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We identify form-stable coupled excitations of light and
matter (\dark-state polaritons") associated with the propaga-
tion of quantum �elds in Electromagnetically Induced Trans-
parency. The properties of the dark-state polaritons such as
the group velocity are determined by the mixing angle be-
tween light and matter components and can be controlled
by an external coherent �eld as the pulse propagates. In
particular, light pulses can be decelerated and \trapped" in
which case their shape and quantum state are mapped onto
metastable collective states of matter. Possible applications
of this reversible coherent-control technique are discussed.

Dark resonances and electromagnetically induced

transparency (EIT) [1,2] can be used to make a reso-

nant, optically opaque medium transparent by means

of quantum interference. Associated with the induced

transparency is a dramatic modi�cation of the refractive

properties of the media. These can result, for instance,

in very slow group velocities [3]. In the present contri-

bution we study the propagation of quantum �elds in

EIT media. We demonstrate the existence of formstable

quantum excitations associated with such propagation,

which we term \dark-state polaritons". The polaritons

are coherent superpositions of photonic and Raman-like

matter branches. We show that their group velocity is di-

rectly related to the ratio of the two contributions. This

ratio can be externally controlled by adiabatically chang-

ing a coherent control �eld as the pulse propagates. In

particular, dark-state polaritons can be stopped and re-

accelerated in such a way that their shape and quantum

state are preserved. In this process the quantum state of

light is ideally transfered to collective atomic excitations

and vise versa.

The possibility to coherently control the propagation of

quantum light pulses via dark-state polaritons opens up

interesting applications involving the generation of non-

classical states of atomic ensembles (in squeezed or entan-

gled states), reversible quantummemories for light waves

[4{6], and high resolution spectroscopy [7]. Furthermore,

the combination of the present technique with studies

on few-photon nonlinear optics [8{12] can be used, in

principle, for processing of quantum information stored

in collective excitations of matter. Finally, the present

technique may provide an interesting tool to study quan-

tum scattering phenomena in systems involving coherent

cold collisions. In this regard the present work opens a

link between nonlinear optics for light waves and nonlin-

ear atom optics. E.g. an interaction (or entanglement)

between light waves can be induced by a collisional in-

teraction of atoms (e.g. s-wave scattering); alternatively

an interaction between atoms can be induced via optical

nonlinearities.

We consider a medium consisting of �-type 3-level

atoms with two meta-stable lower states as shown in

Fig. 1. A quantum �eld described by the slowly-varying

dimensionless operator

Ê(z; t) =
X
k

ak(t) e
ikz e�i �

c
(z�ct) (1)

couples resonantly the transition between the ground

state jbi and the excited state jai. � = !ab is the carrier

frequency of the optical �eld. The upper level jai is fur-
thermore coupled to the stable state jci via a coherent

control �eld with the slowly-varying, real Rabi-frequency


(t). For the purposes of the present discussion the ex-

ternal �eld can be treated classically. We assume that

initially (i.e before the quantum pulse arrives) all atoms

are in their ground states jbji. To describe the quantum

properties of the medium, we use collective, slowly vary-

ing atomic operators, appropriately averaged over small

but macroscopic volumes containing Nz � 1 particles at

position z,

�̂��(z; t) =
1

Nz

NzX
j=1

j�jih�j j e�i!��t: (2)

The interaction between light and atoms is governed by

the Hamiltonian

V̂ = �N
Z
dz

L

 
�hg
X
k

ake
ikz�̂ab(z) + �h
�̂ac(z)

!
+ h:c:

(3)

Here g = }
q

�
2�h�0V

is the atom-�eld coupling constant

with } being the dipole moment of the a � b transition

and V the quantization volume. N is the number of

atoms in this volume and L its length in z direction.

The evolution of the Heisenberg operator correspond-

ing to the optical �eld can be described in slowly varying

amplitude approximation by the propagation equation�
@

@t
+ c

@

@z

�
Ê(z; t) = igN �̂ba(z; t): (4)
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The atomic evolution is governed by a set of Heisenberg-

Langevin equations

@

@t
�̂�� = �
����� + i

�h
[V̂ ; �̂��] + F�� ; (5)

where 
�� are the transversal decay rates and F̂�� are

�-correlated Langevin noise operators.

We now assume that the Rabi-frequency of the quan-

tum �eld is initially much smaller than 
 and that the

number of photons in the input pulse is much less than

the number of atoms. We will show that the Rabi-

frequency of the quantum �eld will then be much smaller

than 
 at all times. In such a case the atomic equations

can be treated perturbatively in Ê. In zeroth order only

�̂bb = 1 is di�erent from zero and in �rst order one �nds

�̂ba = � i


(t)

@

@t
�̂bc; (6)

�̂bc = �gÊ



� i




��
@

@t
+ 
ba

��
� i




@

@t
�̂bc

�
+ F̂ba

�
: (7)

In the above equations we disregarded a (small) decay of

the Raman coherence (
bc).

The propagation equations simplify considerably if we

assume a su�ciently slow change of 
, i.e. adiabatic

conditions [8,10]. Introducing a normalized time ~t = t=T

where T is a characteristic time scale and expanding the

r.h.s. of (7) in powers of 1=T we �nd in lowest non-

vanishing order

�̂bc(z; t) = �g Ê(z; t)


(t)
: (8)

Note that hF̂x(t)F̂y(t
0)i � �(t � t0) = �(~t � ~t0)=T . Thus

in the perturbative and adiabatic limit the propagation

of the quantum light pulse is governed by the equation�
@

@t
+ c

@

@z

�
Ê(z; t) = �g2N


(t)

@

@t

Ê(z; t)


(t)
: (9)

If 
 is constant, the term on the r.h.s. simply leads

to a modi�cation of the group velocity of the quantum

�eld according to vg = c=(1 + g2N


2 ). In the general case

the �eld equation of motion will acquire an additional

term proportional to ( _
=
) Ê which describes reversible

changes in quantum amplitudes due to stimulatedRaman

scattering.

One can obtain a very simple solution of eq.(9) by in-

troducing a new quantum �eld 	̂(z; t) via the canonical

transformation

	̂(z; t) = cos �(t) Ê(z; t)� sin �(t)
p
N �̂bc(z; t); (10)

cos �(t) =

(t)p


2(t) + g2N
; sin �(t) =

g
p
Np


2(t) + g2N
:

	̂ obeys the following equation of motion

�
@

@t
+ c cos2 �(t)

@

@z

�
	̂(z; t) = 0; (11)

which describes a shape-preserving propagation with ve-

locity v = vg(t) = c cos2 �(t):

	̂(z; t) = 	̂

�
z � c

Z t

0

d� cos2 �(� ); t = 0

�
: (12)

Several interesting properties of the new �eld should be

noted. First of all, by introducing a plain-wave decom-

position 	̂(z; t) =
P

k 	̂k(t) e
ikz one �nds that the mode

operators 	̂k and 	̂
y

k obey the commutation relations

[	̂k; 	̂
+
k0] = �k;k0

h
cos2 � + sin2 �

1

N

X
j

(�̂
j

bb � �̂jcc)
i
: (13)

In the linear limit considered here, where the number

density of photons is much smaller than the density of

atoms, �̂
j

bb � 1; �̂jcc � 0. Thus the new �eld possesses

bosonic commutation relations and we can associate with

it bosonic quasi-particles (polaritons). Furthermore one

immediately veri�es that all number states created by 	̂
y

k

are dark-states [2,5]:

jDk
ni =

1p
n!

�
	̂
y

k

�n
j0ijb1:::bNi; (14)

where j0i denotes the �eld vacuum. In particular, the

states jDk
ni do not contain the excited atomic state and

are thus immune to spontaneous emission. Furthermore,

they are eigenstates of the interaction Hamiltonian with

eigenvalue zero, V̂ jDk
ni = 0. For these reasons we call

the quasi-particles \dark-state polaritons".

To summarize, we have found a shape-preserving,

polariton-like superposition 	̂ of an electromagnetic �eld

and collective Raman coherences. This excitation is not

of soliton type since no special pulse-shape or pulse area

is required. It is related to the classical adiabaton solu-

tions of pulse-pair propagation in �-type media [13{15]

in the limit of one strong and one weak �eld. We empha-

size however that the �eld can here be in any quantum

state. In particular it does not need to have a coherent

component with a well de�ned phase.

One of the most interesting aspects of dark-state po-

laritons is the possibility to coherently control their prop-

erties by changing 
(t). For example, by adiabatically

rotating �(t) from 0 to �=2 one can decelerate and stop

an input light pulse. It is remarkable that in this process

pulse shape and quantum state of the initial light pulse

are mapped onto collective, metastable states of matter

in which they are stored. Likewise the dark-state polari-

ton can be re-accelerated to the vacuum speed of light; in

this process the stored quantum states is transferred back

to the �eld. This is illustrated in Fig. 2, where we have

shown the coherent amplitude of a dark-state polariton

which results from an initial light pulse as well as the cor-

responding �eld and matter components. One recognizes
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that the pulse shape is preserved and that the stopping

corresponds to a transfer from �eld to atomic Raman ex-

citations. Explicitly, the mapping of the quantum states

corresponds to the following unitary transformation:0
@ X

k;l;m:::

�k;l;m:::a
y

ka
y

l a
y

m:::j0i
1
A jb1:::bNi $ (15)

0
@ X

k;l;m:::

�k;l;m:::

p
N�kcb

p
N�lcb

p
N�mcb:::jb1:::bNi

1
A j0i;

as can be veri�ed using expression (14) for the polariton

state vectors.

The coherent transfer of quantum states between light

and matter opens interesting prospectives for the gener-

ation of non-classical atomic ensembles in squeezed and

entangled states, high-precision spectroscopy with reso-

lution beyond the standard quantum limit [7] as well as

reversible quantum memories. Furthermore, by trapping

correlated photons in separate media entangled states of

separated atomic ensembles can be created. With respect

to these applications the present paper is complementary

to our earlier studies in which we showed that quantum

states of light can be mapped onto Dicke-like collective

states of an EIT medium in an optical resonator [4,5].

The quantum states of matter generated in the case of

the present paper are more complicated; however trap-

ping the light in a traveling-wave geometry does not re-

quire special shaping of the classical driving pulses (quan-

tum impedance matching), which is necessary in a cavity

con�guration.

We also note related studies on quantum memories for

light involving mapping the quantum state of the �eld

onto atoms by dissipative absorption [6,16]. In contrast

to these approaches the adiabatic passage technique [17]

used here allows for a complete and reversible excitation

transfer of arbitrary quantum wavepackets.

Finally, our approach is also di�erent from the mech-

anism suggested recently in [18], in which \freezing" of

the light pulse in a laboratory frame was proposed using

moving atoms.

The above analysis involves a perturbation expansion,

an adiabatic approximation and disregards the decay of

Raman coherence. In what follows the validity of these

approximations is discussed. First of all, we note that

making use of (8) one �nds: g2Ê+Ê=j
j2 = �̂cb�̂bc. I.e.,

the ratio of the average intensities of quantum and con-

trol �eld is proportional to that of the matter �eld h�̂cci.
If the initial number of photons in the quantum �eld

is much less than the number of atoms, h�̂cci is always
much smaller than unity. Therefore the mean intensity

of the quantum �eld remains small compared to that of

the control �eld even when the latter is turned to zero.

In order to check the validity of the adiabatic approx-

imation we consider the �rst correction to �̂bc:

�̂bc � �gÊ



+

1




�
@

@t
+ 
ba

�
1




@

@t

gÊ



+ � � � (16)

The non-adiabatic correction in (16) leads to a spectral

narrowing (pulse spreading) of the quantum �eld due to

the �nite bandwidth of the transparency window [10],

which results in a \pulse"-matching of quantum and clas-

sical control �eld [19,15]. Using the adiabatic solution

(12), one can verify that these corrections are small for

propagation distances:

z � zmax =
g2N


ab
� L2p

c
; (17)

where Lp is the length of the input pulse. Hence, in order

to trap a pulse with negligible losses, it is required that

g2NLp

c
ab
� 1: (18)

This condition contains the number of atoms which is

a signature of collective interactions. It should be con-

trasted to the strong-coupling condition corresponding to

a quantum state transfer in cavity QED [20]. We note,

in particular, that in the optically dense medium the adi-

abatic condition (18) is much easier to implement.

The e�ect of the Raman coherence decay can be easily

estimated using the explicit expression for the generated

matter states (15). It is clear that the collective states

containing ne atomic excitations will dephase at a rate


bc ne. Hence, the time of the storage should be limited

to ts � (
bc ne)
�1 to avoid decoherence [5].

In the discussion above we have considered the case

where the control �eld only depends on time. This is

valid, for instance, when the control �eld propagates in a

direction perpendicular to that of the quantum �eld. In

experiments involving hot atomic vapors co-propagation

is required, however, in order to cancel Doppler broaden-

ing of the two-photon transition. In this case propagation

e�ects of the control �eld need to be considered. If the

quantum �eld is weak, the control �eld propagates as in

free space and thus 
(z; t) = 
(t� z=c). In this case one

�nds: �
@

@t
+ c cos2 �(z; t)

@

@z

�
Ê(z; t)


(z; t)
= 0: (19)

Since the group velocity is now also z-dependent, trap-

ping of the pulse does not preserve the shape exactly.

Nevertheless it is evident that trapping and a reversible

transfer of the quantum state from light to atoms are

still possible. In experiments, however, a more practi-

cal approach can be taken in which a light pulse enters

the medium already with v0g � c. In such a case re-

tardation of the control �eld can be ignored and one

has 
(t � z=c) � 
(t). Since the index of refraction

is close to unity there will be no re
ection losses at the

entrance plane. However the polariton pulse becomes
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spatially compressed according to Lp=L
0
p = v0g=c, and

its amplitude grows according to the boundary condition

	̂(0; t) =
q
c=v0gÊ(0; t). In this way, the total energy of

the polariton �eld inside the medium is equval to the en-

ergy of the light �eld outside. After entering the medium

the polaritons can be manipulated as discussed above.

In conclusion we have shown that it is possible to con-

trol the propagation of quantum pulses in optically thick

�-type media. This coherent control mechanism is based

on dark-state polaritons associated with EIT. In partic-

ular, a quantum light pulse can be \trapped", in which

case its shape and quantum state are preserved in sta-

tionary atomic excitations. The matter-like polariton can

then be re-accelerated and converted back into a photon

pulse. These properties of dark-state polaritons can be

used for squeezing and entanglement transfer from light

to atoms. Furthermore, we anticipate interesting appli-

cations involving nonlinear interactions between such po-

laritons.

We thank M.O. Scully for many stimulating discus-

sions. This work was supported by the National Science

Foundation.

[1] see e.g.: S. E. Harris, Physics Today 50, 36 (1997);
[2] for a review on dark states and coherent population trap-

ping see: E. Arimondo, Progr. in Optics 35, 259 (1996).
[3] L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi,

Nature 397, 594 (1999); M. Kash et al. Phys. Rev. Lett.
82, 5229 (1999); D. Budker et al. Phys. Rev. Lett. 83,
1767 (1999).

[4] M. Fleischhauer, S. F. Yelin, and M. D. Lukin, Optics
Comm., in press (2000).

[5] M. D. Lukin, S. F. Yelin, and M. Fleischhauer, Entangle-
ment of Atomic Ensembles by Trapping Correlated Pho-

ton States, (preprint: quant-ph/9912046).
[6] A. E. Kozhekin, K. M�lmer, and E. Polzik, \Quantum

Memory for Light" (preprint quant-ph/9912014).
[7] D. J. Wineland, et al., Phys.Rev.A 46, R6797 (1992);

ibid 50, 67 (1994); S. F. Huelga et al., Phys. Rev. Lett.
79, 3865 (1997).

[8] S. E. Harris, Y. Yamamoto, Phys. Rev. Lett. 81, 3611
(1998); S. E. Harris and L. V. Hau, Phys. Rev. Lett. 82,
4611 (1999).

[9] H. Schmidt and A. Imamo�glu, Opt. Lett. 21, 1936 (1996).
[10] M. D. Lukin and A. Imamo�glu, Phys.Rev.Lett., in press

(preprint: quant-ph/9910094).
[11] A. S. Zibrov, M. D. Lukin, and M. O. Scully, Phys.

Rev.Lett. 83, 4049 (1999).
[12] for a review on nonlinear optics and EIT see: M. D.

Lukin, P. R. Hemmer and M. O. Scully in Adv. At. Mol.

and Opt. Physics, 42B, 347 (Academic Press, San Diego,
2000), and references therein.

[13] R. Grobe, F. T. Hioe, and J. H. Eberly, Phys. Rev. Lett.

73, 3193 (1995).
[14] E. Cerboneschi and E. Arimondo, Phys. Rev. A 52,

R1823 (1995).
[15] M. Fleischhauer and A. S. Manka, Phys. Rev. A 54, 794

(1996).
[16] A. Kuzmich, K. M�lmer, and E. S. Polzik, Phys. Rev.

Lett. 79, 4782 (1997), J. Hald, J. L. S�rensen, C. Schori,
and E. S. Polzik, Phys. Rev. Lett. 83, 1319 (1999).

[17] K. Bergmann, H. Theuer, and B. W. Shore, Rev. Mod.
Phys. 70, 1003 (1998).

[18] O. Kocharovskaya, Yu. Rostovtsev, and M. O. Scully,
\Freezing Light via Atomic Coherence", (preprint:
quant-ph/0001058)

[19] S. E. Harris, Phys. Rev. Lett. 70, 552 (1993), ibid. 72,
52 (1994).

[20] A. S. Parkins et al., Phys. Rev. Lett. 71, 3095 (1993); T.
Pellizzari et al., ibid 75, 3788 (1995).

E(z,t) Ω(  )t

a

b
c

FIG. 1. 3-level �-type medium resonantly coupled to a
classical �eld with Rabi-frequency 
(t) and quantum �eld
Ê(z; t).
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FIG. 2. Propagation of a dark-state polariton with
envelope expf�(z=10)2g. The mixing angle is rotated
from 0 to �=2 and back according to cot �(t) =
100(1� 0:5 tanh[0:1(t� 15)] +0:5 tanh[0:1(t� 125)]) as shown
in (a). The coherent amplitude of the polariton 	 = h	̂i is
plotted in (b) and the electric �eld E = hÊi and matter com-
ponents j�cbj = jh�̂cbij in (c) and (d) respectively. Axes are
in arbitrary units with c = 1.

4

http://xxx.lanl.gov/abs/quant-ph/9912046
http://xxx.lanl.gov/abs/quant-ph/9912014
http://xxx.lanl.gov/abs/quant-ph/9910094
http://xxx.lanl.gov/abs/quant-ph/0001058

