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Threshold and linewidth of a mirrorless parametric oscillator
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We analyze the above-threshold behavior of a mirrorless
parametric oscillator based on resonantly enhanced four wave
mixing in a coherently driven dense atomic vapor. It is shown
that, in the ideal limit, an arbitrary small ux of pump pho-
tons is su�cient to reach the oscillator threshold. We demon-
strate that due to the large group velocity delays associated
with coherent media, an extremely narrow oscillator linewidth
is possible, making a narrow-band source of non-classical ra-
diation feasible.

Stable and low-noise sources of coherent and non-
classical radiation are of interest in many areas of laser
physics and quantum optics. Such sources have a wide
range of applications such as frequency standards, optical
magnetometry, gravitational wave detection, and high-
precision spectroscopy.
The present theoretical work is motivated by recent

experiments demonstrating a phase transition to mirror-
less oscillation of counter-propagating Stokes and anti-
Stokes �elds in resonant, double-� Raman media [1]. In
contrast to earlier studies involving instabilities in alkali
vapors [2{5], this oscillation could be achieved with pump
�elds of �W power (nano Joule pulse energy) and is ac-
companied by a dramatic narrowing of the beat signals
between driving and generated �elds. Oscillations of this
kind are a clear manifestation of atomic coherence and
interference e�ects, which have recently lead to many ex-
citing developments in resonant nonlinear optics [6{9].
In particular, the unusual e�ciency of the present pro-
cesses is expected to lead to a new regime of quantum
nonlinear optics in which interactions at a level of few
light quanta are feasible. Furthermore, the photon pairs
generated can possess nearly ideal quantum correlations,
resulting in almost complete squeezing of quantum uc-
tuations [10].
We here study theoretically the quantum dynamics of

the mirrorless oscillator above threshold. We show that
for an in�nitely long lived atomic dark state an arbi-
trary small stationary ux of pump photons is su�cient
to maintain the oscillation. We furthermore analyze fre-
quency locking and linewidth narrowing of the beat note
between oscillation- and pump frequencies. In particu-
lar, we show that the beat-note linewidth is given by an
expression similar to the Schawlow-Townes formula for
lasers where the cavity storage time is replaced by the

group delay time �
gr

in the medium. Due to the large
linear dispersion associated with electromagnetically in-
duced transparency (EIT) in optically thick media, the
group delay can be extremely large [11{13] leading to a
very small beat-note linewidth. This e�ect is analogous
to the line-narrowing in intracavity EIT [14,15]. Since
only very small pump powers are needed to reach thresh-
old, ac-Stark shifts and the associated systematic e�ects
on the beat-note frequency can be made very small. The
combination of line-narrowing and small pump-power re-
quirements makes the mirrorless parametric oscillator an
interesting novel source of stable and narrow-linewidth
non-classical radiation. Possible applications include fre-
quency standards, optical magnetometry and few-photon
nonlinear optics.
Consider the propagation of four nearly resonant plane

waves, parallel or anti-parallel to the z axis, in a medium
consisting of double-� atoms (see Fig. 1). These include
two counter-propagating driving �elds with equal fre-
quencies �

d
and (complex) Rabi-frequencies E

f
and E

b
,

and two generated �elds (anti-Stokes and Stokes) with
carrier frequencies �1 and �2 obeying �1+ �2 = 2�

d
. The

�elds interact via the long-living coherence (decay rate
0) on the transition between the ground state sub-levels
b1 and b2 with frequency splitting !0 = !

b2 � !
b1.

Due to resonantly enhanced four-wave mixing the
coherent pump �elds E

f
and E

b
generate counter-

propagating anti-Stokes and Stokes �elds (here described
by the complex Rabi-frequencies E1 and E2). For a
su�ciently large density-length product of the medium
and for a certain pump �eld intensity, the system shows
a phase-transition to self-oscillations [1]. The feed-
back mechanism required for oscillations is provided here
by the gain medium itself: A spontaneously generated
Stokes photon stimulates \downstream" a Raman pro-
cess. As a result an anti-Stokes photon is generated with
a �xed relative phase. This photon propagates in the op-
posite direction and stimulates another scattering event
\upstream". If the phase matching condition is ful�lled,
this causes a second Stokes emission in phase with the
�rst one closing the feedback cycle. A crucial condition
for the coherence of this feedback mechanism is a su�-
ciently long-lived Raman coherence.
We now discuss the transition to self-oscillation and the

classical and quantum dynamics of the oscillator above
threshold in detail. To simplify the analysis we ignore
inhomogeneous broadening and assume equal coupling
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strength of all four �elds as well as equal radiative decays
out of the upper levels. Furthermore we assume that the
forward driving �eld E

f
is in resonance with the b2 ! a1

transition, whereas the backward driving �eld E
b
has a

detuning � � jE
b
j from the b1 ! a2 transition. In

this case linear losses of the �elds due to single-photon
absorption processes are minimal.
In order to calculate the medium response we solve

the single-atom density matrix equations in third or-
der of the Stokes and anti-Stokes �elds and assume
j�j � ; jE

f;b
j � 0; �, where � = �

d
+ !0 � �1 is the

two-photon detuning. In a frame rotating with the car-
rier frequencies, the propagation of the classical �elds
can then be described by the following equations for the
slowly varying complex Rabi-frequencies

d

dz
eE1 = i�

eE2
1E2E

�

f

eE�

b
+ E

f

eE
b
E
�

2(2j eE1j2 � jEf
j2)

�jE
f
j4

+i

"
�
i0 � �

jE
f
j2
� �

j eE
b
j2 � jE

f
j2

�jE
f
j2

��k

# eE1; (1)

d

dz
E
�

2 = i�
(j eE1j2 � jEf

j2)E�

f

eE�

b

eE1

�jE
f
j4

; (2)

d

dz
E
f
= i�

eE�

1E
�

2
eE
b
E
2
f

�jE
f
j4

; (3)

d

dz
eE�

b
= �i�

eE�

1E
�

2Ef
jE

f
j2

�jE
f
j4

: (4)

In these equations we have kept ac-Stark induced phase
terms only in lowest order of the generated �elds, since
we are interested in in the case jE

f;b
j � jE1;2j. � =

(3=8�)N�
2

a
is the equal coupling constant of all �elds

with N being the atom density, � the average wavelength
of the �elds, and 

a
the common population decay rate

out of the excited states. E1 = eE1e
i(�k��=�)z , E

b
=eE

b
ei�z=�, with �k = k2 � k1 being the phase mismatch.
We note an important feature of the nonlinear coupling

in Eqs. (1) and (2): In contrast to usual �(3)-media, the
lowest-order cross-coupling terms are proportional to the
ratio of the pump �elds rather than the product.

d

dz
E1 � �i�(3)Ef

E
b
E
�

2 �! �i
�

�

E
b

E�

f

E
�

2 : (5)

Thus for jE
f
j = jE

b
j these terms are independent of the

pump-�eld amplitudes. We will see later on that this
leads to a rather unusual threshold behavior.
In the present system a transition to spontaneous os-

cillations is possible [1], if the phase matching condition

�
�

jE
f
j2
+ �

jE
b
j2 � jE

f
j2

�jE
f
j2

+�k = 0 (6)

is ful�lled. For large values of �, Eq.(6) describes a
pulling of the frequency di�erences between generated
�elds and driving �elds towards the ac-Stark shifted fre-
quency of the Raman transition

�1 � �
d1 = �

d2 � �2 =
�

h
!0 + (jE

b
j2 � jE

f
j2)=�

i
1 + �

: (7)

This equation shows a close analogy with intracavity
EIT. � = c�=2jE

f
j2 is a frequency stabilisation factor

[14]. This factor also governs the group velocity of the
eigenmodes of the system v

gr
= c=(1 + �) and can be

rather large. For conditions close to the experiments of
Ref. [1], a reduction factor of � � 5 � 106 was mea-
sured [13]. In the limit of large � the beat-notes between
generated and pump �elds locks tightly to the Raman-
transition frequency of the medium.
We next consider the classical steady state solution of

the propagation problem. In the ideal limit (0 = 0)
Eqs.(1-4) have four constants of motion: the total inten-
sity of the generated and pump �elds jE1j2 + jE2j2 and
jE

f
j2+jE

b
j2, as well as Re [E�

f
E
�

b
E1E2] which has a simi-

lar structure to the cubic expression conserved in 3-wave
mixing [16]. There is also the somewhat unusual con-
stant of motion, jE

f
j2 exp

�
jE1j2=jEf

j2
�
[17]. If we take

into account, however, that Eqs. (1-4) only hold to third
order in the generated �elds, this constant is equivalent
to jE

f
j2+jE1j2. With this Eqs.(1-4) can be solved analyt-

ically, if the phase matching condition is approximately
ful�lled. Assuming equal input intensities of the driving
�elds jE

f
(0)j = jE

b
(L)j at z = 0 and z = L respectively

(L being the cell length), and disregarding linear losses
due to the �nite lifetime of the ground-state coherence,
one �nds in second order of the generated �elds

jE1(z)j = E sin#(z); jE2(z)j = E cos #(z); (8)

jE
f
(z)j =

h
jE

f
(0)j2 �E

2 sin2 #(z)
i1=2

; (9)

jE
b
(z)j =

h
jE

f
(0)j2 �E

2 cos2 #(z)
i1=2

; (10)

where #(z) = �z=�
�
1� E

2
=2jE

f
(0)j2

�
. For �L=� <

�=2, E � 0. For values of �L=� larger than the critical
value �=2 there are two solutions

E =
p
2 jE

f
(0)j

�
0q
1� �

2
�
�L

for
�L

�
�

�

2
(11)

with E = 0 being unstable. It should be noted that in
contrast to degenerate 4-wave mixing in usual �(3)-media
[18], the threshold condition does not contain the ampli-
tude of the pump �elds. Thus under the ideal conditions
assumed here, i.e. for an in�nitely long lived dark state,
an arbitrarily small stationary pump intensity is su�-
cient to reach the oscillation threshold. Fig. 2 shows the
above-threshold behavior of E as a function of �L=� and
the �eld amplitudes normalized to jE

f
(0)j inside the cell.

If the system oscillates not too far above threshold, the
depletion of the pump �elds is small and we may as-
sume in the following constant driving �eld amplitudes,
jE

f
(z)j = jE

b
(z)j = E

d
.

To calculate the linewidth of Stokes and anti-Stokes
�elds relative to the drive �eld above threshold, we as-
sume that the generated �elds can be represented as
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a sum of the classical stationary solutions and a time-
dependent uctuation (Ê1;2(z; t) = E1;2(z)+�E1;2(z; t)).
We utilize a standard linearized c-number Langevin ap-
proach in which collective atomic variables and �elds are
described by time- and position- dependent stochastic
di�erential equations with ��correlated Langevin forces
[19]. The di�usion coe�cients or noise correlations are
derived using the uctuation-dissipation theorem and
generalized Einstein relations. We obtain for the Fourier-
components of the Stokes and anti-Stokes uctuations
�E1;2(!) � 1=

p
2�

R
dt �E1;2(t) e

�i!t

d

dz

�
�E

�

1

�E2

�
= i

�
��!=E2

d
� !=c �=�

�=� !=c

� �
�E

�

1

�E2

�
+

�
f
�

1

f2

�
;

(12)

where small uctuation frequencies (! � E
d
) and a con-

stant phase of the pump �eld have been assumed. The
term ��!=E2

d
is the contribution from the medium dis-

persion. Following the procedure of Ref. [19], we �nd for
the dominant noise correlation

hf1(z; !)f2(z0; !0)i '
�
2
L

N
i

�
�(z � z

0)�(! + !
0); (13)

where N is the number of atoms in the cell, and we have
identi�ed the quantization length de�ned in [19] with the
length of the cell L.
Solving the inhomogeneous boundary problem for

the Fourier-components of the �eld uctuations with
�E

�

1(0; !) = 0 and �E2(L; !) = 0, we eventually �nd
for the phase of e.g. �E1

��1(L; !) = �
i�c

�jE1(L)j

�
Z

L

0

dz
Im[f1(z)] cos#(z) + Re[f2(z)] sin#(z)

! (1 + �)
: (14)

In phase-di�usion approximation, the linewidth ��1 of
E1 relative to the pump �eld is given by

h��1(L; !)��1(L; !0)i = ��1
�(! + !

0)

!2
: (15)

Using Eqs.(13) and (14) we arrive at

��1 =
2E4

d

�2

�h�

P
out

; (16)

where P
out

is the output power of the mode.
Eq.(16) can be represented in a very instructive form,

if the group-delay time �
gr

= L=c(1 + �) in the resonant
medium is introduced. In the appropriate limit, � � 1,
and near threshold such that �L=� � �=2 the linewidth
can be written as

��1 =
�
2

8
�
�2
gr

�h�

P
out

� �
�2
gr

�h�

P
out

: (17)

Eq.(17) is formally identical to that of an ideal laser with
the cavity decay time replaced by the group delay time.

In usual 4-wave mixing, based on non-resonant Kerr-
nonlinearities [2{5], the group velocity is essentially equal
to the vacuum speed of light. In the present scheme, how-
ever, it can be substantially reduced due to EIT.
It is important to emphasize that the photon pairs gen-

erated by the oscillation process near threshold are in
quantum-mechanically correlated states. This results in
a dramatic suppression of intrinsic quantum uctuations
in a quadrature of the combined mode [10].
In the discussion above we have neglected the relax-

ation rate of the ground state coherence 0. If this de-
cay is taken into account, one �nds the modi�ed thresh-
old condition: cos(�L) + (0�)=(2E

2
d
)sin(�L) = 0; with

� = �

p
1=�2 � 20=4E

4
d
. In particular, oscillation can be

achieved only if E2
d
� 0j�j=2. This can be translated

into a condition for the photon ux �, i.e. the number
of pump-photons traversing the cell per unit time. One
�nds that the threshold photon ux in each pump beam
is equal to the number of atoms in the ensemble decaying
out of the dark state per unit time:

�th = f N 0; (18)

where f is a numerical prefactor of order unity. Since
by using bu�er gases or coated cells very small values
of 0 can be achieved, a threshold ux corresponding to
only few photons in the cell is feasible, leading to an
interesting new regime of nonlinear optics.
Furthermore, the non-vanishing linear losses resulting

from the decay of the ground-state coherence lead to an
additional noise contribution to the linewidth

��1 =
�
2

8
�
�1
gr

�
�
�1
gr

+ 20
� �h�

P
out

: (19)

This result can easily be interpreted. P
out

�
gr
=�h� is equal

to twice the number of Stokes or anti-Stokes photons in
the cell. (Note that the total number of Stokes plus
anti-Stokes photons is spatially homogeneous.) Like in
a usual laser, photon correlations are maintained over a
time equal to the number of photons multiplied by the
time a single photon stays in the system [20]. The latter
time is here given by the group delay time (if 0 is su�-
ciently small). If the lifetime of the dark state becomes
shorter than the group delay, the phase information car-
ried by a photon is lost faster and �

�1
gr

is dominated by
20. Thus the minimum linewidth is ultimately deter-
mined by the lower-level coherence decay.
Similar to the case discussed in Ref. [14] for the intra-

cavity system, the present result for the frequency lock-
ing, Eq.(7), and the linewidth, Eqs.(16,19) are a con-
sequence of the large atomic dispersion associated with
two-photon resonances in phase coherent media. In the
limit of long-lived ground-state coherences, the beat-note
linewidth can be extremely narrow. At the same time
the resonantly enhanced nonlinearity makes it possible
to achieve oscillation with very low pump powers.
In order to see, whether the small intrinsic linewidth

can indeed be exploited, we now estimate the inuence
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of systematic e�ects on the beat-note frequency. The
most serious limitations arise from the ac-Stark shifts as
indicated by Eq.(7). At large values of pump intensi-
ties these shifts are large and hence uctuations in pump
powers and frequencies will result in associated broaden-
ing of the oscillator linewidth. However, the resonantly
enhanced nonlinearity makes oscillation possible already
when E

2
d
� 0�, i.e. when the near-resonant ac-Stark

shift E2
d
=� exceeds the ground-state coherence decay 0.

Thus with stabilized pump frequencies and intensities,
technical uctuations of the beat-frequency due to ac-
Stark shifts could be several orders of magnitude smaller
than 0. In the experiment of Ref. [1], for instance, short-
term linewidth values below 100 Hz have been measured
even though the transient time broadening of a Raman
transition was about 50 kHz. It is clear that observa-
tion of quantum-limited linewidth of the oscillator is most
likely in the regime of ultra-low pump intensities. It is
however this regime which is of main interest for quan-
tum control and manipulation of quantum properties of
few photon �elds [10].
In conclusion, we have demonstrated that resonant

nonlinear interactions involving atomic coherence can be
used for e�cient generation of non-classical photon �elds
with a stable and narrow beat-note linewidth and small
pump requirements. We expect these features to be of
interest in many areas of quantum and nonlinear optics.
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FIG. 1. Atoms in double � con�guration interacting with
two classical driving �elds in forward (Ef ) and backward di-
rection (Eb) and two quantum �elds (E1;2). All optical tran-
sitions are assumed to be radiatively broadened.
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FIG. 2. Phase transition to mirrorless parametric oscilla-
tions. Analytic solution for amplitude of generated �eld for
0 = 0. Insert: Normalized �eld amplitudes inside medium
for E=jEf (0)j = 0:2
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