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Introduction: Clifford vector fields on R?
name grade basis number of

elements
2 2\ _
scalar o) 1eR, 1-=1 (o) =1
=2 =2
cr =05=1
vector 1 | &,80, 2 @) =2
G150 + God1 = 0
bivector | 2 i = G5, 2=-1 (g) =1

total number of elements = 22 = 4

Definition: A Clifford vector field is a sufficiently
smooth mapping

Isomorphism R + C(1): ¥ = d1(x +1ly) = 612 = z0o1

7 . complex conjugation
v, - }F 5—51Z51—x—iy
Y P =470 = F1%
r=5(Z+2) = 1%(&’1F+ 751)
y = 5(Z — z) = 5(32F + 752)



Lift of Clifford vector fields on R? to C(i)-valued
analytic functions on C(i) x C(i) = C2(i):

—

E(F) — E(z72)5:17 B = El — iEQ?

G1Ed1 = E{+1E>, = E

Isomorphism:

S = 0 - 0
0= 013, + 0'28—y = Oz
Dirac operator Cauchy—Riemann operator

F10EF, = ((%j + 1—) E(z,2)

Oy
0, 0,
— ((%j + ]la—y> E(r + iy, x — iy)
— Iln’(l)—[E(x-I—a-I—le,:v—l—s—ILy)
£—
eeR z+e Z+e

HE(z 1y +ie,z — iy — ic)]
z;ia Eria

Abbreviation: lim = 0:|q
e—0

eeR
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Definition:
0:E(2,2) = Oz|g E(2+¢€,%), 0:E(2,2) = O:z|g E(2,Z+¢)

= O:|g E(2+ae,2) =a0:|g E(2+¢,2) = ad.E, a € C(1)

= 5"15_)531 = QagE(Z, Z) = 5_) = 25"1855 =

Dirac operator 5: 25’185 Cauchy—Riemann operator

2610, = 2855"1

Q
|_l
S
|_l

|

Corollary

A new inversion of the Dirac operator on R?

OE = 2¢0(x,y), o0€R

Ativah—Kahler relation:

—

OE=0- E4+OANE=2p < §-E=2p, OANE=0

0:E(z,2) = o(z,y) = w(z,2) €R

1
E(z.%) = f(2) +3 / do w(z, a3) = B(7)dy
O




Example: A Dirac J—source of intensity / > 0 at the
point p=a&1p

OE = 7Is(F—p) =nl Jim. n2e=™°(z=p) (=)
nelR
— 2&’185E(z,2)5’1
Solution:
I - -
E(z,Z2) = f(z) + lim 1 — o~ ™?(z=p)(E-D)| —
" 2(z —p)
ne
B(27) = f(z) + ——
z,2) = f(z
2(z —p)
for

z—pl =4 \/(z-p)(E—P) >0.

E is holomorphic except on a microlocal region

at z = p.




Stationary currents J = xE on the plane R?

r = k(7)) = scalar conductivity field

pointsource pointsink

| |

ONE =0, 8-(kE)=mrlI[6(F—p)—-06(F=q7)], I>0

Maxwell equations:

20ANE = JE — (Ed), 28 -E =38E + (EJ)
Ativah—Kahler relation E =5 - E+ A E =
Unification of all Maxwell equations
KOE + E - (0k) = wrI[6(F — p) — 6(F — §)]

Lift to C2(i)

1 -
kOB + (BOz + Bzr) = gﬁ;z[a(f— 7) — 6(7 — Q)]

—

A pointsource at p = g1p and a pointsink at ¢ =
d1q of intensity I > 0 in a region C R? of constant
conductivity x = const. € R:

20:E = wl[6(7 — p) — 6(7 — )]

( L1 >+f(z)=E(Z)fOFZ#p,q
Z—Dp z—(q

+ 6



+ +
Transition across a smooth curve

C(ZU,’y) =0= b(zwg) — 51[)(2,2)51
dc

with unit normal n = 5l = noy, Separating two re-
C
gions of different conductivities
left right
Ela’ﬂ Eraﬁr
N N\
/) / /)
+n
b(z,Z) =0
z = B(2)

Nno sources, no sinks on the boundary!

ONE =0= 7N (E —E) =0

c=0

d-(kE) =0= 7 (krEr — 5, E)) =0

c=
Atiyah—Kahler unification in terms of the Clifford
product

H}fr—/{l

Kr + K]

(1+n)Er = E; —nitEji, n=



+ +

Lift to C2(i)

(1+n)Er = E; — qm231E51, b(2,%) = 0 = &1b(z, )71

Proposition b(z,2) = 0=z = ((z2)

= b(z,8(2)) =0=0.b+ 3'0:b =0

Mn=-—=—=nd| = n= = n< = = —3'(2)

e 8 5 b
dc] 1020 Ozb

K]fr—/{l
Kr + K]

(L+n)Er = E + "75’5}19]151, Z=p(z),n=
EZN

Neumann—condition for El k=0 = J_; = /@,«E}« = 0

insulator, provided |E;| < oo! bn=-1
El = —ﬁﬁlﬁ = El —+ Qﬁ(ﬁ . El) =

ii-E;, =0, FE;=tangential

Lift to C(i)

8.
9=b

E; = 3'31E;c1 = —[E]™




In regions of constant conductivity , outside of
sources and sinks, the functions £ = E,; ;. are holo-
morphic, i.e.,

O;E =0 <— FE = E(2)

The Schwarz—conjugate E of the holomorphic
function E:

E(z) = §1E(G1261)d1 = [E(2)]” = E(2) = [E(2)]” =

Transition across the boundary curve zZ = (3(z) sepa-
rating two regions of different constant conductivities

K}fr‘_/ﬁ}l

Kr =+ Kj

(1 +n)Er(2) = E(2) + nﬁi(Z)Ez o f(z), n =

transformation law of a 1—form
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A model for currents in plane biological tissues:

Cross section of the human thorax

Currents on an insulated disk with circular anomalies
external to one another of constant conductivities

P — Po(p)
source I =1

G — Bolq)

2 = 60(2’)



p—th circle of radius r, > 0, center m, = o1my:

2
7

(z—mp)(Z—myu)=r
muz + rg — (my)?

= Z=pu(z) = : B/L(Z) = [Bu(2)]™

BuoBu(z) =1(z) =2, Bu=p," inverse function
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Matching of the fields across the boundaries

Boo(2) = fo() + 2/(2), ()] <o

on the complement
of the anomalies

fo(s) = —— = —— = fo(p), 7= fo(a)

= |85 o ° Bo = fo
Matching E~ — Ej:

1 N .
Eo=§(Eoo+56Eoooﬁo) = fo+ f+B6f°Bo

satisfies the N_euvmann—condition
for arbitrary r=f(z)

Partition of f into separate contributions from
each anomaly

f=f14+f2, fir—polesinl, f>— polesin 2,...

K1 — RQ

Matching Eq — Eq: n =
K1 + KO

(1+m)E1 = Eg+nm1piEgo B =

= fo+ Bs(foBo) + fo+n18\ 1061+
f1+m(BooB1)(fohoofr)
mpBLf2 0 B1+ mpBifoo b1

|
polesinl ==0



symmetry 1 & 2

Coupled functional equations:
R — RO
Kk + Ko

fi4+mpBooBifoBoofr=—nmpB1(fooB1+ f20pB1)
2 2 2 2 2 2 2 1 2

Ny = , k=1,2

(1+ né)Eé = fo+ Bof o Bo+ f2 + niBifiop

1
2 2 2 2

Eé = (1 - né)(fo + 66f o Bo + ff)

Eo = fo+ f + Bof o Bo

defines Eqn on a triply—connected region, and, satisfies
the Neumann—condition on the outer circle

Summary: Provided the anomalies are external to one
another and have no contact with the outer boundary
of the disk, the coupled functional equations can be
solved by iteration.

Start of iteration: f,0 = -3, foo Bk, k=1,2
Noting, that for any non—singular linear fractional

b
transformation T'(z) = az + ,ad —bc# 0 =
cz + d
T'(2) 1 c

T(z)—p_z—T_l(p)_cz—I—d




) = . 1 1
jﬁkfooﬁk_Z—Bzcoﬁo(p) z — B o Bo(q)
Repeating this procedure, one finds for f; and
f> convergent series of partial fractions (Mittag—
Leffler, Lord Kelvin, Poincaré, Burnside), which
represent generalized Theta—fuchsian, pseudo—

automorphic functions.

These generalized Theta—series have been summed on
a PC in order to visualize the various Clifford vector
fields.

The pertinent software has been developed by my
doctoral fellow

Martin Menzel
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fieldlines of F

lines W(z) =const

15



Ed, = E(z) = —0.Q(2)
complex potential Q(z) = ®(z) +1V(z), P,V eR

®(z) = const W (z) = const
\J \J

Equipotential lines and fieldlines

+ 16



Potential with anomalies minus potential without
anomalies along the outer boundary of the disk:
Variation of the connectivity rank
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“a current needs not to take the shortest path”

a vector field of connectivity rank four

19



boundary potential difference: connectivity rank 4

0 50 100 150 200 250 300 350

degrees
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