Induction and Case-Based Reasoning for
Classification Tasks

K.-D. Althoff!, M. Manago?, R. Bergmann!, F. Maurer!, S. Wess!, E. Auriol?, N
Conruyt?, R. Traphoner®, M. Brauer®, S. Dittrich3

!University of Kaiserslautern, D-67653 Kaiserslautern, Germany
2AcknoSoft, 58a rue du Dessous des Berges, F-75013 Paris, France

3teclnno GmbH, Sauerwiesen 2, D-67661 Kaiserslautern, Germany

Summary: We present two techniques for reasoning from cases to solve classification
tasks: Induction and case-based reasoning. We contrast the two technologies (that are
often confused) and show how they complement each other. Based on this, we describe
how they are integrated in one single platform for reasoning from cases: The INRECA
system.

1 Introduction

Induction and case-based reasoning are two technologies for the development of
experience-based expert systems that have received considerable attention during
the past decade. They provide methodologies for knowledge acquisition, validation
of the knowledge base, and expert system maintenance. However, a confusion is often
made between induction and case-based reasoning by tool vendors or even by aca-
demic researchers: Several systems presented with the label ”case-based reasoning”
are simply inductive tools and, on the other hand, some incremental versions of induc-
tion tools work in a case-based reasoning fashion. We distinguish between case-based
reasoning and induction by considering that the first technique makes direct use of
past experiences (cases) at the problem solving stage (diagnosis) while the second
one only uses an abstraction of the cases. In other words: induction compiles past
experiences into general heuristics which are then used to solve problems. Case-based
reasoning directly interprets past experiences (cf. also Manago, Althoff et al., 1993;
Wess, 1993a; Althoff, 1992).

Many systems are often at the frontier of the two approaches. For example, ID5 (cf.
Utgoff, 1988) refers back to the cases in order to incrementally modify the decision
tree. The question is, however, if such a system is purely an inductive system since
it remembers past cases. We prefer to clearly distinguish the two kinds of systems
in order to perform a cost and merit analysis which gives clues on how to integrate
the two technologies such that they can indeed benefit from each other. Note that
the fundamental distinction that we make between the two kinds of systems is not so
much in the underlying technology. For example, information theory as in ID3 (cf.
Quinlan, 1983) might be used to implement a case-based reasoning system.

The key distinction lies in how the technology is used. We believe that the integration
of induction and case-based reasoning is one key issue for improving the development
of diagnostic expert systems and will expand the set of applications that can be
tackled. While both technologies in their own right are able to solve special instances
of diagnostic problems, the combination of these approaches may result in more than
“the sum of the respective single approaches”. Up to now, no satisfying systems are
available that base on a really deep integration of the underlying technologies.



We present the INRECA integrated learning system! which goes first steps into this
direction. It includes inductive and case-based reasoning techniques. Currently, it is
tested on two applications, name ly fault diagnosis of machine tools as well as the
identification of marine sponges (cf. Manago, Althoff et al., 1993). While a more
cooperative kind of integration of induction and case-based reasoning is described in
Althoff, Bergmann et al. (1993), within this paper we focus on a deep integration of
these technologies.

First, we motivate our approach on a more intuitive basis. Chapter 2 results in a
more or less concrete guideline for integrating inductive and case-based reasoning
based on mechanisms known from the field of information retrieval. We introduce
multidimensional retrieval structures for associative search, especially k-d trees and
describe the basic algorithms for tree construction and search. These basic data
structures and algorithms are then extended to meet all the requirements of real
complex diagnostic problems. Finally, we discuss our approach from several scientific
points of view.

2 Inductive and Case-Based Reasoning

Case-based reasoning is a technology that allows to find analogies between a current
working case and past experiences (reference cases). It makes direct use of past
experiences to solve a new problem by recognising its similarity with a specific known
problem and by, at least partially, applying the known solution to reach a solution
for the actual new problem (cf., e.g., Kolodner, 1980; Schank, 1982; Althoff & Wess,
1991a+Db).

Induction is a technology that automatically extracts knowledge from training ex-
amples (reference cases). It derives general knowledge from the cases: From an
extensional description of concepts (i.e. the examples), it derives an intensional de-
scription of these concepts in the form of a decision tree, a set of most general rules
(most general version of the concepts), or a characteristic description of the exam-
ples (most specific version of the concepts) (cf., e.g., Michalski, 1983; Quinlan, 1986;
Manago & Kodratoff, 1987; 1990). This general knowledge is then used to solve new
problems.
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Figure 1: Inductive and Case-Based Processing of Cases

Induction and case-based reasoning both are processes that prepare cases for a certain
application (cf. figure 1). If new cases occur, the inductive system has to update

IThis description does not necessarily reflect the official opinion of the whole INRECA consortium.
Ongoing applications might change this.



its derived concept descriptions. Therefore, the generation of concept descriptions
(normally) has to be carried out again. For the case-based reasoning system, the
consideration of new cases (normally) is no problem, because they only have to be
included into the case base. But, the underlying similarity measure is, of course, not
guaranteed to classify all new cases correctly. Thus, we may have to improve the
measure based on the extended case base.
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Figure 2: Combining Interpretation and Compilation

Having the above described commonalty in mind, we can use the above stated
compilation-interpretation contrast to come up with an (abstract) idea for integra-
tion. This view is summarised in figure 2. Case-based reasoning is used as a flexible
interactive mechanism to directly interpret the presented cases. If the number of
cases strongly increases such that the time needed for consultation becomes too high,
induction can be used as a compilation-like procedure which allows to reason with ab-
stract knowledge being derived from the presented cases. If new cases are presented,
case-based reasoning can be used again etc. Thus, we arrive at an interlocking of
both reasoning schemes (cf. Althoff, Bergmann et al., 1993).

For the development of one single homogeneous architecture based on inductive and
case-based reasoning technology that goes beyond this interlocking of the respective
reasoning schemes, we generalise our view on induction. Through-out the following
chapters, we consider induction as a technique which constructs abstractions from
data for efficient processing. We denote the underlying construction mechanism by
fized-order processing, where the discovered structure within the given data corre-
sponds to the "fixed order”. With respect to the derived abstract structure, the
procedure is static, i.e. inflexible in some sense. For instance, a TDIDT-like (top-
down induction of decision trees; Quinlan, 1986) procedure derives a decision tree
from the given cases. If certain assumptions are fulfilled® (no unknown or missing
attribute values, no noise, no exceptions), such a decision tree enables an efficient con-
sultation. Case-based reasoning does not apply such a kind of fixed-order processing.
Therefore, its efficiency normally is worse, but it is more flexible in its reaction on
data which do not meet the above mentioned requirements.

For instance, Althoff, Bergmann et al. (1993) describe the cooperation of a TDIDT-
like inductive system and a case-based reasoner. The decision tree is used to prepro-
cess the entered attribute values in a way that the number of interesting cases can
be reduced. Thus, it works like a fixed indexing structure for the case retrieval where
the induction and the case-based reasoning module are on the same level. We now

2At least to a high degree



suggest another kind of integration of induction and case-based reasoning by building
a case-based reasoner that uses inductive techniques to improve its performance. The
improvement will be in two different ways:

e reducing the average case complexity of the case retrieval step

e correcting misclassifications of the similarity measure

The main focus will be on the first kind of improvement (chapters 3-4), the second
kind will be one major aspect discussed in chapter 5. We hope that the introduction
of the fixed-order processing view helps to make transparent that using an efficient
information retrieval technique, namely multidimensional retrieval structures for as-
sociative search, for case retrieval is a step towards the integration of induction and
case-based reasoning. We will describe the basic retrieval algorithms in the next two
chapters. To overcome certain restrictions of these algorithms, especially to keep the
advantages of the case-based reasoning approach, we will introduce certain extensions
for these algoritms. These extensions also allow the above mentioned second kind
of inductive improvement, namely the heuristic adaptation of the (global) similarity
measure to avoid misclassifications.

3 Multidimensional Retrieval Structures

We developed a retrieval mechanism that is based on a k-d tree, a multi-dimensional

binary search tree (Wess, 1993b; Bentley, 1975; Friedman, Bentley & Finkel, 1977).

This mechanism is built on top of an object-oriented data base (Ochsner & Wess,
1992). This leads us, e.g., to the following correspondences: case = entity/object,
case base = data base, problem = query, similarity-based case retrieval = best-match
search. Within the k-d tree an incremental best-match search is used to find the m
most similar cases (nearest neighbours) within a set of n cases with k specified index-
ing attributes. The search is guided by application-dependent similarity measures
based on user-defined value ranges. The used similarity measures are constructed
according to Tverskys contrast model (Tversky, 1977), but the user is free to define
other ones. He is only restricted to use ordered value ranges as well as monotonic and
symmetric similarity functions, which is not a problem for many real applications.
The k-d tree uses the inhomogeneity of the search space for density-based structur-
ing. The balanced retrieval structure results in a small number of accesses to external
media.

Every node within the k-d tree represents a subset of the cases of the case base, the
root node represents the whole case base. Every inner node partitions the represented
case set into two disjoint subsets. The next discriminating attribute within the tree
is selected based on the inter quartile distance of the attributes’ value ranges (cf.
Koopmans, 1987). Splitting in the median of the discriminating attribute makes the
k-d tree an optimal one (the tree is optimal if all leaf nodes are at adjoining levels).

Search in the k-d tree is done via recursive tree search and the use of two test
procedures: BALL-WITHIN-BOUNDS (BWB) and BOUNDS-OVERLAP-BALL (BOB) (cf.
figure 3). These procedures check whether it would be reasonable to explore certain
areas of the search space in more detail, or not. Such tests can be carried out without
retrieving the respective cases. The geometric bounds of the considered subspaces
are used to compute a ”similarity interval” whose upper bound then "answers” the
question to explore, or not.
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Figure 3: Bounds-Test for Nearest Neighbour Search

The average case effort (measured by the number of comparisons; cf. Jacquemain,
1988) for generating a k-d tree is O[k * n * logan], for the worst case O[k * n?]. The
average costs for retrieving the most similar case are O[logan], if the tree is optimally
organised. For the worst case, the retrieval costs are O[n]. The retrieval mechanism
is correct in that sense that it always finds the m most similar cases. The costs for the
reorganisation of the k-d tree (making the tree an optimal one again) are O[l * log,!],
where [ is the number of leaf nodes belonging to the non-balanced subtree, i.e. the
costs to rebuild the whole tree are O[n * logan].

4 k-d Trees

We describe the basic procedures for generating and searching a k-d tree. Here,
we already include some modifications, e.g. changing distance to similarity measures.
This is necessary because we need the notion of similarity for the case-based reasoning
component. The similarity measure is split into local measures for each value range
and a global measure that is composed from the local ones. We need the local
measures during the construction of the k-d tree for selecting the next discriminating
attribute. The global measure is used for searching the tree. Starting from this basic
retrieval mechanism, we introduce several extensions that are necessary in the context
of diagnostic reasoning.

4.1 Building a k-d Tree: Basic Algorithm

For generating an optimal k-d tree, we need as input the case base CB := {C; | C; :=
(cityCiay oo oycin)yt € {1,...,n},¢; € R := R(A;)}, the indexing attributes A; ... Ay,
the value ranges R; ... Ry, the local similarity measures gy ... ug, pg; @ RixR; — [0,1],
and the bucket size b which defines how many cases are at most allowed to be included
in one leaf node. Every case includes a distinguished attribute (called diagnosis)
which is, of course, not used for indexing.

If |CB| < b then only one leaf node is generated and the construction process termi-
nates. Otherwise, an inner node is generated. For every attribute A;,¢ € {1,... k},

the quartiles qy) and q:(f) of its in C'B occurring values are computed. The inter
quartile similarity is defined as igr(® := m(q@, q:(;)). As a discriminating attribute d,
which is attached to the generated inner node, we select that one of which the inter



quartile similarity iqr is the lowest: d := {7 | igr() < igr)}. This easily corresponds
to the use of inter quartile distances where that attribute is selected of which the
respective quartiles have the maximal distance.

Since every inner node should partition the case set into two equally-sized subsets,
for every discriminating attribute d the respective median p for the value range R,
is computed: p := median{a; | (a1,...,ax) € CB,j = d}. Then optimal k-d trees
for the partitions C'B< and CBs are generated: C'B< = {(a1,...,ar) € CB | aq <
p}7 C119> = {(ala .- '7a'k) €CB | aq > p}
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Figure 4: An Exemplary Two Dimensional Search Space and the Corresponding k-d
Tree

4.2 Searching a k-d Tree

For finding the m most similar cases for a given working case (or query case)®, we
apply recursive tree search. Thus, as input we need the query case C,, the number
m of most similar cases, the k-d tree represented by its root node, and the global

similarity measure sim : [0, 1]* — [0, 1], and

SLW(C}L,CZ) - F(,ul(chlaCi1)7ﬂ2(ch27ci2)7 R /’Lk(chkvcik)) Chaci S CB

One simple example for the (monotonic) function F is:

=

sim(Cr, Cs) := F(pa(cr, ea), - - - prlchr, cix)) ==

k
> wj(ens, cij)
7=1

During search a priority queue is continuously updated which includes the m most
similar cases. If the recursive search procedure examines a leaf node, the similarity
of all included cases is computed and, if necessary, the priority queue is updated. If
the examined node is an inner node, then the search procedure is recursively called
for that son node which should include the query case. If this call terminates, it
is tested whether it is also necessary to examine the other son node by using the
BoUNDS-OVERLAP-BALL test. It is TRUE if the cases of the actual tree node have
to be explored.

The inner nodes are correct generalisations of the all the cases they represent in that
sense that they include the geometric (upper and lower) bounds (for every indexing

3For a query case the value of the distinguished attribute diagnosis is unknown



attribute) which correspond to the respective subspace. These geometric bounds are
used to compute a similarity interval whose upper bound then answers the question to
explore, or not. The closest point C),;, within the actual nodes subspace is computed
as the projection onto the actual nodes geometric bounds. C,,;, is on the actual nodes
bounding box on the edge facing the query case C,. If there is no overlapping in any
of the k dimensions between the nodes bounding box and the k-dimensional ball
round C, then C,,;, is a corner of the bounding box. If C; is within the bounding
box then C; = Cpip (cf. also figure 3).

Before the recursive search procedure terminates the BALL-WITHIN-BOUNDS test
is applied. It is TRUE if the k-dimensional ball round C; is completely within the
bounding box of the actual tree node. If this is the case, no overlapping with other

bounding boxes is possible any more. Thus, the search is finished. Two cases Cl(i)

and CQ(i) per dimension ¢ € {1,...,k} are generated (building an interval according
to the geometric bounds of the actual tree node’s bounding box) to test whether the
m most similar cases are all within that bounding box.

5 Extensions

The associative search mechanism, as described above, is used for the basic memo-
risation and retrieval task in our case-based reasoner. But, there exist a lot of real
diagnostic problems which cannot be handled satisfactorily up to now (cf. Althoff &
Wess, 1991a; Manago, Althoff et al., 1993; Wess, 1993). Our approach is to introduce
extensions for the global similarity measure, the k-d tree representation and search,
as well as the overall similarity assessment process (e.g., use of domain knowledge).
Within this paper, we want to focus on the integration of an adaptive learning mech-
anism to automatically improve the global similarity measure. It is the second kind of
improvement of our case-based reasoner using induction. Another reason is that this
learning strategy is already built on top of other important extensions which then can
be introduced implicitly by this procedure. The used learning strategy is similar to
competitive learning (cf. Rumelhart & Zipser, 1985) and has been described in Wess
(1993) and Richter (1992). Here, we concentrate on the combination of this learning
strategy with the above described basic memorisation and retrieval mechanism.

We now stepwise introduce all necessary extensions. First, we improve the global
similarity measure using global and local weights. The latter are defined by use of
a relevance matrix R which includes a special weight for every attribute/diagnosis
pair. A local weight wj; denotes the relative importance (relevance) of an attribute
A; for the diagnosis D;. Such weights effect the ball tests BOB and BWB because
(only) here the global similarity measure sim is used. The consequence for the k-ball
round the query case () is that there is a tendency to exact matching on important
dimensions, and that there is an increasing degree of flexibility for less important
dimensions. The relevance matrix is defined as follows:

D, Dy, ... D,

A wn w0 Wi

R = Ay war wey ... Wiy
A, Wy Wna ... Wpm
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For every value range R;, we introduce the distinguished value of unknown. During
the generation of the k-d tree it has the meaning of don’t care, during retrieval that
of a missing value.

We also introduce global, i.e. diagnosis-independent, weights for special groups of
attributes. Such groups are defined using the distinguished values of unknown(" ...
unknown®) as well as the additional information whether an attribute value is a
pathologic* one, or not. Let C; € CB,C; := (¢, ¢ia,- .., Cik), be some case of the
case base and C, a query case, Cy := (¢41,¢Cq2, - - -, Cqk ), where C; includes the diagnosis
D and C,’s diagnosis is not known (per definition). We distinguish the following
sets of attributes:

o F:={j|pilcy,c) > Q;} Equivalent attribute values
o C:={j|pjlcy,cgy) <0} Conflicting attribute values
o U:={j|c,= unknown(j)} Unknown attribute values

o A:={j|c; =unknown A ¢, is pathologic } Additional attribute values

Note, that the decision whether two values are equivalent or conflicting, i.e. belong
to £/ or C, is made by use of the respective local similarity measure y; as well as a
range-dependent threshold ©; € [0, 1]. Based on the above defined attribute sets, we
introduce the following improved global similarity measure sim:

aF

sim(Cy, Cy) = (@B + BC + 17U + 7 4) o, 3,n,7>0
where . C,U, and A denote the following expressions:
E = > wi(Dy) * py(cij, cq5))
JjEE
Cc = Z w](DZ) * (1 - /Lj(cijchj)))
jec
U = > wi(Dy))
jeu
A = |A]

Practical experience led us to the use of @« =1, =2,y =1, and n = 1/2.
Since we have introduced the distinguished values unknown®) . . unknown®) as well as
diagnosis-dependent similarity measures, we have to extend the k-d tree mechanism:

4Pathologic (or abnormal) attribute values within a query case are very important and must be
explained by a similar case in the case base. Thus, they are weighted maximally (=1)



o Attributes are selected as discriminating attributes only if the percentage of
occurring unknown values is not too high. Otherwise, they are not used for
indexing at all.

e Every node within the k-d tree "remembers” which diagnoses are included
within the cases belonging to the respective node’s subtree.

o While searching the k-d tree the tests BOB and BWB are applied using the
diagnosis-dependent similarity measures of all diagnoses which occur in the
respective node’s subtree.

If only a few attributes can be used for indexing (because of many unknown values),
it might happen that the leaf nodes contain more than (bucket size) b cases. For
such cases we have, of course, linear retrieval costs. Within the buckets, the cases
are sorted by their included diagnoses. Thus, the BWB test can be performed more
efficiently.

In real applications, we are not always interested in the most similar case(s), only
if such case(s) are sufficiently similar. This leads us to the definition of diagnosis-
dependent thresholds o(D;), which must be exceeded by the global similarity measure
stm in order to terminate the overall classification with a certain diagnosis D; as
output: sim(C;,C,) > o(DW) if C; sufficiently similar to C,.

5.1 Awutomatic Adaptation of the Similarity Measure

Experiments in our laboratory with given case bases of correctly classified cases C' B,,,
(iteratively selecting, and temporarily removing, one case for the use as query case)
showed that the similarity measure often did not classify correctly, though only one
case has been removed from the case base. But, this can be improved applying an
adaptive learning process. The goal is to learn new weights, i.e. new entries of the
relevance matrix R. This process has an initial and a learning phase, the training set
is the case base C B.,,.

Initial phase: the initial weights wj; are determined according to the observed fre-
quencies in the base.

Learning phase: the query cases C, are taken from the case base C'B,,,, i.e. every
case of C'B.,, will be a query case once. Such a query case is then temporarily
removed from case base. The system determines the most similar case Cj;,,.
Since the query cases are selected from C'B,,,, it is possible to compare the
respective diagnoses of C, and Cy;,,. If Dsim) — D(q), then nothing will be

changed. For D" = D(9) we distinguish two possibilities:

o (C;,, contains less known attribute values than €, i.e. the known values
of Uy, are a subset of the known values of C,. Here, the diagnosis D(sim)
was obviously only correct by accident and Cy;, is eliminated from the

case base.

e In all other situations Cj;,, remains in the case base but the weights are
updated.

The numerical form of the learning rule is not of interest here (cf. Wess, 1991). The
leading principles are the achievement of sim(Cy;p, Cy) = J(D(Sim)), ie. Cyp, and Cy
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are no more sufficiently similar, the increase of the weights belonging to the attributes
in C'" and U, the decrease of the weights belonging to the attributes in F, as well as
the normalisation of the weights. The weights belonging to the attributes in A remain
invariant. Since there is a remaining degree of freedom in the underlying equation
formula, we choose the following: high weights belonging to the attributes in £ are
highly decreased, low weights only to a low degree. In addition, low weights belonging
to the attributes in €' and U are highly increased, high weights only to a low degree.
Here, the goal is to "support” attributes which had only a small responsibility for
the misclassification, and vice versa.

5.2 Domain Knowledge

The overall similarity assessment process can be improved by the use domain knowl-
edge. Default values can be used to increase the number of known attribute values.
Causal and heuristic determination rules can be used to derive new attribute values
from known ones. Since such knowledge increases the available information, similar-
ity is estimated on a broader basis. For the automatic generation (of a part) of that
knowledge and its detailed use cf. Althoff (1992), Rehbold (1991), Althoff and Wess
(1991a), and Wess (1991).

6 Discussion

The overall scenario we assumed is comparable to Gentner and Forbus’ Mac/Fac
model® (Gentner & Forbus, 1991; cf. figure 5). We used a fixed-order processing
technique as the basic case retrieval mechanism which can be compared to the MAC
phase. The described extensions (chapter 5) then correspond to the FAC phase.

Problem Description
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Figure 5: MAc/Fac Model

Characteristics of inductive learning have been summarised in, e.g., Jantke and Lange
(1989). From this abstract point of view, case-based learning could be described
as follows: From a given sequence of cases, learning hypotheses are incrementally

SMany Are Called but Few Are Chosen
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generated. Such a hypothesis consists of a pair of a set of cases and an associated
similarity measure. Questions to be answered are: Which cases will be entered into
the case base, which will be removed from it, and how to realise the similarity measure.
Since the criteria of Jantke and Lange can be analogously applied to case-based
learning, it can be viewed as a special instance of inductive learning. A common
theoretical framework is necessary to achieve results on this topic. First steps in this
direction have been described by Jantke, Richter et al. (1991), Jantke (1992), and
Globig and Wess (1993).

Both inductive learning and case-based learning have in common that they derive
"global” knowledge from ”local” observations (which, of course, are uncertain, re-
spectively). However, they use different techniques to achieve this: Inductive learning
bases mainly on logical concept descriptions (”logical reasoning” ), whereas case-based
reasoners often use analytic descriptions (”geometric reasoning”) (cf., e.g., Richter,
1992). One consequence from this is that inductive learners mostly start with the
"dropping of complete dimensions” in contrast to case-based reasoners which ”de-
compose complete dimensions into intervals”. It depends on the use of a learning
result which particular technique is then the more successful one. Therefore, the
INRECA approach integrates both learning strategies within a broader architecture
for identification and diagnostic reasoning.

Up to now, much work has been done on the integration of different knowledge
representation and processing schemes to improve knowledge acquisition. E.g., a
comparative analysis as well as a proposed integration of models, cases and compiled
knowledge have been given by van Someren, Zheng and Post (1990). The MOLTKE
architecture also bases on these three schemes (cf. Althoff, Maurer & Rehbold, 1990;
Althoff, Maurer et al., 1992; Althoff, 1992). The GRANUL system integrates several
existing knowledge acquisition tools into one coherent system that supports several
styles of knowledge acquisition (Aben, van Someren & Terpstra, 1992). The MOBAL
system is an interesting example for the integration of manual and automatic knowl-
edge acquisition methods (the balanced cooperative modelling issue, cf. Morik, 1991).
Van de Velde and Aamodt (1992) have analysed the possible use of machine learn-
ing techniques within the KADS approach to expert system development. Rissland
and Skalag (1989) introduced the notion of mixed paradigm reasoning for the inte-
gration of different reasoning schemes (reasoning from cases, rules, constraints, deep
models etc.). Examples here are CABARET (Rissland, Basu et al., 1991), CREEK
(Aamodt, 1991), PATDEX/MOLTKE (Althoff & Wess, 1991a; Richter & Wess, 1991),
GREBE (Branting & Porter, 1991), and JuLia (Hinrichs & Kolodner, 1991), among
others. A first suggestion for the integration of case-based reasoning and model-based
knowledge acquisition is given in Janetzko and Strube (1992).

7 Conclusion

We have introduced basic parts of the architecture of the Inreca system that uses
induction and case-based reasoning for solving classification tasks. INRECA is being
applied to real world problems in the areas of technical maintenance as well as the
pharmaceutical industry. Results from this applications might change the suggested
architecture.

11



8 Acknowledgement

Funding for this research has been provided by the Commission of the Furopean
Communities (Esprit contract P6322, the INRECA project). The partners of INRECA
are AcknoSoft (prime contractor, France), teclnno (Germany), Irish Medical Systems
(Ireland), and the University of Kaiserslautern (Germany).

9 References

Aamodt, A. (1991). A Knowledge-Intensive, Integrated Approach to Problem Solving and
Sustained Learning. Doctoral Dissertation, University of Trondheim

Aben, M., van Someren, M. W. & Terpstra, P. (1992). Functional and Representational
Integration in Knowledge Acquisition. Proc. International Machine Learning Conference,
Workshop on ”Computational Architectures for Supporting Machine Learning and Knowl-
edge Acquisition” in Aberdeen

Althoff, K.-D. (1992). Eine fallbasierte Lernkomponente als integrierter Bestandteil der
Moltke-Werkbank zur Diagnose technischer Systeme. Doctoral Dissertation, University of
Kaiserslautern; also: Sankt Augustin (Germany): Diski 23, infix Verlag

Althoff, K.-D., Bergmann, R., Maurer, F., Wess, 5., Manago, M., Auriol, E., Conruyt, N.,
Traphoner, R., Brauer, M. & Dittrich, S. (1993). Integrating Inductive and Case-Based
Technologies for Classification and Diagnostic Reasoning. Proc. ECML-93 Workshop on
Integrated Learning Architectures (edited by E. Plaza)

Althoff, K.-D., Maurer, F. & Rehbold, R. (1990). Multiple Knowledge Acquisition Strate-
gies in MoLTKE. In: B. J. Wielinga, J. Boose, B. Gaines et al. (eds.), Current Trends in
Knowledge Acquisition (Proc. EKAW-90). Amsterdam: I0S Press, 21-40

Althoff, K.-D., Maurer, F., Traphoner & Wess, S. (1992). MOLTKE - An Integrated Work-
bench for Fault Diagnosis in Engineering Systems. Proc. EXPERSYS-92, Paris

Althoff, K.-D. & Wess, S. (1991a). Case-Based Knowledge Acquisition, Learning, and
Problem Solving in Diagnostic Real World Tasks. Proc. Ekaw-91, Glasgow & Crieff

Althoff, K.-D. & Wess, S. (1991b). Case-Based Reasoning and Expert System Development.
In: F. Schmalhofer, G. Strube & T. Wetter (eds.), Contemporary Knowledge Engineering
and Cognition, Springer Verlag

Althoff, K.-D., Wess, S., Bartsch-Sporl, B. & Janetzko, D. (eds.) (1992). Ahnlichkeit
von Féllen beim fallbasierten Schliessen. Proc. of the first Meeting of the German Special
Interest Group on Case-Based Reasoning, Seki-Working-Paper SWP-92-11, University of
Kaiserslautern

Bentley, J. L. (1975). Multidimensional Search Trees Used for Associative Searching. Com-
munications of the ACM 18, 509-517

Branting, L. K. & Porter, B. W. (1991). Rules and Precedents as Complementary Warrants.
Proc. AAAI-91, 3-9

Friedman, J. H., Bentley, J. L. & Finkel, R. A. (1977). An Algorithm for Finding Best
Matches in Logarithmic Expected Time. ACM Trans. math. Software 3, 209-226

Gentner, D. & Forbus, K. D. (1991). Mac/Fac: A Model of Similarity-Based Retrieval.
Proc. of the 13th Annual Conference of the Cognitive Science Society, 504-509

Globig, Ch. & Wess, S. (1993). Symbolic Learning and Nearest Neighbour Classification.
Technical Report, University of Kaiserslautern

Hinrichs, T. R. & Kolodner, J. L. (1991). The Roles of Adaptation in Case-Based Design.

12



In: R. Bareiss (ed.), Proc. 3rd DARPA Workshop on Case-Based Reasoning, Morgan
Kaufmann, 121-132

Jacquemain, K. J. (1988). Effiziente Datenstrukturen und Algorithmen fir mehrdimension-
ale Suchprobleme. Hochschultexte Informatik (Bd. 5), Heidelberg: Hiithig Verlag

Janetzko, D. & Strube, G. (1992). Case-based Reasoning and Model-based Knowledge
Acquisition. In: F. Schmalhofer, G. Strube & Th. Wetter (eds.), Contemporary Knowledge
Engineering and Cognition, Springer Verlag

Jantke, K. P. (1992). Case-Based Reasoning in Inductive Inference. Proc. COLT-92
Jantke, K. P. & Lange, S. (1989). Algorithmic Learning Theory (in German: Algorith-

misches Lernen). In: J. Grabowski, K. P. Jantke & H. Thiele (eds.), Grundlagen der
Kiinstlichen Intelligenz, Akademie-Verlag, 246-277

Jantke, K. P., Richter, M. M., Althoff, K.-D., Lange, S. & Wess, S. (1991). IND-CBL -
Vergleich ausgewéhlter Ansédtze aus dem induktiven und dem fallbasierten Lernen. DFG
project proposal

Kolodner, J. L. (1980). Retrieval and Organisational Strategies in Conceptual Memory: A
Computer Model. Ph.D. Thesis, Yale University

Koopmans, L. H. (1987). Introduction to Contemporary Statistical Methods. Second Edi-
tion, Duxbury Press, Boston

Manago, M. & Kodratoff, Y. (1987). Model Driven Learning of Disjunctive Concepts.
Progress in Machine Learning (Proc. of the 2nd European Working Session on Learning),
edited by Bratko & Lavrac, Sigma Press (distributed by John Wiley & Sons)

Manago, M. & Kodratoff, Y. (1990). KaTEe: A Piece of Computer Aided Knowledge
Engineering. Proc. of the 5th AAAI Workshop on Knowledge Acquisition for Knowledge-
Based Systems, edited by B. R. Gaines & J. Boose, Banff, Canada, AAAT Press

Manago, M., Althoff, K.-D., Auriol, E., Traphoner, R., Wess, S., Conruyt, N. & Maurer,
F. (1993). Induction and Reasoning from Cases. In: Richter, Wess et al. (1993), 313-318

Michalski, R. S. (1983). Theory and Methodology of Inductive Learning. In: R. S. Michal-
ski, J. G. Carbonell & T. M. Mitchell (eds.), Machine Learning: An Artificial Intelligence
Approach, Tioga Publishing Co.

Morik, K. (1991). Balanced Cooperative Modelling Using Mobal - An Introduction. Tech-
nical Report (Gmd-F3-Nachrichten AC Special Nr. 3), GMD, Sankt Augustin

Ochsner, H. (1992). Mehrdimensionale Zugriffspfadstrukturen fiir das dhnlichkeitsbasierte
Retrieval von Féllen. Diploma Thesis, University of Kaiserslautern

Ochsner, H. & Wess, S. (1992). Ahnlichkeitsbasiertes Retrieval von Fillen durch assoziative
Suche in einem mehrdimensionalen Datenraum. In: Althoff, Wess et al. (1992), 101-106

Pews, G., Weiler, F. & Wess, S. (1992). Bestimmung der Ahnlichkeit in der fallbasierten
Diagnose mit simulationsfihigen Maschinenmodellen. In: Althoff, Wess et al. (1992), 47-50

Quinlan, J. R. (1986). Induction of Decision Trees. Machine Learning 1, 81-106

Rehbold, R. (1991). Integration modellbasierten Wissens in technische Diagnostik-Experten-
systeme. Doctoral Dissertalion, University of Kaiserslautern

Richter, M. M. (1992). Classification and Learning of Similarity Measures. Proc. of the
16th Annual Conference of the Gesellschaft fir Klassifikation e. V., Springer Verlag

Richter, M. M. & Wess, S. (1991). Similarity, Uncertainty and Case-Based Reasoning in
Parpex. Automated Reasoning - Fssays in Honour of Woody Bledsoe, Kluwer Academic
Publishers

Richter, M. M., Wess, S., Althoff, K.-D. & Maurer, F. (eds.) (1993). Proc. of the First
Furopean Workshop on Case-Based Reasoning, Seki-Report SR-93-12, University of Kaiser-

13



slautern

Rissland, E. L., Basu, C., Daniels, J. L., McCarthy, J., Rubinstein, Z. B. & Skalag, D. B.
(1991). A Blackboard-Based Architecture for Case-Based Reasoning: An Initial Report.
In: R. Bareiss (ed.), Proc. of the 3rd DARPA Workshop on Case-Based Reasoning, Morgan
Kaufmann, 77-92

Rissland, E. L. & Skalag, D. B. (1989). Combining Case-Based and Rule-Based Reasoning:
A Heuristic Approach. Proc. IJCAI-89, 524-530

Rumelhart, D. E. & Zipser, D. (1985). Feature Discovery by Competitive Learning. Cog-
nitive Science 9, 75-112

Schank, R. C. (1982). Dynamic Memory: A Theory of Learning in Computers and People.
Cambridge, UK: Cambridge University Press

Tversky, A. (1977). Features of Similarity. Psychological Review 84, 327-352

Utgoff, P. (1988). ID5: An Incremental ID3. Proc. of the 5th International Conference on
Machine Learning, Irvine, CA: Morgan Kaufmann

Van de Velde, W. & Aamodt, A. (1992). Machine Learning Issues in CommonKADS.
Esprit-Project P5248, Technical Report Kaps-1I/TI11.4.3/TR/VUB/002/3.0

van Someren, M. W., Zheng, L. L. & Post, W. (1990). Cases, Models or Compiled Know!l-
edge: a Comparative Analysis and Proposed Integration. In: B. J. Wielinga, J. Boose, B.
Gaines el al. (eds.), Current Trends in Knowledge Acquisition (Proc. Exaw-90). Ams-
terdam: 10S Press

Wess, S. (1991). PATDEX/2 - ein System zum adaptiven, fallfokussierenden Lernen in
technischen Diagnosesituationen. Seki-Working-Paper SWP-91-01, University of Kaiser-
slautern

Wess, S. (1993). PATDEX - ein Ansalz zur wissensbasierten und inkrementellen Verbesserung

von Ahnlichkeitsbewertungen in der fallbasierten Diagnostik. In: F. Puppe & A. Giunler
(eds.), Proc. of the 2nd German Conference on Expert Systems, Hamburg, Springer Verlag

14



