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We show that the physical mechanism of population transfer in a 3-level system with a closed
loop of coherent couplings (loop-STIRAP) is not equivalent to an adiabatic rotation of the dark-state
of the Hamiltonian but coresponds to a rotation of a higher-order trapping state in a generalized
adiabatic basis. The concept of generalized adiabatic basis sets is used as a constructive tool to
design pulse sequences for stimulated Raman adiabatic passage (STIRAP) which give maximum
population transfer also under conditions when the usual condition of adiabaticty is only poorly
ful�lled. Under certain conditions for the pulses (generalized matched pulses) there exists a higher-
order trapping state, which is an exact constant of motion and analytic solutions for the atomic
dynamics can be derived.

I. INTRODUCTION

The transfer of population in a multi-level atomic system from an initial to a target quantum state in a fast and

e�ective way is currently a problem of practical importance as well as of substantial theoretical interest. If there is

a dipole allowed transition between an initial and a target state, one can achieve the desired transfer by using either

a constant-frequency �-pulse tuned to resonance, or an adiabatic process based on a swept carrier-frequency. Since

a dipole-allowed transition implies radiative decay, one is however often interested in systems with two metastable

states without a direct electric-dipole coupling. Whereas an extension of the two-state �-pulse approach to multistate

excitation is possible, these techniques require careful control of the pulse areas. Adiabatic processes do not require

such precise control, if the time-evolution is slow (meaning, generally, large pulse areas). In a three-state Raman-

transition system, for example, it is possible to achieve adiabatic passage with the use of two constant-frequency pulses

suitably delayed (counterintuitive order) [1]. The process of this stimulated Raman adiabatic passage (STIRAP) [2,3]

can be represented by a slow rotation of a decoupled eigenstate of the H amiltonian (dark state) [4].

The disadvantage of STIRAP is the requirement for large pulse areas: to ensure adiabatic time evolution the e�ective

average Rabi-frequency of the pulses must be large compared to the radiative decay rates of the intermediate level(s).

Non-adiabatic corrections and the associated diabatic losses [5{7], scale with 1=
T where �h
 is a characteristic

interaction energy and T is the e�ective time required for the transfer. In some potential applications, as for example

the transfer of information in form of coherences [8], it is desirable to minimize these losses without the need of

intense pulses or long transfer times. Intense �elds induce time-varying ac-Stark shifts, which may be detrimental to

the coherence transfer. Short times are required to minimize the e�ect of decoherence processes during the transfer

[9].

An approach, which reduces non-adiabatic losses for pulses of moderate 
uence in a three-state system, was recently

introduced in Ref. [10]. In addition to the pair of Raman pulses (\pump pulse" and \Stokes pulse") which couple

the initial and target state via a common upper level, a direct coupling (called \detuning pulse") between them is

introduced. This scheme of loop-STIRAP does not require the usual adiabaticity conditions (of large pulse areas), nor

is it of the �-pulse type (requiring speci�c pulse areas). Nevertheless, the scheme can produce complete population

transfer.

In the present paper we show that the physical mechanism of loop-STIRAP is not an adiabatic rotation of the dark

state, but the rotation of a higher-order trapping state in a generalized adiabatic basis. The concept of generalized
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adiabatic basis sets allows to rationalize many examples of population transfer even when the adiabaticity condition is

poorly ful�lled. If pump and Stokes pulses ful�ll certain conditions (they are then called generalized matched pulses),

a higher-order trapping exists, which is an exact constant of motion. In this case analytic solutions for the atomic

dynamics can be found which in contrast to the case of ordinary matched pulses with identical pulse shape [12] also

include the possibility of population transfer. This can be exploited to design pulse sequences which give maximum

population transfer. In contrast to techniques based on optimum control theory, which are used for such tasks, the

generalized-dark-state concept provides a physical interpretation of the results. However, the design of pulse, which in

some cases can lead to complete population transfer (i.e. without any diabatic losses) needs to respect more restrictive

requirements for speci�c pulse properties similar to �-pulse techniques.

Our paper is organized as follows. In Sec.II we discuss the loop-STIRAP and propose a simple physical interpretation

in terms of an adiabatic rotation of a generalized trapping state. In Sec.III we de�ne generalized trapping states via

an iterative partial diagonalization of the time-dependent Hamiltonian. In Sec.IV we derive conditions under which

a higher-order trapping state is an exact constant of motion and thus allow for an analytic solution of the atomic

dynamics. Finally, various examples of population and coherence transfer based on generalized trapping states are

discussed in Sec.V.

II. LOOP-STIRAP

To set the stage we consider in the present section a three-state system driven by coherent �elds in a loop con-

�guration, as shown in Fig. 1. The bare atomic states  1 and  3 are coupled by a resonant Raman transition via

the excited atomic state  2 by a pump pulse and a Stokes pulse, having Rabi-frequencies P (t) and S(t), respectively,

which are in general complex. In addition there is a direct coupling between states 1 and 3 by a coherent detuning

pulse described by the (complex) Rabi-frequency D(t). Before the application of the pulses the system is in state 1

and the goal is to transfer all population into the target state 3 by an appropriate sequence of pulses. For simplicity we

assume that the carrier frequencies of the pulses coincide with the atomic transition frequencies and that the phases

of the pulses are time-independent. Since the phases of pump and Stokes �elds can be included into the de�nition of

the bare atomic states  1 and  3, they can be set equal to zero without loss of generality. The phase of the detuning

pulse is relevant and cannot be eliminated. The time-dependent Schr�odinger equation for this system, in the usual

rotating wave approximation, reads

d

dt
C(t) = �iW(t)C(t) (1)

where C(t) is the column vector of probability amplitudes C
n
(t) = hnj (t)i, (jni 2 f 1;  2;  3g). The evolution

matrix W(t) has the form

W(t) =
1

2

24 0 P (t) D(t)

P (t) 0 S(t)

D
�(t) S(t) 0

35 : (2)

2

1 3

P(t) S(t)

D(t)

FIG. 1. Three-state system with loop linkage. P (t), S(t), D(t) denote Rabi-frequencies of pump, Stokes and detuning pulse.

It is well known that the counterintuitive pulse sequence (Stokes puls precedes pump pulse, without a detuning

pulse) leads to an almost complete population transfer, if the adiabaticity condition 
T � 1 is ful�lled. Here T is

the characteristic time for the transfer, given by the interval where S(t) and P (t) overlap, and 
 the e�ective total

Rabi-frequency averaged over the interval T
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 =
1

T

Z
1

�1

dt

p
P (t)2 + S(t)2: (3)

As shown in [10] an almost perfect transfer is also possible when pump and Stokes alone do not ful�ll the adiabaticity

condition by applying an additional detuning pulse. Fig. 2 illustrates an example of ramped pump and Stokes pulses

intersected by a hyperbolic-secant detuning pulse,

P (t) = A
P
sin
h1
2
arctan

�
t=T

P

�
+
�

4

i
; (4)

S(t) = A
S
cos

h1
2
arctan

�
t=T

S

�
+
�

4

i
; (5)

D(t) = A
D
sech

�
t=T

D

�
: (6)
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FIG. 2. Pair of ramped pump (line) and Stokes (dotted) pulses with AP = AS = 20 and TP = TS = 0:1 applied in
counterintuitive order (Stokes precedes pump) with additional hyperbolic secant detuning pulse (dashed) with AD = �13:4i
and TD = 0:2

Fig. 3 shows examples of population histories for these pulses. When only the pump and Stokes pulses are present,

the population transfer is rather poor, since the pulse areas are small (
T � jA
P
jT

P
= jA

S
jT

S
= 2). As can be seen

from the upper part of Fig.3, only about 70% of the initial population ends up in state 3.
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FIG. 3. Populations of states  1 (line),  2 (dotted) and  3 (dashed) for pulse sequence of Fig.2. The upper picture shows
population when only pump and Stokes pulses are applied, and the lower one if the detuning pulse is added.
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The situation is remarkably di�erent when a detuning pulse with jA
D
jT

D
� 2:7 and a phase factor of e�i�=2 is

applied; see the lower part of Fig.3. With a detuning pulse present all the population is transfered from the initial to

the target state. This result is relatively insensitive to changes in the amplitude (or the shape of the detuning pulse)

if the phase is ��=2.
We note that in contrast to ordinary STIRAP there is (for a short time) a substantial intermediate population of

state 2. This indicates that the transfer does not occur as adiabatic rotation of the dark state from  1 to  3.

For our present discussion it is useful to describe ordinary STIRAP in terms of the following set of adiabatic

superposition states 24�1(t)

�2(t)

�3(t)

35 = U(t)�

24 1 2
 3

35 (7)

with the unitary matrix

U(t) =

24 0 1 0

sin �0(t) 0 cos �0(t)

i cos �0(t) 0 �i sin �0(t)

35 : (8)

The dynamical angle �0 is de�ned by

tan �0(t) =
P (t)

S(t)
: (9)

The vector of probability amplitudes in the bare atomic basisC(t) and a corresponding vector B(t) in the superposition

basis (7) are related through the transformation

B(t) = U(t)C(t): (10)

Since U(t) is time-dependent, the transformed evolution matrix has the form

W(t)! eW(t) = U(t)W(t)U(t)�1 + i _U(t)U(t)�1: (11)

In the adiabatic limit, the second term can be disregarded and we are left with the �rst one, which for ordinary

STIRAP, i.e. without the detuning pulse, reads

U(t)W(t)U(t)�1 =
1

2

24 0 
(t) 0


(t) 0 0

0 0 0

35 ; (12)

where 
(t) =
p
P (t)2 + S(t)2. One recognizes that the superposition state �3(t) is decoupled from the coherent inter-

action in this limit. Moreover, because �3(t) does not contain the excited atomic state  2, it does not spontaneously

radiate and is therefore called a dark state [4]. For a counterintuitive sequence of pulses the angle �0(t) vanishes

initially and approaches �=2 for t ! 1. Thus �3(t) asymptotically coincides with the initial and target states for

t!�1 respectively. Therefore ordinary STIRAP can be understood as a rotation of the adiabatic dark state �3(t)

from the initial to the target bare atomic state [3]. Non-adiabatic corrections are contained in the second contribution

to eW(t)

i _U(t)U(t)�1 =
1

2

24 0 0 0

0 0 2 _�0(t)

0 2 _�0(t) 0

35 : (13)

They give rise to a coupling between the dark state �3(t) and the so-called bright state �2(t).

Let us now apply the same transformation to the loop-STIRAP system, i.e. including the detuning pulse. We �nd:

eW(t) =
1

2

24 0 
(t) 0


(t) Re
�
D(t)

�
sin 2�0(t) 2 _�0(t) + i

�
D(t) sin2 �0(t)�D

�(t) cos2 �0(t)
�

0 2 _�0(t)� i
�
D
�(t) sin2 �0(t)�D(t) cos2 �0(t)

�
�Re

�
D(t)

�
sin 2�0(t)

35 : (14)
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If D(t) is real or complex but not strictly imaginary, there is a time dependent energy shift of the superposition states

�2(t) and �3(t) and the detuning pulse adds an imaginary part to the nonadiabatic coupling. If D(t) is imaginary, as

in the example discussed above, there is no detuning but a real contribution to the nonadibatic coupling. Let us now

assume an imaginary detuning pulse, i.e. D(t) = i eD(t), with eD(t) being real. In this case the transformed evolution

matrix simpli�es to

eW(t) =
1

2

24 0 
(t) 0


(t) 0 2 _�0(t) � eD(t)

0 2 _�0(t) � eD(t) 0

35 : (15)

If the amplitude of the detuning pulse matches the non-adiabatic term, i.e. if eD(t) = 2 _�0(t), the dark state �3 is

exactly decoupled even if the adiabaticity condition for pump and Stokes alone (
(t) being much larger than _�0(t))

is not ful�lled. However, since �0(t) rotates from 0 to �=2, the detuning pulse would have to be exactly a �-pulse in

such a case. Z
1

�1

dt eD(t) = Z
1

�1

dt 2 _�0(t) = 2�0(t)
���+1
�1

= � (16)

Furthermore no pump or Stokes pulses were required for population transfer to begin with, since at any time the

entire population is kept in the dark state by the action of the detuning pulse and thus pump and Stokes would not

interact with the atoms. This is consistent with the observation that an exactly decoupled state �3 implies exactly

vanishing (not only adiabatically small!) probability amplitude of the excited bare state  2 for all times. Since the

origin of population transfer in this case is the well-known phenomenon of �-pulse coupling, which requires a careful

control of the area and the shape of the detuning pulse, the case eD(t) = 2 _�0(t) is of no further interest here.

On the other hand, if eD(t) is negative, as in the example of Fig.2, the non-adiabatic coupling is e�ectively increased

by the detuning pulse (note that d�0(t)=dt > 0). Thus the success of population transfer in Fig.3 cannot be understood

as dark-state rotation. This is illustrated in Fig.4, which shows the populations of the superposition states �1 =  2,

�2, and �3 for the above example. One clearly sees that about 80% of the population is driven out of the dark state

during the interaction.
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FIG. 4. Population of superposition states �1 (dashed), �2 (dotted), and the dark state �3 (line). Parameters are that of
Fig.2

It is worth noting, however, that �2 remains almost unpopulated during the interaction and all population exchange

happens between states �1 and �3. This suggests an interpretation of the process as adiabatic population return

between the superposition states �1 and �3. In fact comparing the dressed-state evolution matrix eW(t), Eq.(15), with

the bare-state evolution matrix W(t), Eq.(2) (without detuning pulse), one recognizes a formal agreement with the

correspondence P (t) $ 
(t) and S(t) $ 2 _�0(t) � eD(t). That is there exists a generalized trapping state which is a

superposition of the states �1 and �3. Since here 
(t) = const. and 2 _�0(t) � eD(t) vanishes in the asymptotic limits

t ! �1, this generalized trapping state coincides with �3 for t ! �1, which in turn coincides with  1 and  3 in

the respective limits.

To quantify this statement let us introduce a basis of second-order adiabatic states. Using now the �rst-order states

�1, �2, and �3 as a basis set instead of the bare atomic states, we introduce in analogy to Eq.(7)
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264�
(2)
1 (t)

�
(2)
2 (t)

�
(2)
3 (t)

375 = U1(t)
�

24�1(t)

�2(t)

�3(t)

35 = U1(t)
� � U(t)�

24 1 2
 3

35 : (17)

The unitary transformation matrix is given by

U1(t) =

24 0 1 0

sin �1(t) 0 cos �1(t)

i cos �1(t) 0 �i sin �1(t)

35 : (18)

which has the same form as U(t), Eq.(2) but here the dynamical angle �1(t) is de�ned by

tan �1(t) =

(t)

2 _�0(t)� eD(t) : (19)

Denoting the vector of probability amplitudes in these generalized adiabatic states by B(2)(t) we �nd the relation

B
(2)(t) = U1(t)B(t): (20)

One easily veri�es that for the above example more than 95% of the population remains in the generalized trapping

state �
(2)
3 (t). Thus the success of the population transfer in loop STIRAP can be understood as a rotation of the

second-order decoupled state �
(2)
3 (t) { which is an approximate constant of motion { from the initial to the target

bare atomic state.

III. GENERALIZED ADIABATIC BASIS AND GENERALIZED TRAPPING STATES FOR STIRAP

We now return to the case of ordinary STIRAP, i.e. without a detuning pulse D. The formal equivalence of W(t)

and eW(t) suggest an iteration of the procedure introduced in the last section. We de�ne an nth order generalized

adiabatic basis by the iteration:264�
(n)
1 (t)

�
(n)
2 (t)

�
(n)
3 (t)

375 = U
n�1(t)

�

264�
(n�1)
1 (t)

�
(n�1)(t)
2

�
(n�1)
3 (t)

375 = U
n�1(t)

� � U
n�2(t)

� � � �U0(t)�

24 1 2
 3

35 : (21)

Correspondingly we obtain for the vector of probability amplitudes in the nth order basis

B
(n) = U

n�1B
(n�1) = U

n�1 � Un�2 � � �U0C � V
n
C (22)

where we have dropped the time dependence. The nth order transformation matrix is de�ned as

U
n
(t) �

24 0 1 0

sin �
n
(t) 0 cos �

n
(t)

i cos �
n
(t) 0 �i sin �

n
(t)

35 ; (23)

with

sin �0(t) =
P (t)


0(t)
; cos �0(t) =

S(t)


0(t)
; 
0(t) =

p
P (t)2 + S(t)2; (24)

sin �
n
(t) =



n�1(t)



n
(t)

; cos �
n
(t) =

2 _�
n�1(t)



n
(t)

; 

n
(t) =

q


n�1(t)2 + 4 _�

n�1(t)2: (25)

The iteration is illustrated in Fig.5.
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FIG. 5. Iterative de�nition of nth order adiabatic basis

In the nth-order basis, the equation of motion has then the form

d

dt
B

(n)(t) = �iW
n
(t)B(n)(t); (26)

with

W
n
(t) �

1

2

24 0 

n
(t) sin �

n
(t) 0



n
(t) sin �

n
(t) 0 


n
(t) cos �

n
(t)

0 

n
(t) cos �

n
(t) 0

35 (27)

=
1

2

24 0 

n�1(t) 0



n�1(t) 0 2 _�

n�1(t)

0 2 _�
n�1(t) 0

35 :
If cos �

k
(t) vanishes, which implies that �

k�1 is time-independent, the state �
(k)
3 decouples from the interaction.

In this case exact analytic solutions of the atomic dynamics can be found as discussed in the next section. The

analytic solutions also include cases of population or coherence transfer. If cos �
k
(t) does not vanish but is small, the

corresponding coupling in the evolution matrix can be treated perturbatively. In such a situation we have a generalized

adiabatic dynamics.

In conclusion of this section it should be noted, that the iterative de�nition of a generalized adiabatic basis is

conceptually very similar to the superadiabatic approach of Berry [11] introduced for two-level systems.

IV. GENERALIZED MATCHED PULSES AND ANALYTIC SOLUTION OF ATOMIC DYNAMICS

If a dynamical angle �
n�1 is a constant, the time-dependent state �

(n)
3 (t) is decoupled from the interaction (constant

of motion). In this case the dynamical problem reduces to that of a two-state system interacting via a real resonant

coherent coupling plus a decoupled state.

d

dt

264B
(n)
1 (t)

B
(n)
2 (t)

B
(n)
3 (t)

375 = �
i

2

24 0 

n�1(t) 0



n�1(t) 0 0

0 0 0

35
264B

(n)
1 (t)

B
(n)
2 (t)

B
(n)
3 (t)

375 (28)

This equation can immediately be solved

B
(n)
1 (t) = B

(n)
1 (0) cos�(t)� iB

(n)
2 (0) sin�(t); (29)

B
(n)
2 (t) = B

(n)
2 (0) cos�(t)� iB

(n)
1 (0) sin�(t); (30)

B
(n)
3 (t) = B

(n)
3 (0); (31)

where
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�(t) =
1

2

Z
t

0

d� 

n�1(� ): (32)

In particular if the atom is initially in the trapping state, it will stay in that state.

For example if �0 does not depend on time, the usual dark state �
(1)
3 is an exact constant of motion. As can be

seen from Eq.(9), for �0 to be time-independent, Stokes and pump need to be either cw �elds or need to have the

same envelope function, i.e. have to be matched pulses [12],

S(t) = 
0(t) cos �0; (33)

P (t) = 
0(t) sin �0; (34)

where 
0(t) can be an arbitrary function of time and �0 =const. The atomic dynamics is trivial in this case. Since

�
(1)
3 is time-independent, the trapping state is a constant superposition of the bare atomic states 1 and 3.

On the other hand, if some higher-order dynamical angle �
n
is constant, the system remains in a generalized

trapping state if initially prepared in it. The projection of this state onto the bare atomic basis is in general time-

dependent, and one can have a substantial rearrangement of atomic level population including population transfer. If

a higher-order dynamical angle is constant we will call pump and Stokes pulses generalized matched pulses.

To obtain an explicit condition for generalized matched pulses in terms of P (t) and S(t) we successively integrate

relations (25). This leads to the iteration

�
k�1(t) =

1

2

Z
t

�1

dt
0


k
(t0) cos �

k
(t0) + �

0
k
;



k�1(t) = 


k
(t) sin �

k
(t); (35)

starting with some �
n
(t) = �

n
= const. and 


n
(t) as an arbitrary function of time. Each iteration leads to one constant

�
0
k
, which can be freely chosen. The application of generalized matched pulses to coherent population transfer will be

discussed in the next section.

As noted before there may be cases, where for some number n the dynamical angle �
n
(t) does depend on time

but its time-derivative is much smaller than the corresponding generalized Rabi-frequency 

n
(t), while the same is

not true for all k < n. In this case the state �
(n)
3 (t) is an approximate constant of motion and we have an nth

order adiabatic process. The example of loop-STIRAP discussed in the last section is a realization of a higher-order

adiabatic process, which is non-adiabatic in the �rst-order basis.

V. APPLICATION OF GENERALIZED MATCHED PULSES TO POPULATION- AND COHERENCE

TRANSFER

In the following we discuss several examples for a coherent transfer of population from one non-decaying state to

the other or to the excited state using generalized matched pulses. We furthermore discuss the possibility to transfer

coherence, for example from the ground state transition to an optical transition. Since in all cases there exist a

generalized trapping state which is an exact constant of motion, we can obtain exact analytic results for the atomic

dynamics.

A. Population and coherence transfer with second-order generalized matched pulses

1. Complete transfer of coherence from a ground-state doublet to an optical transition

First we discuss the case when �
(2)
3 is an exact constant of motion, i.e. a trapping state. Furthermore we assume

that the state vector 	 coincides with this trapping state at t = �1. Then the system will remain in the trapping

state at later times. Therefore �1 =const. and it is clear from Fig.5 that 	 is a time independent superposition of

states �
(1)
1 and �

(1)
3 and thus has at all times a constant probability amplitude of the bare atomic state 2. In fact

from

C = V�12 B
(2) = V�12

2400
1

35 (36)

8



we �nd 24C1(t)

C2(t)

C3(t)

35 = �i cos �1

24 i tan �1 cos �0(t)

1

�i tan �1 sin �0(t)

35 : (37)

We now identify state 2 with a lower i.e. non-decaying level and state 3 with an excited states. The pump pulse

P (t) then couples two ground states which could be realized for example by a magnetic coupling. The Stokes pulse,

which couples states 2 and 3 is considered an optical pulse. Due to the �nite and constant admixture of state 2 to

the trapping state, second-order generalized matched pulses are best suited to transfer coherence for example from

the 1-2 transition to the 3-2 transition.

We now want to construct pulses, that would lead to the desired complete coherence transfer. To achieve this we

have to satisfy the initial and �nal conditions

�0(�1) = 0; (38)

�0(+1) = �=2: (39)

On the other hand, the iteration equation (35) requires for second-order matched pulses that

�0(t) =
1

2

Z
t

�1

dt
0
1(t

0) cos �1 + �
0
0 ; (40)


0(t) = 
1(t) sin �1; (41)

where �1 and �
0
0 are arbitrary constants and 
1(t) an arbitrary positive function of time. To ful�ll the initial condition

(38) we set �00 = 0. In order to satisfy the �nal condition (39) we then have to adjust the total pulse area (see Eq.(40))

A0 =

Z
1

�1

dt
0(t) = � tan �1: (42)

Thus pump and Stokes pulses have the form

P (t) = 
0(t) sin

�
�A (t)

2A0

�
; (43)

S(t) = 
0(t) cos

�
�A (t)

2A0

�
: (44)

with

A (t) =

Z
t

�1

dt
0
0(t

0) (45)

With this choice an initial coherent superposition of states 2 and 1

	(�1) = �i cos �1  2 + sin �1  1 (46)

can be completely mapped into a coherent superposition of states 2 and 3

	(+1) = �i cos �1  2 � sin �1  3: (47)

In order to transfer a given ground-state coherence to an optical transition the pulse area A0 should be chosen

according to (42), A0 = jC1(�1)=C2(�1)j. The shape of 
(t) is otherwise arbitrary. It should be noted that

Eq.(46) requires a certain �xed phase of the initial coherent superposition. The phase of the pump pulse, which is

included in the de�nition of  1 (cf. Sec.II), may need adjustment to satisfy this condition.

In Fig.6 we have shown the populations of the bare atomic states for the example 
0(t) =
p
� exp(�t2) (A = �) and

	(�1) = 1=
p
2
�
 1� i 2

�
from a numerical solution of the Schr�odinger equation. One clearly sees that all population

from state 1 is transferred to state 3. This transfer happens without diabatic losses despite the fact that A = � and

thus the usual adiabaticity condition is only poorly ful�lled.
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FIG. 6. Example of complete coherence transfer from 1� 2 to 3� 2 with second-order generalized matched pulses. Plotted

are the populations of bare atomic states for a pair of pulses as shown in the insert. One recognizes constant population in
state 2 and complete transfer of population in 1 to 3.

The process discussed here may have some interesting applications, since it allows to transfer coherence from a

robust and long-lived ground state transition to an optically accessible transition.

The population transfer from 1 to 3 with �nite constant state amplitude in 2 discussed here coincides with the

solution found by Malinovsky and Tannor [13] with numerical optimization techniques. Assuming a �nite constant

amplitude in state 2, these authors numerically optimized the peak Rabi-frequency (which in this case is the only

remaining free parameter) to achieve maximum population transfer. They found, that in order to maximize the �nal

amount of population in state 3, the peak Rabi-frequency has to be larger than a certain critical value. This can very

easily be veri�ed from the generalized matched-pulse solutions (42,47).

jC3(1)j2 = sin2 �1 =
A
2

�2 +A2
(48)

jC2(1)j2 = cos2 �1 =
�
2

�2 + A2
: (49)

In the limit �1 ! �=2, which implies A ! 1, the admixture of level 2 vanishes and we essentially have population

transfer from state 1 to state 3.

2. Population transfer from 1 to 3 and non-exponential diabatic losses

We have seen in the last subsection that second-order matched pulses can be used to e�ectively transfer population

from state 1 to 3, if there is an initial admixture of the excited state. This amplitude is inversely proportional to the

square of the pulse area A. Therefore one could expect a good transfer for large A also if all population is initially

in state 1. In this case there is some �nite amount of population which is not trapped in the generalized dark state

�
(2)
3 . Clearly in order to achieve maximum population transfer, pump and Stokes pulse should be in counterintuitive

order and hence conditions (38) and (39) should be ful�lled. Since the pulses are assumed to be second-order matched

pulses, the dynamical problem with the initial condition264B
(2)
1 (�1)

B
(2)
2 (�1)

B
(2)
3 (�1)

375 = U1 �U0

24 10
0

35 =

24 0

i cos �1
sin �1

35 (50)

can easily be solved (see Eq.(29-31)). From Eqs.(25) we �nd 
1(t) = 
0(t)= sin �1. Thus

B
(2)
1 (1) =

�
p
�2 +A2

sin

�
1

2

p
�2 +A2

�
; (51)

B
(2)
2 (1) = i

�
p
�2 + A2

cos

�
1

2

p
�2 +A2

�
; (52)

B
(2)
3 (1) =

A
p
�2 +A2

; (53)

10



where A is the total pulse area de�ned in (42). From this we �nd the asymptotic populations of the bare atomic

states ���C1(1)
���2 = �

2

�2 + A2
sin2

�
1

2

p
�2 + A2

�
; (54)���C2(1)

���2 = 4�2A2�
�2 + A2

�2 sin4
�
1

4

p
�2 + A2

�
; (55)

���C3(1)
���2 = 1�

�2 + A2
�2 �A2 + �

2 cos

�
1

2

p
�2 + A2

��2
: (56)

Thus the diabatic losses scale in general with 1=A2, i.e. non-exponentially with A. Furthermore for

1

2

p
�2 + A2 = 2n� or A = �

p
16n2 � 1 (57)

with n = 1; 2; : : : the population transfer is complete. We show in Fig. 7 the �nal population in state 3 as a function

of A=�.
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FIG. 7. Final population in state 3 as a function of total pulse area A=� for population transfer from state 1 with second-order
matched pulses. For A=� =

p
16n2 � 1 the transfer is complete (100.00%)

A special case of the population transfer with second-order matched pulses discussed in the present section is the

analytical model discussed by Vitanov and Stenholm in [14]. These authors considered a pulse sequence with


0(t) =
�

2T
sech2

�
t

T

�
; �0(t) =

�

4

�
tanh

�
t

T

�
+ 1

�
(58)

and thus tan �1 = 
0(t)=2 _�0(t) = �=� = const.

B. Population transfer via large-area third-order matched pulses

Next we analyze the possibility of population transfer when �
(3)
3 is exactly trapped. In order for �

(3)
3 to be a

constant of motion or equivalently to have third-order matched pulses �2 =const. We assume again that the system

state vector 	 is initially in the trapping state in which it will remain for all times. In order to realise population

transfer from state 1 to state 2 or 3 in this case, we furthermore must satisfy the initial conditions

C1 (�1) = 1; C2 (�1) = 0; C3 (�1) = 0: (59)

This can be translated into a condition for the initial values of the dynamical phases �0 and �1 using Eq.(22). In fact

from

C = V�13 B
(3) = V�13

2400
1

35 (60)
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we �nd

C1(t) = i (cos �0(t) sin �1(t) sin �2 � sin �0(t) cos �2) (61)

C2(t) = �i cos �1(t) sin �2 (62)

C3(t) = �i (cos �0(t) cos �2 + sin �0(t) sin �1(t) sin �2) : (63)

The initial condition it is ful�lled when

cos �0 (�1) sin �1 (�1) sin �2 � cos �2 sin �0 (�1) = 1; (64)

sin �2 cos �1 (�1) = 0; (65)

cos �0 (�1) cos �2 + sin �2 sin �0 (�1) sin �1 (�1) = 0: (66)

The result is

�1 (�1) =
�

2
; �0 (�1) = �2 +

�

2
: (67)

From Eq.(25) we �nd the following di�erential equation

2
d�1(t)

dt
= �
1(t); where � = (tan �2)

�1 = const: (68)

Introducing

x(t) = tan �1(t) (69)

we �nd furthermore

2x _x

(1 + x2)
3=2

= �
0(t); (70)

2
d�0(t)

dt
=


0(t)

x(t)
: (71)

Integrating these equations and taking into account the initial conditions (67) yields

tan �1(t) = x(t) =

s
1

f2(t)
� 1; (72)

�0(t) = �2 +
�

2
+

1

�

h
1�

p
1� f2(t)

i
; (73)

where

f(t) =
�

2

Z
t

�1

dt
0
0 (t

0) : (74)


0(t) is an arbitrary smooth function which we assume to vanish at in�nity, 
0 (�1) = 0. We still have one free

constant �, which we can choose. As we will show now, we can choose � such that the e�ciency of the transfer from

state 1 to states 3 or 2 approaches unity.

1. Population transfer from ground state to state 3

In order to transfer the initial population from state 1 to the target state 3, it is necessary to satisfy the �nal

conditions

�1 (+1) =
�

2
; �0 (+1) = �2 (75)

which implies

12



tan �1(1) =

r
4

�2A2
� 1!1; (76)

�0(1) = �2 +
�

2
+

1

�

h
1�

p
1� �2A2=4

i
= �2; (77)

where

A =

Z
1

�1

dt
0(t) (78)

is the pulse area. From these condition one �nds the constraint

� = �
4�

�2 +A2
; A� �: (79)

The diabatic losses in the limit A� 1 are

1�
���C3(1)

���2 � 4�2

2�2 + A2
(80)

and thus in the adiabatic limit we have essentially complete population transfer from state 1 to state 3.

Fig.8 shows an example of population transfer with third-order matched pulses. Here 
0(t) = A=2 sech2(t) and

A = 20�. Pump and Stokes pulses are shown in the upper frame and the population histories in the lower one. We

see that the amplitudes of the Stokes and pump pulses are unequal. As in ordinary STIRAP the population of the

state 2 is small during the evolution.
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FIG. 8. Population transfer from 1 to 3 with third-order matched pulses. Upper frame shows pulses, lower frame population
dynamics. Here 
0(t) = A=2 sech2(t) and A=� = 20.

2. Population transfer from ground state to the state 2

In order to transfer the initial population from state 1 to state 2, it is necessary to satisfy the conditions

�1 (+1) = 0; �2 =
�

2
(81)

In this case we have to �x � to be

� =
2

A
; A� 1: (82)
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Fig.9 shows the pulses P (t) and S(t) and the evolution of the atomic populations. Here 
0(t) = A=2 sech2(t) and

A = 16. We see that the Stokes and pump pulses are in a counterintuitive sequence. At �rst the atomic population

oscillates between state 1 and 3, but as the pulse sequence proceeds the whole population is transfered into state 2. In

other words, during the full pulse sequence there occur several STIRAP transitions, but due to the large nonadiabatic

coupling the population accumulates in state 2.
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FIG. 9. Population transfer from 1 to 2 with third-order matched pulses. Upper frame shows pulses, lower frame population
dynamics. Here 
0(t) = A=2 sech2(t) and A = 16.

VI. SUMMARY

We have introduced the concept of generalized dressed states in order to explain the success of population transfer

in stimulated Raman adiabatic passage with a loop coupling. If the interaction of a three-level system with a pair of

time-dependent pump and Stokes pulses is described in terms of the so-called dark and bright states instead of the

instantaneous eigenstates of the Hamiltonian, the original three-state{two-�eld system is transformed into a system

of three states coupled by two e�ective interactions [15,7]. This allows for an iteration procedure leading to higher-

order adiabatic basis sets [11]. We showed that in the case of loop-STIRAP there is a higher-order trapping state,

which is an approximate constant of motion even when the usual adiabaticity condition is not ful�lled. This state

adiabatically rotates from the initial to the target quantum state of the atom and thus leads to e�cient population

transfer, however, at the expense of placing some population into the decaying atomic state.

The concept of generalized trapping states allows the construction of pulse sequences which lead to an optimum

population or coherence transfer also for small pulse areas and allows for solutions for the atomic dynamics. If pump

and Stokes pulses ful�ll certain conditions (so-called generalized matched pulses) the e�ective 3� 3 coupling matrix

factorizes at a speci�c point of the iteration. The trapping state of the corresponding nth-order adiabatic basis is then

an exact constant of motion. In this case the atomic dynamics reduces to a two-level problem with a real coupling

which can be solved analytically.

For ordinary matched pulses, i.e. if pump and Stokes have the same shape, the atomic dynamics is rather limited.

The corresponding dark state is a constant superposition of states 1 and 3. In the case of generalized matched pulses,

however, the trapping state has a time-dependent overlap with the bare atomic states and thus population or coherence

transfer is possible. We have discussed with speci�c example population transfer with second and third-order matched

pulses. We found that for certain values of the pulse areas complete population or coherence transfer is possible. In

the general case the diabatic losses scale non-exponentially with the inverse pulse area.
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