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The recently proposed idea to generate entanglement between photon

states via exchange interactions in an ensemble of atoms (J. D. Franson and

T. B. Pitman, Phys. Rev. A 60, 917 (1999) and J. D. Franson et al., (quant-

ph/9912121)) is discussed using an S-matix approach. It is shown that if the

nonlinear response of the atoms is negligible and no additional atom{atom

interactions are present, exchange interactions cannot produce entanglement

between photons states in a process that returns the atoms to their initial

state. Entanglement generation requires the presence of a nonlinear atomic

response or atom{atom interactions.

I. INTRODUCTION

In some recent papers Franson et al., [1,2] suggested that exchange interactions of two

photons in a macroscopic ensemble of identical, non-interacting atoms could lead to large

conditional phase shifts. In contrast to \conventional" nonlinear optics which requires scat-

tering of both photons from the same atom, exchange interactions are present even when

the two photons interact with di�erent atoms. This makes them much more likely to occur

in a dense medium. The large magnitude of the predicted conditional phase shifts would

make such systems very attractive for quantum logical operation. However, whether or not

exchange interactions are capable of generating entanglement between photons has been

subject of some debate [3,4]. In view of the claimed potential advantages, the requirements

and limitations of the proposed schemes need to be examined.

In the present note I want to discuss a special type of exchange interactions. In par-

ticular I will analyze the possibility to entangle photon states through interactions in an

ensemble of atoms under the conditions considered in [2]. Namely: (i) All processes are

unitary, i.e. losses are negligible; (ii) The atomic system returns to the same state as be-

fore the interaction; (iii) The \conventional" nonlinear response of the atoms is assumed

to be negligible; (iv) It is assumed that there are no atom{atom interactions, except those

through the quantized radiation modes under consideration. Conditions (i) and (ii) enshure

that the pair of qubits, represented by the photons undergoes an e�ective unitary evolution

and is asymptotically disentangled from the atoms and the environment. It will be shown

in the following that in a system that ful�lls conditions (i-iv) entanglement between a pair

of photons in distinguishable modes can not be generated. Any initially factorizable state

will evolve into a factorizable state.
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II. MODEL AND EFFECTIVE TIME-EVOLUTION OPERATOR

Let me consider the interaction of the quantized radiation �eld with a large number

of identical atoms in dipole and rotating-wave approximation as proposed in [1,2]. In ad-

dition to the photon �eld, the atoms may be coupled to some external classical �elds to

allow for manipulations of the states after or during the interaction with the photons. The

Hamiltonian of the system has the following general form

H = H�eld +Hatom(t) + V; (1)

where H�eld is the free Hamiltonian of the quantized photon �eld and Hatom(t) is the free

Hamiltonian of the atoms including the interaction with the (time-dependent) external,

classical �elds. For simplicity it is assumed that each mode of the photon �eld couples

only to one atomic transition. It is however straight forward to lift this restriction. The

interaction operator has thus the following general structure

V = ��h
X
k

gk

NX
j=1

h
�̂
y
j;kâk fk(~rj) + �̂j;k â

y
kf

�
k (~rj)

i
: (2)

Here âk and â
y

k are annihilation and creation operators of the photon �eld. k is a mode

index and fk(~r) is the associated mode function. fk is not restricted to plane waves but

could also represent e.g. localized wave packets, distinguishable by their arrival time. The

modes are assumed to be orthogonal, such that [ak; a
y
k0] = �kk0. �̂j;k denotes a ip operator

of atom j corresponding to the transition coupled to the mode k with coupling strength

gk. (Introducing ip operators for di�erent k-values takes into account that the individual

modes of the quantized �eld may be coupled to di�erent dipole transitions.)

It is assumed that initially (t = t0) all atoms are in their ground states, i.e. the total

initial state vector has the form

j (t0)i = j�(t0)i jgi; (3)

where j�(t0)i is the initial �eld state and jgi the collective ground state of the atoms.

The Schr�odinger-equation for the state vector in the interaction picture can formally be

solved by

j (t)i = T exp

�
�

i

�h

Z t

t0

dt0 V (t0)

�
j (t0)i; (4)

where T is the time ordering operator.

It is clear that photon-atom interactions in general entangle both sub-systems. This is

however not of interest here. The question I want to address is, whether the interaction

can generate an entangled state of the photons given that the atomic system returns to its

initial ground state at some time t1. Thus we require

j (t1)i �! j�(t1)ijgi: (5)

In this case the atomic and photonic components of j (t1)i factorize and the photonic part

is given by
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j�(t1)i = hgjT exp

�
�

i

�h

Z t1

t0

dt0 V (t0)

�
jgi j�(t0)i = S(t1; t0) j�(t0)i: (6)

The operator S describes the conditional evolution of the photon �eld when the atomic

system returns to its ground state.

In order to calculate the action of S, we make use of a generalization of the cumulant

generation function for a classical statistical variable X

D
expfsXg

E
X
= exp

(
1X

m=0

sm

m!
hhXm

ii

)
: (7)

Here hhXm
ii denotes the mth order cumulant, i.e. hhXii = hXi, hhXY ii = hXY i�hXi hY i

etc. Applying eq.(7) to S yields

S(t1; t0) = T exp

(Z
d1
Z
d2 âyk1(�1)P(1; 2) âk2(�2)

+

Z
d1

Z
d2

Z
d3

Z
d4 â

y
k1
(�1)â

y
k2
(�2)P

(2)(1; 2; 3; 4) âk3 (�3)âk4(�4) + � � �

)
(8)

where
R
d1 stands for integration over time �1 and summation over the mode index k1. It

was assumed here for simplicity that the average dipole moment of the atoms vanishes.

P(1; 2) =
X
j

P
j(1; 2); (9)

where

P
j(1; 2) = �g2kf

�
k1
(~rj)fk2(~rj)

DD
T�̂

y
jk1

(�1)�̂jk2(�2)
EE

(10)

describes the linear response of the jth atom to the quantized radiation �eld. The higher-

order terms P(n) characterize the \conventional" nonlinear response. The scattering of two

photons o� the same atom is for example determined by P
(2). It should be emphasized

here, that cumulants containing operators of di�erent atoms vanish, since it was assumed

that atom{atom correlations can be built up only by the quantized radiation �eld. As

a consequence each term P
(n) scales only linearly with the number of atoms N . Thus

\conventional" nonlinear interactions of increasing order require increasing photon densities

or large coupling constants gk.

Franson et al. argued in [2] that a nonlinear phase shift between two photons could

emerge even if the \conventional" nonlinear couplings, characterized by the higher-order

cumulants in eq.(8), are negligible. Such phase shifts should arize from exchange interactions

resulting from to the symmetrization requirements imposed by the bosonic nature of the

photons. Let me therefore consider in the following the case were all higher-order cumulants

are neglected. In this situation S reduces to:

S � T exp

(Z
d1
Z
d2 âyk1(�1)P(1; 2) âk2(�2)

)
: (11)

It should be emphasized that although the evolution operator (11) is bilinear in the photon

operators, it takes fully into account any exchange interaction. The implicit summation
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over mode indices accounts for processes where photon 1 is seen by atom A and photon 2

by atom B as well as the case where photon 1 is seen by atom B and photon 2 by atom A.

It will now be shown that the conditional evolution t0 ! t1 described by S cannot generate

entanglement. I.e. any initially factorizable state will evolve into a factorizable state after

the interaction.

III. STATE EVOLUTION

In order to discuss the evolution of photons described by S in (11), I consider the case

of the �eld initially being in a factorizable two-mode state with at most one photon in each

mode. j�(t0)i = j�1i j�2i jf0kgi with

j�1i =
�
�1 + �1â

y
k1

�
j01i; j�2i =

�
�2 + �2â

y
k2

�
j02i: (12)

Here j01i; j02i are the vacuum states of modes k1 and k2 and jf0kgi is the vacuum state of

all other modes.

I proceed with discussing the evolution of the individual components of j�(t0)i. The

vacuum component remains of course una�ected and it is su�cient to consider

j�1(t1)i = S(t1; t0) j�1(t0)i = S(t1; t0) â
y
k1
(t0)j0i; (13)

and

j�1;2(t1)i = S(t1; t0) j�1;2(t0)i = S(t1; t0) â
y
k1
(t0) a

y
k2
(t0)j0i: (14)

To formally calculate these expressions we make use of Wick's theorem, which states that

a time-ordered operator expression can be replaced by the sum of all normally ordered

expressions with all possible \contractions". Contractions refer here to a replacement of any

operator pairs âyk0(� 0) and âk00(� 00) by the T-ordered propagator

D(1; 2) =
D
0
���T âyk0(�1)âk00(�2)

���0E: (15)

We �rst note that since t0 is the smallest time, the creation operators â
y
k1
(t0) and â

y
k2
(t0)

in eqs.(13) and (14) can be included in the T-ordering. Since S â
y
k1
(t0) and S â

y
k1
(t0)â

y
k2
(t0)

respectively act on the vacuum state, out of all normally ordered expressions only those

survive which have no photon annihilation operator left.

Now S â
y
k1
(t0) can be expanded into a power series and Wick's theorem applied to each

term. This leads to the following perturbation series

j�1(t1)i =

(
â
y
k1
(t0) +

Z
d1

Z
d2D(0; 1)

"
P(1; 2) +

Z
d3

Z
d4P(1; 3)D(3; 4)P(4; 2)

+

Z
d3

Z
d4

Z
d5

Z
d6P(1; 3)D(3; 4)P(4; 5)D(5; 6)P(6; 2) + � � �

#
â
y

k00(�2)

)
j0i; (16)

where j0i denotes the vacuum of all �eld modes. The �rst term results from contractions of

photon operators within S. The other terms arise from all possible contractions of âyk1 with

operators from S.
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Eq.(16) can be given the compact form

j�1(t1)i =

"
â
y

k1
(t0) +

Z
d1

Z
d2D(0; 1)�(1; 2) â

y

k00 (�2)

#
j0i (17)

where �(1; 2) is the solution to the linear integral equation (Dyson equation)

�(1; 2) = P(1; 2) +

Z
d2

Z
d3P(1; 3)D(3; 4)�(4; 2): (18)

In fact one easily veri�es that an interactive solution of this equations generates the whole

perturbation series of (16). That the quantum evolution can formally be solved in such a

simple way is not surprising since the system is linear. Eq.(18) describes nothing else than

multiple scattering of the incoming photon at the atoms with all nonlinearities being absent.

In a diagrammatic language, the Dyson equation (18) corresponds to a sum of chain-like

diagrams without branching or merging.

In a similar way as above one can proceed with S â
y
k1
â
y
k2
. In this case contractions

only within S generate a term proportional to the product âyk1 â
y
k2

similar to the �rst term in

eq.(16). Then two series of terms emerge where either âyk1 or â
y
k2
is contracted with operators

from S. These leads to expressions identical to the higher-order terms in (16) multiplied

with either â
y
k1

or â
y
k2
. Finally there is a series of terms resulting of contractions of both â

y
k1

and â
y
k2

with operators from S. This yields

j�12(t1)i =

(
â
y

k1
(t0)â

y

k2
(t0) +

+

Z
d1

Z
d2D(00; 1)

�
P(1; 2) +

Z
d3

Z
d4P(1; 3)D(3; 4)P(4; 2) + � � �

�
â
y
k2
(t0) â

y
k00(�2) +

+

Z
d1

Z
d2D(000; 1)

�
P(1; 2) +

Z
d3

Z
d4P(1; 3)D(3; 4)P(4; 2) + � � �

�
â
y
k1
(t0) â

y

k00(�2) + (19)

+
Z
d1
Z
d2D(00; 1)

�
P(1; 2) +

Z
d3
Z
d4P(1; 3)D(3; 4)P(4; 2) + � � �

�
�

�

Z
d~1

Z
d~2D(000; ~1)

�
P(~1; ~2) +

Z
d~3

Z
d~4P(~1; ~3)D(~3; ~4)P(~4; ~2) + � � �

�
â
y

k00(�2) â
y
~k00
(~�2)

)
j0i:

Here 00 and 000 stand for ft0; k1g and ft0; k2g respectively. This expression can again be

brought into a compact form

j�12(t1)i = â
y
k1
(t0)â

y
k2
(t0) j0i

+
Z
d1
Z
d2D(00; 1)�(1; 2)âyk00(�2)â

y
k2
(t0)j0i +

Z
d1
Z
d2D(000; 1)�(1; 2)âyk00(�2)â

y
k1
(t0)j0i

+

Z
d1

Z
d2D(00; 1)�(1; 2)

Z
d~1

Z
d~2D(000; ~1)�(~1; ~2) â

y

k00(�2) â
y
~k00
(~�2) j0i:

One immediately recognizes that j�12(t1)i can be written as

j�12(t1)i =

"
â
y
k1
(t0) +

Z
d1

Z
d2D(00; 1)�(1; 2) â

y

k00 (�2)

#




"
â
y
k2
(t0) +

Z
d~1

Z
d~2D(000; ~1)�(~1; ~2) â

y
~k00
(~�2)

#
j0i (20)
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The evolution of j�i from t0 to t1 is hence given by

j�(t0)i =
�
�1 + �1â

y
k1

� �
�2 + �2â

y
k2

�
j0i

#

j�(t1)i =

"
�1 + �1

 
â
y

k1
(t0) +

Z
d1
Z
d2D(00; 1)�(1; 2) â

y

k00(�2)

!#

 (21)

"
�2 + �2

 
â
y
k2
(t0) +

Z
d~1
Z
d~2D(000; ~1)�(~1; ~2) ây~k00

(~�2)

!# ���0E:
Thus if the process starts with a factorizable state with photons in distinguishable modes,

i.e. if (�1 + �1âk1)j0i is orthogonal to (�2 + �2âk2)j0i and if the process generates photons

in distinguishable modes, i.e. if�
�1 + �1

�
â
y
k1
+
Z Z

D� âyk00

�� ���0E and

�
�2 + �2

�
â
y
k2
+
Z Z

D� ây~k00

�� ���0E

are orthogonal, then the generated state vector remains factorizable.

IV. CONCLUSION

In the present note I have shown it is not possible to generate entanglement between

photons using solely exchange interactions in a large ensemble of atoms, if the atoms are left

in the same quantum state after the interaction as they were initially. From a diagrammatic

point of view entanglement between photons can not be generated if all possible diagrams

are chain-like. To produce entanglement non-trivially connected diagrams are needed, as

emerge for example from nonlinear atomic responses or from atom{atom interactions due

to e.g. dipole-dipole or collisional interactions.
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