step 3. Compute A\, m € M for the current solution.
If f(Lg5) — f(L3)) < 8, STOP;
else set ¢ = g + 1 and return to step 2a.

In step 2a it turns out that the problem to find 39! reduces to a classical single
facility problem in IR® with [, distance where the existing facilities are given by

Al = (am1 — N5 o, ame — N5 an, ams — A5 as) for all m € M.

The Weiszfeld iterations in both parts of step 2 result in a sequence of descent
moves for the fixed values of A} ,m € M. By updating the A\’ values in step 3
for the new line ngﬁl, we are replacing distances to the line by shortest distances,
thereby providing a further improvement of the objective function. The iteration
scheme thus converges to a stationary point. A multi-start version of Algorithm
2 with random initial solutions may be used to improve the likelihood of finding
the global optimum.

4.3 The rectangular case

To solve line location problems in IR* with respect to the rectangular distance
one may again use a local search to find a local minimum as for the p-norm case,

13



but steps 2a and 2b of Algorithm 2 can be combined to run in linear time, as the
following approach shows.

Algorithm 3 (for locating a line with shortest rectangular distance)

Step 1. Choose an initial solution (a°, 3°), compute the A values and
the objective function value f(LgO’BO), and set counter g = 0.

Step 2. Holding the A}, values fixed optimize for @ and 3. Denote the
solution by LIT! = Lyg+1 go+1.

Step 3. Compute \:,,m € M for LI

If f(L45) = f(L%5) < 6, STOP;
else set ¢ = g + 1 and return to step 2.

The minimization problem of step 2 is given by

min Z Wiy (|@m1 — Ao = Bi| + |ame — A, 00 — Ba| + |ams — An,a3 — (3]) .
@B meM

It can be separated into three independent subproblems Py, k = 1, 2, 3, each being
a line location problem in the plane with respect to the vertical distance. The
existing facilities in subproblem P, are given by

Al = (N:, amg) for all m € M,

the weights are given by the original weights w,,, and the optimal solution yields
a line with slope o} and intercept (3;. All three subproblems can be solved in
linear time by linear programming [20)].

5 Summary

Line Existing facilities
in £ in H in IR?
in ' | planar line location | for [; equivalent to for [; equivalent to
planar line location | planar line location
with /; (PRL, Theo- | with [; (PRL, Theo-
rem 1) rem 1)
in H for all [, equivalent | Corollary 4 for [,
to planar line loca-
tion with some norm
(LH, Theorem 2)
in IR? | an optimal line in E | an optimal line in H | Algorithm 1 for I,
for all [, (Lemma 5) | for I, (Corollary 2); | Algorithm 3 for [y
open for [, Algorithm 2 for [,

14




Concerning the incidence property there exists an optimal line passing through
two of the existing facilities our results can be summarized as follows.

Line Existing facilities
in £ in H in IR?

in £ | for all [, through two | for /; through two of | for /; through two of
of the ex. fac.s the projections of the | the projections of the

ex. fac.s ex. fac.s

in H | needs not contain any | for all /, through two | needs not contain any
of the ex. fac.s of the ex. fac.s of the ex. fac.s

in R? | for all [, through two | for I, through two of | needs not contain any
of the ex. fac.s the ex. fac.s of the ex. fac.s
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