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Abstract. The phase transition to mirrorless oscillation in resonantly enhanced
four-wave mixing in double-� systems are studied analytically for the ideal case

of in�nite lifetimes of ground-state coherences. The stationary susceptibilities are

obtained in all orders of the generated �elds and analytic solutions of the coupled
nonlinear di�erential equations for the �eld amplitudes are derived and discussed.

1 Introduction

The possibility to cancel the linear absorption in resonant atomic systems by

means of electromagnetically induced transparency (EIT) [1] lead in recent

years to fascinating new developments in nonlinear optics [2,3]. For example

coherently driven, resonant atomic vapors under conditions of EIT allow for

complete frequency conversion in distances short enough, such that phase

matching requirements become irrelevant [4]. Furthermore the large nonlin-

earities of these systems may lead to a new regime of nonlinear quantum op-

tics on the few-photon level [5,6] with potential applications to single-photon

quantum control [7,8] and quantum information processing.

One particularly interesting nonlinear process based on EIT is the reso-

nantly enhanced 4-wavemixing in a double-� system with counter-propagating

pump modes [9]. It has been shown experimentally [10] and theoretically

[11,12] that this system can show a phase transition to mirrorless oscillations

for rather low pump powers. Close to the threshold of oscillation an almost

perfect suppression of quantum uctuations of one quadrature amplitude of

a combination mode of the generated �elds occurs [13,14]. Also su�ciently

above threshold light �elds with beat-frequencies tightly locked to the atomic

Raman-transition and extremely low relative bandwidth are generated [15].

All previous studies of resonantly enhanced 4-wave mixing were done in

the perturbative regime of small amplitudes of the generated �elds. In the

present paper I want to discuss the case of arbitrary amplitudes. Using a

simpli�ed open-system model I will derive stationary propagation equations

for the �eld amplitudes and present analytic solutions of these equations.

It will be shown that in an ideal case complete conversion can be achieved

within a relatively small interaction length.
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2 Model and Atomic Polarizations

I here consider the propagation of four electromagnetic waves in a medium

consisting of double-� atoms (see Fig.1). These waves include two counter-

propagating driving �elds with equal frequencies �d and Rabi-frequencies 
1

and 
2, and two probe �elds (anti-Stokes and Stokes) described by the com-

plex Rabi-frequencies E1 and E2, with carrier frequencies �1 = �d + !0 and

�2 = �d � !0, where !0 = !b1 � !b2 is the ground-state frequency splitting.

The �elds interact via the long-lived coherence on the dipole-forbidden tran-

sition between the metastable ground states b1 and b2. We assume that the

driving �eld 
1 is in resonance with the b2 ! a1 transition, whereas the sec-

ond driving �eld 
2 has a detuning �� j
2j from the b1 ! a2 transition. In

this case linear losses of the �elds due to single-photon absorption processes

are minimized.

a
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Fig. 1. Atoms in double � con�guration inter-

acting with two driving �elds (
1;2) and two

generated �elds (E1;2)

Due to coherent Raman-scattering the pump �elds generate counter-

propagating anti-Stokes and Stokes �elds. For a su�ciently large density-

length product of the medium and for a certain pump �eld intensity, the

system shows a phase-transition to self-oscillations [10]. The feedback mech-

anism required for an oscillation is provided here by the gain medium: A

Stokes photon spontaneously generated on the a2 ! b2 transition propagates

in the �z direction and stimulates the generation of an anti-Stokes photon.

This anti-Stokes photon has a di�erent frequency but a �xed relative phase

and propagates in the +z direction. It stimulates the generation of another

Stokes photon upstream. The second Stokes photon will be in phase with the

�rst one, provided that the system is approximatly phase matched and that

there has been no decay of the Raman coherence. The phase-locked emission

of the second Stokes photon then closes the feedback loop. We have shown in

[15] that phase-matching enforces a strong pulling of the beat-note of gener-

ated and pump �elds to the atomic Raman transition. I will therefore assume

here that both � systems are in perfect two-photon resonance.

In order to calculate the medium response to the �elds, one would have to

solve the atomic density matrix equations to all orders in all �elds taking into

account all relaxation rates. Although this is in principle possible it leads to
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extremely involved expressions. Instead I here use a simpli�ed open-system

model which allows to derive rather compact expressions for the atomic sus-

ceptibilities.

Since the e�ects of spontaneous emission are negligible in the present

system, we may model all relaxations out of the excited states a1 and a2
by rates  out of the system. In thermal equilibrium, i.e. in the absence

of all �elds, both lower states b1 and b2 are equally populated. I therefore

assume { within the open-system approach { that the atoms are pumped

into states b1 or b2 with 50% probability respectively. The corresponding

rate is denoted as r and will later be determined by the requirement that

the total probability to �nd an atom in any of the states is unity. The �nite

lifetime of the lower-level coherence will here be described by a decay out

of all states with rate 0. Thus the open-system model corresponds to the

experimentally relevant situation of an atomic beam or a �nite-temperature

vapor with time-of-ight broadening. In this case the system can be described

by generalized Schr�odinger-equations for �eld amplitudes instead of density-

matrix equations.

The interaction Hamiltonian of an atom at position z with the �elds can

be written in the form

Hint = ��h
h

1(z) e

�i�dtja1ihb2j+
2(z) e
�i�dtja2ihb1j+

+E1(z) e
�i�1tja1ihb1j+E2(z) e

�i�2tja2ihb2j+ adj:
i
: (1)

If we denote the state vector of the atom as

j	 i = a1e
�i�a1tja1i+ a2e

�i(�a2��)tja2i+ b1e
�i�b1tjb1i + b2e

�i�b2tjb2i; (2)

where �h�� are the energies of the corresponding states, we �nd the following

equations of motion of the slowly-varying state amplitudes for an atom at

position z

_a1 = � (0 + ) a1 + i
1b2 + iE1b1; (3)

_a2 = � (0 +  + i�) a2 + i
2b1 + iE2b2; (4)

_b1 = r1 � 0b1 + i
�

2a2 + iE�

1a1; (5)

_b2 = r2 � 0b2 + i
�

1a1 + iE�

2a2: (6)

Here I have introduced the rates r1 and r2 to distinguish the cases of pumping

into b1 (r1 = r; r2 = 0) and into b2 (r1 = 0; r2 = r). Note that simultaneously

setting r1 = r2 = r corresponds to a coherent preparation of the atoms

in a 50{50 superposition of b1 and b2. In order to describe an incoherent

preparation in these levels one has to consider the two cases separately and

add the density matrix elements following from both cases.

Solving (3{6) in steady state for the case of injection into b1, i.e. for r1 = r

and r2 = 0 one �nds

a
(1)
1 = �ir


1
2E
�

2 � E1jE2j2

j
1
2 �E1E2j2
; (7)
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a
(1)
2 = ir

j
1j2
2 � 
�

1E1E2

j
1
2 �E1E2j2
; (8)

b
(1)
1 = ir

�j
1j2

j
1
2 � E1E2j2
; (9)

b
(1)
2 = �ir

�
�

1E1

j
1
2 �E1E2j2
; (10)

where I have used that � �  � 0 and have kept only the leading terms.

Similarly one �nds for injection into b2, i.e. for r1 = 0 and r2 = r:

a
(2)
1 = ir


1j
2j2 � E1E2

�

2

j
1
2 �E1E2j2
; (11)

a
(2)
2 = �ir


1
2E
�

1 � jE1j2E2

j
1
2 �E1E2j2
; (12)

b
(2)
1 = �ir

�
1E
�

1

j
1
2 �E1E2j2
; (13)

b
(2)
2 = ir

�jE1j2

j
1
2 � E1E2j2
: (14)

Taking into account only the leading order contribution in the above expres-

sions is essentially equivalent to assuming an in�nitely long lived ground-state

coherence between b1 and b2. In vapor cells with coated walls or by using

bu�er gases, lifetimes of Hyper�ne coherences in alkali vapors in the millisec-

ond regime are possible. Hence neglecting contributions from �nite values

of 0 seems justi�ed. However, in this case also linear absorption losses are

neglected. As a consequence the threshold condition becomes independent on

the pump intensity and an arbitrarily small ux of pump photons is su�cient

to maintain oscillations [15]. If on the other hand a small but �nite ground-

state dephasing rate is taken into account, the threshold condition does de-

pend on the pump intensity leading to a lower limit of the pump-photon ux.

In the present paper I am interested only in the analytic behavior of the �elds

in the ideal limit and therefore the small but �nite linear losses associated

with the ground-state dephasing will be ignored.

The pump rate r can be determined from the normalization conditionP
�
%
(1)
�� + %

(2)
�� = 1. One �nds r =

�
j
1
2 � E1E2j2

�
=
�
�
�
j
1j2 + jE1j2

��
:

With this one obtains for the non-diagonal density matrix elements %a�b� =

a
(1)
� b

(1)�
� + a

(2)
� b

(2)�
� :

%a1b1 = �
j
1j2
1
2E

�

2 � E2
1E2


�

1

�

2

� (j
1j2 + jE1j2)
2

�
j
1j2

�
j
2j2 � jE2j2

�
� (j
1j2 + jE1j2)

2
E1; (15)

%a1b2 =

2

1
2E
�

1E
�

2 � jE1j2E1E2

�

2

� (j
1j2 + jE1j2)
2

+
jE1j2(j
2j2 + jE2j2)
� (j
1j2 + jE1j2)

2

1; (16)

%a2b1 = �

�
j
1j2 + jE1j2

�
E1E2


�

1

� (j
1j2 + jE1j2)
2 +

j
1j2
�
j
1j2 + jE1j2

�
� (j
1j2 + jE1j2)

2 
2; (17)
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%a2b2 = �

�
j
1j2 + jE1j2

�

1
2E

�

1

� (j
1j2 + jE1j2)
2 +

jE1j2
�
j
1j2 + jE1j2

�
� (j
1j2 + jE1j2)

2 E2: (18)

The �rst terms in these expressions describe the nonlinear coupling between

the modes and the second ones ac-Stark shift induced changes in the refractive

indices. It should be noted that there are no imaginary linear susceptibilities,

i.e. there is no linear dissipation despite the fact, that 
1 and E1 are in

single-photon resonance.

3 Stationary �eld equations and analytic solutions

In slowly-varying amplitude and phase approximation, the �eld amplitudes

obey the following equation of motion

d

dz
E1 = ik1E1 + i

}2k1

2�h"0
N %a1b1 ; (19)

d

dz
E�

2 = ik2E
�

2 + i
}2k2

2�h"0
N %�a2b2; (20)

d

dz

1 = ikd
1 + i

}2kd

2�h"0
N %a1b2 ; (21)

d

dz

�

2 = ikd

�

2 + i
}2kd

2�h"0
N %�a2b1 ; (22)

where k1, k2 and kd are the free-space wavenumbers of the generated and

pump �elds, N is the atomic number density and } are the dipole moments

of the corresponding transitions, which have been assumed to be equal for

simplicity. Since the wavenumbers of the �elds di�er only slightly, one may ap-

proximate the coupling parameter in all equations by � � }2kdN=2�h"0. Intro-

ducing �eld amplitudes which are slowly varying in space, E1 = eE1 e
ik1z; E2 =eE2 e

�ik2z; 
1 = e
1 e
ikdz and 
2 = e
2 e

�ikdz one eventually arrives at

d

dz
E1 = �i�

j
1j2
1
2E
�

2 � E2
1E2


�

1

�

2

� (j
1j2 + jE1j2)
2

�i

"
�k+ �

j
1j2
�
j
2j2 � jE2j2

�
� (j
1j2 + jE1j2)

2

#
E1; (23)

d

dz
E�

2 = �i�

�
j
1j2 + jE1j2

�

�

1

�

2E1

� (j
1j2 + jE1j2)
2

+i�
jE1j2

�
j
1j2 + jE1j2

�
� (j
1j2 + jE1j2)

2 E�

2 ; (24)

d

dz

1 = i�


2
1
2E

�

1E
�

2 � jE1j2E1E2

�

2

� (j
1j2 + jE1j2)
2

+i�
jE1j2(j
2j2 + jE2j2)
� (j
1j2 + jE1j2)

2 
1 (25)
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d

dz

�

2 = �i�

�
j
1j2 + jE1j2

�
E�

1E
�

2
1

� (j
1j2 + jE1j2)
2

+i�
j
1j2

�
j
1j2 + jE1j2

�
� (j
1j2 + jE1j2)

2 
�

2 ; (26)

where I have dropped the tildes again for notational simplicity, and �k =

k2 � k1 is the free-space phase mismatch. Expanding these expressions into

third order of the generated �elds E1 and E2 reproduces the equations of

[15]. Equations (23{26) together with the boundary-conditions

E1(0) = 0; E2(L) = 0; 
1(0) = 
10; and 
2(L) = 
20; (27)

where L is the length of the interaction region and 
10 and 
20 are the

given input amplitudes, form a nonlinear boundary-value problem. One easily

veri�es that the set of di�erential equations has always the trivial solution

E1 � E2 � 0, and 
1(z) � 
10 and 
2(z) � 
20.

As has been discussed in detail in [15], the phase mismatch is easily com-

pensated in an optically dense vapor by a small detuning from the two-photon

resonance. Oscillation occurs at frequencies such that the phase-matching

condition is automatically ful�lled. I therefore set this term equal to zero in

the following.

Constants of Motion: The �eld equations have the following constants of

motion. From the energy-momentum conservation follow the Manley-Rowe

relations

d

dz

�
j
1j2 + jE1j2

�
= 0; (28)

d

dz

�
j
2j2 + jE2j2

�
= 0; (29)

which state that each photon taken out of the pump �elds 
1 or 
2 is put

into the anti-Stokes and Stokes �elds E1 and E2 respectively. Furthermore

one �nds that the total intensity of the pump �eld is constant in space

d

dz

�
j
1j2 + j
2j2

�
= 0: (30)

The same is true for the generated �elds, which however follow already from

the above constants of motion.

d

dz

�
jE1j2 + jE2j2

�
= 0: (31)

Without the phase terms in (23{26), which represent contributions due to ac-

Stark shifts, also the quartic expression Re [
1
2E
�

1E
�

2 ] would be a constant

of motion. In fact the boundary conditions for the generated �elds imply that

Re [
1
2E
�

1E
�

2 ] � 0. It will be shown later on that Re [
1
2E
�

1E
�

2 ] is in any

case to a very good approximation a constant of motion.
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Amplitude-Phase Equations: It is convenient to rewrite the �eld equa-

tions in terms of amplitudes and phases. Introducing En = en e
�i�n and


n = an e
�i n (n = 1; 2) one obtains

d

dz
e1 =

�

�

a1a2e2

a21 + e21
sin ; (32)

�
d

dz
e2 =

�

�

a1a2e1

a21 + e21
sin ; (33)

�
d

dz
a1 =

�

�

a2e1e2

a21 + e21
sin ; (34)

d

dz
a2 =

�

�

a1e1e2

a21 + e21
sin ; (35)

where  = �1+�2� 1� 2 is the relative phase between the �elds. It obeys

the equation

d

dz
 =

�

�

�
a1a2e2(a

2
1 � e21)

e1(a
2
1 + e21)

2
�

a1a2e1

e2(a
2
1 + e21)

+
a2e1e2(a

2
1 � e21)

a1(a
2
1 + e21)

2

�
a1e1e2

a2(a
2
1 + e21)

�
cos +

�

�

�
e41 � a41 + 2e21a

2
2

(a21 + e21)
2

�
: (36)

Solution for Equal Input Intensities: Let me now consider the case of

equal input intensities of both pump �elds, i.e. a1(0) = a10 = a20 = a2(L).

Making use of the constants of motion one can write

e1(z) = e sin#(z); a1(z) =

q
a210 � e2 sin2 #(z); (37)

e2(z) = e cos#(z); a2(z) =

q
a210 � e2 cos2 #(z); (38)

with the output amplitude of the generated �elds e and the mixing angle #(z)

as the only remaining variables. The boundary conditions are now #(0) = 0

and #(L) = �=2, if e 6= 0, i.e. for the non-trivial solutions.

Substituting the above expressions into (32) yields the nonlinear equation

d

dz
#(z) =

�

�

�
1� "2 +

"4

4
sin2

�
2#(z)

��1=2
sin (z); (39)

where " � e=a10. In order to solve (39) one can in principle introduce a

nonlinear stretch of the spatial coordinate according to

�(z) =

Z z

0

dz0 sin (z0); and d� = sin (z) dz (40)

which removes the term sin (z) on the r.h.s. of (39). I will show later on,

however, that to a very good approximation sin (z) � 1. Thus � = z and

sin (z) = 1 is used in the following.
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Integrating (39) from z = 0 to z = L leads to an equation for the normal-

ized output amplitude " = e=a10:

K

�
"4

4("2 � 1)

�
=
�L

�

p
1� "2; (41)

where K is the complete elliptic integral of the �rst kind [16]. One easily ver-

i�es that (41) has only a real-valued solution ", if �L=� � �=2, which is the

threshold condition for mirrorless oscillations [10,12]. For smaller values of

�L=� the equations of motion have only the trivial solution. Figure 2 shows

2

Ω10

E

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5
0

1

0.2

0.4

0.6

0.8

κ   /∆  (π/2)    L

2

Fig. 2. Output intensity of generated �elds E � E1(L) = E2(0) normalized to

input intensity of pump �elds as function of e�ective interaction length, 
1(0) =


2(L) � 
10

the output intensity of the generated �elds normalized to the input inten-

sity of the pump �elds as a function of the e�ective density length product

�L. One clearly recognizes that for a su�ciently large product �L complete

conversion can be achieved.

The spatial behavior of the �eld strength inside the vapor cell can be

obtained from incomplete elliptical integrals following from (39). Figure 3

shows the �eld amplitudes inside the medium for " = 0:2, i.e. just above

threshold and for " = 0:98 i.e. for almost complete conversion.

Not to far above threshold, the square root in (39) can be expanded and

one recovers the third-order solution obtained in [15]:

#(z) �
�z

�

�
1�

1

2
"2
�

(42)

with

" =
p
2

�
1�

�

2

�

�L

�1=2
for

�L

�
�
�

2
: (43)

In order to verify the approximation sin (z) � 1, I have numerically inte-

grated the di�erential equation (36) with the above solutions. Figure 4 shows
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0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
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0.4

0.6

0.8

1

z / L z / L 
Fig. 3. Field amplitudes inside interaction region for small conversion " = E=
10 =
0:2 (left) and large conversion " = E=
10 = 0:98 (right)

the comparison between the nonlinear coordinate �(z) and z for the case

" = 0:98. One recognizes that � deviates from z by at most 1%. For smaller

conversions an even smaller di�erence shows up. Therefore the approxima-

tion sin = 1 is very well justi�ed. This also implies that Re [
1
2E
�

1E
�

2 ] is

to a very good approximation a constant of motion.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

z/L

0

0.2

0.4

0.6

0.8

1

/Lξ

Fig. 4. E�ective interaction distance � versus physical interaction distance z for

large conversion (" = E=
10 = 0:98). Dotted line corresponds to � = z

4 Summary

In the present paper all-order atomic susceptibilities for resonantly enhanced

4-wave mixing are presented and �eld equations derived. The coupled nonlin-

ear di�erential equations are solved analytically for the case of in�nitely long-

lived ground-state coherences and under the assumption of negligible phase

changes due to ac-Stark shifts. Below a certain critical value of the density-

length product only the trivial solution exists, where the generated Stokes
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and anti-Stokes components have vanishing amplitude. Above the thresh-

old to mirrorless oscillations the photon conversion e�ciency increases very

rapidly and at a density-length product of about 3 times the threshold value,

95% conversion is achieved.
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