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1. Introduction
We propose an integrated approach to decision support and diagnostic problems based on top-
down induction of decision trees (TDIDT) and case-based reasoning (CBR). This approach has
been implemented within the INRECA1 Esprit project. While different ways of integration
(Auriol, Manago et al., 1994) and evaluation (Althoff, Auriol et al., 1995; Althoff, 1995a;
1995b) have been carried out in the project, in this paper we want to focus on a deep kind of
integration of TDIDT and CBR that we call a seamless one. The INRECA system has been influ-
enced by both the KATE system (Manago, 1989) and the MOLTKE workbench (Althoff, 1992;
Pfeifer & Richter, 1993), which includes a.o. the PATDEX CBR system (Althoff & Wess,
1991; Richter & Wess, 1991; Wess, 1993; Althoff, 1993). The main idea is to extend the
PATDEX indexing mechanism such that it can process also numeric attributes. For this pur-
pose a k-d tree (Friedman, Bentley & Finkel, 1977) has been introduced in INRECA as one
basic structure for indexing and retrieval (Althoff, Wess et al. 1994). While this structure
allowed the use of numeric attributes and local similarity measures, it had to be extended to
preserve the main qualities of the PATDEX system (Althoff, Wess et al. 1994; Wess, Althoff &
Derwand, 1994). Within this paper we will call this extended k-d tree an Inreca tree to avoid
confusion with the original one.
Based on an Inreca tree both a decision tree and an extended k-d tree can be generated. This
allows the use of induced knowledge within a k-d tree to improve the retrieval by the use of
generalised knowledge. The more cases are available, the more general knowledge can be ex-
tracted and integrated in the Inreca tree for retrieval improvement.
In section 2 we will contrast k-d trees and decision trees, in section 3 an overview of the k-d
tree improvements is given. Finally, section 4 summarises the use of the seamless integration
of TDIDT and CBR in INRECA.

2. k-d Trees and Decision Trees
We describe the basic characteristics of these data structures and their associated building and
search strategies. We summarise their respective advantages and disadvantages and motivate
their proposed integration in the INRECA system.

2.1 k-d Trees
The basic idea of k-d tree building (Friedman, Bentley & Finkel, 1977; Wess, Althoff &
Derwand, 1994) is to structure the search space based on its observed density (respectively on
its classification goal) and to use this pre-computed structure for efficient case retrieval
(respectively for efficient diagnosis). It works like a binary fixed indexing structure for the
case retrieval. The current state-of-the-art for building such a tree consists in using an inter
quartile distance (Koopmans, 1987). Within the k-d tree an incremental best-match search is
used to find the K most similar cases (nearest neighbours) within a set of n cases with k
specified indexing attributes.
The retrieval in a k-d tree is processed by the recursive application of two test procedures:
Ball-Overlap-Bounds (BOB) and Ball-Within-Bounds (BWB) (Wess, Althoff & Derwand,

1 Induction and Reasoning from Cases (Esprit P6322).



1994). While the search is going on, a priority list is defined which contains the ordered list of
the current K most similar cases and their similarity to the query. This list is modified when a
new case comes in the "top K". The recursive procedure (beginning with the root node) runs
as follows:
• If the current node is a final one, the priority list is modified according to the similarity of

the cases belonging to this node with the query.
• If the current node is not a final one, the procedure is iterated on the child node specified

by the value of the query for the current question.
• Then a test is proceeded to look whether it is reasonable to inspect the other child nodes.

This is done through the BOB test. If this test is false, the partition of the other child nodes
cannot contain any K nearest neighbours with respect to the query. Therefore, they are not
examined further. If this test is true, the procedure is iterated on these nodes.

• At the end of the procedure, the BWB test checks whether all the K nearest neighbours
have been found, or not. If it is false, one has to expand the search to previous nodes in the
tree.

BOB and BWB are relatively simple geometrical procedures (Wess, 1995). Unfortunately, they
are limited with respect to the treatment of ordered symbolic and numeric data (Auriol,
Manago et al., 1994).

2.2 Decision Trees
A decision tree is built upon a database of training cases. The partitioning procedure uses
traditionally a hill-climbing search strategy and a preference criterion based on the
information gain based on Shannon’s entropy (Shannon & Weaver, 1947), like the ID3 system
(Quinlan, 1986). At each node in the decision tree, the information gain is evaluated for all the
attributes which are relevant and the one is picked which yields the highest increase of the
information gain measure (Manago, 1989). The four main steps of a decision tree builder are:
• Test if a node is a final one. A final node is labelled with the name of the most probable

class in the node (the probability is evaluated through the relative frequency of each class
in the node);

• Develop the space of relevant attributes at each node;
• Select the best partitioning attribute of a node;
• Split the cases in disjoint subsets according to the chosen attribute.

Aspects Decision tree k-d tree I NRECA tree
Similarity measure not necessary necessary, has to meet

monotony requirements
multiple, class-specific simi-

larity measures
nearest neighbour classifica-

tion using similarity measures
not possible possible possible

Result classification K nearest neighbours classification and
K nearest neighbours

Backtracking in the tree not necessary necessary possible
Cases during retrieval not necessary necessary possible

Order of tests fixed query case has to be
completely described
w.r.t. indexing slots

arbitrary presentation of
query including unknown

values
Unordered value ranges possible impossible possible
Ordered value ranges not necessary necessary possible

Unknown attribute values costly copying of
cases

not possible efficient extension of k-d
trees for integrating unknown

values
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2.3 Goals of the integration
Both mechanisms are limited in several ways (Manago, Althoff et al., 1993). We summarise
the main points briefly:
• Decision trees: lack of flexibility and incrementallity, sensibility to errors and noise in the

data;
• k-d trees: lack of knowledge generalisation, efficiency, and treatment of unknown and un-



ordered symbolic data (because of the BOB and BWB tests).
Table 1 aims at contrasting decision trees and k-d trees and at presenting the improvements
gained with integration.

The above contrast calls especially for extending k-d trees with decision-tree-like efficient
classification abilities, also for attributes with unordered value ranges. We present such an
extension in the next section.

3. Improvements
We present an extension of the k-d tree building and search methods and describe the deter-
mination of optimal weight vectors based on the computation of global and local similarity
measures. The determination of weights is then extended to cover also disjunctive concepts
discovered in the Inreca tree structure. In addition, the achieved similarity measures are im-
proved by the extraction of knowledge from decision trees. This enables the proposed seam-
less integration of induction and case-based reasoning. The resulting system is a completely
integrated one. The same tree can be used simultaneously as a k-d tree in the case-based
reasoning process for case indexing and retrieval, or as a decision tree in the induction process
for case generalisation. The interactions between both approaches are greatly enhanced. As
we will illustrate, by this enhancement we obtain a more flexible and acceptable tool that is
easier to use and to maintain.

3.1 Extension of k-d tree building and retrieval methods
This extension aims at creating a single Inreca tree that can be used indifferently as a k-d tree
for retrieval and as a decision tree for knowledge and rules extraction. Like in a decision tree
and in a k-d tree, the branches of an Inreca tree represent constraints for certain attributes of
the cases. Since we need to handle ordered and unordered value ranges as well as unknown
attribute values, we introduce different kinds of branches. These branches are shown in figure
2.

Unordered Value Ranges

A  = vi ij
?

unknown
. . .

v v v
. . .

i1 ij im

Ordered Value Ranges

A  = vi ij
?

< = > unknown
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As stated previously, the current k-d trees cannot handle unknown and unordered symbolic
data. However, let us assume that this kind of data arise often, whatever the attribute choice
strategy2. Therefore, the retrieval strategy in the k-d tree procedure has to be modified, such
that it can deal with cases that contain unordered or unknown attributes as it can be done in
decision trees.
This is done through an extension of the BOB and BWB Boolean tests presented in section 2.1,
that work primarily on binary trees, towards more general multi-dimensional trees. Beside
these two tests the basic retrieval procedure remains unchanged.

2 We investigated several attribute choice strategies for building the INRECA tree [Auriol et
al., 1994]: (1) the interquartile distance used in the default k-d tree computes the distance
between the first and the third quartile of a partition; (2) the maximum distance takes the
greatest distance between two consecutive values of an attribute; (3) the average similarity
measure estimates the dispersion of cases with respect to a given partition of the database;
(4) the information gain measure computes the difference of entropy between a case base
and its partition built from a specific attribute. (1) and (2) are restricted to ordered
symbolic and numeric attributes, whereas (3) and (4) are more general. All of these
measures are implemented in INRECA.



3.1.1. Extension of the BOB Test
The BOB test is executed in order to recognise whether a node may contain some candidates
that are more similar to the current query than those that have already been found. Therefore,
the geometrical bounds of the node are used to define a test point that is most similar to the
current query but still lies within the geometrical bounds of the current node. If this test point
is in the ball it means that the ball overlaps with the node and then there may be a candidate to
the priority list in this node. The extension of the BOB test requires that the way how these test
points are constructed also takes unordered value ranges and unknown values into account.
The definition of such a test point requires the assignment of a value to each attribute used in
the case description. The value xj for each attribute Aj must

a) lie within the geometrical bounds of the dimension defined by the attribute and the
node to be investigated and it must be

b) most similar (with respect to the local similarity for this attribute) to the value qj of the
attribute in the query.

For attributes Aj with ordered value ranges, we determine the bounds (lj...uj) defined by the
attribute and the current node in the tree. The value xj of the test point is as follows:

xj =

unknownif thenodeis in theunknownbranchof Aj

* if thenodeis not in a branchof Aj

qj if qj ≥ l j andqj ≤ uj

l j if qj

#
l j

u j if qj

$
uj








î



  (1)

In this definition, * denotes a new special value assumed in every value range. The local simi-
larity between * and every other value in the value range is defined to be equal to 1. This as-
signment leads to the most pessimistic assumption about possible values for the attribute Aj in
the cases that belong to the current node. If the current node is in the unknown branch of the
attribute Aj, then xj can also be assigned unknown because all cases belonging to that node
have definitely an unknown value for this attribute.
For attributes with an unordered value range xj is defined as follows:

xj =
unknownif thenodeis in theunknownbranchof Aj

vj if thenodeis in thevj branchof Aj

* if thenodeis not in a branchof Aj






î


(2)
In this case, we also have to make the most pessimistic assumption about the possible values
of attributes that do not occur already in the path from the root to the current node.

3.1.2. Extension of the BWB Test
The extension of the BWB for correctly handling unknown values and unordered value ranges
can be done similar to the extension of the BOB test (Wess, 1995). Unfortunately, this exten-
sion significantly increases the computational cost for executing this test. Early experiments
demonstrated that, in the case of unordered symbolic attributes, the BWB test can perform
poorly under certain circumstances. Let us recall that this test aims at terminating the retrieval
process by deciding at a given node of the tree whether all nearest cases have been found, or
not. This results in a reduced number of examined cases. Unfortunately, the gain obtained in
the case of unordered symbolic attributes is illusory, because the test has to verify each di-
mension of the attribute space, what can be very high for this type of attribute. However, the
execution of this test can nevertheless pay-off, if the access to the cases is very expensive, for
example if the cases are stored in some external storage (Manago & Auriol, 1995).

3.2 Determination of Optimal Weight Vectors through Global and Local Similarity
Measure Computation

A global similarity measure SIM between two cases a and b can be defined as a weighted sum
of local similarity measures simj between the p attributes that make up the cases. The weights
wjk evaluate the relative importance of the attributes for each class.



SIM(a,b) = wjk × simj (Aj (a),Aj (b))
j =1

p

∑ (3)

where Aj(a) (resp. Aj(b)) stands for the value of case a (resp. b) for attribute Aj.
It is usual that the system user sets up these weights manually. Afterwards, a normalisation
procedure is used such that the sum of the weights is one. This kind of job is error-prone and
should be avoided in some real-world applications. Moreover, one usually evaluates only
global weights for each attribute, without taking care about the class to which the cases be-
long. We propose that the system computes automatically the weights used in the similarity
measures. For this purpose, we extend the average similarity measure to local intra- and inter-
classes distances. The “class” of each case is given by its diagnosis.

3.2.1. Determination of Weights given the Classes
In a diagnostic problem, we know for each case its associated class. Therefore, we can com-
pute the above similarities as follows:
• The local intra-class distance measures to which extent a case a is near to the cases b that

belong to its own class with respect to attribute Aj are given by:

simj ,k
∪ = 1

Mk

2 sim(Aj (a),Aj (b))
a,b∈ Mk

∑ (4)

where Aj(a) (resp. Aj(b)) stands for the value of case a (resp. b) for attribute Aj.
• The inter-class distance measures to which extent a case is far from the cases that belong to

other classes with respect to attribute Aj are defined as follows:

simj ,k
∩ = 1

Mk M − Mk

sim(Aj (a),Aj (b))
a∈ Mk ,b∈ M −Mk

∑ (5)

The goal of setting optimal weights is to minimise the intra-class distance and to maximise
the inter-class distance between cases. For this purpose, the weight relative to each class Mk
and each attribute Aj is defined by:

wjk =
max 0,simj ,k

∪ − simj ,k
∩{ }

max 0,simj ,k
∪ − simj ,k

∩{ }
k=1

K

∑
(6)

The knowledge we have about the class of each case is transferred to the similarity measure
through the definition of the weights. In the next section, we go a step further by using
knowledge extracted from a decision tree.

3.2.2. Determination of Weights given a Decision Tree
The basic idea of this section is the same as the previous one. However, instead of directly
using the partition of cases given by the class target (as given in the database), we consider an
artificial partition built with a decision tree (i.e., the Inreca tree). A decision tree is a repre-
sentation of a set of sufficient conditions for a case to fall in some class Mk (the rules). Each
condition refers to a single attribute Aj contained in the cases. We now want to compile such a
set of conditions for the attributes, required to fall in a leaf node of the Inreca tree, into the
local similarity measure. Thereby, the user-defined similarity measure is modified on the
ground of the induced general knowledge. The process is two-folds:
• Build a decision tree based on the database of cases;
• Extract the weights with respect to the subclasses discovered in the tree.
The main difference with the former method is that we can use disjunctive concepts (i.e., con-
cepts described by a disjunction of conjunctions of features) to refine the classes' weights.
This approach requires that besides the class specific weights introduced in Sect. 3.2.1, class
specific local similarity functions simj are allowed too. This extension is reflected in the fol-
lowing definition of the global similarity. In this definition, the first argument to SIM refers to
the cases of the case bases (which are already classified) and the second argument refers to
the query case.



SIM(a,b) = wjk × simj
' (Aj (a),Aj (b))

j =1

p

∑ (7)

where simj
' (x,y) =

1, if  x  and y  are covered by the same rule (cf. Fig. 4)

simj (x,y)  else (cf. Fig. 3)


î

(8)
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4. Results
The Inreca tree meets all the requirements presented in table 1. The introduced improvements
allow the implementation of a CBR system (Fig. 3) and an inductive system (Fig. 4). The
integrated system combines these approaches in a seamless way (Fig. 5) that is completely
transparent for the user. If a general concept has been learned that can answer a given query,
this is the result of the retrieval process and no more backtracking has to be carried out (Fig.
6). The usual k-d tree search is applied only if the query lies not within the “region” of an
induced concept. In the course of time, more and more generalised concepts can be induced
based on an increasing number of cases. Thus, the INRECA system can “smoothly” evolve
from a (more or less) pure CBR system to a system that (more or less) purely reasons based on
inductively learned knowledge (Fig. 7).
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