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The distribution and the correlations of the small eigenvalues of the Dirac operator are described by random

matrix theory (RMT) up to the Thouless energy Ec / 1=
p
V , where V is the physical volume. For somewhat

larger energies, the same quantities can be described by chiral perturbation theory (chPT). For most quantities
there is an intermediate energy regime, roughly 1=V < E < 1=

p
V , where the results of RMT and chPT agree

with each other. We test these predictions by constructing the connected and disconnected scalar susceptibilities

from Dirac spectra obtained in quenched SU(2) and SU(3) simulations with staggered fermions for a variety of
lattice sizes and coupling constants. In deriving the predictions of chPT, it is important to take into account only

those symmetries which are exactly realized on the lattice.

The theoretical understanding of the Dirac

eigenvalue spectrum in a �nite volume has im-

proved considerably in recent years. The small-

est Dirac eigenvalues are described by universal

functions which can be computed most easily in

chiral RMT [1,2]. The agreement persists up to

the so-called Thouless energy Ec which scales like

1=L2, where V = L4 [3{5]. Beyond this energy,

the Dirac spectrum can be described by chPT [6].

This has been discussed in the continuum theory

in Ref. [7]. On a coarse lattice, the situation is dif-

ferent, and one should take into account only the

lattice symmetries. Here, we present an analysis

appropriate for staggered fermions at relatively

strong coupling and compare our predictions to

SU(2) and SU(3) lattice gauge data. For details

of the SU(2) analysis, we refer to Ref. [8].

We are interested in the connected and discon-

nected scalar susceptibilities de�ned by
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respectively, where the i�k are the Dirac eigenval-

ues and m is a valence quark mass. Most of the

RMT-predictions for these quantities are given in

Refs. [8,9]. The corresponding chPT-predictions

can be derived from an e�ective partition func-

tion Z by di�erentiating with respect to the quark

masses [8]. We consider Nv generations of va-

lence quarks of mass mv and Ns generations of

sea quarks of mass ms (corresponding to 4Nv va-

lence quarks and 4Ns sea quarks in the contin-

uum limit). Our starting point is the following

expression for the free energy,

lnZ(mv ;ms; L) / V S(mv ;ms)

�
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where S(mv ;ms) is the saddle-point contribu-

tion, and the double sum represents the one-

loop contribution coming from light composite

bosons. The sum runs over the allowed momenta

p (p� = 2�n�=L with integer n�) and over parti-

cle type Q (with multiplicity KQ and mass mQ).

We use p̂2 � 2
P

�
(1� cos p�).

The main task is to determine the KQ and mQ

for our particular problem. Consider �rst gauge

group SU(3). The symmetry in the chiral limit is

SU(Nv+Ns)�U(1)�SU(Nv+Ns)�U(1) which

is spontaneously broken to SU(Nv + Ns)� U(1).
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Figure 1. Annihilation diagram for the \
avor-

diagonal" mesons.

Since for staggered fermions in strong coupling

the U(1) symmetry is anomaly-free, we expect

(Nv +Ns)
2 Goldstone bosons. The bosons made

of di�erent quark 
avors �qiqj will have a mass

given by m2 = A(mi +mj)=2. (According to the

Gell-Mann{Oakes{Renner relation, A = 2�=f2� ,

where � = jh �  ij.) We thus haveN2

v
�Nv mesons

of mass Amv , N
2

s
�Ns mesons of mass Ams, and

2NvNs mesons of mass A(mv +ms)=2.

For \
avor-diagonal"mesons we must also con-

sider the annihilation process in Fig. 1. Because

of the anomaly-free U(1) symmetry, the ampli-

tude for �qiqi ! �qjqj vanishes for mi = 0 or

mj = 0. Therefore, we make the following

ansatz for the mass-squared matrix of the states

(�v1v1; : : : ; �vNv
vNv

; �s1s1; : : : ; �sNs
sNs

)T ,

M2 = A diag(mv; : : : ;mv;ms; : : : ;ms)
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with an additional parameter z. The eigenvalues

of M2 are Amv with multiplicity Nv � 1, Ams

with multiplicityNs�1, and �� with multiplicity

one (the expression for �� is given in [8]). This

completes the determination of the light boson

spectrum of the gauge group SU(3) in Table 1.

For the gauge group SU(2), the symmetry in

the chiral limit is U(2Nv + 2Ns), spontaneously

broken to O(2Nv+2Ns) [10]. We thus have (Nv+

Ns)(2Nv+2Ns+1) Goldstone particles. Some of

the baryon (qiqj and �qi�qj) states have the same

mass as the mesons, m2 = A(mi +mj)=2, giving

rise to the light particle spectrum in Table 1.

multiplicity
m2

SU(2) SU(3)

Amv 2N2

v
+Nv � 1 N2

v
� 1

Ams 2N2

s
+Ns � 1 N2

s
� 1

A(mv +ms)=2 4NvNs 2NvNs

�� 1 1

�+ 1 1

Table 1

The light particle spectrum for gauge groups

SU(2) and SU(3).

Table 1 determines the one-loop contribution

to the free energy in Eq. (2). The saddle-point

contribution is parameterized by a smooth func-

tion of mv and ms, independent of the lat-

tice size. Taking appropriate derivatives of lnZ

with respect to the quark masses [8], we obtain

the chPT-predictions for the susceptibilities of

Eq. (1). In the �nal results, we take the limits

mv = ms = m, Nv ! 0, and Ns ! 0. The �t

parameters are A, z, and the smooth background.

Since � can be determined independently by a �t

to RMT, our results for the parameter A = 2�=f2�
also give us an estimate of f� [8].

Taking the in�nite-volume limit of the chPT-

expressions, we obtain several terms containing

logarithms in the quark mass [8]. Note, however,

that the leading term / lnm in the chiral con-

densate, which is expected in the quenched ap-

proximation [6], is absent in our case because of

the anomaly-free U(1) symmetry.

Our results for gauge group SU(2) and SU(3)

are displayed in Figs. 2 and 3. The diamonds

represent the lattice data plotted vs. the rescaled

valence quark mass u = mV �, the solid lines the

(�nite-volume) chPT predictions, and the dashed

lines the RMT predictions (for topological charge

� = 0), respectively. As expected, for u < f2�L
2

the data are described by RMT. For u > 1, they

are very well described by our chPT expressions.

(chPT breaks down for u < 1 since the p = 0

modes must be treated non-perturbatively in this

region. The deviations between lattice data and
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Figure 2. Connected and disconnected scalar

susceptibilities versus the rescaled valence quark

mass for staggered fermions using gauge group

SU(2) at � = 4=g2 = 2:2 and V = 84 and 124.

chPT for very large u are due to the �nite lattice.)

The domain of common applicability of RMT and

chPT, 1 < u < f2�L
2, grows with the lattice size.

In the case of the connected susceptibility in

SU(3) (see Fig. 3) we do not see an overlap re-

gion of RMT and chPT. The reason is that for

this particular quantity (and also for the chiral

condensate) the would-be leading terms both in

RMT (for large m) and in chPT (for smallm) are

absent. This is a rather special case caused by the

anomaly-free U(1) symmetry and by the fact that

Ns = 0. As a consequence, the Thouless energy

for this quantity scales like 1=L8=3 instead of like

1=L2 so that RMT breaks down for u / L4=3.

In conclusion, we now have a good theoreti-

cal understanding of the �nite-volume Dirac spec-

trum also beyond the Thouless energy. Our anal-

ysis was tailored to the case of staggered fermions

at strong coupling where the anomaly-free U(1)

symmetry causes the light particle spectrum to

be di�erent from that of the continuum theory.

We thank M. Golterman and J.J.M. Verbaar-

schot for helpful comments. This work was sup-

ported in part by DFG.
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Figure 3. Same as Fig. 2 but for gauge group

SU(3) at � = 6=g2 = 5:4 and V = 64 and 104.
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