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We investigate the quantum properties of �elds gener-
ated by resonantly enhanced wave mixing based on atomic

coherence in Raman systems. We show that such a process

can be used for generation of pairs of Stokes and anti-Stokes
�elds with nearly perfect quantum correlations, yielding al-

most complete (i.e. 100%) squeezing without the use of a

cavity. We discuss the extension of the wave mixing interac-
tions into the domain of a few interacting light quanta.

One of the intriguing and potentially useful aspects of

nonlinear optical phenomena is their ability to suppress

intrinsic quantum 
uctuations [1]. However, the e�orts

to exploit these properties were hindered, either by the

small values of nonlinearities in available optical crys-

tals, or by absorption losses and the associated noise in

resonant atomic systems with large nonlinearities. For

example, four-wave mixing is known to result, in princi-

ple, in squeezed-state generation or non-classical corre-

lations [2], but all experimental realizations reported to

date showed rather limited noise reduction and required

the use of cavities [3].

The work of the past few years has shown that sub-

stantial improvements in resonant nonlinear optics can

be achieved by utilizing the concepts of quantum coher-

ence and interference [4,5]. The aim of the present contri-

bution is to demonstrate the usefulness of this regime of

nonlinear optical enhancement for applications involving

quantum correlations and reduction of quantum noise.

As an example, we consider here four-wave mixing in

resonant Raman systems [5], where atomic phase coher-

ence can be used to generate a large nonlinearity and

at the same time suppress resonant absorption. Recent

theoretical [6] and experimental work [7] demonstrated

that the e�cient nonlinear interactions in this system

can lead to mirrorless parametric oscillation, where pairs

of counter-propagating Stokes and anti-Stokes photons

are generated spontaneously from noise. We here show

that under certain, very realistic conditions this process

can be considered as ideal from the viewpoint of quench-

ing of quantum noise. As a result, the generated Stokes

and anti-Stokes �eld components can possess practically

perfect quantum correlations, leading e.g. to an almost

complete suppression of the quantum 
uctuations in one

quadrature of a combined mode (i.e. 100% squeezing).

We point out that this can be achieved even in the case

when the intensity of the driving �elds approaches, under

realistic experimental conditions, the few-photon level.

These results, together with recent studies on strongly

interacting photons [9], single-photon switching [10] and

few photon quantum control [11], show that a truly new

regime of nonlinear optics involving just a few interacting

light quanta is feasible.

Physically, such a performance of the nonlinear me-

dia is due to the possibility of eliminating the resonant

absorption and associated noise processes via atomic co-

herence. Furthermore, the associated large linear dis-

persion is very important for achieving phase matching

[7] and plays a key role in the reduction of the oscilla-

tor linewidth [8] which will be discussed in detail else-

where. The present results open new interesting pos-

sibilities for applications as diverse as novel frequency

standards and gravity-wave detection on one hand and

quantum-information processing on the other [12].

In the present paper we discuss the noise properties of

electromagnetic waves propagating in a medium consist-

ing of double-� atoms as shown in Fig.1 in a four-wave

mixing con�guration. Four optical waves are tuned to

the vicinity of the corresponding optically allowed transi-

tions. These �elds include two counter-propagating driv-

ing �elds with frequencies �d1, �d2 and Rabi-frequencies


1 and 
2, and two probe �elds (anti-Stokes and Stokes)

with carrier frequencies �1 = �d1+!0 and �2 = �d1�!0,
where !0 = !b1�!b2 is the ground-state frequency split-

ting. The probe �elds are described quantum mechani-

cally in an e�ective 1-D model. The �elds interact via

the long-lived coherence on the dipole-forbidden transi-

tion between the metastable ground states jb1i and jb2i.
We here utilize a Langevin approach in which collec-

tive atomic variables and �elds are described by time-

and position- dependent stochastic di�erential equations

with �� correlated Langevin forces [13]. The present ap-

proach develops from the semiclassical analysis of Ref.[6],

in which, in particular, a phase transition to mirror-

less parametric oscillation was noted. We now proceed

with an analysis of the quantum 
uctuations in such a

system. We obtain stochastic equations which, for un-

depleted pump �elds, can easily be solved by Fourier-

transformation.
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We introduce slowly-varying dimensionless �eld vari-

ables Ê1;2(z; t) which contain only modes propagating in

the +z and �z direction respectively

Ê1(z; t) =
X
k>0

ak(t) e
i(k�k1)z ei�1t; (1)

Ê2(z; t) =
X
k>0

a�k(t) e
�i(k�k2)z ei�2t; (2)

where k1;2 = �1;2=c. Following the approach of [13] we

derive stochastic di�erential equations for c-number ana-

logues of the �elds Ê ! E and collective atomic oper-

ators of the medium consisting of the four-state atoms

shown in Fig.1. Apart from the stochastic noise sources

these equations have a form identical to the semiclassi-

cal density matrix equations for such an atomic system.

The di�usion coe�cients for noise correlations are de-

rived using the 
uctuation-dissipation theorem and gen-

eralized Einstein relations. We �nd that the propaga-

tion of the Fourier-components of Stokes and anti-Stokes

�elds E�

1(z; !), E2(z; !) is governed by the (c-number)

equations�
@

@z
+

i!

c

�
E�

1(z; !) = �i
k1

2�0
P �

1 (z; !); (3)

�
�

@

@z
+

i!

c

�
E2(z; !) = i

k2
2�0

P2(z; !): (4)

Here the Pl's are the c-number variables proportional

to the corresponding polarizations in the appropriate

units, and the Fourier-transform is de�ned as F (�)(!) =
1=
p
2�
R
dt e�i!tF (�)(t). Solving the equations of motion

for the atomic variables in lowest order of the Stokes and

anti-Stokes �elds we �nd:

Pl(z; !) = �0 �ll(z; !)El(z; !) (5)

+�0 �lm(z; !) e
i�~k�~r E�

m(z; !) � fl(z; !)=kl;

where fl;mg = f1; 2g and m 6= l. �~k is a possible geo-

metrical phase mismatch, �ll(z; !) are the self-coupling

and �lm(z; !) (m 6= l) the cross-coupling (�(3)-type) sus-
ceptibilities of the medium [6]. Both do not depend on

the amplitudes of Stokes and anti-Stokes �elds but are

functions of the drive-�elds and thus in general space-

dependent. f1;2(z; !) are noise sources, which are �-
correlated in frequency and position. In the following we

assume �~k = 0. Note, however, that a non-zero phase

mismatch can easily be compensated in the present sys-

tem by a small detuning of the Stokes and anti-Stokes

�elds from two-photon resonance. Thus the equations of

motion for the Fourier-components of the �elds at fre-

quency ! are:

d

dz

�
E�

1

E2

�
= i

�
a11 a12
a21 a22

��
E�

1

E2

�
+

i

2�0

�
f�1
f2

�
; (6)

where a1j � a1j(z; !) = �k1��

1j(z; !)=2 � �j1 !=c, and
a2j � a2j(z; !) = �k2�2j(z; !)=2 + �j2 !=c .

In order to solve the inhomogeneous boundary-value

problem we assume undepleted driving �elds and trans-

form away their remaining space dependence due to the

refractive index. Thus aij(z; !) ! aij(!). Assuming

vacuum input (E�

1(0) = 0; E2(L) = 0) at both sides of

the medium of length L we eventually �nd:

E�

1(L) =

Z L

0

dz0
if�1 (z

0)M (z0)� + a12 f2(z
0) sin(�z0)

2�0M (L)�ei~a(z0
�L)

; (7)

E2(0) =

Z L

0

dz0
a21 ~f�1 (z

0) sin(�z0) � i ~f2(z
0)M (z0)�

2�0M (L)�ei~a(L�z0)
; (8)

where we have dropped the frequency dependence.
~fi(z) = fi(L � z), ~a = (a11 + a22)=2, a = (a22 � a11)=2,
� =

p
a2 + a12a21, andM (z; !) = cos(�z)+i a=� sin(�z).

These expressions predict in�nite growth of the Stokes

and anti-Stokes �elds from vacuum when

M (L; !)! 0 or tan(�L) = i
�

a
; (9)

which is the oscillation condition [6,14].

Let us proceed now with a special case in which one

of the driving �elds (say 
1) is tuned near resonance

with the corresponding single-photon transition b2 ! a1,
whereas the second driving �eld 
2 has a detuning ��
j
2j from the transition b1 ! a2. For simplicity assume

also equal Rabi-frequencies of the driving �elds j
1j =
j
2j = j
j. In this case most of the population is in the

lower state b1, and there is almost no absorption of the

driving �elds. For small Fourier frequencies (close to the

two-photon resonance) we �nd :

a11 =
�
�
�! + i
0

�
j
j2

�
!

c
; a12 = a21 =

�

�
; a22 =

!

c
: (10)

We here have assumed that the coupling constants � =

3=(8�)(N�2i
a) are equal for all transitions and that the

two-photon detuning of all relevant Fourier components

is small, such that j!=
j � 1. 
a is the common decay

rate out of the upper levels, 
0 is the decay rate of the

coherence between the lower states, and N is number

density of atoms. Following the procedure of Ref. [13],

we �nd for the non-vanishing noise correlations [15]

hf1(z; !)f�1 (z
0; !0)i ' 4�20

�L

c


0


2
�(z � z0)�(! + !0); (11)

hf1(z; !)f2(z0; !0)i ' 4�20
�L

c

i

�
�(z � z0)�(! + !0); (12)

hf2(z; !)f�2 (z
0; !0)i ' 4�20

�L

c


a
�2

�(z � z0)�(! + !0); (13)

where we have identi�ed the quantization length with

the length of the cell L. In the case described by Eq.(10)

parametric oscillation occurs at ! = 0 when

M (L; 0) = cos(�L) + (
0�)=(2j
j2)sin(�L) = 0; (14)

with � = �
p
1=�2 � 
20=4j
j4. Hence oscillation can be

achieved if 
2 > 
0j�j=2. It should be noted that this is
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easily satis�ed since 
0 is the relaxation rate of a long-

lived ground-state coherence. Close to this oscillation

condition the spectrum of the output �eld diverges [14]

ni(!) �
c

L

Z
d!0E�

i (!)Ei(!
0) �

1

jM (L; !)j2
: (15)

Note that in the limit 
0 ! 0, � � 
a and ! ! 0

the coe�cients a11; a22, which correspond to the self-

coupling susceptibilities, become negligible and all noise

correlations except for hf1f2i vanish. This corresponds

to four-wave mixing with ideal noise properties [1,2]. The

Stokes and anti-Stokes photons generated from vacuum

(E�

1(0) = 0; E2(L) = 0) possess in this case perfect quan-

tum correlations, i.e. 100% squeezing. Hence the quan-

tum 
uctuations of a particular quadrature of the lin-

ear combination of output �elds d̂�(!) � (Ê1(L; !) +
Ê2(0; !))e

i�=
p
2 can be almost completely suppressed

near the threshold of parametric oscillation. We de�ne

the 
uctuation spectrum of the combined mode at the

output of the cell by

S�(!) =
c

4L

Z
d!0



[d̂�(!) + d̂

y

�(!)]; [d̂�(!
0) + d̂

y

�(!
0)]
�
;

(16)

where ha; bi = habi � haihbi. As can be veri�ed

from the commutation relation [Ê1;2(z; !); Ê
y

1;2(z; !
0)] =

(L=c)�(!�!0) (which holds for Fourier-frequencies small

compard to the carrier frequencies), the normalization is

such that S� = 1=4 corresponds to the standard quantum
limit. Using Eqs.(7,8) for the evaluation of normally or-

dered averages, and assuming that the system is close to

the threshold (jM j2 = jM (L; 0)j2 � 1) we �nd for the

optimum phase � = �=4

S+(0) � S�=4(0) =
jM j2

4
+

�

4

�
2

0�

j
j2
+


a

�

�
; (17)

where we have neglected by all but linear terms in 
0=

2

and 
a=�
2. The �rst term on the rhs of the above expres-

sion is the residual quantum noise supressed by to non-

linear wave-mixing. The second term is an atomic noise

contribution, which results from the �nite relaxation rate

of the ground state coherence and the associated absorp-

tion losses. Finally, the third contribution is the corre-

sponding noise contribution due to the absorption of the

far-detuned driving �eld. Choosing the optimum value

for the detuning (�2
opt = 
aj
j2=(2
0)) we �nd that the

maximumnoise suppression is reached already before the

oscillation threshold (for jM j2 <
p

0�=
2), and is given

by:

S+(0)! �

�

0
a
2j
j2

�1=2

: (18)

The extent to which the parametric oscillator can be con-

sidered as ideal is determined by the absorption losses of

the medium. In contrast to the usual two-level type sys-

tems [3] this absorption is here determined by the decay

of the ground state coherence and by the detuning of one

of the driving �elds from single photon resonance (�).

For

j
j2 � 
0
a; �� 
a;
 (19)

ideal correlations of Stokes and anti-Stokes �elds are ob-

tained.

For non-zero Fourier components the noise reduction

deteriorates. It is clear that the bandwidth of squeezing is

always on the order of the spectral width of the generated

�eld, which becomes small near the oscillation threshold.

For su�ciently small 
0; ! and jM j we can approximate

S(!) as:

Sopt(!) �
(jM j2=2 +

p
1 + !2=�!20 � 1)2

jM j2 + !2=�!20

+
�

4

�
2

0�

j
j2
+


a

�

�
Z(!); (20)

where �!0 = 
2=� and we have set � to the optimum

value for each Fourier frequency � = �=4 � �L!=(2
2).

Z(!) � 1 is some function, which is on the order of unity

for arbitrary !. Its exact form is of no importance here.

It follows directly from the above equation that squeez-

ing is present for ! < 
2=�, whereas maximum correla-

tions, given by Eq. (18), occur within the bandwidth on

the order of 
0(

2=
a
0)

1=4. It is worth noting that in

the present system all relevant spectral widths are deter-

mined by the atomic dispersion [10].

It is important to emphasize that the strong coupling

regime corresponding to the conditions of ideal photon

correlations or squeezing (19) can easily be realized even

for very low driving-�eld intensities, since the ground-

state relaxation rate 
0 can be very small. For example,

in the experiments involving hyper�ne sublevels of the

ground state of alkali vapors such as [7], this rate could be

made as small as 1�100 Hz. Even if a detuning � on the

order of few tens of MHz is chosen, the Rabi frequencies

corresponding to the value 
2 = 
0j�j may well be close

to the tens of kHz level. Under experimental conditions

where the driving beams are in single spatial modes and

di�raction limited, � � 1�m, and where the optical pulse

length is on the order of coherence life time (� 1=
0),
the required Rabi frequencies correspond to only a few

driving photons. In this limit e�cient parametric inter-

actions and mixing involving only few interacting light

quanta may take place. This opens up a rather unique

regime of nonlinear optics which allows, at least in prin-

ciple, for single photon quantum control [10,11], and for

\inelastic collisions" of single light quanta yielding cor-

related photons at di�erent frequencies or polarizations.

Furthermore, in such a regime the quantum nature of

the driving �elds as well as �nite-size e�ects may become

important [16].
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In conclusion, we have demonstrated that resonant

nonlinear interactions involving atomic coherence can be

used for e�cient generation of quantum-correlated elec-

tromagnetic �elds with 100% squeezing without the use

of cavities. We have shown that under appropriate condi-

tions the resonant wave mixing process based on double-

� atomic media can be regarded as ideal even for ex-

tremely low driving input powers. We expect these fea-

tures of coherent atomic systems to be of interest in many

areas of optics, spectroscopy and quantum control.
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FIG. 1. Atoms in double � con�guration interacting with

two classical driving �elds (
1;2) and two quantum �elds
(E1;2). All optical transitions are assumed to be radiatively

broadened.
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