
Integrated Scheduling and Location Models:

Single Machine Makespan Problems

Holger Hennes � Horst W. Hamacher �

May 2002

Report in Wirtschaftsmathematik. No. 82/2002.
University of Kaiserslautern.

Abstract

Scheduling and location models are often used to tackle problems in

production, logistics, and supply chain management. Instead of treating

these models independent of each other, as is usually done in the literature,

we consider in this paper an integrated model in which the locations of

machines de�ne release times for jobs. Polynomial solution algorithms are

presented for single machine problems in which the scheduling part can be

solved by the earliest release time rule.

Key words. Location problems, scheduling theory.

1 Introduction

In this paper we combine single facility network location and single machine
scheduling problems. Both �elds are well known from literature, but they are
usually studied separately from each other. Maybe because locational decisions
are seen as strategic and scheduling decisions as operational decisions. But exam-
ples in industrial planning or computer science show that this is not necessarily
true. The usage of movable machines is, for instance, an example where the
scheduling as well as the location decision is an operational one. A simultane-
ous re-planning of machine location and reorganization of the production line is
useful to increase productivity.

�fhennes, hamacherg @mathematik.uni-kl.de, Universit�at Kaiserslautern, Germany

1



In order to combine location and scheduling we consider a graph G = (V;E)
with node set V = fv1; : : : ; vng and edge set E = fe1; : : : ; emg. The nodes are
identi�ed with jobs A1; : : : ; An, each with processing time pj; j = 1; : : : ; n. The
edges e = [vi; vj] represent the possibility of moving job Ai to job Aj (or vice
versa) directly within le = lij time units. If there exists no edge between Ai and
Aj, we move the jobs along the shortest paths from vi to vj with respect to the
edge lengths le. Using an all pair shortest path algorithm (see, e.g. Ahuja et
al. [AMO93]) the shortest path distance dij between all nodes vi and vj in V can
be computed in O(n3) time.

The location part of the problem is the question where to position one machine
on which all jobs A1; : : : ; An have to be processed. In the node version of the
Scheduling/Location (ScheLoc)problem, the positioning is only allowed in
the nodes while in the absolute version of ScheLoc the machine can be placed
anywhere in the graph, i.e. also in the interior of an edge. If e = [vi; vj] 2 E,
then x = (e; �) with � 2 [0; 1] is the point in G with

d(vi; x) = d(x; vi) = �le and d(vj; x) = d(x; vj) = (1� �)le (1)

(see Figure 1), i.e. we assume linearity of the distance along edge e. The set of
points in G is denoted by X .

vi vj: : : : : :
x = (e; �)

�le (1� �)le

Figure 1: Representation of point x = (e; �) in the interior of edge e = [vi; vj]

In terms of the classi�cation scheme proposed byHamacher andNickel [HN99]
the problem is 1=G=:=d(V; fV;Gg)=obj, where the objective function obj is given
by the scheduling problem. For an overview of location problems see e.g. Daskin
[Das95], Drezner and Hamacher [DH02], Francis et al. [FMW92] or Mir-

chandani and Francis [MF90].

Once a position has been chosen for the machine, ScheLoc reduces to a classical
scheduling problem with release dates. The machine can only process one of the
jobs A1; : : : ; An at a time. During the processing, preemption is not allowed. In
order to transport any job Ak to position x of the machine it takes

d(vk; x) =

8<
:

dkl if x = vl 2 V;
minfd(vk; vi) + �lij;

d(vk; vj) + (1� �)lijg if x = (e; �) 2 X n V; e = [vi; vj]
(2)

time units, such that the processing of job Ak can not be started before its release
time rk(x) = d(vk; x).

2



vi vj

vj

d(vk; vi) d(vk; vj)

: : : : : :

...

x = (e; �)

�le (1� �)le

Figure 2: Visualization of release time rk(x) = d(vk; x) for job Ak if machine is
located in x 2 X

The largest part of the paper deals with the makespan objective, i.e. the maximal
completion time of the jobs Cmax(x) := maxfCi(x); i 2 f1; : : : ; ngg; where Ci(x)
is the time when the processing of job Ai is completed. Any schedule is given
by an ordering of the jobs, denoted by � = (�(1); : : : ; �(n), i.e. Cmax(x) =
C�(n)(x)). In the classi�cation scheme ofGraham et al. [GLLRK79] the problem
is denoted 1 j ri j Cmax. This problem can be solved by sorting the jobs in non-
decreasing order of the their release dates (earliest release date (ERD) rule).
An overview of scheduling theory is given e.g. in Baker [Bak74], Blazewicz et
al. [BEP+01], Brucker [Bru01], Coffman [Cof76], Conway et al. [CMM67],
French [Fre82], Pinedo [Pin95] or Tanaev et al. [TSS94a] and [TSS94b].

In contrast to classical scheduling problems, the problem is dependent on the
location x of the machine. In particular, the release dates are in ScheLoc not
part of the input, but a consequence of the choice of the location x for the
machine. ScheLoc can therefore be written as

min
x2X

Cmax(x) =
n

max
j=1

Cj(x) (3)

In the next section we will show how to solve the simplest version of ScheLoc
involving just two jobs A1 and A2 and a single edge graph G = (fv1; v2g; [v1; v2]).
The insight obtained from solving this problem will be used in Section 3 to
solve, in sequence, the node version of ScheLoc and the absolute version ScheLoc
problem in trees and in general graphs. Algorithms are presented to solve the
problems. We conclude the paper by observing that the approach described in
this paper carries over to all scheduling problems which can be solved by the
ERD rule.

3



2 Two Job ScheLoc

Given are two jobs A1 and A2 with their processing times p1 and p2 and their
representation as nodes v1 and v2, respectively. We denote the distance between
the two locations of the jobs by

D := d(v1; v2): (4)

With x� := ([v1; v2]; �) we denote the point with distance

d(v1; x�) = �D (5)

from v1 and distance

d(v2; x�) = (1� �)D (6)

from v2, where � 2 [0; 1].

The position x0:5 is given as separation point because

r1(x0:5) = d(v1; x0:5) = d(x0:5; v2) = r2(x0:5); (7)

i.e. r1(x) < r2(x) holds for x 2 (v1; x0:5), and r1(x) > r2(x) holds for x 2 (x0:5; v2).
Consequently, the ERD rule de�nes two regions

[v1; x0:5]; [x0:5; v2]: (8)

on the edge, in which the processing sequence is �xed, namely � = f1; 2g in
[v1; x0:5] and � = f2; 1g in [x0:5; v2]. These regions, in which the job sequence is
not changing are called ordered Weber regions (seeNickel and Puerto, [NP99])
and will play an important role in Section 3.2.

The objective value z(x) is equal to the completion time of the second processed
job, i.e.

z(x) = maxfC1(x); C2(x)g = C�(2)(x): (9)

Case 1: �(1) = 1 and �(2) = 2, i.e. we locate the machine in x� 2 [v1; x0:5] and
A1 is processed �rst. In this case the objective value is

z(x) = C2(x) = maxfC1(x) + p2; r2(x) + p2g (10)

= maxfr1(x) + p1 + p2; r2(x)p2g; (11)

since A2 can not start its processing before job A1 is completed and, for sure, not
before its release date.

Since r1(x�) = �D is increasing and r2(x�) = (1 � �)D is decreasing for � 2
[0; 0:5] we get the minimal value of z(x�) for � in the intersection point of �D+
p1 + p2 and (1� �)D + p2.

4



Lemma 2.1 For job sequence �(1) = 1; �(2) = 2, the objective value achieves
its minimum, if and only if

r1(x�) + p1 = c1(x�) = r2(x�); (12)

i.e. the optimal location x� has to be chosen such that

� = �12 =
D � p1
2D

: (13)

The optimal objective value is

z(x�12) =
D � p1

2
+ p2 (14)

Case 2: �(1) = 2; �(2) = 1, i.e. we locate the machine in x� 2 [x0:5; v2] and A2 is
processed �rst. As in Case 1 we obtain for x�:

z(x�) = C1(x�) = maxfC2(x�) + p1; r1(x�) + p1g (15)

= maxf(1� �)D + p2 + p1; �D + p1g; (16)

such that we can conclude.

Lemma 2.2 For job sequence �(1) = 2; �(2) = 1 the optimal objective value is

z(x�21) =
D + p2

2
+ p1; (17)

where �21 =
D+p2
2D

.

By comparing z(x�12) and z(x�21) we obtain a closed form expression for the two
job optimal solution.

Lemma 2.3 The optimal location x�� for the machine in the single machine
ScheLoc problem with 2 jobs is

�� =

�
D�p1
2D

if p1 � p2
D+p2
2D

if p1 � p2:
(18)

A visualization of the results in this section is depicted in Figure 3.

3 ScheLoc with more than Two Jobs

If the machine is to be positioned on a graph there are two alternatives. Locating
is only possible in nodes or we allow that the machine can also be positioned inside
the edges, i.e. locating is possible on the whole graph. For the second possibility
we consider �rst the special case that the graph is a tree and then we generalize
the results to arbitrary graphs.

5



v1 v2
0

le

0

le

x = (e; 0:5)

C1(x)

C2(x)

Figure 3: Visualization of release dates(doted lines), completion times(full lines)
and Cmax(thick lines) depending on x

3.1 Node Version of ScheLoc

This problem can be solved by complete enumeration. Every node is considered
to be a possible location of the machine. After �xing the position of the machine
we can calculate the release dates and the solution of the scheduling problem in
this node. The best solution gives us the optimal node position of the machine.

Since the time complexity for the scheduling part is O(n logn) in every node
the overall complexity is O(n2 logn). Note that this complexity is in general
graphs dominated by the O(n3) complexity to �nd the distances dij by an all
pair shortest path algorithm (see e.g. Ahuja et al. [AMO93]).

To make the calculation faster we use two kinds of lower bounds, an overall lower
bound and one for a �xed position in a node. An overall lower bound is given by
the sum of the processing times,

LB1 :=
nX
i=1

pi: (19)

If the objective function in a node is equal to this lower bound we can stop the
algorithm. This observation allows us to easily �nd the optimal position of the
machine in a special case.

Lemma 3.1 If a job Ai exists with pi � d(vi; vj) 8j 2 f1; : : : ; ng then vi is the
optimal position of the machine.

Proof. If pi � d(vi; vj) then pi � rj(vi); 8j 2 f1; : : : ; ng and therefore Cmax(vi) =Pn

j=1 pj = LB1, since ri(vi) = 0 and all jobs can be processed after Ai without
idle time.

6



The local lower bound is given by the distance between a node vj and the location
of the machine plus the processing time of the corresponding job, i.e.

LBi =
n

max
j=1

fd(vi; vj) + pjg: (20)

If LBi for a node vi is greater than the value of the best solution found so far we
can skip the calculation of the sequence in this node.

Due to the �rst lower bound sorting the jobs in non increasing order of their
processing times (LPT rule) and search in this order for the optimal position
yields good results for dense graphs like complete graphs and when the processing
times are high compared with the distances between the nodes. If the graph is
not dense, in particular if it is a tree we choose another strategy to search the
optimal position. We sort the jobs in non decreasing order of the value LBi.
This strategy yields also good results if the graph is dense, but the processing
times are low relative to the distances. Example 3.1 shows, however, that neither
argmaxvi2V fpig nor argminvi2V fLBig gives the optimal position for the machine.

Example 3.1 Let n = 4 and p1 = 10; p2 = 1; p3 = 9; p4 = 8, and let G = (V;E)
be the graph of Figure 4

A1 A2 A3 A4
10 10 10

Figure 4: Example graph

argmaxvi2V fpig = v1 and argminvi2V fLBig = v2 but the optimal position is
v3(see Figure 5).

3.2 Absolute ScheLoc Problems in Trees

Given an undirected tree graph G = (V;E). It is possible to locate the machine
anywhere on the edges. We can use the concept of ordered Weber regions OWR
(see Nickel and Puerto [NP99]) for solving this problem. A subset R � X of
points is called ordered Weber region (OWR) if

d(x; vi) � d(x; vj)() d(y; vi) � d(y; vj) 8x; y 2 R; vi; vj 2 V: (21)

Hence the list of distances fd(x; vi) : vi 2 V g is sorted in the same way for all
x 2 R. Consequently, the optimal job sequence is identical for all x 2 R, since it
is de�ned by the earliest release date rule and ri(x) = d(x; vi) 8vi 2 V . In order
to simplify the subsequent arguments we assume without loss of generality that

7



v4 :

v3 :

v2 :

v1 :

P

A4 A3

A2
A1

A3 A4

A2
A1

A2
A1 A3 A4

A1

A2
A3 A4

40

30

37

38

0 10 20 30 40

CiSequence

Figure 5: Gantt charts for the position of the machine in the nodes of Example
3.1

any OWR is a subset of a single edge e. That is R = f(e; �) : � � � � �g for
some 0 � � � � � 1. (If this is not the case, i.e. a node lies inside an OWR, we
decompose it into several parts separated by this node.)

Since in an ordered Weber region R the order is not changing we can easily
calculate the optimal position of the machine in R. The completion time of the
whole processing is equal to the completion time of the last job

z(�) = c�(n)(x) = maxfc�(n�1)(x); r�(n)(x)g + p�(n); 8x = (e; �) 2 R: (22)

In this manner we can calculate the completion times of all jobs by

C�(i)(x) = maxfC�(i�1)(x); r�(i)(x)g+ p�(i) 8i = 2; : : : ; n; 8x 2 R; (23)

with C�(1)(x) = r�(1)(x) + p�(1).

Since G is a tree any two points are connected by a unique path. Hence ri(x) =
d(x; vi) de�ned by (2) is linear in � for x = (e; �) 2 R with slope �1.

Lemma 3.2 The objective function is piecewise linear and convex in every OWR,
consisting of at most two linear pieces with slopes �1.

So we can calculate the optimal position of the machine in a given OWR in O(n)
as follows. First we compare C�(n)(e; �) and C�(n)(e; �) in the two boundary
points of R. If

j C�(n)(e; �)� C�(n)(e; �) j= d(R) = (�� �)le; (24)

the optimal position in R is the boundary point with the lower completion time.
This situation occurs if z(�) is linear. Otherwise, i.e. z(�) consists of two linear
pieces, Equation (24) does not hold and d1 and d2 solving

d1 + d2 = d(R)
d1 � d2 = C�(n)(e; �)� C�(n)(e; �);

(25)

8



are the distances between the optimal location and the boundary point (e; �) and
(e; �), respectively.

Now we can formulate the algorithm.

Algorithm 1 Locating a single machine on a tree network
Step 0: Calculate shortest paths of all pair of nodes;

Step 1: Identify the OWRs, i.e. regions with equal order of the jobs;

Step 2: For each region calculate the optimal machine location using (24) or (25);

Step 3: Take the best one as optimum;

In a tree every node vi 2 E is connected to every other node vj 2 E; i 6= j by a
unique path Pij. Every path has an unique midpoint dividing the path into two
parts where every point on one side is nearer to vi than to vj and on the other
side every point has a shorter distance to vj than to vi. The two parts of the

graph belong therefore to di�erent OWRs. In the graph we have n(n�1)
2

di�erent

pair of nodes and therefore n(n�1)
2

di�erent paths. By constructing the OWRs by

considering one path after the other we get n(n�1)
2

+1 OWRs. The �rst midpoint
decomposes the tree into two regions. The second midpoint decomposes one of
the two regions into two new regions and therefore we have three regions. Every
other midpoint decomposes one existing region into two regions and the number
of regions increases by one. If an OWR contains a node we decompose it again
in parts that are on di�erent edges, i.e. we decompose an OWR R into Æ(v)
parts, where Æ(v) is the degree of node v 2 V , if v 2 int(R). Since leaves have a
node degree of one they do not separate an OWR. Degree Æ(v) = 2 leads to one
additional OWR, degree Æ(v) = 3 to two additional OWRs, and so on. We get

X
v2V

(Æ(v)� 1) =j V j � 2 (26)

additional OWRs. Thus the complete number of OWRs is

n(n� 1)

2
+ n� 1 =

n(n+ 1)

2
+ 1 = O(n2): (27)

Thus we have O(n2) OWRs in a tree. In every region we have to calculate the
sequence which takes O(n logn) such that we have O(n3 logn) for the whole
algorithm.

To improve the time bound we construct the OWRs in a di�erent way. We know
that in the sequence moving over the boundary from one OWR to a neighbor
OWR only those jobs are exchanged with equal distance to that boundary. If
we know the sequence in one OWR we can easily calculate the sequence in the

9



neighbor OWR and if we know the release times in one boundary of the OWR we
can easily calculate the release times in the other boundary of the OWR. Starting
in a boundary point of an OWR R and scanning through the tree along R the
other boundary is reached if we reach a node x = v�(1), i.e. r�(1)(x) = 0, where
� is the optimal sequence in R, or we reach the midpoint of a path between two
nodes. Since the two jobs associated with the two nodes have to be successors in
the sequence a midpoint is found if r�(i)(x) = r�(i+1)(x), for some i 2 f1; : : : ; ng.
The sequence is changed by swapping the two nodes A�(i) and A�(i+1). As starting
point for the scan procedure a leaf is a good choice, since we know the distances
to the other nodes and therefore the sequence. Additionally a leaf is always a
boundary of an OWR. If the scan procedure reaches a node v with degree Æ(v) > 2
we store the information about the release times in that node and scan the rest
of the tree branch by branch.

In the starting point we have to calculate the sequence which takes O(n logn)
time. Scanning through an OWR takes O(n) to follow the n distance functions
and the exchange from one OWR to another has the same complexity, since we
have to exchange at most n=2 jobs in the sequence. With the number of OWRs
we have calculated before we get a complexity of O(n3) for implementing the
algorithm.

3.3 ScheLoc in General Graphs

The algorithm of Section 3.2 for trees is based on the fact, that rk(x) = d(x; vk)
are linear functions in x = (e; �) on each OWR R = f(e; �) : � � � � �g for all
vk 2 V . In general graphs this is no longer true as can be seen from the de�nition
of the distance function in (2).

Next we will show how to decompose OWRs for general graphs further such that
the linearity property holds in the decomposition parts. For this purpose let R
be an OWR. A point x = (e; �) 2 R on edge e = [vi; vj] is called equilibrium
point if

d(vi; vk) + �le = d(vj; vk) + (1� �)le (28)

holds for some vk 2 V . Each edge - and thus each OWR - contains at most
(n� 2) equilibrium points. Notice that the linearity of rk(x) is violated in OWR
R if and only if the equilibrium point with respect to node vk is contained in the
interior of R. Therefore if �1; : : : ; �H de�ne the equilibrium points (e; �h) in R,
all functions rk(x) are linear in each of the segments

Rk := f(e; �) : �h � � � �h+1g 8 h = 1; : : : ; H � 1: (29)

Since H � n�2 and there are O(n2) intersection points of two distance functions
along one edge, we get at most O(n4) of such sets the union of which is X .

10



The arguments used in the derivation of Algorithm 1 for trees now carry over to
the partition of X into sets Rh. Since rk(x) is linear on Rh for all h, the objective
function is convex on Rh and attains its optimal location either in one of its two
boundaries (see Equation (24)) or can be computed using (25). The complexity
of this algorithm is O(n5).

4 Extension to Other Scheduling and Location

Problems

In the previous sections we have considered ScheLoc problems where the schedul-
ing is a makespan problem. The crucial argument in the solution algorithms was
that we can �nd a partition of the point set X into subsets in which the earliest
release dates (ERD) sequence is unchanged and in which the release functions
rk(x) are linear. This argument is, however independent of the objective func-
tion. Therefore the tools developed above apply to all ScheLoc problems where
the scheduling part can be solved by the ERD rule. The list of problems include

1 j ri � 0; di = d 8i 2 f1; : : : ; ng j Lmax

1 j ri � 0; di = d 8i 2 f1; : : : ; ng; prec j Lmax

1 j ri � 0; prec j Cmax.

For the problems with precedence constraints we have to modify the release dates
before starting our algorithms, such that ri � rj if the job Ai is a successor of
job Aj, i.e. Aj ! Ai. This can be done in O(n + �), see [Bru01], where � is the
number of precedence constraints.

A similar approach can be used if we modify the location environment. If we
consider location problems in the plane instead of networks, the concept of or-
dered Weber regions can be de�ned in this context as well. Correspondingly, the
job sequences are identical for all points in the OWR and algorithms analogous
to the ones developed in Section 3 can be derived.

References

[AMO93] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows - The-
ory, Algorithms, and Applications. Prentice Hall, Englewood Cli�s,
New Jersey, 1993.

[Bak74] K.R. Baker. Introduction to Sequenzing and Scheduling. John Wiley
& Sons, 1974.

11



[BEP+01] J. Blazewicz, K.H. Ecker, E. Pesch, G. Schmidt, and J. Weglarz.
Scheduling Computer and Manufacturing Processes. Springer Verlag,
Berlin, 2nd edition, 2001.

[Bru01] P. Brucker. Scheduling Algorithms. Springer Verlag, Berlin, 3rd
edition, 2001.

[CMM67] R.W. Conway, W.L. Maxwell, and L.W. Miller. Theory of Schedul-
ing. Addison-Wesley, 1967.

[Cof76] E.G. Jr. Co�man. Computer and Job-Shop Scheduling. John Wiley
& Sons, 1976.

[Das95] M.S. Daskin. Network and Discrete Location. Models, Algorithms
and Applications. Wiley-Interscene Series in Discrete Mathematics
and Optimization. John Wiley and Sons, Inc., New York, NY, 1995.

[DH02] Z. Drezner and H.W. Hamacher, editors. Facility Location, Appli-
cations and Theory. Springer Verlag, Berlin, 2002.

[FMW92] R.L. Francis, L.F. Jr. McGinnis, and J.A. White. Facility Layout and
Location: An Analytical Approach. Prentice Hall International Series
in Industrial and Systems Engineering. Prentice Hall, Englewood
Cli�s, New Jersey, 2nd edition, 1992.

[Fre82] S. French. Sequenzing and Scheduling. Ellis Horwood Series: Math-
ematics and its Applications. John Wiley & Son, 1982.

[GLLRK79] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan.
Optimization and approximation in deterministic sequenzing and
scheduling: a survey. Ann.discr.Math., 5:287{326, 1979.

[HN99] H.W. Hamacher and S. Nickel. Classi�cation of location models.
Location Science, 36:34{36, 1999.

[MF90] P.B. Mirchandani and R.L. Francis. Discrete Location Theory.
Discrete Mathematics and Optimization. Wiley-Interscience Series,
1990.

[NP99] S. Nickel and J. Puerto. A uni�ed approach to network location
problems. Networks, 34(4):283{290, 1999.

[Pin95] M. Pinedo. Scheduling: Theory, Algorithms and Systems. Prentice
Hall, 1995.

[TSS94a] V.S. Tanaev, Y.N. Sotskov, and V.A. Strusevitch. Scheduling The-
ory: Multi-Stage Systems. Kluver Academic Publishers, Dordrecht,
1994.

12



[TSS94b] V.S. Tanaev, Y.N. Sotskov, and V.A. Strusevitch. Scheduling The-
ory: Single-Stage Systems. Kluver Academic Publishers, Dordrecht,
1994.

13


