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We analyze the long-time quantum dynamics of degener-
ate parametric down-conversion from an initial sub-harmonic
vacuum (spontaenous down-conversion). Standard lineariza-
tion of the Heisenberg equations of motions fails in this case,
since it is based on an expansion around an unstable clas-
sical solution and neglects pump depletion. Introducing a
mean-�eld approximation we �nd a periodic exchange of en-
ergy between the pump and subharmonic mode goverened
by an anharmonic pendulum equation. From this equation
the optimum interaction time or crystal length for maximum
conversion can be determined. A numerical integration of
the 2-mode Schr�odinger equation using a dynamically opti-
mized basis of displaced and squeezed number states veri�es
the characteristic times predicted by the mean-�eld approx-
imation. In contrast to semiclassical and mean-�eld predic-
tions it is found that quantum 
uctuations of the pump mode
lead to a substantial limitation of the e�ciency of parametric
down-conversion.

I. INTRODUCTION

Owing to its relative simplicity but yet richness, the

process of parametric down-conversion is one of the most

intensively studied in quantum optics [1{5]. Here pho-

tons of a coherent pump �eld are transformed into pairs

of signal and idler photons [6,7] which can display non-

classical quantum correlations [8] or perfect squeezing in

the case of degeneracy. We here restrict ourselves to the

latter situation, where both down-converted photons are

emitted into the same radiation mode. A standard ap-

proach to analyze the quantum 
uctuation in nonlinear

optical system is to assume small 
uctuations around

the classical solutions, i.e. to linearize the Heisenberg

equations of motion . The linearization approximation

fails however in the case of a vacuum input of the sub-

harmonic mode, since it neglects pump depletion and is

thus only valid for an in�nite input intensity of the pump

�eld. Thus linearization can neither be used to study the

e�ect of �nite system size, i.e. �nite pump intensity nor

the long-time dynamics of the parametric process.

Using a short-time perturbation expansion, Crouch

and Braunstein analyzed the leading order corrections

to the maximum degree of squeezing due to �nite pump

intensities [9]. Here we are interested in the long-time

behaviour of parametric down-conversion. In particu-

lar we aim to determine the optimum interaction time

(propagation length in the crystal) for maximum down-

conversion and the maximum e�ciency of this process.

In the case of a vacuum input of the sub-harmonic mode,

both quantities are goverened by quantum e�ects. We

�nd that in contrast to the classical predictions, these

quantum e�ects limit the maximum conversion e�ciency

from a pump photon into two sub-harmonic photons to

a value much less than unity. This limitation could be of

importance for applications in quantum communication

and cryptography on the single photon level.

II. MODEL, CLASSICAL DYNAMICS AND

LINEARISATION

In order to describe stationary parametric conversion

of travelling-wave pump radiation into travelling-wave

sub-harmonic radiation we introduce a moving coordi-

nate system. Ignoring transversal degrees of freedom we

�nd the following Heisenberg equations of motion

d

dt
a1 = K a2a

y
1; (1)

d

dt
a2 = �

K�

2
a21: (2)

a1 and a2 are the bosonic mode operators of the sub-

hamonic and pump �elds respectively. K describes the

strength of the nonlinear process. It is proportional to

the nonlinear susceptibility �(3) of the crystal and the

inverse of the beam diameter. The time evolution in the

moving frame corresponds to a spatial evolution in the

lab frame and the �elds at t = 0 are the input �elds. Due

to the phase symmetry of the equations

a1 !�a1 e
i�1 ;

a2 ! a2 e
i�2 ;

K ! K ei(2�1��2)

we may choose K and the initial amplitude of the pump

�eld ha2(t = 0)i real. The equations of motion (1,2)

obey the Manley-Rowe relation [6,7], which states that

the total energy of the free (!) system is conserved.

d

dt
ha

y
1a1i + 2

d

dt
ha

y
2a2i = 0: (3)

Even though Eqs.(1) and (2) seem simple, the non-

linearity prevents an analytic solution of the quantum
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problem. Therefore approximations are necessary. A fre-

quently used approximation is the linearisation around

the classical solutions. In order to discuss the validity

of this approximation, let us �rst consider the classical

problem, where the Bose operators a1 and a2 are replaced

by c-numbers �1 and �2.

d

dt
�1 = K �2�

�
1; (4)

d

dt
�2 = �

K

2
�2
1: (5)

One clearly sees, that for vanishing sub-harmonic input,

i.e. �1(0) = 0, both amplitudes remain constant. This

solution is linearly unstable and any 
uctuation will be

exponentially ampli�ed. The time evolution critically de-

pends on the amplitude and phase of an initial classical


uctuation. Thus a classical calculation cannot deter-

mine the optimum interaction time (or crystal length)

for maximum conversion.

In the standard linearization approach, the pump-

mode operator is replaced by its classical input ampli-

tude. This turns the quantum problem into a linear

one, which can immediately be solved. One �nds that

the time-evolution operator of the sub-harmonic mode is

given by

Ulin(t) = S[�(t)]; (6)

where S is the so-called squeezing operator [11]

S[�] = exp
n�
2
a
y2
1 �

��

2
a21

o
(7)

with a squeezing parameter that grows linear with time

�(t) = K�2t: (8)

Since K and �2 have been choosen real, the time evo-

lution will lead to a squeezing of the 
uctuations of the

out-of-phase component of the sub-harmonic mode p1,

(a1 = x1 + ip1) below the standard vacuum limit. The

quantum noise of p1 monotonously decreases with time

and simultaneously the quantum noise of x1 increases.

The increase of the 
uctuations in the in-phase compo-

nent x1 is associated with a steady increase of the sub-

harmonic photon number

ha
y
1a1i = sinh2 �(t) = sinh2K�2t: (9)

This result violates the Manley Rowe relations (3) and

indicates the breakdown of the linearization for larger

times. The growing 
uctuations of the (anti-squeezed

component of the) sub-harmonic mode can at some point

not assumed to be small anymore. They will lead to a

decrease (depletion) of the pump-mode amplitude and to


uctuations in this mode.

III. MEAN-FIELD APPROXIMATION AND

OPTIMUM INTERACTION TIME

As noted above a linearization of the Heisenberg equa-

tions of motion cannot be used to study the long-time

behaviour of spontaneous (vacuum input) parametric

down-conversion. The quantum 
uctuations of the sub-

harmonic mode and their backaction onto the pump

mode are essential and need to be taken into account.

We may however replace the pump-mode amplitude by

its average value, which amounts to a mean-�eld approxi-

mation [12]. With this we obtain the equations of motion

d

dt
a1 = K ha2ia

y
1; (10)

d

dt
ha2i = �

K�

2
ha21i: (11)

Thus we have transformed the original set of nonlinear

operator equations into a linear operator equation plus a

nonlinear classical one. One easily veri�es that equations

(10) and (11) obey the Manley-Rowe relation.

d

dt
ha

y
1a1i = Kha

y
2iha

2
1i + c:c: = �2

d

dt
ha

y
2a2i: (12)

The mean-�eld equations correpond to a time-evolution

operator

Umf (t) = D2

�
�(t)

�
S1

�
�(t)

�
; (13)

that consists of a coherent displacement operator for

the pump mode and a squeezing operator for the sub-

harmonic mode.

D(�) = exp
�
�ay � ��a

	
;

S(�) = exp
n�
2
ay2 �

��

2
a2
o
:

Thus the interaction leads to a shift of the coherent am-

plitude of the pump mode by the amount

�(t) = �

1

2
K

Z t

0

dt0 ha21(t
0)i: (14)

At the same time the sub-harmonic mode is squeezed by

�(t) = K

Z t

0

dt0 ha2(t
0)i: (15)

In contrast to the linearisation, the squeezing parame-

ter does not increase inde�nitely, since the pump mode

amplitude decreases, characterized by the displacement

parameter �. �(t) and �(t) are not independent. From

the mean-�eld equations we �nd

��(t) = K _�(t): (16)

If we know �(t) we can immediately obtain the ampli-

tude of the (classical) pump mode from Eq.(15). On the
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other hand we �nd the following coupled equations for

the sub-harmonic photon number and correlation func-

tion

d

dt
ha

y
1a1i = 2 _� ha1a1i;

d

dt
ha1a1i = _�

�
2ha

y
1a1i+ 1

�
;

which have the solutions

ha
y
1a1i = sinh2 �; (17)

ha1a1i =
1

2
sinh 2�: (18)

Thus the knowledge of � is su�cient to determine all

relevant quantities. From (14) and (16) we �nd �� =

�(K2=2)ha21i and thus the dynamics of the squeezing pa-

rameters is goverened by an anharmonic pendulum equa-

tion.

��(t) = �

1

4
K2 sinh 2�(t); (19)

with the initial conditions

�(0) = 0;

_�(0) = Kha2(0)i:

The anharmonic pendulum equation with the given ini-

tial conditions is equivalent to the integrated Manley-

Rowe relation

2

K2
_�2 + sinh2 � = 2n0

2 = 2jha2(0)ij
2: (20)

This suggests a mechnical analogue. If � is interpreted as

the spatial coordinate of a classical particle moving in one

dimension, the �rst term in Eq.(20) represents its kinetic

and the second its potential energy. In the chosen units

the kinetic energy is then twice the pump-mode photon

number and the potential energy the photon number of

the sub-harmonic mode.

n
0

2
= 200

n
0

2
= 20

n
0

2
= 2

Kha
2
(0)it

�

14121086420

4

2

0

-2

-4

FIG. 1. Squeezing parameter as function of scaled time for
coherent pump with input intensity ha2(0)i2 = n

0

2.

Fig. 1 shows the squeezing parameter as function of the

scaled time Kha2(0)it for di�erent initial photon num-

bers n0
2 := jha2(0)ij

2. The squeezing parameter reaches

a maximum value and there is an optimum interaction

time or crystal length for maximum squeezing. The cor-

responding optimum time is a quarter of the oscillation

period in the anharmonic potential.

KTsq =
1

2

Z ymax

0

dyq
n0
2 �

1
2
sinh2 y

�

1

4
ln
h
n0
2

i
; (21)

where sinh2 ymax = 2n0
2. This results agrees with that

of the short-time perturbation expansion by Crouch

and Braunstein [9]. A comparision with the Crouch-

Braunstein result shows however that the maximum

amount of noise reduction found in mean-�eld approx-

imation

h�p21imin =
1

32n0
2

(22)

is too small. The mean-�eld approach neglects the 
uc-

tuations of the pump mode, in particular its phase noise.

When this is taken into account the minimum 
uctua-

tions are only h�p21imin = 1=8
p
n0
2 [9,10].

Maximum conversion of pump into sub-harmonic pho-

tons is achieved when _� = 0, i.e. at the turning points of

the classical pendulum motion. Thus the optimum con-

version time Tconv or equivalently the optimum crystal

length is determined by

K Tconv =

Z ymax

0

dyq
n0
2 �

1
2
sinh2 y

�

1

2
ln
h
n0
2

i
; (23)

which is twice the time of maximum squeezing. Fig. 2

shows the scaled photon numbers of the pump and sub-

harmonic mode as a function of time.

Obermode

Grundmode

Kha2(0)it

h~a
y
~a
i

1086420

1

0.8

0.6

0.4

0.2

0

pump
sub-harmonic

FIG. 2. Scaled mean photon number of pump (dashed)
and sub-harmonic mode (line) as function of scaled time for
ha2(0)i =

p
20
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Since the mean-�eld approach takes into account the

energy transfer from the pump mode into sub-harmonic


uctuations, it correctly describes the oscillatory energy

exchange in parametric down-conversion from an initial

sub-harmonic vacuum. This is in contrast to the classi-

cal or linearization approximation. The mean-�eld ap-

proximation also allows to determine the optimum inter-

action time for large squeezing or best down-conversion,

Eqs.(21,23). The maximumconversion e�ciency is unity.

The underlying assumption of the mean-�eld approach

is a quasi-classical description of the pump �eld. This as-

sumption becomes however questionable at the point of

total energy conversion and thus the maximum conver-

sion e�ciency obtained in mean-�eld approximationmay

not be correct. To calculate this quantity and to discuss

the in
uence of quantum 
uctuation in particular of the

pump mode we shall numerically integrate the two-mode

Schr�odinger equation in the next section.

IV. NUMERICAL INTEGRATION OF

TWO-MODE SCHR�ODINGER EQUATION AND

QUANTUM LIMIT TO THE CONVERSION

EFFICIENCY

A direct numerical integration of the Schr�odinger or Li-

ouville equation is not a straight forward task for multi-

mode problems. Unless the interacting modes contain

only very few photons, the standard Fock-basis expansion

requires the use of a large basis set. For the present prob-

lem a large basis set is required in both modes since dur-

ing the interaction all or almost all photons of the pump

mode are converted into sub-harmonic photons and vice

versa.

To avoid the large-memory requirement of a simple

Fock space expansion one may think of choosing a mod-

i�ed basis adapted to the problem. For example in the

initial phase of the process the pump mode is in a coher-

ent state j�0
2i. Its photon number distribution is Poisso-

nian and thus the required number of basis states is of

the order of j�0
2j, which can be large. On the other hand

one can displace the number state basis with the unitary

transformation D(�) introducing the states

j�; ni = D(�)jni (24)

which form a complete set. Clearly at t = 0 only a single

state is needed to describe the pump mode if � = �0
2.

As known from the mean-�eld approach, the coherent

amplitude of the pump mode decreases during the inter-

action and the basis set (24) would soon become inef-

fective. Thus the parameter � needs to be dynamically

adapted, � ! �(t). This is easy to implement in a nu-

merical algorithm that solves the di�erential equation. In

each time step the expansion coe�cients are calculated

in an adapted basis which uses parameters obtained in

the previous time step. These coe�cients are then used

to update the basis and so on.

If there is no initial symmetry-breaking the coherent

amplitude of the subharmonic mode remains zero at all

times. Thus a dynamically adapted coherent displace-

ment of the sub-harmonic basis states is not useful. How-

ever we have seen in the previous section that the time

evolution of this mode is approximately described by a

dynamical squeezing S(�), see Eq.(13). Therefore we ex-

pand the state vector of the sub-harmonic mode in a

squeezed number-basis

j�; ni = S(�) jni; (25)

with a dynamically adapted parameter � = �(t).

The use of a dynamically optimized squeezed and dis-

placed number basis [12] allowed a numerical integration

of the two-mode Schr�odinger equation for input photon

numbers up to several thousands. In Fig. 3 we have

shown the scaled real part of the pump mode amplitude

(ha2i = x2+ ip2) and its 
uctuations as a function of the

scaled time � = Kha2(0)it. Also shown is the mean-�eld

result. One recognizes good agreement of the predictions

for the optimum conversion time from both approaches.

�2~x2 (SE)
h~x2i (SE)

h~x2i (Mean-Field)

�

14121086420

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1

(SE)
(SE)

(mean-field)

FIG. 3. Scaled in-phase average quadrature component of
pump mode h~x2i = hx2i=hx2(0)i from mean-�eld approxima-
tion (line) and numerical integration of two-mode Schr�odinger
equation (long dashes). Also shown are the 
uctuations
of ~x2 obtained from numerical integration (short dashes).
� = Kha2(0)it, ha2(0)i =

p
200

On the other hand, the numerical solution shows, that

at the point of vanishing coherent amplitude of the pump

mode, its 
uctuations become large. This implies that

the coherent-state approximation used in the mean-�eld

approach is not valid near the point of maximum con-

version. Furthermore, although the coherent amplitude

vanishes, the mean photon number of the pump remains

�nite and thus the conversion e�ciency is less than unity.

Fig. 4 illustrates this.
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Obermode (i=2)
Grundmode (i=1)

�

�h
!
i
ha

y i
a
i
i=
E

14121086420
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sub-harmonic
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FIG. 4. Time evolution of energy of pump (dashed)
and sub-harmonic mode (line) as function of scaled time
� = Kha2(0)it for ha2(0)i =

p
200.

Shown are the energies of both �elds as a function

of time. One recognizes a maximum conversion of only

about 65% for 200 input photons of the pump mode.

Our calculations indicate that this value does not increase

with increasing input photon number and is thus not a

�nite-size e�ect. Near the point of maximum conversion

the pump-mode amplitude becomes small and the back-

action of the quantum 
uctuations of the sub-harmonic

mode (more precisely that of the anti-squeezed quadra-

ture component) onto the pump mode gain importance.

They lead to an increase of the in-phase quadrature 
uc-

tuations of the pump �eld and thus a �nite amount of

energy remains in this mode even though the coherent

amplitude vanishes.

V. SUMMARY

We have analysed the long-time quantum dynamics

of degenerate parametric down conversion, for which

standard approaches like the linearization of the Heisen-

berg equations of motion fail. In a mean-�eld approach,

which assumes a coherent pump mode but takes the sub-

harmonic 
uctions fully into account, an oscillatory en-

ergy exchanges between the modes is found. The mean-

�eld approach allows to determine the optimum inter-

action times or crystal lengths for maximum squeezing

and maximum down conversion. Since this approach ne-

glects the quantum 
uctuations of the pump, it becomes

invalid near the point of maximum conversion and can-

not be used to estimate the conversion e�ciency. To

calculate the latter we numerically integrated the two-

mode Schr�odinger equation. The numerical integration

was possible for photon numbers up to several thousands

due to the use of a dynamically optimized, displaced and

squeezed number basis [12]. We found that the maximum

conversion e�ciency is only about 65% for a coherent in-

put of the pumpmode. This limitation is a pure quantum

e�ect. The large 
uctuations in the anti-squeezed com-

ponent of the sub-harmonic �eld introduce corresponding


uctuations in the pump mode via the nonlinear interac-

tion. As a result a �nite amount of energy remains in this

mode even at the point of vanishing coherent amplitude.
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