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We show that it is possible to \store" quantum states of single-photon �elds by mapping them

onto collective meta-stable states of an optically dense, coherently driven medium inside an optical
resonator. An adiabatic technique is suggested which allows to transfer non-classical correlations

from traveling-wave single-photon wave-packets into atomic states and vise versa with nearly 100%

e�ciency. In contrast to previous approaches involving single atoms, the present technique does
not require the strong coupling regime corresponding to high-Q micro-cavities. Instead, intracavity

Electromagnetically Induced Transparency is used to achieve a strong coupling between the cavity

mode and the atoms.

I. INTRODUCTION

Nearly �fteen years ago Marlan Scully and his co-workers envisioned that coherence e�ects in atoms can be used

to correlate quantum uctuations in lasers [1]. Since then the concepts of atomic coherence and interference were

extended and applied to many areas of quantum optics and beyond [2]. Examples include electromagnetically in-

duced transparency (EIT) [3], lasing without inversion (LWI) [4], quenching of spontaneous emission [5], sensitive

spectroscopy in coherent media [6,7], and the enhancement of linear and nonlinear susceptibilities [8,9].

The present contribution is stimulated by recent experiments, in which Electromagnetically Induced Transparency

has been used to dramatically reduce the group velocity of light pulses in a coherently driven, optically dense ensemble

of atoms [10{12]. This slow-down and the associated group delay can be viewed as a temporary storage of light energy

in the atomic medium and its subsequent release. The slowly traveling light pulses propagate, under ideal conditions,

without losses and distortion.

The present paper demonstrates that it is possible to use closely related ideas to \store" and preserve quantum

states of free-space light �elds over a very long time interval. Processes of this kind open up interesting prospectives

for quantum information processing without the usual \strong coupling" requirement of cavity QED.

An important class of schemes for quantum communication and computing in based on an elementary process in

which single quanta of excitation are transfered back and forth between an atom and photon-number states of the

radiation �eld [13]. This is achieved within the framework of cavity QED by an adiabatic rotation of dark states [14]

wherein a single atom is strongly coupled to the mode of a high-Q micro-cavity. Based on this technique, excitations

can be transferred from an atom in one cavity to a di�erent atom in a second cavity, resulting in an entanglement

of a pair of atoms separated by a long distance [15{18]. Also sources for single-photon wave-packets referred to as

photon guns [19] or turnstile devices [20] were suggested and methods for entanglement engineering of single-photon

wave-packets proposed [21]. Furthermore, adiabatic passage of this kind can be used as the basis for an elementary

quantum logic gate [22]. Experimental realizations of these ideas are however quite challenging, as the excitation

rate determined by the vacuum Rabi-frequency (atom-cavity coupling constant) must exceed the decay out of the

cavity. Despite an exciting progress towards the realization of such a strong-coupling regime, extreme technological

challenges remain [23].

The present proposal suggests an alternative root towards the solution of these problems. Speci�cally, we show here

that it is possible to map the quantum states of traveling light waves onto collective meta-stable states of optically

dense, coherently driven media inside an optical resonator. In particular, we suggest and analyze an adiabatic transfer

method which allows one to transfer non-classical states of light �elds into atomic Zeeman sub-levels and vise versa

�This paper is dedicated to Marlan O. Scully on the occasion of his 60th birthday. We are grateful to him for introducing us

to this exciting �eld and for his continuous inspiration and encouragement.
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with nearly 100% e�ciency. This process is based on the e�ect of intracavity electromagnetically induced transparency,

suggested in [24]. In contrast to single-atom approaches, the technique described here, does not require the usual

strong-coupling regime of cavity QED. The key mechanism which allows us to avoid this stringent requirement is

the use of an optically dense many-atom system. In such a system single photons couple to collective excitations

associated with EIT, and the corresponding coupling strength exceeds that of an individual atom by the square root

of the number of atoms.

Before proceeding we also note that a transfer of photon squeezing to a partial spin squeezing of an ensemble

of atoms has been suggested and demonstrated in [25] and [26]. Here spin squeezed states are generated when an

initially unexcited vapor absorbs non-classical light beams. In this case the transfer of non-classical correlations from

light to atoms is however incomplete due to dissipation. For instance, only 50% of spin squeezing can be achieved by

this method. Furthermore the process is irreversible. The present paper, in contrast, suggests a general method, by

which non-classical excitations can be completely transfered to or from the media. In the ideal limit no dissipation

or decoherence is present.

II. INTRACAVITY EIT WITH QUANTUM FIELDS

The adiabatic transfer and storage mechanisms proposed in the present paper are based on intracavity EIT [24].

We therefore �rst review the properties of intracavity EIT with special emphasis on the interaction of the combined

cavity{atomic system with few-photon quantum �elds. Recently this approach has also been applied to the treatment

of a \photon blockade" in a cavity EIT setup [27]. In di�erent context, similar ideas were used to describe dark states

in Bose-Einstein Condensates [28].

Consider a system consisting of a single-mode cavity containing N identical three-level atoms as shown in Fig. 1.

Assume that one of the two optically allowed transitions is coupled by a cavity mode, whereas the other is coupled

by a �eld in a coherent state. We will show later on that the coherent �eld remains essentially una�ected by the

interaction. Therefore it can be represented by a time-dependent c-number Rabi-frequency 
(t). The dynamics of

this system is described by the interaction Hamiltonian:

H = �hg

NX
i=1

â�i
ab
+ �h
(t)e�i�t

NX
i=1

�i
ac
+ h:c:: (1)

Here �i
��

= j�i
ii
h�j is the ip operator of the ith atom between states j�i and j�i. g is the coupling constant between

the atoms and the �eld mode (vacuum Rabi-frequency) which for simplicity is assumed to be equal for all atoms. In

view of the symmetry of the coupling, it is convenient to introduce collective atomic operators �
ab

=
P

N

i=1 �
i

ab
and

�
ac
=
P

N

i=1 �
i

ac
. These operators couple symmetric, Dicke-like states which we denote as

jbi � jb1:::bNi; (2)

jai �
NX
i=1

1p
N
jb1:::ai:::bNi; (3)

jci �
NX
i=1

1p
N
jb1:::ci:::bNi; (4)

jaai �
NX

i6=j=1

1p
2N (N � 1)

jb1:::ai:::aj::::bNi; (5)

jaci �
NX

i6=j=1

1p
N (N � 1)

jb1:::ai:::cj::bN i; etc: (6)

Quantum and classical �elds cause transitions between these states as indicated in Fig. 1.

Under conditions of two-photon resonance, i.e. when the energy di�erence between levels c and b equals the energy

di�erence per photon of the two �elds, i.e. when !
cb
= � � �

c
, � and �

c
being the frequencies of the classical drive

�eld and the cavity mode, the interaction Hamiltonian (1) has families of \dark" eigenstates with zero eigenvalues.

These states decouple from both quantum and classical �elds by interference. For example, the dark state (Fig.1b)

involving at most one cavity photon corresponds to
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jD; 1i = �i
jb; 1i � g
p
N jc; 0ip


2 + g2N
= �i cos �(t) jb; 1i+ i sin �(t) jc; 0i; (7)

where we have introduced the mixing angle �(t) = arctan [g
p
N=
(t)]. This state has a form analogous to that of

the usual dark state formed by a pair of coherent classical �elds. In particular, we note that in the limit g
p
N � 


the state jD; 1i corresponds nearly identically to the state jc; 0i. In this case a single-photon excitation is, in essence,

shared among the atoms.

Let us now discuss the principle of intracavity EIT as introduced in Ref. [24]. To this end we include dissipation

and decays into the analysis. Three important mechanisms corresponding to such dissipation should be distinguished.

First of all, we note that the states of the type given by Eq. (7) are immune against decay from the excited atomic

levels, as they contain no component of such states. The dark state however is sensitive to the decay of the lower

level coherence between levels b and c. This decay (
bc
) sets the ultimate upper limit on the lifetime of the dark state

jDi. Finally, there is the e�ect of the �nite Q-value of the cavity. A bare-cavity decay with a rate  leads to a decay

of the dark state jD; 1i with the e�ective rate


D

2
=



2
cos2 �(t): (8)

Thus for cos2 � � 1, i.e. for g
p
N � 
 the e�ect of the cavity decay is substantially reduced. In this limit, a

superposition given by Eq.(7) contains only a very small (� 
=g
p
N ) component of the single-photon state jb; 1i.

This increases the lifetime of the combined atom-cavity system and is the essential feature of intracavity EIT.

Before concluding we note another interesting property of intracavity EIT, which is important for our present

purposes. By changing the Rabi-frequency of the classical driving �eld 
(t), i.e. by varying the mixing angle �(t),

one can change the coupling of the cavity-dark state to the environment. In what follows we show that this will allow

us to e�ectively load the cavity system with an excitation resulting from an incoming photon wave packet and to

subsequently release this energy into a desired photon packet after some storage period.

III. MANIPULATION OF SINGLE-PHOTON EXCITATION BY ADIABATIC FOLLOWING

A. coupling of cavity-dark state to free-�eld modes

We now discuss the problem of transferring a single-photon state of the free �eld to a single-photon cavity dark

state and vice versa. We will show that these processes can be achieved by adiabatically rotating the cavity dark state

in a speci�c way. We consider an e�ective one-dimensional model with a Fabry-Perot type cavity as shown in Fig. 2.

The z-axis is parallel to the propagation of the input and outgoing modes. z = 0 characterizes the position of the

partially transmitting input mirror of the cavity. The other mirror of the cavity is assumed to be 100% reecting.

To model the input-output processes we introduce a continuum of free-space modes with �eld operators b̂
k
which

are coupled to the selected cavity mode with a coupling constant �. For simplicity we assume that the coupling

constant is the same for all relevant modes. This interaction is described by the following e�ective Hamiltonian

Vcav�free = �h
X
k

�âyb̂
k
+ h:c:: (9)

We consider an input �eld in a general single-photon state j	in(t)i =
P

k

�in
k
(t)j1

k
i with �in

k
(t) = �in

k
(t0) e

�i!k(t�t0).

Here j1
k
i stands for j0; : : : ; 1

k
; : : : ; 0i andP

k

j�in
k
j2 = 1. In what follows we describe these �elds by an envelope \wave

function" �in(z; t) de�ned by:

�in(z; t) =
X
k



0
k

�� b̂
k
eikz

��	in(t)
�
: (10)

In a continuum limit we have �
k
(t)! �(!

k
; t) and

P
k

! (L=2�)
R
dk where L is the quantization length. Hence

�in(z; t) =
L

2�c

Z
d!

k
�in(!

k
; t) eikz: (11)

The normalization condition (L=2�c)
R
d!

k
j�in(!

k
; t)j2 = 1 of the Fourier coe�cients implies the normalization of the

input wave-function Z
dz

L
j�in(z; t)j2 = 1: (12)
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B. input-output problem

When the single-photon wave-packet interacts with the combined system of cavity mode and atoms, the general

state can be written in the form:

j	(t)i = b(t)
��b; 1; 0

k

�
+ c(t)

��c; 0; 0
k

�
+ a(t)ja; 0; 0

k

�
+
X
k

�
k
(t)
��b; 0; 1

k

�
; (13)

where, for example, jb; 1; 0
k
i denotes the state corresponding to the atomic system in the collective state jbi, the

cavity mode in the single-photon state and there are no photons in the outside modes. We now assume that the bare

frequency of the cavity mode coincides with the a�b transition frequency of the atoms as well as the carrier frequency

of the input wave packet, i.e. �
c
= !

ab
� !

a
� !

b
= !0. Furthermore we assume that the classical driving �eld is

tuned to resonance with the a� c transition, i.e. � = !
ac
. This also implies that the system is in perfect two-photon

resonance. Under these conditions we can make a transformation into a frame rotating with optical frequencies. The

following equations of motion describe the evolution of the slowly-varying state amplitudes:

_a(t) = �a
2
a(t) � ig

p
Nb(t) � i
c(t); (14)

_b(t) = �ig
p
Na(t)� i�

X
k

�
k
(t); (15)

_c(t) = �c
2
c(t) � i
a(t); (16)

_�
k
(t) = �i�

k
�
k
(t)� i�b(t); (17)

where �
k
= !

k
�!0 = kc�!0 is the detuning of the free-�eld modes from the cavity resonance, and !0 = �

c
= !

ab
. In

order to model the decay processes such as spontaneous emission and the �nite lifetime of the state c (and ultimately

the dark state) we use an open system approach and introduce decay rates 
a
and 

c
out of the system.

We note the enhancement of the coupling of atoms with the cavity mode by a factor
p
N due to collective e�ects.

At the same time, however, no such enhancement of the decay rates 
a
and 

c
takes place as the decays a�ect the

atoms individually. In the following we assume that 
c
is su�ciently small. In this case it can be ignored during

the time required for the input and the output processes. 
c
will be taken into account however for the storage time

interval.

To describe the adiabatic transfer we proceed by introducing a basis of dark and bright states, jDi and jBi [29]:

jDi = �i cos �(t)
��b; 1; 0

k

�
+ i sin �(t)

��c; 0; 0
k

�
; (18)

jBi = sin �(t)
��b; 1; 0

k

�
+ cos �(t)

��c; 0; 0
k

�
; (19)

where tan �(t) = g
p
N=
(t). The evolution equations can be re-written in terms of corresponding probability ampli-

tudes as

_a(t) = �a
2
a(t) � i
0(t)B(t); (20)

_B(t) = �i _�(t)D(t) � i
0 a(t) � i� sin �(t)
X
k

�
k
(t); (21)

_D(t) = �i _�(t)B(t) + � cos �(t)
X
k

�
k
(t); (22)

_�
k
(t) = �i�

k
�
k
(t)� i� sin �(t)B(t) � � cos �(t)D(t): (23)

Here 
0(t) =
p
g2N +
2(t), and the terms proportional to _� describe the non-adiabatic coupling between the bright

and dark state. We now adiabatically eliminate the excited state, which is possible if the characteristic time T of

the process is su�ciently large compared to the radiative lifetime of the excited state (
a
T � 1). In a second step

we adiabatically eliminate the bright-state amplitude and disregard non-adiabatic corrections. The conditions under

which such an elimination is justi�ed will be discussed later. We �nally arrive at

_D(t) = � cos �(t)
X
k

�
k
(t); (24)

_�
k
(t) = �i�

k
�
k
(t) � � cos �(t)D(t): (25)
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One immediately recognizes from these equations, that the total probability of �nding the system in a free-�eld single

photon state or in the cavity-dark state is conserved

d

dt

 
jD(t)j2 +

X
k

j�
k
(t)j2

!
= 0: (26)

Thus under adiabatic conditions there is only an exchange of probability between the free-�eld states and the cavity

dark state.

Formally integrating Eq.(25) leads to

�(!
k
; t) = �in(!

k
; t0) e

�i�k(t�t0) � �

Z
t

t0

d� cos �(� )D(� ) e�i�k (t��) (27)

and therefore

_D(t) =
�L

2�c
cos �

Z
d!

k
�in(!

k
; t0) e

�i�k(t�t0)

��2 cos �(t)
Z

t

t0

d� cos �(� )D(� )
L

2�c

Z
d!

k
e�i�k(t��): (28)

In the �rst term we can identify the wave function of the input photon at z = 0. Furthermore in the Markov-limitR
d!

k
e�i�k(t��) ! 2��(t� � ). Thus we �nd

_D(t) =

r

c

L
cos �(t)�in(0; t)� 

2
cos2 �(t)D(t) (29)

where we have introduced the empty-cavity decay rate  = �2L=c. If t0 is a time su�ciently before any excitation of

the cavity system takes place, i.e. if �in(0; t) = 0 for all t � t0, the solution of (29) can be written as

D(t) =

r

c

L

Z
t

t0

d� cos �(� ) �in(0; � ) exp

�
�
2

Z
t

�

d� 0 cos2 �(� 0)

�
: (30)

Substituting Eq. (30) into Eq. (27) leads to the input-output relation

�out(0; t) = �in(0; t)

� cos �(t)

Z
t

t0

d� cos �(� ) �in(0; � ) exp

�
�
2

Z
t

�

d� 0 cos2 �(� 0)

�
: (31)

Before proceeding let us consider the conditions for the adiabatic elimination of the bright-state amplitude. For

this we substitute the formal integral (27) into Eqs.(14- 16) and take the Markov-limit. We then �nd that adiabatic

following occurs when


2
0 � 

a
; 
2

0 �

a

T
; 
2

0 �
r



T

a
: (32)

We note that these conditions also enshure that spontaneous Raman scattering in other than the cavity mode are

negligible. Since the characteristic input-pulse length and thus the characteristic times T have to be larger or equal

to the cavity decay time �1, the �rst condition is the most stringent one.

It is important to note that in order to ensure adiabaticity it is su�cient that

g2N � 
a
: (33)

This condition should be contrasted to the corresponding condition of adiabatic transfer with a single atom. The

single-atom case requires a strong-coupling regime corresponding (at least) to g2 � 
a
[13]. The latter is very di�cult

to realize experimentally.

Let us now discuss the implications of Eqs.(30) and (31). If cos � is constant in time, the atoms simply cause

a change of the cavity decay rate, according to  !  cos2 �, Eq.(8). Hence, by increasing the atom density and

therefore decreasing cos �, the e�ective lifetime of the cavity mode can be increased. This is however of no help
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if we are interested in \storing" a photon wave packet. When the e�ective Q-value of the cavity is increased, the

resonances of the combined atom-cavity system become extremely narrow and the outgoing wave packet is smeared

out in time. Furthermore there is an increasing component corresponding to the input �eld directly reected from

the input mirror. Clearly the transfer of photons from an input pulse into the cavity deteriorates signi�cantly when

the pulse length becomes shorter than the e�ective cavity decay time. This is illustrated in Fig. 3, where we have

shown the input and output wave functions for di�erent values of the e�ective cavity decay. The input wave function

is a hyperbolic secant pulse.

We now describe a method which allows one to capture and to subsequently release a single-photon state of the

light �eld. In order to achieve this, we utilize techniques of adiabatic transfer [14]. To motivate the analysis carried

out below we note that the state jD; 1i, Eq. (7) couples to the free-�eld light modes only due to the admixture of the

state jb; 1i. As can be seen from Eq.(24) the coupling of the dark state to the free-�eld light modes depends on the

cosine of the mixing angle �. When the Rabi-frequency of the classical �eld 
 is large, cos � is large and there is a

strong coupling between cavity-dark state and free �eld. In this case the free-�eld photons can leak in an out of the

cavity. However, when 
 is small this leakage is e�ectively stopped. Therefore, by �rst accumulating the �eld in a

cavity mode and then adiabatically switching o� the driving �eld, an initial free-space wave packet can be stored in

a long-lived atom-like dark state. The latter can be released by simply reversing the process, i.e. by an (adiabatic)

increase of the Rabi-frequency of the driving �eld. These two processes will now be discussed in detail.

C. optimization of input: quantum impedance matching

In this section we show how to optimize the time dependence of cos �(t) such that the dark-state amplitude will

asymptotically come close to unity. It is clear at hand that this is only possible for a bandwidth of the incoming wave

function which is less or at most equal to the bare-cavity bandwidth, i.e. for a wave-packet which is longer than the

bare-cavity decay time. Also the time when the adiabatic transfer starts must coincide with the arrival time of the

photon wave-packet.

In order to achieve a maximum transfer of free-�eld photons into cavity photons, the outgoing �eld components

should be minimized. This can be done for example by using the destructive interference of the directly reected

and the circulating components. A necessary condition for complete destructive interference can be obtained by

di�erentiating the input-output relation Eq. (31) and setting �out = _�out = 0. This yields

� d

dt
ln cos �(t) +

d

dt
ln�in(t) =



2
cos2 �(t): (34)

This equation has a simple physical interpretation. The �rst term on the l.h.s. is the amplitude loss rate of the photon

�eld inside the cavity. When the rotation angle � is increased by decreasing the Rabi-frequency of the classical driving

�eld, the atoms will absorb photons from the cavity mode to re-establish the dark state by a Raman transition from

jbi to jci.
The term on the right-hand side is the e�ective amplitude decay rate due to cavity losses. Thus if �in would

be constant, Eq.(34) constitutes, what in classical systems is known as impedance matching condition [30]. Under

conditions of impedance matching, there is complete destructive interference of the directly reected part of the

incoming wave and the circulating �eld leaking out through the input mirror. The classical impedance-matching

condition needs to be modi�ed when the input �eld is time-dependent, as the circulating �eld \sees" a slightly

changed input �eld after a cavity-round trip. This then leads to the second term on the l.h.s. of Eq.(34). An intuitive

derivation of this term as well as a simple physical explanation of the quantum impedance matching condition is given

in the Appendix.

We now illustrate the remarkable performance of the adiabatic transfer mechanism under conditions of quantum

impedance matching. Since Eq.(34) depends explicitly on the pulse shape, let us specify a particular form of the input

pulse. Consider, for example, the case of a normalized hyperbolic secant input pulse

�1(t) = �
(1)
in (z = 0; t) =

r
L

cT
sech

�
2t

T

�
: (35)

The quantum impedance matching condition leads to the nonlinear �rst-order di�erential equation

d

dt
cos �(t) +



2
cos3 �(t) +

2

T
tanh

�
2t=T

�
cos �(t) = 0: (36)
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Eq.(36) can be solved analytically and we are looking for solutions with the asymptotic behavior cos � ! 0 for t!1
. One of such solutions corresponds to

cos �(t) =

r
2

T

sech [2t=T ]p
1 + tanh[2t=T ]

: (37)

The speci�c form of the mixing angle given by the above equation can be achieved, provided that the single-photon

pulse is long enough (T � 4), by changing the Rabi-frequency of the classical driving �eld according to:


(t) = g
p
N

sech(2t=T )p
[1 + tanh(2t=T )][tanh(2t=T ) + T=2 � 1]

: (38)

With this choice for the driving �eld one �nds that the dark-state population corresponding to an input �eld �1

evolves according to:

jD(t)j2 = 1 + tanh[2t=T ]

2
: (39)

Clearly the population of the dark state approaches unity as t!1. This is illustrated in Fig. 4.

An obvious disadvantage of the quantum impedance matching condition Eq.(34) is its explicit dependence on the

shape of the input pulses �in. We will now show that the asymptotic population of the dark state is, in fact, not

very sensitive to the actual shape. To illustrate this, we have plotted in Fig. 4 the time dependence of the dark-state

population for a Gaussian input �eld

�2(t) = �
(2)

in (z = 0; t) =

r
L

cT

�
2

�

�1=4

exp
n
� t2

T 2

o
(40)

as well as for a hyper-Gaussian wave function

�3(t) = �
(3)

in (z = 0; t) =

r
L

cT

 
�
�
5
4

�
23=4

!1=2

exp
n
� t4

T 4

o
: (41)

With these initial pulses we use the \incorrect" mixing angle, Eq.(37), chosen to optimize the input for a hyperbolic

secant pulse. By numerically integrating the equations of motion, we �nd the asymptotic values of the dark-state

amplitudes are in these cases D ! 0:9942 and D ! 0:9778 respectively. This indicates that there is only a modest

dependence upon the actual shape of the input pulse for a given function cos �(t).

It should be noted that an exact timing of the arrival time is essential. A small delay �t in the arrival time of the

pulses leads to a decrease of the asymptotic amplitude of the dark state proportional to �t2.

In the above discussion we have assumed that the external control �eld is at all time in a coherent state and have

represented it by its coherent amplitude 
(t). This assumption is only valid if the drive �eld remains una�ected by

the interaction with the ensemble of atoms even when its intensity is turned to zero. This is however the case here,

since although 
(t)! 0, the ratio of 
(t) to the e�ective Rabi-frequency of the �eld mode g
p
hn(t)i is always much

larger than unity. In fact in the case of impedance matching one �nds the asymptotic behavior 
(t)=g
phn(t)i ! pN .

D. output

In order to release the stored photon into free-�eld photons at some later time t1, one can simply reverse the

adiabatic rotation of the mixing angle. The resulting wave-packet will not necessarily have the same pulse form as

the original one. The latter aspect is not essential for the purposes of quantum information processing. It is however

important that the output wave-packet is generated in a well de�ned way and corresponds, in the ideal limit, to a

single-photon Fock state.

For a time t1 large enough, such that �in(0; t) = 0 for all t > t1, and for cos �(t1) = 0 we �nd from the input-output

relation

�out(t) = �
r

L

c
D(t1) cos �(t) exp

�
�
2

Z
t

t1

d� cos2 �(� )

�
: (42)
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Thus the shape of the output wave-packet is entirely determined by the function cos �(t). For the time-reversal of

Eq.(37) a hyperbolic secant output pulse is generated. This is illustrated in Fig. 5. If the dark-state decay during the

unloading period is again neglected, the amplitude of the output wave function depends on the dark state amplitude

at the release time only. One easily veri�es that the total number of photons in �out is given by

c

L

Z
1

t1

dt j�out(t)j2 = jD(t1)j2 : (43)

The ultimate �delity of the storage is determined by the decay of the collective dark state during the storage time.

Under reasonable conditions the dark-state decay can be neglected during the loading and unloading periods. Hence

we only need to determine how D(t1) (at the time of the release) di�ers from D(t0) (at the time of arrival), where

t1 � t0 is the storage time. If we take into account a decay out of the atomic level jci with a single-atom decay rate


c
, we �nd the simple result

D(t1) = D(t0) exp
n
�c
2
(t1 � t0)

o
: (44)

It is worth noting that the decay of the collective dark state is identical to the single-atom decay. This may seem as a

surprise on �rst glance, since the coupling strength to the cavity mode is enhanced by a factor
p
N . One should bear

in mind however that the decay a�ects only those atoms which are in state c and that in the collective dark state

each atom has only a probability of 1=N to be in that state.

IV. TRANSFER AND STORAGE OF NON-CLASSICAL SUPERPOSITION STATES

A convenient way of encoding quantum information in photons is to use the analogy between spin-1/2 systems and

polarization states. We therefore include polarization of the quantum �eld and study the interaction of superpositions

of polarization states with the intracavity EIT system.

Let us consider a quantum �eld consisting of a right (�+) and left (��) circularly polarized components interacting

with a multi-state system shown in Fig. 6a. The system is driven by a classical driving �eld of di�erent polarization

and frequency characterized by the time-dependent Rabi-frequency 
.

We assume that initially all population is in the lower state jbi coupled by both �+ and �� components. We

consider here the interaction of such atomic ensemble with a single photon wave-packets of the type

j	in(t)i =
X
k

�in+k(t)j1+kij0�ki+
X
k

�in
�k
(t)j0+kij1�ki: (45)

j	ini is an eigenstate of the photon number operator n̂ � n̂++ n̂� with eigenvalue unity, i.e.
P

k

�
j�+kj2+ j��kj2

�
= 1.

Since polarization states are distinguishable one immediately recognizes that the interaction of atoms and cavity

separates into two families of states, which do not couple to each other. This is illustrated in Fig. 6b. Thus the state

vector of the interacting system can be written as

j	(t)i = j	+(t)i j0�i + j	�(t)i j0+i; (46)

j	+(t)i = b+(t)
��b; 1+; 0+k�+ c+(t)

��c+; 0+; 0+k�+ a+(t)ja+; 0+; 0+k
�

+
X
k

�+k(t)
��b; 0+; 1+k�; (47)

j	�(t)i = b�(t)
��b; 1�; 0�k�+ c�(t)

��c�; 0�; 0�k�+ a�(t)ja�; 0�; 0�k
�

+
X
k

��k(t)
��b; 0�; 1�k�: (48)

The equations of motion for the state amplitudes separate into two sets, identical to Eqs.(14-17). We thus can proceed

in exactly the same way as in the previous section. In particular we introduce the dark states

jD+i = 
jb; 1+; 0�i � g
p
N jc+; 0+; 0�ip


2 + g2N
; (49)

jD�i = 
jb; 0+; 1�i � g
p
N jc+; 0+; 0�ip


2 + g2N
; (50)
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where 0� and 1� denote the cavity-mode excitation and we have dropped the free-�eld component for simplicity. In

the adiabatic limit the total number of excitations in both sub-systems is constant, i.e.

d

dt

 
jD+(t)j2 +

X
k

j�+k(t)j2
!

= 0; (51)

d

dt

 
jD�(t)j2 +

X
k

j��k(t)j2
!

= 0: (52)

Let us now consider the case when the initial wave packet is in a coherent superposition of two polarization states

with identical envelopes, i.e.

�in+k(t) = ��in
k
(t); �in

�k
(t) = � �in

k
(t): (53)

In this case the adiabatic following technique described above can be performed for both polarizations in parallel

yielding, apart from overall constants, an identical evolution of the dark state amplitudes jD�i. The general state of
a free �eld (45) can therefore be transfered back and forth to a collective atomic state

j	ini  !
h
�jc+i+ �jc�i

i
j0+; 0�i: (54)

We note in particular that the relative phase between the left- and right-circularly polarized input wave packets

is mapped onto the relative phase between the collective atomic states jc+i and jc�i. Hence quantum mechanical

superposition states can be \stored" in collective atomic excitations.

Before concluding we remark that much more general �eld states can be transfered onto the atoms. Consider for

instance an entangled state composed of two single-photon states of di�erent polarization. Of particular interest are

maximally entangled superpositions such as � j0+; 0�i + j1+; 1�i. An input state of this form contains a zero- and

a two-photon component. Using the adiabatic techniques of the present paper it is also possible to transfer states of

this kind onto collective atomic states. The theoretical description of the interaction is however more involved, as it

requires invoking higher-order dark states. In particular, for mapping such entangled two-photon states onto atoms,

two additional dark states play an important role:

jD0i = jb; 0+; 0�i; (55)

jD2i = 
2jb; 1+; 1�i � g
p
N
(jc+; 0+; 1�i + jc�; 1+; 0�i) + g2

p
N (N � 1)jc+; c�; 0+; 0�ip


4 + 2g2N
2 + g4N (N � 1)
: (56)

It is obvious at the intuitive level that, in the ideal limit, an adiabatic transfer will yield atomic states of the type

� (jbi+ jc+; c�i)j0+; 0�i. At the same time we note that due to a di�erent functional form of the doubly excited dark

state, and due to a cross-coupling between di�erent channels of excitation, the conditions for generating such states

can be somewhat di�erent from those described in previous sections. The speci�c conditions as well as applications

to quantum information processing will be discussed in detail elsewhere.

V. SUMMARY

In conclusion we suggested a new technique for mapping quantum states of the radiation �eld onto collective atomic

excitations. Our approach utilizes intracavity electromagnetically induced transparency and therefore does not require

the usual strong-coupling condition of cavity QED. By adiabatically rotating the dark state(s) of a system consisting

of a large number of multi-level atoms interacting with a single cavity mode, quantum impedance matching of this

cavity can be achieved for an input single-photon wave-packet. In this case the quantum state of the radiation �eld

can be transferred with nearly 100% e�ciency to a non-decaying, meta-stable state of the atoms. The quantum states

of the �eld can therefore be \stored" in long-lived atomic superpositions. Reversing the adiabatic rotation the stored

state can be transformed back into a well de�ned output wave-packet.

In addition to rather direct applications for quantummemory registers, extension of these ideas to quantum networks

and entanglement distribution are obvious. If the input photon wave-packet of the system is entangled with some

other system, this entanglement is transferred to the collective atomic state. The storage mechanism also allows to

reshape the output wavepacket with respect to the input in an (almost) arbitrary way. Furthermore applications of

9



these ideas to elementary logic gates are likely. We therefore anticipate important applications in di�erent areas of

quantum information processing such as quantum communication and quantum computing.
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resulting in the present paper. We are also grateful to Wolfgang Schleich for putting together this special issue
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APPENDIX

The impedance matching condition (34) can be given a simple physical explanation. For this we consider the

Fabry-Perot cavity as shown in Fig. 2. The lossless input mirror has an amplitude reectivity and transmission of R

and T , satisfying the usual relations R�T + RT � = 0 and jRj2 + jT j2 = 1. Without loss of generality we set R� = R

and T = ijT j. Input and output �eld strength and the circulating �eld component are denoted by Ein, Eout and E
c
.

If the carrier frequency of the input �eld coincides with the cavity resonance one has the following relations between

the three �eld components

E
c
(t) = TEin(t) + R�E

c
(t� �

c
); (57)

Eout(t) = T�E
c
(t � �

c
) +REin(t): (58)

� denotes the amplitude losses in a single round-trip and we have denoted the round-trip time as �
c
. Substituting

(57) into (58) yields

Eout(t) = REin(t) +
T

R

�
E
c
(t) � TEin(t)

�
=

1

R
Ein(t) +

T

R
E
c
(t): (59)

The resonator set-up is called impedance matched, if the �rst and second term in Eq.(59) interfere destructively.

To �nd a condition for such a destructive interference, we have to determine the circulating �eld in terms of the input

�eld. Since the round-trip time �
c
is short compared to the characteristic time of changes in the input �eld, we may

set E
c
(t � �

c
) � E

c
(t) � �

c

_E
c
(t). We do keep the �rst time derivative here, as it will lead to a modi�cation of the

impedance matching condition for a time-dependent input �eld. We thus obtain from (57) the di�erential equation

_E
c
(t) = �� E

c
(t) +

T

R��
c

Ein(t) (60)

where � = (1 �R�)=(R��
c
). Eq. (60) has the simple solution

E
c
(t) =

T

R��
c

Z
1

0

d�Ein(t� � ) e��� : (61)

For small internal losses and a reectivity of the input mirror near unity we have R � 1��0=2, T 2 = R2�1 � ��0 and
� � 1�int�c=2. Here  is the empty-cavity decay rate, �0 is the empty-cavity round-trip time, and we have introduced

the e�ective decay rate of the circulating �eld due to internal losses int. In this limit � � (=2)(�0=�c)+int=2. Thus

we eventually obtain for the output �eld

Eout(t) =
1

R
Ein(t) � 1

R

�0

�
c

Z
1

0

d� Ein(t� � ) e��� : (62)

Setting Eout = 0, multiplying with R, and di�erentiating yields

0 = _Ein � 
�0

�
c

Ein + �Ein; (63)

which can be brought into the form

int

2
+

d

dt
lnEin(t) =



2

�0

�
c

: (64)
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This is the generalized impedance matching condition for a single-sided Fabry-Perot cavity with internal losses (int),

a round-trip time �
c
, and a time-dependent input �eld. We will now show that for the system discussed in the present

paper �0=�c = cos2 �(t) and int = �2 d
dt
ln cos �(t).

In order to determine the round-trip time we note, that the large linear dispersion of the EIT medium in our system

leads to a strong group delay. The group velocity of a weakly excited, propagating �eld mode interacting with N

�-type atoms is given by

vgr =
c

1 +
g2N


2(t)

=
c

1 + tan2 �(t)
= c cos2 �(t); (65)

where 
(t) is the Rabi-frequency of the classical driving �eld and g describes the atom-�eld coupling strength. Thus

�0

�
c

= cos2 �(t): (66)

In order to determine the internal photon losses in the system, we consider the equation of motion for the probability

to �nd a single photon inside the cavity, which is identical to the probability to �nd the system in state jb; 1; 0
k
i.

Under adiabatic conditions, the system is always in the dark state jDi, thus the 1-photon probability reads

p1(t) =
���
b; 1; 0k��D(t)����2 = cos2 �(t): (67)

Di�erentiating this expression with respect to time yields

int � � d

dt
ln p1(t) = �2 d

dt
ln cos �(t) (68)

With this, Eq.(64) goes over into the quantum impedance condition Eq.(34).
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FIG. 1. (a) Three-level atoms interacting with quantum �eld and driven by classical �eld with Rabi frequency 
(t). g is the

coupling constant between quantum �eld and atoms. (b) Interaction of singly excited mode with N 3-level atoms in the basis
of collective states.

R, T

E Ein c

E out

FIG. 2. Cavity set-up. R and T are amplitude reectivity and transmittivity of input mirror. Ein, Eout and Ec denote input,

output and circulating �eld components.
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FIG. 3. Shape of input and output single-photon wave functions of a Fabry-Perot-type resonator for di�erent cavity decay

rates. Decreasing of cavity width leads to delocalized output wave function and increasing component reected at t = 0. T

characterizes the time unit.
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FIG. 4. Population of dark state jD(t)j2 for hyperbolic secant (�1), Gaussian (�2), and hyper-Gaussian (�3) input. cos �(t)

is optimized for quantum impedance matching of �1. T = 4. Shape of input wave functions shown in inset. T characterizes
the time unit.
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FIG. 5. Input and output wave functions for hyperbolic secant input wave packet �1, T = 4 and optimized cos �(t). At

t � 30T cos �(t) is time reversed to release photon wave packet. T characterizes the time unit.
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FIG. 6. (a) Prototype of a multi-state atom for storing polarization states of quantum �eld. (b) Interaction of single-photon
wave-packets of di�erent polarizations with collective excitations.
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