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Abstract

This paper presents a solution to a problem from superanalysis about the exis-

tence of Hilbert-Banach superalgebras. Two main results are derived:

1) There exist Hilbert norms on some graded algebras (in�nite-dimensional super-

algebras included) with respect to which the multiplication is continuous.

2) Such norms cannot be chosen to be submultiplicative and equal to one on the

unit of the algebra.

AMS classi�cation: 16W50, 46C05, 46H25

1 Introduction

The type of norms investigated in this article are generalizations of norms used for the

symmetric tensor algebra in the white noise analysis [7][11] or in the Malliavin calculus

[20]. But now more general algebras are included, especially the algebra of antisym-

metric tensors (Grassmann algebra) and Z2-graded algebras (superalgebras) related to

supersymmetry and to quantum probability [15].

A locally convex commutative superalgebra is a Z2-graded locally convex space E =

E0�E1 equipped with an associative continuous multiplication having the following prop-

erty: for any a; b 2 E0 [E1; ab 6= 0 the product satis�es ab = (�1)p(a)p(b)ba with the parity

function p, which is de�ned on (E0 [ E1) n f0g with p (E0 n f0g) = 0; p (E1 n f0g) = 1,

and p(ab) = jp(a) � p(b)j. Typical examples are Grassmann algebras with �nite or count-

able sets of generators. In superanalysis one considers modules over (commutative) su-

peralgebras [16][8][5][19][17][4][18][10].3 It is quite easy to de�ne an in�nite-dimensional

Grassmann algebra with a non-Hilbertian norm [16]. But for a long time it was unknown

whether the topology of a locally convex superalgebra - including the Grassmann algebra

- can be de�ned with a Hilbert norm, and moreover, whether this norm can be chosen

to be simultaneously submultilplicative and equal to one at the unit of the algebra. The

paper gives a complete solution to these problems. Our theorems imply a positive answer

to the �rst question and a negative answer to the second question.

1e-mail: kupsch@physik.uni-kl.de
2e-mail: smolyan@mail.ru
3In the pioneering works of Martin [14] and of Berezin [3] the Grassmann algebra itself has been used

instead of these modules.
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2 General considerations

Let A be an algebra over the �eld K = R or C with unit e0: The product is denoted

by a; b 2 A ! ab 2 A: We assume that A is provided with a positive de�nite inner

product a; b 2 A ! (a j b) 2 K: The corresponding Hilbert norm kak =
p
(a j a) � 0 is

normalized at the unit ke0k = 1: We are interested in such norms which allow a uniform

estimate for the product of the algebra

kabk �  kak kbk (1)

with a constant  � 1. In this section we prove under rather general conditions that this

constant has the lower limit  �
q

4
3
:

Theorem 1 Let A be an algebra over the �eld K = R or C with dimension dimA � 2:

If this algebra satis�es the properties

i)A is provided with a Hilbert inner product (: j :) normalized at the unit e0, ke0k2 =

(e0 j e0) = 1,

ii)there exists at least one element f 2 A; f 6= 0, such that e0; f and f
2 = ff satisfy

(e0 j f) = (f j f2) = 0 and (e0 j f2) � 0,

then the norm estimate kabk �  kak kbk is not valid for some a; b 2 A; if  <

q
4
3
:

Proof Since f 6= 0 we can normalize this element and assume kfk = 1. Take a = e0+�f

with � 2 R. Then a
2 = e0 + 2�f + �

2
f
2 and

ka2k2 = 1 + 2�2 (e0 j f2) + 4�2 + �
4 kf2k2 � 1 + 4�2: On the other hand kak2 = 1 + �

2
;

and ka2k2 � 
2 kak4 implies 1+4�2 � 

2(1+�
2)2: But this inequality is true for all � � 0

only if 2 � sup
��0(1 + 4�2)(1 + �

2)�2 = 4
3
. 2

This Theorem obviously applies to the tensor algebra T = �1
n=0Tn; where Tn is the

subspace of tensors of degree n; and the norm is de�ned in the standard way as

kfk2 =
1X
n=0

wn kfnk2n if f =

1X
n=0

fn; fn 2 Tn (2)

with arbitrary positive weights wn > 0; n 2 N and w0 = 1: In that case we can simply

choose an element f 2 T1; f 6= 0; to satisfy the assumptions with (e0 j f 
 f) = 0.

Theorem 1 can also be applied to a large class of algebras A which can be derived

from the tensor algebra T by the following modi�cations of the product.

1. The product is generated by f; g 2 A1 = T1 ! f Æ g := f 
 g + (�1)�g 
 f where

� = 0; 1 mod 2 is a parity factor.

2. The product is generated by f; g 2 A1 = T1 !
f Æ g := f 
 g + (�1)�g 
 f + !(f; g)e0: Here � is again a parity factor and !(:; :) :

A1 �A1 ! K is a bilinear pairing.

The �rst class of algebras includes the algebra of symmetric tensors, the algebra of an-

tisymmetric tensors (Grassmann algebra), and tensor products of these algebras, including
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the Z2-graded algebras (superalgebras) used in quantum �eld theory. The assumptions

of the Theorem 1 are satis�ed for any non-vanishing element f 2 A1 = T1:
The second class includes the Cli�ord product, the (symmetric) Wiener product, the

antisymmetric Wiener product (with antisymmetric !) and Le Jan's supersymmetric

Wiener-Grassmann product [9][13][15]. In these cases the assumptions of Theorem 1

are satis�ed if there exists a non-vanishing f 2 A1 with !(f; f) � 0: Such a vector can

always be found

if the algebra is complex, or

if the algebra is real and ! is not negative de�nite.

The last constraint is satis�ed for the symmetric Wiener product on real spaces, and

for the real Cli�ord system in quantum �eld theory [2]. In both cases the form ! is

positive de�nite.

Moreover Theorem 1 is obviously true for any unital algebra A, which has a nilpotent

element f that is orthogonal to the unit element. If we only know that A has at least one

nilpotent element, we can derive the weaker

Corollary 1 Let A be an algebra which satis�es condition i) of Theorem 1. If this algebra

has a nilpotent element f , then the norm estimate kabk � kak kbk is not valid for some

a; b 2 A:

Proof We assume again kfk = 1. Then a = e0+�f with � 2 R and a
2 = (e0 + �f)

2
=

e0+2�f have the norms kak2 = 1+2�Re (e0; f)+ �
2 and ka2k2 = 1+4�Re (e0; f) + 4�2:

If Re (e0; f) = 0 we can apply the arguments given in the proof for Theorem 1. If

Re (e0; f) =  6= 0; then we chose � = �2; and ka2k2 = 1 + 82 � 1 = kak4 is a

contradiction. 2

3 Norm estimates for Z-graded algebras

In this section we present Hilbert norm estimates for rather general Z-graded algebras A
over the �eld K = R or C .. We assume the following structure of A.

1. The algebra is the direct sum A = �1
n=0An of orthogonal spaces An: Thereby A0

is the one dimensional space K spanned by the unit e0 of the algebra. The product

a Æ b maps Ap �Aq into Ap+q for all p; q 2 f0; 1; :::g :
2. The spaces An are provided with Hilbert norms k:k

n
; n = 0; 1; ::::The unit has norm

ke0k0 = 1: The product of two homogeneous elements ap 2 Ap and bq 2 Aq satis�es

kap Æ bqkp+q � kapkp kbqkq (3)

if ap 2 Ap and bq 2 Aq:

3. The algebra is provided with a family of Hilbert norms

kak2(�) =
1X
n=0

wn(�) kank2n if a =

1X
n=0

an; an 2 An (4)
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with � 2 R: The factors wn(�); n = 0; 1; :::; are positive weights with the normal-

ization w0(�) = 1 for all � 2 R: The weights satisfy the inequalities wn(�) � wn(� )

for all n 2 N if � � �:

An immediate consequence of these assumptions is kak(�) � kak(�) for all a 2 A if � � �:

A simple example of such an algebra A is the tensor algebra T . Its standard norm satis�es

(3) with weights wn = 1 for all n = 0; 1:::. More interesting examples are the algebras

of symmetric tensors or of antisymmetric tensors. With the notation f Æ g for both the

symmetric and the antisymmetric tensor product the estimate (3) is satis�ed by the norms

kf1 Æ f2 Æ ::: Æ fnk2n =
�

(n!)�1per(f� j f�) for symmetric tensors,

(n!)�1det (f� j f�) for antisymmetric tensors,
(5)

but it is violated if the factor (n!)�1 is omitted. The standard norm4 is de�ned without

the factor (n!)�1: In the notations used here it corresponds therefore to a norm (4) with

a weight function wn = n!.

Theorem 2 If there exists a constant Æ(�; �; �) > 0 such that the weight functions satisfy

the inequalities

(p + q � 1)wp+q(�) � Æ(�; � ; �)wp(�)wq(� ) if p; q � 1 (6)

for values of �; � and � with � � � and � � �; then the product of A is estimated by

ka Æ bk(�) �  � kak(�) kbk(�) (7)

where the constant  is  =
p
3max(1; Æ(�; �; �)).

Proof For a = a0 + a+ and b = b0 + b+ with a0; b0 2 A0 = K and a+ =
P1

n=1 an,

b+ =
P1

n=1 bn with an; bn 2 An; n 2 N the norm of a Æ b is calculated by

ka Æ bk2(�) = ka0b0 + a0b+ + a+b0 + a+ Æ b+k2(�)
� ja0b0j2 + 3

�
ja0j2 kb+k2(�) + ka+k2(�) jb0j2 + ka+ Æ b+k2(�)

�

� ja0b0j2 + 3

�
ja0j2 kb+k2(�) + ka+k2(�) jb0j2 +

P
n�1wn(�)

P0

p+q=n ap Æ bq
2
n

�

The symbol
P0

means summation with the constraint p � 1; q � 1. The sumP
p+q=n;p�1;q�1 ::: =

P0

p+q=n ::: has n� 1 terms, henceP0

p+q=n
ap Æ bq

2
n

� (n� 1)
P0

p+q=n
kap Æ bqk2n

(3)

� (n� 1)
P0

p+q=n
kapk2p kbqk2q.

If wn(�) is chosen such that (6) is satis�ed we obtainP
n�1 wn(�)

P0

p+q=n
ap Æ bq

2
n

� Æ �
�P

p�1wp(�) kapk2p
�
�
�P

q�1
wq(� ) kbqk2q

�
4The \standard" inner product of the symmetric/antisymmetric tensor algebra is characterized by

the following property. Let Fi; i = 1; 2; be two orthogonal subspaces of the space A1: Denote by A(Fi)

the subalgebra generated by elements f 2 Fi. Then (a1 Æ a2 j b1 Æ b2) = (a1 j b1) (a2 j b2) holds for all

ai 2 A(Fi); i = 1; 2:
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� Æ ka+k2(�) kb+k2(�) : For � � �; � we have in addition the inequalities

ka+k2(�) � ka+k2(�) and kb+k2(�) � kb+k2(�) such that �nally

ka Æ bk2(�) � ja0b0j2 + 3
�
ja0j2 kb+k2(�) + ka+k2(�) jb0j2 + Æ ka+k2(�) kb+k2(�)

�
� 3 kak2(�) kbk2(�) :

where  is  = max(1; Æ): 2

As the �rst application of Theorem 2 we derive norms with respect to which the

product of the algebra is continuous. In that case the inequality (6) has to be satis�ed

for identical weights wp(�) = wp(� ) = wp(�) = wp; p � 1: If we �x q = 1 then (6) implies

p�wp+1 � Æ �wp�w1 for p 2 N: As a consequence we obtain wp � Æ
p�1 ((p � 1)!)

�1
w1; p � 1:

The slowest decrease of the weights which might be possible according to our estimates

is therefore wp � ((p � 1)!)
�1

: The proof that such a solution actually exists follows from

the simple estimate

�
m+ n

m

�
=

(m+n)!

m!n!
� 1 if m;n � 0: Hence (p + q � 1) 1

(p+q�1)!
=

1
(p+q�2)!

� 1
(p�1)!

1
(q�1)!

is valid for all p; q � 1: Since

2m+n �
�

m+ n

m

�
=

(m+ n)!

m!n!
� m+ n if m;n � 1; (8)

also (p + q � 1) 1
(p+q)!

<
1

(p+q�1)!
� 1

p!
1
q!
follows for all p; q � 1: We have therefore derived

Corollary 2 If the norm is de�ned with the weights w0 = 1; wn = ((n� 1)!)
�1

; n � 1;

or with w0 = 1; wn = (n!)
�1

; n � 1; the product of the algebra is continuous with the

uniform norm estimate

ka Æ bk �
p
3 kak kbk : (9)

As a more general class of norms we choose weights

w0 = 1; wn(�; �; s) = (n!)�2�n(1 + n)s if n � 1; (10)

with real parameters �; �; s: These weights satisfy the inequalities

wn(�1; �1; s1) � wn(�2; �2; s2) if �1 � �2; �1 � �2; s1 � s2. We denote by kak(�;�;s) the
norm (4) de�ned with the weights wn(�; �; s): The estimate (8) and the bounds

(m+n)!

m!n!
�

(2m)!

(m!)2
� const �22mm� 1

2 if n � m � 1 and 1 � (1+m)(1+n)

1+m+n
� 1+min(m;n) yield inequalities

of the type (6) also for these norms. We obtain

(p + q � 1)wp+q(�; �; s) � Æwp(�
0
; �
0
; s
0)wq(�

0
; �
0
; s
0) if p; q � 1 (11)

with a constant Æ � 1 if � = �
0 = �1 with � = �

0 2 R and s = s
0 � 0; or if � = �

0
< �1

with � = �
0 2 R and s = s

0 2 R.
The generalizations of (9) are therefore

ka Æ bk(�1;�;s) �
p
3 kak(�1;�;s) � kbk(�1;�;s) if � 2 R; s� 0; (12)

and

ka Æ bk
(�;�;s)

�  kak
(�;�;s)

� kbk
(�;�;s)

if � < �1; � 2 R; s 2 R: (13)
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Here  takes some value  �
p
3 depending on the choice of the parameters � and s:

Moreover, the inequalities (11) are valid for (�; �; s) 6= (�0; �0; s0) if � < �
0 or if � = �

0

and � < �
0. The corresponding estimates for the norms are

ka Æ bk(�;�;s) �  kak(�0
;�

0
;s

0) � kbk(�0
;�

0
;s

0) if � < �
0 for all �; �0; s; s0 2 R; (14)

and

ka Æ bk(�;�;s) �  kak(�;�0
;s

0) � kbk(�;�0
;s

0) if � < �
0 for all �; s; s0 2 R: (15)

The value of  � p
3 depends on the choice of the parameters.

For the tensor algebra and for algebras of symmetrized tensors5 the Hilbert space

A1 = H generates the whole algebra. Given a (self-adjoint/positive) operator A on H,

the mapping �(A)e0 = e0 and �(A) (f1 Æ f2 Æ ::: Æ fn) := (Af1) Æ (Af2) Æ ::: Æ (Afn) for

f� 2 H; � = 1; :::; n; and n 2 N, de�nes a unique (self-adjoint/positive) operator �(A) on

the algebra A, which satis�es the relation

�(A)(a Æ b) = (�(A)a) Æ (�(A)b) : (16)

The norms (4) with the weights (10) are then easily generalized to

kak2(�;�;s) =
1X
n=0

(n!)� k(�(A))� ank2n (1 + n)s if a =

1X
n=0

an; an 2 An: (17)

If A is an invertible positive operator with lower bound A � 2 � id, then �(A) satis�es(�(A))�� a
n
� 2�n� kak

n
for a 2 An if � � 0. This bound and the relation (16) imply

that the estimates (12),(13) and (15) are also valid for the norms (17), moreover (14)

holds if � � �
0.

If A�1 is a Hilbert-Schmidt operator then a family of norms (17) can be used to de�ne

a nuclear topology on the algebra A. For the symmetric tensor algebra that has been done

in the white noise calculus and in the Malliavin calculus, see e.g. [1] [11] [20]. For the

algebra of antisymmetric tensors and for the superalgebras such nuclear topologies can

be found in [12] and in [6]. But the estimates of these references are not strong enough

to derive the results with a single Hilbert norm as presented in Corollary 2 and in eqs.

(12) and (13).
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