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Spontaneous emission and Lamb shift of atoms in absorb-
ing dielectrics are discussed. A Green’s-function approach
is used based on the multipolar interaction Hamiltonian of
a collection of atomic dipoles with the quantised radiation
field. The rate of decay and level shifts are determined by
the retarded Green’s-function of the interacting electric dis-
placement field, which is calculated from a Dyson equation
describing multiple scattering. The positions of the atomic
dipoles forming the dielectrics are assumed to be uncorre-
lated and a continuum approximation is used. The associ-
ated unphysical interactions between different atoms at the
same location is eliminated by removing the point-interaction
term from the free-space Green’s-function (local field correc-
tion). For the case of an atom in a purely dispersive medium
the spontaneous emission rate is altered by the well-known
Lorentz local-field factor. In the presence of absorption a re-
sult different from previously suggested expressions is found
and nearest-neighbour interactions are shown to be impor-
tant.

I. INTRODUCTION

The theoretical description and experimental investi-
gation of the interaction of light with dense atomic media
regained considerable interest in recent years. Various
experiments on level shifts '-1:,:2], intrinsic bistability [B:,:ﬂ:]
and spontaneous emission [ ',ﬂ] in dense gases have sup-
ported and refined the concept of local fields known for
more than a century [!Z:] Nevertheless some questions in
this context are still not answered satisfactory even on a
fundamental level. In the present paper I want to discuss
one of these questions, namely the effect of an absorbing
dielectric on spontaneous emission and level shifts of an
embedded atom using a Green’s-function approach.

The interaction of light with dilute gases is usually
well described in terms of macroscopic classical variables
such as electric field and polarisation. In the macroscopic
approach the polarisation is given by the expectation
value of the single-atom dipole moment multiplied by
the density of atoms [;S] Apart from the coupling to the
common classical radiation field, the atoms are assumed
distinguishable and independent. This means quantum-
statistical correlations are neglected, which is a very good
approximation as long as the temperatures are not too
small. It 1s also implicitly assumed that vacuum fluctu-
ations of the field affect the atoms only individually and

that the atom positions are independent of each other.
The latter assumptions are however no longer valid in
dense samples.

If the resonant absorption length of some atomic tran-

sition becomes comparable to the medium dimension d,
i.e. for NA?d ~ 1, N being the number density and A
the resonant wavelength, reabsorption and multiple scat-
tering of spontaneous photons and associated effects like
radiation trapping [:E_j] or, if atomic excitation is present,
amplified spontaneous emission need to be taken into ac-
count. If the atomic density is further increased, such
that NA3 ~ 1, one can no longer disregard the fact that
the independent-atom approximation allows for an un-
physical interaction of different atoms at the same posi-
t’ir(])n and Lorentz-Lorenz local field corrections are needed
[17]-
" The modification of the rate of spontaneous emission I
by the local environment was first noted by Purcell [:l-]_;]
Alterations of this rate have been demonstrated experi-
mentally near dielectric interfaces [:12_:], in quantum-well
structures [:_l-ij:] and in cavities [:_1-411'] Based on an analysis
of the density of radiation states Nienhuis and Alkemade
predicted for an atom embedded in a homogeneous trans-
parent dielectric with refractive index n [1_15_:]

I =Ton (1)

where I'y is the free-space decay rate.
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g being the electric dipole moment of the transition with
frequency wgp. The alteration of spontaneous emission by
the index of refraction leads to interesting potential ap-
plications as the suppression or enhancement of decay in
photonic band-gap materials [:f@:] The approach of Ref.
[:_15:| did neither take into account local-field corrections
nor absorption however.

There has been a considerable amount of theoretical
work on local-field corrections to spontaneous emission
of an atom 1in lossless homogeneous dielectrics. Essen-
tially all approaches assume a small cavity around the
radiating atom and the theoretical predictions depend
substantially on the details of this local-cavity model.
Approaches based on Lorentz’s “virtual” cavity [:1-7_:,:1-8_:]
lead to
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while those based on a real empty cavity [:_1_9'] predict

3n? ’
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For pure systems or impurities in disordered non-
absorbing dielectrics Eq(:_ﬂ) is believed to be correct. On
the other hand recent experiments with Eu®t ions in
organic ligand cages verified the real-cavity expression
Eq(:f_l:) [E,'@:] An explanation for the different results was
very recently given by de Vries and Lagendijk [:_2-(_)‘] Ap-
plying a rigorous microscopic scattering theory for im-
purities in non-absorbing dielectric cubic crystals, they
showed that the local environment determines whether
Eq.(8) or (4) should be used. For a substitutional impu-
rity the empty-cavity result applies, while for an intersti-
tial impurity the virtual-cavity formula is correct. The
latter also supports the believe that Eq@') is the correct
one for disordered systems like gases.

While the effect of a transparent dielectric on spon-
taneous emission is rather well studied, this it not the
case for absorbing media. A first step in this direction
was made by Barnett, Huttner and Loudon [:_21:] Based
on a discussion of the retarded Green’s-function in an
absorbing bulk dielectric they showed, that the index of
refraction in (:j:) is to be replaced by the real part n’ of
the complex refractive index n = n’ + in”. They also
argued that the square of the Lorentz-local field factor in
(3) should be replaced by the absolute square, leading to
n?(wap) + 2 ?

[ =Ton'(wa) 3

(5)

In order to derive this equation Barnett et al. postulated
in [22] an operator equivalent of the Lorentz-Lorenz re-
lation between the Maxwell and local field. This as-
sumption has however some conceptual problems. As
pointed out very recently by Scheel et al. [Z-Zj:], an op-
erator Lorentz-Lorenz relation cannot hold, since both
quantities, the Maxwell field and the local field have to
fulfil the same commutation relations.

In a recent paper we have developed an approach that
takes into account local-field corrections as well as mul-
tiple scattering and reabsorption of spontaneous photons
in modified single-atom Bloch equations [(]. The mod-
ified Bloch equations provide a way of including dense-
medium effects in a macroscopic approach. In the present
paper expressions for the spontaneous emission rate and
Lamb-shift of an atom in a dense absorbing dielectric or
a gas of identical atoms are derived following the ap-
proach of [:_l-(j] The starting point is the multipolar-
coupling Hamiltonian in dipole approximation. The re-
tarded Green’s-function of the electric displacement field,
which determines decay rate and Lamb shift, is calcu-
lated from a Dyson equation in self-consistent Hartree
approximation. As the atom positions are assumed to be
independent from each other, local-field corrections are
needed to remove unphysical interactions between atoms

at zero distance. This is done in the present approach
by an appropriate modification of the free-space Green’s-
functions rather than by introducing a cavity. The rate of
spontaneous emission derived coincides with the virtual-
cavity result (3) for a transparent dielectric, but differs
from Eq(g) in the case of absorption. It will be shown
that in the presence of absorption near-field interactions
with neighbouring atoms become very important, whose
correct description requires however a fully microscopic
approach.

II. RADIATIVE INTERACTIONS IN DENSE
ATOMIC MEDIA

The present analysis is based on a description of the
atom-field interaction in the dipole approximation using
the multipolar Hamiltonian in the radiation gauge [24:]

N 1 > 5
Hine = —gzdy D(75). (6)
J

Here cij is the dipole operator of an atom at position
7. D is the operator of the electric displacement with
V-D=0. )

It was shown in [:lQ:] that the effects of radiative atom-
atom interactions in a dense medium can be described in
Markov approximation with a nonlinear density-matrix
equation
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Here @, is the dipole matrix element for a polarisation
direction €, and o, ol are the corresponding atomic low-
ering and razing operators. The first term describes the
free atomic evolution and the second the interaction with
some local classical field £7. h,, and I'y, are matrices,
whose eigenvalues yield Lamb shifts of excited states and
spontaneous emission rates. I'},, and hj,, describe collec-
tive relaxation rates and light-shifts due to the incoherent
background radiation generated by absorption and ree-
mission of spontaneous photons (radiation trapping).

It should be noted that the incoherent background ra-
diation causes a decay as well as an incoherent excitation
with equal rate I'°. Thus I'°, which is proportional to
the excitation of the host medium [:_1-9'], describes induced
mixing processes, while I' can be interpreted as the rate
of spontaneous decay. Similarly h® describes a light-shift,




which for a two level system is equal in strength and op-
posite 1n sign for the ground and excited state. It is also
proportional to the excitation of the host medium and
can thus be interpreted as nduced light shift. In con-
trast h 1s a frequency shift of an excited state only and
does not require excitation of the host medium.

The matrices I'y,, and h,, are given by [:_1-(_):]

[ = 25025;” Re {Duy(o,wab)}, 8)
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where D, (£, w) = ffooo dr Dy, (%, 7)e™7 is the Fourier-

transform of the retarded Green’s-function (GF) of the
electric displacement field defined here as

Dy (7, 7) = 0(r){0] [ Dl

with & = 7} — 75 and 7 = {1 — 5. In the case of randomly
oriented two-level atoms, one can replace g, — g and
perform an orientation average yielding a single decay
rate I' and a single excited-state level shift A.

The dense atomic medium affects the spontaneous
emission of a single probe atom due to multiple scattering
of virtual photons. The scattering process can formally
be described by a Dyson equation for the exact retarded
GF

D(1,2) = D°(1,2) - // d3d4D(1,3)T1(3,4) D(4,2).
(11)

Here the integration is over ¢ from —oo to 400 and the
whole sample volume. DY is the (dyadic) GF in free space
and II is a formal (dyadic) self-energy. As shown in [10],
the self-energy can be described for randomly oriented
two-level atoms in self-consistent Hartree approximation

by

Fl,tl), Dy(Fz,tz)} |0> 662, (10)

m(1,2) = 3 35000 —){[o}02), o))
X (7 — 7)) (7 — 75) 1. (12)

1 is unity matrix and ¢ = |b){al is the atomic spin-flip
operator from the excited state |a) to the lower state |b)
in the Heisenberg picture, i.e. it contains all interactions.
The factor 2/3 results from an orientation average.

We now make a continuum approximation and assume
a homogeneous medium, such that

I(1,2) — p(ts, £2)6(7 —72) 1, (13)

where

2
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The over-bar denotes an average over some possible in-
homogeneous distribution and N is the number density
of atoms.

With the above made approximations, the Dyson
equation (:_1-1:) contains also scattering processes between
atoms at the same position. In a continuum approxima-
tion the probability of two point dipoles being at the same
position is of measure zero. This nevertheless leads to a
non-vanishing contribution, since the dipole-dipole inter-
action has a d-type point interaction. This unphysical
contribution needs to be removed by a local-field correc-
tions, which will be discussed in the following section.

III. LOCAL-FIELD CORRECTION OF
FREE-SPACE GREEN’S-FUNCTION AND
LORENTZ-LORENZ RELATION

The retarded Green’s- functAion in
free space D L(1,2) =0(t; —t2) <0| D0 0(2)] |0>€0_2,
where 1;2; ... stand for 71,%1; 7, {2;. . etc is a solution

of the homogeneous Maxwell equation Wlth d-like source
term
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DY has a particularly simple form in reciprocal space [}_2-5]
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where k =w/c, and Ay =1— qo—q It may be worthwhile

noting, that DY is not transverse in ¢-space, although V-
DY(1,2) = 0._The corresponding function in coordinate
space reads [25]
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Here @ = |Z| and
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One recognises from Eq.(i8) that the retarded GF of
the dipole-dipole interaction contains a d-type point con-
tribution. In order to eliminate the unphysical interac-
tions between different atoms at the same position, one
has to remove this term from the GFs in the scattering
part of the Dyson equation (:_11:)



wt) — FO(F,wh) = D&, wt) - i(5(95')1. (20)
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With this local-field corrections we obtain a modified
Dyson equation (in reciprocal space)
D =D°— F%F° + FOpFpF° — + . . .| (21)

and introducing F({,w) = D({,w)
at

F(J’w+) = Fo(q_”w-l_) -
In reciprocal space one finds

th

— ih/3ep1 we arrive
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Eq(z-?_:) can easily be solved to yield

F(iwt) = " (30°+3k*) 1+ 3Naw)1—gof
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where we have introduced the dynamic polarisability of
the atoms

Na(w) = —p(w). (26)

The poles £qq of Eq(2-5_:) determine the (in general non-
linear) complex dielectric function

Na(w)

7
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3

=12 (27)
This 1s the well-known Lorentz-Lorenz relation between
the microscopic polarisability o and the complex dielec-
tric function e(w). Thus we have shown that the local-
field correction of the free-space Green’s-function (:_2-(_)') is
exactly the one that reproduces the well-known Lorentz-
Lorenz relation.

IV. MODIFICATION OF SPONTANEOUS
EMISSION AND LAMB-SHIFT

Eq(z-5_:) can be transformed back into coordinate space
using 15(5 wt) = - fd?’q_'ﬁ q,wt)e 1% The
Fourier-transform of the projector (¢ o §) yields spher-
ical Bessel functions [ 5E| For the present purpose we
however need only the orientation-averaged quantity

2ih 1¢*Na(w) + k? (1+ 2Na(w))
3o | ¢ — k? — Na(w) (5¢* + 3k?) — i0

1
T ENa) )

F(q_',w-l—) = -

One recognises that the Fourier-transform of F({,w™)
diverges for x — 0, which is due to the large-¢ behaviour
of the GF. In order to remove these singularities one can
modify the GF by introducing a regularisation. Physi-
cally the singular behaviour at © — 0 is due to the fact
that atoms very close to the atom under consideration
can have a large effect on spontaneous emission and level
shifts. One cannot expect the continuum approxima-
tion used here to yield accurate results on length scales
comparable to the mean atom distance. Here rather a
fully microscopic description of very close atoms includ-
ing their motion (collisions) is needed. This is however
beyond the scope of the present paper and we therefore
restrict the analysis to a regularisation of the Green’s-
function. There is no unique regularisation procedure,
and we here just choose a convenient one

A4

F(7,wt) — F(§,ut) = F(§ut) ——.
(¢,w™) (7, w™) =F(q,w )q4+A4

(29)

With this we find in the limit A >> |qq|
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where R = k/(v/2A). Tt is important to note, that F is
exactly causal, if ¢(w) fulfils the Krames-Kronig relations.
This would not have been the case if as according to
the result of Barnett et al. [:21.,:22§ the absolute square
|(e + 2)/3| would be present instead of ((¢ + 2)/3)2.

With this result we find for the decay rate and excited
state Lamb-shift
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ihw?

6meqc

I'= TIyRe

()

b %Im =) (6(@0)3—1—2)2
Lt (se2y
1

+ﬁ§ (6(“)%2) (e(w) — 1)]. (32)

For an atom in a purely dispersive disordered medium,
i.e. for ¢ = 0, the second term in Eq. (BL) for the spon-
taneous decay rate vanishes identically and we are left



with the “virtual” cavity result Eq(g) Likewise there
are no contributions from the first term in (33) to the
Lamb shift in this case.

In the presence of absorption, that is if the probe-atom
transition frequency comes closer to a resonance of the
surrounding material (as it would naturally be the case
for a collection of identical atoms) I' is different from
the result obtained in [:_21:,:_22‘,:_2@] In this case there are
also non-vanishing terms that contain the regularisation
parameter R~ and R™3. These terms must be inter-
preted as contributions due to resonant energy transfer
with nearest neighbours, a process which cannot accu-
rately be described in the continuum approach used here.

As the Lamb shift is concerned, Eq(:_)’-Q_'-) shows that in
a purely dispersive medium, that is far away from any
resonances only nearest-neighbour interactions matter.
This is intuitively clear since in this case the transition
frequency is only affected by collisions. Only in the pres-
ence of absorption there is also a bulk-contribution to the
Lamb shift as described by the first term in ({_)’-?_:)

For a dense gas of identical atoms or of atoms of the
same kind but_with some inhomogeneous broadening,
Eqs(Bl_:) and (',_3_2') are only implicit, since the complex
polarisability £ depends on the decay rate and level shift.
Hence a self-consistent determination of I' and h is nec-
essary. If the density of atoms is much less than one
per cubic wavelength one can consider an expansion of
I' and h in powers of the atomic density N. Defining
a = o + 1o’ one finds with Eq(gﬂ) for the bulk contri-
butions

1
=T, [1+£¢N+£(a'2—a“2) N2—|—(9(N3)], (33)
_E Z// H/// 2 3
h= 5 [6a N—|—120zaN + O(N)| . (34)

In the case of radiatively broadened two-level atoms, the
real part of atomic polarisability vanishes at resonance,
i.e. @ = 0. Thus in lowest order of the density there is
only a contribution to the excited state frequency pro-
portional to the population difference between excited
and ground state. For an inverted population the tran-
sition frequency is red-shifted, for balanced population
the level shift vanishes and for more atoms in the lower
state the transition frequency is blue shifted. As a re-
sult spontaneously emitted radiation from an initially in-
verted system will have a chirp very similar to the chirp
in Dicke-superradiance [2-@:] It should also be mentioned
that the shift of the transition frequency discussed here
is physically different from the familiar Lorentz-Lorenz
shift. The LL-shift is due to the dispersion of the in-
dex of refraction at an atomic resonance and is thus in
contrast to the absorption o’ independent on Doppler-

broadening [:_2-2:] .

V. SUMMARY

In the present paper we have discussed the rate of spon-
taneous emission and the excited-state level shift of a
two-level type probe atom inside a homogeneous, disor-
dered absorbing dielectric. The dielectric was modelled
by a collection of atomic point dipoles, which also in-
cludes the case of a dense gas of identical atoms. The
multiple scattering of photons between the atoms (dipole-
dipole interaction) was described by a Dyson integral
equation for the exact retarded Green’s-function of the
electric displacement field in self-consistent Hartree ap-
proximation. The atoms were assumed distinguishable
with random independent positions. The latter assump-
tion made a continuum approximation possible and the
Dyson equation could be solved analytically. In order
to exclude unphysical dipole-dipole interactions of dif-
ferent atoms at the same position arising in the con-
tinuum approximation with independent atomic posi-
tions, a local-field correction of the free-space retarded
Green’s-function was introduced. This lead to the well-
known Lorentz-Lorenz relation between the complex di-
electric function e(w) and the nonlinear atomic polaris-
ability a(w). The expression for the spontaneous-decay
rate found by this method agrees with the virtual cav-
ity result [E-7_7| in the absence of absorption. This is
an expected result for atoms in disordered dielectrics
[g(ﬂ It was shown that the excited-state Lamb shift is
in this case only affected by nearest-neighbour interac-
tions, which could not be treated accurately within the
present approach however. In the presence of absorption
the spontaneous-emission rate differs from the results ob-
tained in [21:,22:,2@] in two ways. First there are impor-
tant nearest-neighbour contributions, which were absent
in the models of [:_21:,:_221 Secondly the bulk-contribution
is different form Refs. [:_21:,:_2-%',:_2-@], since causality of the ex-
act retarded GF requires the Lorentz-field factor to enter
as square and not as absolute square. It is interesting to
note, that apart from a small difference in the =3 term,
the decay rate derived here is identical to one very re-
cently obtained by Scheel and Welsch [2-9_:] on the basis of
a completely different approach, namely a quantisation
of the electromagnetic field in a linear dielectric.
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