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Abstract

Recently, the contributions of chiral logarithms predicted by quenched chiral per-

turbation theory have been extracted from lattice calculations of hadron masses.

We argue that a detailed comparison of random matrix theory and lattice calcula-

tions allows for a precise determination of such corrections. We estimate the relative

size of the m log(m), m, and m
2 corrections to the chiral condensate for quenched

SU(2).
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The identi�cation of logarithmic corrections in the quark mass predicted by

quenched chiral perturbation theory [1,2] in lattice gauge results is a long

standing problem. It seems that the latest numerical results [3{6] on hadron

masses in quenched lattice simulations allow for an approximate determination

of these log(m) contributions. The determination of these logarithms is an

important test of chiral perturbation theory which in turn plays a central role

for the connection of low-energy hadron theory on one side and perturbative

and lattice QCD on the other.

In a completely independent development, it has been shown by several au-

thors that chiral random matrix theory (chRMT) is able to reproduce quan-

titatively microscopic spectral properties of the Dirac operator obtained from

QCD lattice data (see the reviews [7,8] and Refs. [9{12]). Moreover, the limit
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up to which the microscopic spectral correlations can be described by random

matrix theory (the analogue of the \Thouless energy") was analyzed theo-

retically in [13,14] and identi�ed for quenched SU(2) lattice calculations in

[15].

The following analysis uses the scalar susceptibilities, so we �rst give their

de�nitions. The disconnected susceptibility is de�ned on the lattice by

�
disc

lattice
=

1

N

*
NX
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1
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+
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where N = L
4 denotes the number of lattice points and the �k are the Dirac

eigenvalues. After rescaling the susceptibility by N�2 (� = absolute value of

the chiral condensate for in�nite volume and vanishing mass) chRMT predicts
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where the rescaled mass parameter u is given by u = m�L4. (For details we

refer to [15].)

We shall also use the connected susceptibility which is de�ned on the lattice

by

�
conn

lattice
= �

1

N

*
NX
k=1

1

(i�k +m)2

+
: (4)
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Fig. 1. The ratio of Eq. (6) for the scaled susceptibilities plotted versus m�L2 (in

lattice units) for � = 2:0 and four di�erent lattice sizes, N = 44, 64, 84, and 104.

The chRMT result reads

�
conn

RMT

N�2

= 4uK
1
(2u)

1Z
0

ds (1 � s)I
0
(2su) : (5)

Fig. 1 presents the deviation of the (parameter-free) random matrix prediction

from the lattice result, more precisely the ratio

ratio = (�
lattice

� �
RMT

) = (�
RMT

) ; (6)

where � can either be the disconnected (only this choice was investigated in

[15]) or the connected susceptibility.

The motivation for investigating ratio rather than �lattice itself is that in

Eq. (6) �nite size corrections cancel to a remarkable degree, allowing us to use

data from smallerm values. We have seen in Fig. 2 of [16] that the knowledge of

�nite size e�ects which we gain fromRMT allows us to �nd the thermodynamic

limit of the chiral condensate from extremely small lattices. This can also be

formulated in the following way: for a given value of ratio in Fig. 1, the �nite

size corrections for all four lattice sizes are expected to be similar, as the

corresponding values of m2

�L
2

/ mL
2 are very close, which is why we have

plotted ratio against m�L2 in Fig. 1.

What do we expect beyond the Thouless energy? Then, the lattice is large

enough so that the valence pion, which is the lightest particle, �ts on the
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lattice. Naturally, all other particles also �t on the lattice, and therefore we

expect that the chiral condensate and the two susceptibilities will rapidly

approach their thermodynamic limit.

For a �nite lattice and a non-vanishing mass, the chiral condensate is given

by

�lattice(m) =
1

N

*
NX
k=1

1

i�k +m

+
: (7)

In the quenched theory, the connected susceptibility is given simply by

�
conn(m) =

@

@m
�(m) ; (8)

so we can �nd the in�nite-volume behavior of �conn from that of �. We expect

from chiral perturbation theory [17] that the chiral condensate has the form

�(m) = �

�
1 �Am log(m) +Bm+

1

2
Cm

2 + � � �

�
: (9)

Eq. (9) requires several comments. In the continuum, quenched chiral per-

turbation theory predicts a leading term proportional to h�2i
L4 log(m), where

h�
2

i=L
4 is the topological susceptibility [17, Sec. 7]. We argue that this lead-

ing term should be absent in our case. For �nite lattice spacing the Atiyah{

Singer-index theorem does not apply for staggered fermions. Therefore the

role of topology has to be interpreted with care. We have seen in [11] that

the small Dirac eigenvalues are well described by random matrix results for

� = 0. This means that the quasi-zero modes related to topology are shifted

to such large values that they are not visible. (This is presumably due to

discretization errors proportional to a
2, with a the physical lattice spacing.)

Thus the violation of axial symmetry which generates the logarithmic term in

the quenched case is dominated by the explicit quark masses, which motivates

Eq. (9). It would be very interesting to study the � 6= 0 sector for which we

expect a leading log(m) term, which might require, however, very small a and

a large number of lattice points.

Eq. (9) implies that in the thermodynamic limit

�
conn

lattice
= � [�A log(m)�A+B + Cm+ � � �] : (10)

On the other hand, the large-volume limit of the RMT susceptibility is

�
conn

RMT
!

1

4m2L4

: (11)
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Putting the two expressions together, we �nd that

ratio! (m�L2)2
4

�
[�A log(m)�A+B + Cm+ � � �]� 1 : (12)

Strictly speaking, the �1 ought to be neglected in comparison with the �rst

term as L!1. However, we should be prepared to observe some sub-leading

corrections in the data taken on �nite lattices.

We have confronted Eq. (12) with lattice Monte Carlo data for two values of

the coupling strength �, � = 2:0 and � = 2:2. The lattice sizes and numbers

of con�gurations are given in Table 1.

Table 1

Lattice sizes and numbers of con�gurations for the lattice data.

� = 2:0

L 4 6 8 10

# of con�gs 49978 24976 14290 4404

� = 2:2

L 6 8 10 12

# of con�gs 22292 13975 2950 1388

To check Eq. (12) we did the following for both values of �:

We chose di�erent values for ratio = bi and determined the values of m�L2

for which they were reached for our di�erent lattice sizes. Let us denote these

numbers by Y (L; bi). Eq. (12) implies that

1

Y (L; bi)2
= r(bi)

�
� log(m) +

B

A
� 1 +

C

A
m+ � � �

�
(13)

where r(b) will be proportional to 1=b as b ! 1. Since we do not reach too

large values of b, we used the ansatz

1

Y (L; bi)2
=

q

bi + s

�
� log(m) +

B

A
� 1 +

C

A
m+ � � �

�
(14)

to �t our data. In Eq. (14) not only Y
�2 has statistical errors, but also m. In

our �2 �t, however, only the errors of Y �2 are taken into account.

Obviously, the values Y (L; bi) for the same lattice size L are highly correlated.

It is, however, unclear how to calculate the correlations of these quantities,

5



5 10
-2

2 5 10
-1

m

20

40

60

80

100

120

140

1/
Y

2

.

.
.

.
.

.

.
..

.
..

conn

5 10
-2

2 5 10
-1

m

20

40

60

80

100

120

140

160

180

200

1/
Y

2

.

.
.

.
..

.
..

disc

Fig. 2. The value of Y = m�L2 at � = 2:0 for which ratio = b for various values

of b as a function of m. Larger values of b belong to smaller values of 1=Y 2. The

rightmost �lled dots correspond to L = 6, the leftmost to L = 10, whereas the open

dots represent data for L = 4, which were not used in the �t. All quantities are

measured in lattice units.

which are related to the original lattice results only in a rather implicitmanner.

Moreover, correlated �ts tend to have problems [18]. Therefore we decided to

ignore correlations completely, although this will lead to an underestimation

of the errors on the �t parameters.

For the thermodynamic limit of the disconnected susceptibility we assume the

same form as Eq. (10). In RMT, the large-volume limit is given by

�
disc

RMT
!

1

8m2L4

(15)

so that the ansatz of Eq. (14) applies as well.

In Figs. 2 and 3 we plot Y �2 versus m together with the �ts for � = 2:0

and 2:2, respectively. In the case of the connected susceptibility we used bi =

2:0; 3:0; 4:0; 5:0 (� = 2:0) and bi = 5:0; 6:0; 7:0; 8:0 (� = 2:2) and obtained the

results of Table 2. For the disconnected susceptibility we used bi = 1:0; 2:0; 3:0

(� = 2:0) and bi = 6:0; 7:0; 8:0 (� = 2:2) and found the values given in Table 3.

The main message of Figs. 2 and 3 is that without any doubt the data are

not �tted by horizontal lines. This demonstrates the presence of additional

contributions in the quark mass. The approximate linearity of the curves for

small m shows that the logarithmic contribution is the dominant one. For the
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Fig. 3. Same as Fig. 2 but for � = 2:2 and with the dots, from left to right,

corresponding to L = 12, 10, 8, and 6, respectively.

connected susceptibility, the data are well �tted by the ansatz (9), i.e., with

only the three leading corrections. For the disconnected susceptibility, our

statistical precision does not allow for a precise determination of the ratios

B=A and C=A. For very small lattices (44 in Fig. 2) �nite size e�ects seem to

spoil our analysis.

It is clear from Figs. 2 and 3 that one would really like to have numerical

simulations with substantially larger statistics and larger lattices. As the ap-

plicability of RMT to the description of the low-energy Dirac spectrum is by

now well established we can limit ourselves in the future to the calculation

Table 2

Fit parameters for the connected susceptibility.

� B=A C=A q s �
2
=dof

2.0 2.29� 0.63 �5:97� 5.17 43.9� 4.5 0.25� 0.02 0.50

2.2 0.86� 0.18 �2:46� 1.86 486 � 19 0.81� 0.05 1.75

Table 3

Fit parameters for the disconnected susceptibility.

� B=A C=A q s �
2
=dof

2.0 1.9 � 3.1 �12 � 32 31� 16 0.05� 0.05 0.02

2.2 �1.45� 0.48 18.7� 4.1 569� 127 �0:60� 0.61 0.28
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of just the lowest eigenvalues instead of the complete spectrum. This should

allow us to gain the necessary statistics.

To conclude, let us remark that the aim of this paper is primarily to draw

attention to this new method to extract chiral logarithms and other corrections

in the quark mass, and to stimulate the discussion of their interpretation. The

obvious next step is to analyze the susceptibilities within the framework of

quenched chiral perturbation theory.
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