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1 Relaxation Schemes for Hyperbolic Conservation Laws

1.1 Introduction

For the numerical solution of hyperbolic conservation laws, upwind methods have gained
popularity in the last two decades. The upwind methods developed for solving Euler equations
of gas dynamics can be broadly classified as

1. Riemann solvers (exact or approximate),

2. Flux Vector Splitting methods and

3. Kinetic theory based methods.

Details of the Riemann solvers and Flux Vector Splitting methods are available in the text
books by Hirsch [1, 2], Toro [3] and Laney [4]. For a review of Kinetic Schemes, also known
as Boltzmann Schemes, the reader is referred to the review article by Deshpande [5] and also
the book by Godlewski and Raviart [6]. Out of these upwind methods, the Riemann solvers
have been very popular due to their higher accuracy, which is a consequence of lower numerical
dissipation, compared to other schemes. However, the low numerical dissipation also resulted
in several problems which made these schemes lose the a part of the property of robustness
which was initially attributed to these methods. A long list of failings of the Riemann solvers is
given by Quirk [7]. Since the recognition of the failures of the Riemann solvers, there has been
a renewed interest in the search for non-Riemann solver based numerical methods for solving
hyperbolic conservation laws.

Recently, a fourth category of upwind methods is introduced by Jin and Xin [8], called
Relaxation Schemes. These methods are based on replacing the original non-linear conservation
laws by a set of linear equations with non-linear source terms. The interesting feature of these
Relaxation Systems is the linearity of the convection terms. Coupled with the technique of the
Splitting method which separates the linear convection terms and the non-linear source terms,
these semi-linear Relaxation Systems provide a very simple alternative to the Riemann solvers
and complicated flux splittings. The numerical methods based on this technique are termed as
Relaxation Schemes.
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The motivation for this article is to give a simple introduction to the Relaxation Schemes for
solving equations of compressible flows and also to present some interesting research directions
the author is involved in, based on the Relaxation Systems.

1.2 Relaxation Systems for Non-linear Conservation Laws

Consider a scalar conservation law in one dimension

∂u

∂t
+
∂g (u)

∂x
= 0

with the initial condition u (x, t = 0) = u0 (x) .
(1)

Here the flux g (u) is a non-linear function of the dependent variable u. With g (u) =
u2

2
, we

recover the inviscid Burgers equation. The main difficulty in solving this equation numerically
is the non-linearity of the flux g (u). Jin and Xin [8] dealt with this problem of non-linearity
by introducing a new variable v, which is not an explicit function of the dependent variable u
and provided the following system of equations.

∂u

∂t
+
∂v

∂t
= 0

∂v

∂t
+ λ2∂u

∂x
= −1

ε
[v − g (u)]

(2)

Here, λ is a positive constant and ε is a very small number approaching zero. We can rearrange
the second equation of the above system (2) as

ε

[
∂v

∂t
+ λ2∂u

∂x

]
= − [v − g (u)] (3)

and as ε → 0, we obtain v = g (u). Substituting this expression in the first equation of the
Relaxation System (2), we recover the original non-linear conservation law (1). Therefore,
in the limit ε → 0, solving the Relaxation System (2) is equivalent to solving the original
conservation law (1). It is advantageous to work with the Relaxation System instead of the
original conservation law as the convection terms are not non-linear any more. The source
term is still non-linear, and this can be handled easily by the method of splitting, which will
be described in the following sections. The initial conditions for the new variable v is given by

v(x, t = 0) = g (u0 (x)) (4)

This initial condition avoids the development of an initial layer, as the initial state is in local
equilibrium [8]. The above approach of replacing the non-linear conservation law by a semi-
linear Relaxation System can be easily extended to vector conservation laws and to multi-
dimensions. Consider a vector conservation law in one dimension, given by

∂U

∂t
+
∂G (U)

∂x
= 0 (5)
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Here, U is the vector of conserved variables and G (U) is the flux vector, defined by

U =

 ρ
ρu
ρE

 and G (U) =

 ρu
p+ ρu2

pu+ ρuE

 (6)

where ρ is the density, u is the velocity, p is the pressure and E is the total internal energy of
the fluid, defined by

E =
p

ρ (γ − 1)
+
u2

2
(7)

with γ being the ratio of specific heats. The above vector conservation laws are the Euler
equations of gas dynamics and describe the mass, momentum and energy conservation laws for
the case of an inviscid compressible fluid flow. The Relaxation System for the above vector
conservation laws is given by

∂U

∂t
+
∂V

∂t
= 0

∂V

∂t
+D

∂U

∂x
= −1

ε
[V −G (U)]

(8)

where D is positive constant diagonal matrix, defined by

D =

 D1 0 0
0 D2 0
0 0 D3

 (9)

The positive constants λ in the Relaxation System for the scalar case (2) and Di, (i = 1, 2, 3) in
the Relaxation System for the vector case (8) are chosen in such a way that the Relaxation Sys-
tem is a dissipative approximation to the original non-linear conservation laws. To understand
this better, let us do a Chapman-Enskog type expansion for the Relaxation System.

1.3 Chapman-Enskog type expansion for the Relaxation System

In this section, a Chapman-Enskog type expansion is performed for the Relaxation System,
following Jin and Xin [8]. We can rewrite the second equation of the Relaxation System (2) as

v = g (u)− ε
[
∂v

∂t
+ λ2∂u

∂x

]
(10)

which means that
v = g (u) +O [ε] (11)

Differentiating with respect to time, we obtain

∂v

∂t
=

∂

∂t
[g (u)] +O [ε] =

∂g

∂u

∂u

∂t
+O [ε] (12)
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Since the first equation of the Relaxation System (2) gives

∂u

∂t
= −∂v

∂x
(13)

we can write
∂v

∂t
= −∂g

∂u

∂v

∂x
+O [ε] (14)

Therefore, using (11), we can write

∂v

∂t
= −∂g

∂u

[
∂

∂x
{g (u) +O [ε]}

]
+O [ε] (15)

or
∂v

∂t
= −∂g

∂u

[
∂g

∂u

∂u

∂x

]
+O [ε] = −

(
∂g

∂u

)2
∂u

∂x
+O [ε] (16)

Substituting the above expression in (10), we get

v = g (u)− ε

−

(
∂g

∂u

)2
∂u

∂x
+O [ε]

+ λ2∂u

∂x

 (17)

or

v = g (u)− ε

∂u
∂x

λ2 −
(
∂g

∂u

)2

+O

[
ε2
]

(18)

Substituting this expression for v in the first equation of the Relaxation System (2), we get

∂u

∂t
+
∂g (u)

∂x
= ε

∂

∂x

∂u
∂x

λ2 −
(
∂g

∂u

)2

+O

[
ε2
]

(19)

The right hand side of (19) contains a second derivative of u and hence represents a dissipation
(viscous) term. The coefficient represents the coefficient of viscosity. Therefore, the Relaxation
System provides a vanishing viscosity model to the original conservation law. For the coefficient
of dissipation to be positive, the following condition should be satisfied.

λ2 ≥
(
∂g

∂u

)2

or − λ ≤
(
∂g

∂u

)
≤ λ (20)

This is referred to as the sub-characteristic condition. The constant λ in the Relaxation System
(2) should be chosen in such a way that the condition (20) is satisfied.

For the vector conservation laws (5) modeled by the Relaxation System (8), the Chapman–
Enskog type expansion gives

∂U

∂t
+
∂G(U)

∂x
= ε

∂

∂x

D −
(
∂G(U)

∂U

)2
 ∂U

∂x

+O(ε2) (21)

4



For the Relaxation System (8) to be dissipative, the following condition should be satisfied.

D −
(
∂G(U)

∂U

)2

≥ 0 (22)

Based on the eigenvalues of the original conservation laws (5), i.e., Euler equations, Jin and
Xin [8] proposed the following two choices.

(i) Define D as D =

 λ2
1 0 0

0 λ2
2 0

0 0 λ2
3


First choice : λ2 = λ2

1 = λ2
2 = λ2

3 = max [|u− a|, |u|, |u+ a|] (23)

(ii) Second choice : λ2
1 = max|u− a|, λ2

2 = max|u| and λ2
3 = max|u+ a| (24)

where u is the fluid velocity and a is the speed of sound. With the first choice, the diagonal
matrix D can be written as

D = λ2I (25)

where I is a unit matrix.

1.4 Diagonal form of the Relaxation System

The Relaxation System (2) can be written in matrix form as

∂Q

∂t
+ A

∂Q

∂x
= H (26)

where Q =

[
u
v

]
, A =

[
0 1
λ2 0

]
and H =

 0

−1

ε
[v − g (u)]

 (27)

As the Relaxation System (2) is hyperbolic, so is (26) and, therefore, we can write

A = RΛR−1 and consequently Λ = R−1AR (28)

where R is the matrix of right eigenvectors of A, R−1 is its inverse and Λ is a diagonal matrix
with eigenvalues of A as its elements. The expressions for R, R−1 and Λ are given by

R =

[
1 1
−λ λ

]
, R−1 =


1

2
− 1

2λ

1

2

1

2λ

 and Λ =

[
−λ 0
0 λ

]
(29)
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Since the Relaxation System (26) is a set of coupled hyperbolic equations, we can decouple it
by introducing the characteristic variables as

f = R−1Q which gives Q = Rf (30)

Therefore, we can write
∂Q

∂t
= R

∂f

∂t
and

∂Q

∂x
= R

∂f

∂x
(31)

Substituting the above expressions in (26), we obtain

∂

∂t
+R−1AR

∂f

∂x
= R−1H (32)

Using (28), the above equation can be written as

∂f

∂t
+ Λ

∂f

∂x
= R−1H (33)

where

f =

[
f1

f2

]
= R−1Q =


u

2
− v

2λ

u

2
+

v

2λ

 and R−1H =


1

2λε
[v − g (u)]

− 1

2λε
[v − g (u)]

 (34)

Thus, we obtain two decoupled equations as

∂f1

∂t
− λ∂f1

∂x
=

1

2λε
[v − g (u)]

∂f1

∂t
+ λ

∂f1

∂x
= − 1

2λε
[v − g (u)]

(35)

Solving these two equations in the limit of ε→ 0 is equivalent to solving the original non-linear
conservation law (1). It is much easier to solve the above two equations than solving (1), since
the convection terms in them are linear. The source terms are still non-linear, but these can
be handled easily by the splitting method, which will be described in the following sections.
Using (29) and (30), we obtain the expressions

u = f1 + f2 and v = λ (f2 − f1) (36)

using which we can recover the original variables u and v. In the case of vector conservation
laws (5), the diagonal form of the Relaxation System leads to

∂f1

∂t
− λ∂f1

∂x
=

1

2λε
[V −G (U)]

∂f1

∂t
+ λ

∂f1

∂x
= − 1

2λε
[V −G (U)]

(37)

where f1 and f2 are vectors with three components each for the 1-D case.
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1.5 Diagonal form as a Discrete Kinetic System

The diagonal form of the Relaxation System can be interpreted as a discrete Boltzmann equation
[9, 10, 11]. Let us introduce a new variable F as

F =

[
F1

F2

]
=


u

2
− g (u)

2λ

u

2
+
g (u)

2λ

 (38)

With these new variables, the diagonal form of the Relaxation System (33) can be rewritten as

∂f

∂t
+ Λ

∂f

∂x
=

1

ε
[F− f ] (39)

This equation is similar to the Boltzmann equation of Kinetic Theory of Gases with a Bhatnagar-
Gross-Krook (B-G-K) collision model, except that the molecular velocities are discrete (−λ and
λ) and the distribution function f correspondingly has two components, f1 andf2. The new
variable F represents the local Maxwellian distribution. This interpretation was used by Natal-
ini [9] and Droillet & Natalini [10] to develop multi-dimensional Relaxation Systems which are
diagonalizable and new schmes based on them. The classical Boltzmann equation with B-G-K
model in one dimension is given by

∂f

∂t
+ ξ

∂f

∂x
=

1

tR
[F − f ] (40)

where ξ is the molecular velocity, tR is the relaxation time and F is the equilibrium (Maxwellian)
distribution. The Euler equations can be obtained as moments of the Boltzmann equation. The
1-D local Maxwellian for such a case is given by

F =
ρ

I0

(
β

π

) 1
2

e

[
−β(ξ−u)2+ I

I0

]
(41)

where ρ is the density, D is the number of translational degrees of freedom, β = 1
2RT

, T is the
temperature, I is the internal energy variable for the non-translational degrees of freedom and
I0 is the corresponding average internal energy. The moments of the distribution function lead
to the macroscopic variables as

u =
∫ ∞

0
dI
∫ ∞
−∞

dξ


1
ξ

I +
ξ2

2

 f =
∫ ∞

0
dI
∫ ∞
−∞

dξ


1
ξ

I +
ξ2

2

F (42)

and

g (u) =
∫ ∞

0
dI
∫ ∞
−∞

dξ


1
ξ

I +
ξ2

2

 ξf =
∫ ∞

0
dI
∫ ∞
−∞

dξ


1
ξ

I +
ξ2

2

 ξF (43)
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The macroscopic equations (Euler equations in this case) are obtained as moments as of the
Boltzmann equation by

∫ ∞
0

dI
∫ ∞
−∞

dξ


1
ξ

I +
1

2
ξ2


[
∂f

∂t
+ ξ

∂f

∂x
=

1

tR
[F − f ]

]
(44)

The corresponding expressions for the moments for the discrete Boltzmann equation are

u = P f = PF , v = PΛf and g (u) = PΛF where P = [1 1] (45)

for the case of scalar conservation laws and

U = P f = PF , V = PΛf and G (U) = PΛF (46)

for the case of vector conservation laws. The macroscopic equations are obtained from the
discrete Boltzmann equation by multiplying by P and PΛ respectively. Let us multiply the
discrete Boltzmann equation (39) by P to obtain

P

[
∂f

∂t
+ Λ

∂f

∂x

]
= P

[
1

ε
[F− f ]

]
(47)

or
∂ (P f)

∂t
+
∂ (PΛf)

∂x
=

1

ε
[PF− P f ] (48)

Using (45), the above equation can be rewritten as

∂u

∂t
+
∂v

∂x
= 0 (49)

which is the first equation of the Relaxation System (2). Similarly, multiplying the discrete
Boltzmann equation (39) by PΛ, we obtain

∂ (PΛf)

∂t
+
∂ (PΛ2f)

∂x
=

1

ε
[PΛF− PΛf ] (50)

Evaluating PΛ2f as λ2u and using (45), we get

∂v

∂t
+ λ2∂u

∂x
= −1

ε
[v − g (u)] (51)

which is the second equation of the Relaxation System (2). The Relaxation System for the
vector conservation laws can also recovered by a similar procedure. In comparison with the
classical Boltzmann equation, we can see that recovering the moments are simpler for the
Relaxation System and therefore the Relaxation Schemes will be simpler than the traditional
Kinetic Schemes in final expressions.
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1.6 Multi-dimensional Relaxation Systems

Consider a scalar conservation law in 2-D

∂u

∂t
+
∂g1 (u)

∂x
+
∂g2 (u)

∂y
= 0 (52)

The Relaxation System given by Jin and Xin [8] for the above equation is

∂u

∂t
+
∂v1

∂x
+
∂v2

∂y
= 0

∂v1

∂t
+ λ2

1

∂u

∂x
= −1

ε
[v1 − g1 (u)]

∂v2

∂t
+ λ2

2

∂u

∂x
= −1

ε
[v2 − g2 (u)]

(53)

We can write the above Relaxation System in matrix form as

∂Q

∂t
+ A1

∂Q

∂x
+ A2

∂Q

∂y
= H (54)

where

Q =

 u
v1

v2

 , A1 =

 0 1 0
λ2

1 0 0
0 0 0

 , A2 =

 0 0 1
0 0 0
λ2

2 0 0

 and H =


0

−1

ε
{v1 − g1 (u)}

−1

ε
{v2 − g2 (u)}

 (55)

The matrices A1 and A2 do not commute (A1A2 6= A2A1) and the above system is not diago-
nalizable. This is true in general for the multi-dimensional Relaxation System of Jin and Xin
(see [9]). As it is preferable to work with a diagonal form, Droillet and Natalini [10] general-
ize the discrete Boltzmann equation in 1-D to multi-dimensions to obtain a multi-dimensional
Relaxation System as

∂f

∂t
+

D∑
k=1

Λk
∂f

∂xk
=

1

ε
[F− f ] (56)

For the multi-dimensional diagonal Relaxation System, the local Maxwellians are defined by
[10]

FD+1 =
1

D

[
u+

1

λ

D∑
k=1

gk (u)

]

Fi = −1

λ
gi (u) + FD+1 , (i = 1, · · · , D)

(57)
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Let us consider the 2-D case for which the local Maxwellians are given by

F =

 F1

F2

F3

 =



u

3
− 2

3λ
g1 (u) +

1

3λ
g2 (u)

u

3
+

1

3λ
g1 (u)− 2

3λ
g2 (u)

u

3
+

1

3λ
g1 (u) +

1

3λ
g2 (u)

 (58)

Using the definitions

u = P f = PF , g1 = PΛ1F , g2 = PΛ2F , v1 = PΛ1f and v2 = PΛ2f (59)

we can obtain

P = [1 1 1] , Λ1 =

 −λ 0 0
0 0 0
0 0 λ

 , Λ2 =

 0 0 0
0 −λ 0
0 0 λ



and f =



u

3
− 2

3λ
v1 +

1

3λ
v2

u

3
+

1

3λ
v1 −

2

3λ
v2

u

3
+

1

3λ
v1 +

1

3λ
v2


(60)

Now, multiplying the 2-D discrete Boltzmann equation by P , PΛ1 and PΛ2, we can obtain the
2-D Relaxation System for (52). The 2-D Boltzmann equation is

∂f

∂t
+ Λ1

∂f

∂x
+ Λ2

∂f

∂y
=

1

ε
[F− f ] (61)

Multiplying the above equation by P , we obtain

∂ (P f)

∂t
+
∂ (PΛ1f)

∂x
+
∂ (PΛ2f)

∂y
=

1

ε
[PF− P f ] (62)

Using (59), the above equation can be simplified to

∂u

∂t
+
∂v1

∂x
+
∂v2

∂y
= 0 (63)

Similarly, multiplying (61) by PΛ1, we get

∂ (PΛ1f)

∂t
+
∂ (PΛ2

1f)

∂x
+
∂ (PΛ1Λ2f)

∂y
=

1

ε
[PΛ1F− PΛ1f ] (64)
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and by multiplying (61) by PΛ2, we obtain

∂ (PΛ2f)

∂t
+
∂ (PΛ2Λ1f)

∂x
+
∂ (PΛ2

2f)

∂y
=

1

ε
[PΛ2F− PΛ2f ] (65)

Using (60), we can evaluate PΛ2
1f , PΛ1Λ2f , PΛ2Λ1f and PΛ2

2f as

PΛ2
1f = λ2 (f1 + f3) , PΛ1Λ2f = PΛ2Λ1f = λ2f3 and PΛ2

2f = λ2 (f2 + f3) (66)

Using theses expressions, the above two equations get simplified to

∂v1

∂t
+

∂

∂x

[
λ2 (f1 + f3)

]
+

∂

∂y

[
λ2f3

]
=

1

ε
[g1 (u)− v1] (67)

∂v2

∂t
+

∂

∂x

[
λ2f3

]
+

∂

∂y

[
λ2 (f2 + f3)

]
=

1

ε
[g1 (u)− v1] (68)

Using the definitions (59) in (63), (67) and (68), after some algebraic manipulation, we obtain
the 2-D Relaxation System as

∂u

∂t
+
∂v1

∂x
+
∂v2

∂y
= 0

∂v1

∂t
+
λ

3

∂

∂x
[2 (λu+ v1 + v2)− 3v1] +

λ

3

∂

∂y
[λu+ v1 + v2] =

1

ε
[g1 (u)− v1]

∂vx
∂t

+
λ

3

∂

∂x
[λu+ v1 + v2] +

λ

3

∂

∂y
[2 (λu+ v1 + v2)− 3v2] =

1

ε
[g2 (u)− v2]

(69)

This Relaxation System is different from the non-diagonalizable Relaxation System of Jin and
Xin (53). The above derivation was done only to see the type of multi-dimensional Relaxation
System we obtain from the multi-dimensional discrete Boltzmann equation. It is not necessary,
however, to use the above Relaxation System, and it is sufficient to use the multi-dimensional
discrete Boltzmann equation as a starting point to derive Relaxation Schemes. For the 2-D
cases presented in this report the following equation is used as a starting point

∂f

∂t
+ Λ1

∂f

∂x
+ Λ2

∂f

∂y
=

1

ε
[F− f ] (70)

which, when expanded, leads to the following equations.

∂f1

∂t
− λ∂f1

∂x
=

1

ε
[F1 − f1]

∂f2

∂t
− λ∂f2

∂y
=

1

ε
[F2 − f2]

∂f3

∂t
+ λ

∂f1

∂x
+ λ

∂f3

∂y
=

1

ε
[F3 − f3]

(71)
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For 2-D Euler equations, the expanded form of the discrete Boltzmann equation is given by

∂f1

∂t
− λ∂f1

∂x
=

1

ε
[F1 − f1]

∂f2

∂t
− λ∂f2

∂y
=

1

ε
[F2 − f2]

∂f3

∂t
+ λ

∂f1

∂x
+ λ

∂f3

∂y
=

1

ε
[F3 − f3]

(72)

where fi and Fi for each i, (i = 1, 2, 3) are vectors with 4 components each similar to the
corresponding moments U, V1, V2, G1 and G2. The initial condition for f is prescribed as

f (x, y, t = 0) = F (U (x, y, t = 0)) (73)

The Chapman–Enskog type analysis for the above multi–dimensional Relaxation System to be
a dissipative approximation to the original conservation laws leads to the following condition
(see [10, 13] for details of the derivation).

λ ≥ max (−A1 − A2, 2A1 − A2,−A1 + 2A2) (74)

where

A1 =
∂G1 (U)

∂U
and A2 =

∂G2 (U)

∂U
(75)

1.7 Relaxation Schemes

Based on the model of a Relaxation System to the non-linear conservation laws, Jin and Xin [8]
developed upwind schemes for conservation laws, termed as Relaxation Schemes. Consider the
1-D Relaxation System (2) modeling the scalar conservation law (1). For solving this Relaxation
System which has a stiff non-linear term on the right hand side of the second equation, following
Jin and Xin [8], we can use an operator splitting by which the solution procedure is split into
the following two steps.
(i) Convection Step :

∂u

∂t
+
∂v

∂x
= 0

∂v

∂t
+ λ2∂u

∂x
= 0

(76)

In this convection step, an upwind method is used. Consider a 3-point stencil as shown in
Figure 1. Integrating the equations of the convection step (76) over the finite volume [j− 1

2
, j+ 1

2
]

from time tn to tn+1, we obtain

un+1
j = unj −

∆t

∆x

[
vnj+ 1

2
− vnj− 1

2

]
vn+1
j = vnj − λ2 ∆t

∆x

[
unj+ 1

2
− unj− 1

2

] (77)

12



j i+1j−1

j−1/2 j+1/2

∆ x

Figure 1: 3-point stencil

where the cell integral averages uj and vj are defined by

uj =
1

∆x

∫ j+ 1
2

j− 1
2

u (x) dx

vj =
1

∆x

∫ j+ 1
2

j− 1
2

v (x) dx

(78)

To calculate vn
j± 1

2

and un
j± 1

2

with an upwind approximation, following Jin and Xin [8], we can

use the characteristic variables of the relaxation system, f1 and f2 (see expression (34)) as

f1,j+ 1
2

= f1,j+1 and f2,j+ 1
2

= f2,j (79)

or
1

2
uj+ 1

2
− 1

2λ
vj+ 1

2
=

1

2
uj+1 −

1

2λ
vj+1 and

1

2
uj+ 1

2
+

1

2λ
vj+ 1

2
=

1

2
uj +

1

2λ
vj (80)

Solving the above two equations, we obtain

uj+ 1
2

=
1

2
[uj + uj+1]− 1

2λ
[vj+1 − vj]

vj+ 1
2

=
1

2
[vj + vj+1]− λ

2
[uj+1 − uj]

(81)

Using these expressions, the final upwind scheme in the convection step can be written as

un+1
j = unj −

∆t

∆x

[
1

2
(vj+1 − vj−1)− λ

2

(
unj+1 − 2unj + unj−1

)]

vn+1
j = vnj −

∆t

∆x

[
λ2

2

(
unj+1 − unj−1

)
− λ

2

(
vnj+1 − 2vnj + vnj−1

)] (82)

(ii) Source Step :

dv

dt
= −1

ε
[v − g (u)] (83)
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The above ordinary differential equation is solved by an implicit method which avoids the
time-step being dependent on ε, as

vn+1
j − vnj

∆t
= −1

ε

[
vn+1 − g

(
un+1

)]
(84)

The above strategy of splitting the method into a relaxation step and a convection step involves
a splitting error which makes the method first order accurate in time, irrespective of whatever
higher order discretization is used in time and space in both the steps. To rectify this defect,
Strang splitting is needed in which relaxation step is solved for half a time-step (∆t

2
), followed by

a convection step for full time-step (∆t) and then again by a relaxation step for half a time-step
(∆t

2
). Even this Strang splitting degenerates to formal first order accuracy in time in the limit

ε→ 0, as demonstrated by Jin [14]. As a remedy, Jin [14] introduced a modified Strang splitting
strategy which was used in [8], along with MUSCL scheme for higher order accuracy in space.
The modified Strang splitting introduced by Jin is given below.

u∗ = un

v∗ = vn +
∆t

ε
[v∗ − g (u∗)]

u1 = u∗ −∆t∆+v
∗

v1 = v∗ −∆tλ2∆+v
∗

u∗∗ = u1

v∗∗ = v1 − ∆t

ε
[v∗∗ − g (u∗∗)]− 2∆t

ε
[v∗ − g (u∗)]

u2 = u∗∗ −∆t∆+v
∗∗

v2 = v∗∗ −∆tλ2∆+v
∗∗

un+1 =
1

2

(
un + u2

)
vn+1 =

1

2

(
vn + v2

)

(85)

where

∆+w =
1

∆x

(
wj+ 1

2
− wj− 1

2

)
(86)

The reader is referred to the above references for further details. A different point of view of
this problem will be given in section (2.4) in this paper.

2 New Developments in Relaxation Schemes

The framework of Relaxation Schemes for solving non-linear conservation laws has proved to
be very fruitful and led to a lot of research work by applied mathematicians. The reader

14



is referred to the review article by Natalini [11] and the references therein for an account of
this research and Leveque & Pelanti [12] for the connection between Relaxation Schemes and
Riemann Solvers. In the following sections, some new developments in Relaxation Schemes that
the author is involved in are presented.

2.1 A Grid-Free Relaxation Scheme

Grid generation is an important aspect of numerical simulation of fluid flows on computers. Grid
generation around complex geometries is often a difficult and time-consuming task. To reduce
the efforts required for the grid generation, there has been a search for numerical algorithms
that are grid-free in the recent past, in the sense that they should be able to operate on
any arbitrary distribution of points. The Least Squares Kinetic Upwind Method (LSKUM) of
Ghosh and Deshpande [15] is an important development in this research. Balasubramanyam
and Raghurama Rao [16, 17, 18, 13] used the idea of Least Squares Upwinding coupled with a
Relaxation System to develop a Grid-free Upwind Relaxation Scheme for solving compressible
flows. The basic idea of Least Squares Upwinding is explained in the following section.

2.1.1 Least Squares Upwinding for a Grid-Free Scheme

Consider a linear convection equation in one dimension

∂f

∂t
+ λ

∂f

∂x
= 0 (87)

Least Squares Upwind method can be used to discretize the above equation on an arbitrary
distribution of points. Consider the stencil of an arbitrarily distributed points as shown in the
Figure 2. Taylor expansion around the point P gives, for any neighbouring point i

P 1 2 3 4 56789

Figure 2: Arbitrarily distributed points in 1-D

fi = fP + (xi − xP )

(
∂f

∂x

)
P

+O
[
(xi − xP )2

]
(88)

Defining an error of the approximation by e, we can write

e = fi − fP − (xi − xP )

(
∂f

∂x

)
P

(89)
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The sum of squares of the error is given by

E =
n∑
i=1

e2 (90)

where n is the number of the neighbouring points. Let us now introduce some notations for
simplicity.

∆xi = xi − xP , ∆fi = fi − fP and fx =

(
∂f

∂x

)
P

(91)

Therefore, we can write

e = ∆fi −∆xifx and E =
n∑
i=1

(∆fi −∆xifx)
2 (92)

Let us now minimize the sum of squares of the error, E, with respect to the derivative, fx.

∂

∂ (fx)
E = 0 or

∂

∂ (fx)

[
n∑
i=1

(∆fi −∆xifx)
2

]
= 0 (93)

from which we obtain

fx =

∑n
i ∆fi∆xi∑n
i ∆x2

i

(94)

The above expression gives the formula for calculating a derivative at a point P from the values
of its neighbours i, in whatever way the neighbouring points are distributed. We can use it for
discretizing the space derivatives in the equation (87). The above expression for the derivative
does not give preference to any direction and, therefore, is like central differencing. To use it
in an upwinding framework, let us introduce weighted Least Squares minimization by defining

E =
n∑
i=1

wie
2 (95)

where wi are the weights to be prescribed in such a way that for the upwind points the weight
is unity or zero otherwise. With the above modified definition of the sum of squares of the
error, the minimization with respect to the derivative leads to the following formula for the
derivative.

fx =

∑n
i wi∆fi∆xi∑n
i wi∆x

2
i

(96)

We can now use C-I-R type splitting in (87) to obtain

∂f

∂t
+
λ+ |λ|

2

∑n
i wi∆fi∆xi∑n
i wi∆x

2
i

+
λ− |λ|

2

∑n
i wi∆fi∆xi∑n
i wi∆x

2
i

= 0 (97)

16



With weights defined by

wi = 1 if λ > 0 and ∆xi < 0 (i.e., i is on the left side of P )
wi = 0 if λ > 0 and ∆xi > 0 (i.e., i is on the right side of P )
wi = 1 if λ < 0 and ∆xi > 0
wi = 0 if λ < 0 and ∆xi < 0

(98)

the above discretization leads to a grid–free upwind scheme which can operate on any arbi-
trary distribution of points. The above weights ensure that only the points upwind to P will
contribute.

2.1.2 Second Order Accurate Least Square Upwinding

A second order accurate Least Squares Upwind method can be derived for an arbitrary distribu-
tion of points by using the two-step procedure introduced by Ghosh and Deshpande [15]. The
advantage with this procedure is that the stencil size will still be compact, without increasing
the number of points. Consider the Taylor Series expansion as

fi = fP +

(
∂f

∂x

)
P

∆xi +

(
∂2f

∂x2

)
P

(∆xi)
2

2
+O

(
∆x3

i

)
(99)

or

∆fi =

(
∂f

∂x

)
P

∆xi +

(
∂2f

∂x2

)
P

(∆xi)
2

2
+O

(
∆x3

i

)
(100)

Differentiating the above equation with respect to x, we obtain

∂

∂x
(∆fi) = ∆xi

(
∂2f

∂x2

)
P

+O
(
∆x2

i

)
(101)

We can use the above expression to eliminate the

(
∂2f

∂x2

)
P

term in the Taylor expansion to

obtain a second order accurate expression for the derivative. Defining

∆f̃i = ∆fi −
∆xi

2

∂

∂x
(∆fi) (102)

and substituting (100) and (101) in (102), we get

∆f̃i = ∆xi

(
∂f

∂x

)
P

+
∆x2

i

2

(
∂2f

∂x2

)
P

+O
(
∆x3

i

)

− ∆xi
2

[
∆xi

(
∂2f

∂x2

)
P

+O
(
∆x2

i

)] (103)
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The second order terms get canceled and we get

∆f̃i = ∆xi

(
∂f

∂x

)
P

+O
(
∆x3

i

)
(104)

Note that the truncation part in the above equation (104) is O (∆x3
i ). Let us now redefine the

error as

e = ∆f̃i −∆xi

(
∂f

∂x

)
P

(105)

and the sum of the squares of errors as

E =
n∑
i=1

(
∆f̃i −∆xifx

)2
(106)

Now minimizing E w.r.t fx we obtain(
∂f

∂x

)
P

=

∑n
i=1 ∆xi∆f̃i∑n
i=1 ∆x2

i

(107)

where

∆f̃i = ∆fi −
∆xi

2

[(
∂f

∂x

)
i

−
(
∂f

∂x

)
P

]
(108)

Since the error e is defined with a truncation term O [∆x3
i ], the above expression (107) is second

order accurate. The derivatives (fx)P and (fx)i are evaluated using the expression for the first
order accurate derivative given in the previous sub-section, i.e., expressoin (96). The above
two-step procedure yields a second order accurate derivative on an arbitrary distribution of
points, without increasing the points in the stencil. Upwinding can be done in the same way as
explained in the previous sub-section. The spurious oscillations which will appear in the second
order solution can be suppressed by using a simple minmax limiter. The procedure involves
calculating the local minima and maxima of the data and limiting the second order solution
within those limits. The reader is referred to [16, 18, 13] for details.

2.1.3 Least Squares Upwinding in 2-D

Consider a point P surrounded by a set of neighbouring points distributed arbitrarily, as shown
in the Figure 3. Taylor Series expansion gives, for a set of points i = 1, 2, · · · , n around P ,

fi = fP + (xi − xP )

(
∂f

∂x

)
P

+ (yi − yP )

(
∂f

∂y

)
P

+O
[
(xi − xP )2 , (yi − yP )2

]
(109)

Defining the error as
e = ∆fi −∆xifx −∆yify (110)
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Figure 3: Arbitrary distribution of points in 2 dimensions

we obtain the sum of squares of the error as

E =
n∑
i=1

(∆fi −∆xifx −∆yify)
2 (111)

Minimizing E with respect to both fx and fy, the expressions for derivatives can be obtained
as given below.

fx =

∑
∆y2

i

∑
∆xi∆fi −

∑
∆xi∆yi

∑
∆yi∆fi∑

∆x2
i

∑
∆y2

i − (
∑

∆xi∆yi)
2 (112)

fy =

∑
∆x2

i

∑
∆yi∆fi −

∑
∆xi∆yi

∑
∆xi∆fi∑

∆x2
i

∑
∆y2

i − (
∑

∆xi∆yi)
2 (113)

where
∑

stands for
∑n
i=1. The above two expressions (112) and (113) give approximations for

space derivatives for an arbitrary distributions of n points, w.r.t. x and y respectively. Consider
a 2-D linear convection equation as

∂f

∂t
+ λ1

∂f

∂x
+ λ2

∂f

∂y
= 0 (114)

We can introduce C-I-R splitting in the above equation as

∂f

∂t
+
λ1 + |λ1|

2

∂f

∂x
+
λ1 − |λ1|

2

∂f

∂x
+
λ2 + |λ2|

2

∂f

∂y
+
λ2 − |λ2|

2

∂f

∂y
= 0 (115)

Following a similar procedure as in 1-D case, weighted least squares approximations for the
derivatives can be obtained as given below.

fx =

∑
wi∆y

2
i

∑
wi∆xi∆fi −

∑
wi∆xi∆yi

∑
wi∆yi∆fi∑

wi∆x2
i

∑
wi∆y2

i − (
∑
wi∆xi∆yi)

2 (116)
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fy =

∑
wi∆x

2
i

∑
wi∆yi∆fi −

∑
wi∆xi∆yi

∑
wi∆xi∆fi∑

wi∆x2
i

∑
wi∆y2

i − (
∑
wi∆xi∆yi)

2 (117)

where
∑

stands for
∑n
i=1. The weights wi are chosen in such a way that the derivatives give

upwind approximations. In essence, only upwind points are considered while evaluating the
derivatives. To put it in another way wi is taken as 1 if i is an upwind point and wi is taken as
0 if i is not an upwind point. This criterion for (115) leads to the following set of weights.

wi =



1 for ∆xi < 0 and λ1 > 0
1 for ∆xi > 0 and λ1 < 0
1 for ∆yi < 0 and λ2 > 0
1 for ∆yi > 0 and λ2 < 0
0 otherwise

(118)

Without introducing the weights, the upwinding can also be enforced by dividing the stencil
appropriately. For example, the full set of neighbours for the point P can be divided into 4
subsets as points to the left side of y - axis, points to the right side of y - axis, points on the
top side of x - axis and points on the bottom side of the x - axis. Let N(P ) be the set of all
neighbouring nodes to point P , defined as

N(P ) = {i, 1 ≤ i ≤ n} (119)

Now, dividing the set N(P ) into 4 subsets, based on the location as explained above, we get

N1(P ) = {i, i ∈ N(P ) and ∆xi < 0}
N2(P ) = {i, i ∈ N(P ) and ∆xi > 0}
N3(P ) = {i, i ∈ N(P ) and ∆yi < 0}
N4(P ) = {i, i ∈ N(P ) and ∆yi > 0}

(120)

The above four sub-stencils are shown pictorially in the Figure (4). Using (116), (117) and
(120), (115) can be written as

∂f

∂t
+

λ1 + |λ1|
2

(∑
∆y2

i

∑
∆xi∆fi −

∑
∆xi∆yi

∑
∆yi∆fi∑

∆x2
i

∑
∆y2

i − (
∑

∆xi∆yi)
2

)
N1(P )

+
λ1 − |λ1|

2

(∑
∆y2

i

∑
∆xi∆fi −

∑
∆xi∆yi

∑
∆yi∆fi∑

∆x2
i

∑
∆y2

i − (
∑

∆xi∆yi)
2

)
N2(P )

+
λ2 + |λ2|

2

(∑
∆x2

i

∑
∆yi∆fi −

∑
∆xi∆yi

∑
∆xi∆fi∑

∆x2
i

∑
∆y2

i − (
∑

∆xi∆yi)
2

)
N3(P )

+
λ2 − |λ2|

2

(∑
∆x2

i

∑
∆yi∆fi −

∑
∆xi∆yi

∑
∆xi∆fi∑

∆x2
i

∑
∆y2

i − (
∑

∆xi∆yi)
2

)
N4(P )

= 0

(121)

20



P

1

2
3

4

6

7 X

Y

5

N (P)1

P

1

2
3

4

6

7 X

Y

5

N (P)2

P

1

2
3

4

6

7 X

Y

5

N (P)3

P

1

2
3

4

6

7 X

Y

5

N (P)4

Figure 4: Stencil splitting for upwinding (x-y splitting)

The subscripts in (121) indicate the particular stencil with which the derivative is calculated.
Using the weights as shown in (118) is equivalent to using the x - y split stencils as in (121).
The above mentioned procedure is termed as x-y splitting [15]. One more way of splitting, called
as quadrant splitting is also possible, in which the information coming from each quadrant is
treated separately for upwinding. The reader is referred to [15, 13] for details. The second order
accuracy in 2-D is achieved by a two-step procedure on a compact stencil, as in the 1-D case
and a similar minmax limiter is used, the details of which are available in the above mentioned
references.

2.1.4 Grid-free Relaxation Scheme and Results for Bench-mark Problems

The Least Squares Upwind method is applied to the Relaxation System for inviscid (non-linear)
Burgers equation and Euler equations to obtain a Grid-free Upwind Relaxation Scheme and is
tested on some bench-mark test problems in 1-D and 2-D.
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1-D Burgers equation : This test case is for the inviscid Burgers equation

∂u

∂t
+

∂

∂x

(
u2

2

)
= 0 (122)

with the following initial condition.

u =

{
1 for |x| < 1

2

−1 for 1
2
< |x| ≤ 1

(123)

The exact solution and the numerical solution obtained with the Grid-free Relaxation Scheme
with both uniform distribution of 200 points and an arbitrary distribution of 200 points (ob-
tained by random number generation) are plotted for u(x, 0.3) in the Figures 5 and 6.
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Figure 5: First order and second order accurate solutions with Grid-free Relaxation Scheme on
a uniform grid
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Figure 6: First order and second order accurate solutions with Grid-free Relaxation Scheme on
an arbitrarily distributed points

2-D Burgers equation : The 2-D Burgers equation, given by

∂u

∂t
+

∂

∂x

[
u2
]

+
∂u

∂y
= 0 (124)

is solved for the following two test cases.
Test case 1 : The initial conditions are :

u(0, y) = 1 for 0 < y < 1
u(1, y) = −1 for 0 < y < 1
u(x, 0) = 1− 2x for 0 < x < 1

(125)
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This test case models a normal shock and an expansion fan. The solutions obtained with the
Grid-free Relaxation Scheme on a distribution of points obtained by a triangular mesh generator
are shown in the Figure 7.

Figure 7: First order and second order accurate solutions with Grid-free Relaxation Scheme on
a distribution of points obtained from a triangular mesh generator

Test case 2 : The initial conditions are :

u(0, y) = 1.5 for 0 < y < 1
u(1, y) = −0.5 for 0 < y < 1
u(x, 0) = 1.5− 2x for 0 < x < 1

(126)

This test case models an oblique shock and an expansion fan. The solutions obtained with
the Grid-free Relaxation Scheme on a distribution of points obtained by a triangular mesh
generator are shown in the Figure 8.

Figure 8: First order and second order accurate solutions with Grid-free Relaxation Scheme on
a distribution of points obtained from a triangular mesh generator

Euler equations :
1-D shock tube test case : The Sod’s test case is solved with the following initial conditions.

ρL = 1.0 ρR = 0.125
uL = 0.0 uR = 0.0
pL = 1.0 pR = 0.1

(127)
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The results obtained on a uniform distribution and a random distributoin of 200 points are
shown in Figures 9 and 10.
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Figure 9: Second order accurate solutions with Grid-free Relaxation Scheme on a uniform
distribution of points
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Figure 10: Second order accurate solutions with Grid-free Relaxation Scheme on a distribution
of points obtained from a random number generator

Test cases for 2-D Euler equations : The results obtained with the Grid-free Relaxation
Scheme for the case of a shock reflection problem and an internal flow in a channel around a
ramp are presented in Figures 11 to 13. For the ramp case, the point distribution is obtained
from a triangular mesh generator. The framework of the present Grid-free Relaxation Scheme,
is easily amenable to mesh adaptation, as only the local connectivity for a point changes and
the Least Squares Upwinding adapts to it easily. Some results are also shown here with mesh
adaptation, in Figures 12 and 13. The reader is referred to [18, 13] for more results with this
scheme. This new idea of developing a grid-free scheme based on Relaxation Systems for non-
linear conservation laws has proved to be quite fruitful and the idea appears to have potential
for further research.
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Figure 11: Second order accurate solutions with Grid-free Relaxation Scheme for the shock
reflection problem on (i) 1452 points and (ii) 5667 points obtained from a triangular mesh
generator
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Figure 12: Mesh adaptation with second order accurate Grid-free Relaxation Scheme for the
supersonic flow over a ramp in a channel : (i) Initial distribution : 3952 points, (ii) First
adaptation : 3674 points, (iii) Second adaptation : 10841 points

Figure 13: Pressure contours with second order accurate Grid-free Relaxation Scheme for the
supersonic flow over a ramp in a channel with different levels of mesh adaptation

2.2 An Unsplit Relaxation Scheme

Achieving second order accuracy with the Relaxation Schemes is not so straightforward, as
discussed in section (1.7). The basic difficulty comes from the splitting method and with the
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stiff source term. In another context of Boltzmann schemes (also termed as Kinetic Schemes),
which use the concepts of Kinetic theory for developing upwind methods for Euler or Navier–
Stokes equations of gas dynamics, Prendergast and Kun Xu [19] developed a Boltzmann scheme
which is based on an integral solution of the Boltzmann equation with the B-G-K model for the
collision term, without using operator splitting. This method was later improved and extended
in various ways by Kun Xu [20, 21] and Kim et al. [22]. Using a similar strategy, Raghurama
Rao and Khosla [23, 24] developed an Unsplit Relaxation Scheme for solving hyperbolic con-
servation laws. The basic advantage of this new Relaxation Scheme is that achieving second
order accuracy is no longer as involved as in the Relaxation Schemes of Jin and Xin [8] and the
problem of stiffness is overcome in a simple way for solving the conservation equations. The
basic idea of the method is described in this section.

Consider the non-linear Burgers equation

∂u

∂t
+
∂g (u)

∂x
= 0 where g (u) =

u2

2
(128)

The Relaxation system for the above scalar conservation law is given by

∂u

∂t
+
∂v

∂x
= 0

∂v

∂t
+ λ2∂u

∂x
= −1

ε
[v − g (u)]

(129)

Let us now formulate a finite volume method for the first equation of (129) as

un+1
j = unj −

1

∆x

∫ ∆t

0

(
vj+ 1

2
− vj− 1

2

)
dt (130)

where uj is the cell integral average of u (x) in a finite volume
[
j − 1

2
, j + 1

2

]
. To use the above

equation to update u, we require to calculate the fluxes vj± 1
2

at the cell interfaces. Since
the variable v can be obtained from the distribution function f as v = PΛf , we can us use
the integral solution of the following Discrete Boltzmann equation (which is nothing but the
diagonal form of the Relaxation System(129)) to obtain vj± 1

2
. The discrete Boltzmann equation

is given by
∂f

∂t
+ Λ

∂f

∂x
=

1

ε
[F− f ] (131)

where

f =

[
f1

f2

]
=


u

2
− v

2λ

u

2
+

v

2λ

 and F =

[
F1

F2

]
=


u

2
− g (u)

2λ

u

2
+
g (u)

2λ

 (132)

If we can obtain fj± 1
2

at the cell interfaces from the solution of the above Discrete Boltzmann
equation, we can use it to evaluate vj± 1

2
as the expression for recovering v from f is given by

v = PΛf = λ (f2 − f1) (133)
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First order accurate Unsplit Relaxation Scheme :
Consider a piece-wise constant approximation, as shown in the Figure 14. Let us consider the

j−1 j j+1

j+1/2j−1/2

Figure 14: Piece-wise constant approximation

first equation of (131).
∂f1

∂t
− λ∂f1

∂x
=

1

ε
[F1 − f1] (134)

The integral solution for the above equation, at the cell interface xj+ 1
2
, can be written as

f1

(
xj+ 1

2
, t
)

=
1

ε

∫ t

0
F1

(
xj+ 1

2
+ λ (t− t′) , t′

)
e−

t−t′
ε dt′ + f1

(
xj+ 1

2
+ λt, 0

)
e−

t
ε (135)

Similarly, the second equation (131) is

∂f2

∂t
+ λ

∂f2

∂x
=

1

ε
[F2 − f2] (136)

and its integral solution is

f2

(
xj+ 1

2
, t
)

=
1

ε

∫ t

0
F2

(
xj+ 1

2
− λ (t− t′) , t′

)
e−

t−t′
ε dt′ + f2

(
xj+ 1

2
− λt, 0

)
e−

t
ε (137)

In the expression (135), there are two quantities which need to be approximated to obtain
the complete solution, namely, the initial non-equilibrium distribution at the cell interface,
f1

(
xj+ 1

2
+ λt, 0

)
and the equilibrium distribution at the cell interface, F1

(
xj+ 1

2
+ λ (t− t′) , t′

)
.

The equilibrium distribution can be assumed to be smoother than the non-equilibrium distri-
bution and, therefore, can be expanded in Taylor series at the cell interfaces as

F1 (x, t) = F1,j+ 1
2

(
1 + ax+ At

)
(138)

For obtaining a first order accurate scheme, it is sufficient to retain only the first term and
write

F1 (x, t) = F1,j+ 1
2

(139)

Similarly,
F2 (x, t) = F2,j+ 1

2
(140)

Substituting the above expressions in the integral solution (135) and (137), we obtain

f1

(
xj+ 1

2
, t
)

= F1

(
xj+ 1

2

) [
1− e−

t
ε

]
+ f1

(
xj+ 1

2

)
e−

t
ε (141)
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and
f2

(
xj+ 1

2
, t
)

= F2

(
xj+ 1

2

) [
1− e−

t
ε

]
+ f2

(
xj+ 1

2

)
e−

t
ε (142)

For approximating the initial non-equilibrium distribution at the cell interface, the possibilities
of discontinuities is allowed and approximation is done by upwinding as follows.

f1

(
xj+ 1

2
+ λt, 0

)
= F1,j+1 (1 + arx)

(
for x > xj+ 1

2

)
(143)

since the sign of λ is negative and the information at the cell interface comes from the right
side. Similarly,

f2

(
xj+ 1

2
− λt, 0

)
= F2,j (1 + alx)

(
for x < xj+ 1

2

)
(144)

since the sign of λ is positive and the information at the cell interface comes from the left side.
For first order accuracy, we can retain only the first terms on the right hand side of the above
two equations to obtain

f1

(
xj+ 1

2
+ λt, 0

)
= F1,j+1

(
for x > xj+ 1

2

)
(145)

and
f2

(
xj+ 1

2
− λt, 0

)
= F2,j

(
for x < xj+ 1

2

)
(146)

The equilibrium distribution is defined by

Fj+ 1
2

=

[
F1,j+ 1

2

F2,j+ 1
2

]
=


1

2
uj+ 1

2
− 1

2λ
g
(
uj+ 1

2

)
1

2
uj+ 1

2
+

1

2λ
g
(
uj+ 1

2

)
 (147)

By definition,
uj+ 1

2
= P fj+ 1

2
= f1,j+ 1

2
+ f2,j+ 1

2
(148)

Since we have already approximated f in (145) and (146), we can use them in the above expres-
sions to obtain Fj+ 1

2
. Having approximated both the initial non-equilibrium and equilibrium

distributions at the interface, we can now substitute these expressions in the solutions of the
integral equations (141) and (142), which, in turn, can be used in (130) and (133).

This method does not depend on splitting, and therefore, does not have the difficulties of
the splitting schemes in achieving second order accuracy. Similar to the strategy used by Kun
Xu [20] for the relaxation time in the BGK scheme, the following expression is used for ε.

ε = C1∆t+ ∆tmin (1, C) (149)

where

C = C2
uR − uL
uR + uL

(150)

where the subscripts L and R represent the cells to the left and right side of a surface. Here,
C1 and C2 are constants. The best ranges for these constants, fixed by experimentation, are
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Figure 15: Piece-wise linear approximation

0.5 to 2.0 for C1 and 0.5 to 1.0 for C2.
Second order accurate Unsplit relaxation Scheme
For obtaining a second order accurate Unsplit Relaxation Scheme, the slopes ar and al in

expressions (145) and (146) are retained and evaluated using slope limiters to suppress spurious
oscillations. Similarly, the a and A in (138) are retained and evaluated using the slopes with
limiters together with the constraint that the moments of the non-equilibrium and equilibrium
distributions should lead to the same conserved quantities, i.e., P f = PF. For full details, the
reader is referred to [23] and [24]. The expressions for the slopes are given by

al =
1

uj
L
(
∆uj+ 1

2
,∆uj− 1

2

)
, ar =

1

uj+1

L
(
∆uj+ 3

2
,∆uj+ 1

2

)
and a =

1

uj+ 1
2

L
(
∆uj+ 3

2
,∆uj− 1

2

)
(151)

where ∆uj+ 1
2

= uj+1 − uj and L is any limiter. In this work, a minmod limiter is used. A

is determined from the constraint P f = PF [23, 24]. The results obtained by this Unsplit
Relaxation Scheme for 2-D Burgers equation and Euler equations in 1-D and 2-D are shown in
the Figures 16, 17 and 18.
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Figure 16: Results with first order accurate and second order accurate Unsplit Relaxation
Scheme for the 2-D Burgers equation
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Figure 17: Results with first order accurate and second order accurate Unsplit Relaxation
Scheme for the 1-D Euler equations (shock tube test case)
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Figure 18: Results with the first order accurate and second order accurate Unsplit Relaxation
Scheme for 2-D Euler equations for the shock reflection problem on a 60x20 grid

2.3 Method of Interpolation with a Relaxation Approximation for
Conservation Laws (MIRACL)

In this section, a simple algorithm for solving conservation laws is presented, based on the
exact solution of the discrete Boltzmann equation with a suitable interpolation. Such a simple
framework is possible because of the availability of the Relaxation Approximation. Consider a
non-linear conservation law

∂u

∂t
+
∂g (u)

∂x
= 0 where g (u) =

1

2
u2 (152)

The discrete Boltzmann equation as a Relaxation Approximation for the above non-linear con-
servation law is given by

∂f

∂t
+ Λ

∂f

∂x
=

1

ε
[F− f ] (153)

Let us use the splitting method and separate the convection and relaxation parts as

Relaxation Step :
df

dt
=

1

ε
[F− f ] (154)

and Convection Step :
∂f

∂t
+ Λ

∂f

∂x
= 0 (155)
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The relaxation step can be solved by a simple implicit method as

fn+1
j − fnj

∆t
=

1

ε

[
Fn+1 − fn+1

]
(156)

Since the equilibrium distribution F is a function of f (being a function of u and g (u)), at
first glance, non-linear iterative solvers seem inevitable. However, using the principle that the
moments of both the distribution f and the Maxwellian F yield the same conservative variable
u as

u = P f = PF (157)

the above equation yields un+1 = un. Thus, the conservative variable remains unchanged during
the relaxation step. Therefore, we can write

Fn+1 = Fn (158)

and the relaxation step now can be rewritten as an explicit expression for fn+1. Therefore, no
non-linear iterative solvers are required [14]. The rearranged relaxation step is given by

fn+1 =
1[

1 + ∆t
ε

] [fn − ∆t

ε
Fn
]

(159)

The convection step is solved by using the exact solution of the discrete Boltzmann equation
(without the relaxation term) with a suitable interpolation. For second order accuracy, Jin’s
modified Strang splitting procedure is used [14]. The details of solving the Discrete Boltzmann
equation without the relaxation term is given in the following subsection. This scheme is named
as Method of Interpolation with Relaxation Approximation for Conservation Laws (MIRACL).

2.3.1 Solving the convection equation using characteristics and interpolation

Consider the linear convection equation

∂f1

∂t
− λ∂f1

∂x
= 0 (160)

The exact solution of the above equation is given by

f1 (x, t+ ∆t) = f1 (x+ λ∆t, t) (161)

Consider a 3-point stencil as shown below. The foot of the characteristic (point P ) falls between
the points j and j + 1 on the 3-point stencil. Since the values of the variable f1 are available
only at the grid points, we can obtain the value at P by interpolating from the values of the
variable f1 at the grid points. A linear interpolation between xj and xj+1 gives

fn+1
1,j = fn1,j

xj + λ∆t− xj+1

xj − xj+1

+ fn1,j+1

xj − xj + λ∆t

xj − xj+1

(162)
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λ

Figure 19: 3-point stencil

or fn+1
1,j = fn1,j +

λ∆t

∆x
(f1,j+1 − f1,j) (163)

Therefore, we recover the first order upwind method when we use the exact solution for the
linear convection equation with linear interpolation. Similarly, when we use the exact solution
with a quadratic interpolation on the 3-point stencil, we can recover the Lax-Wendroff scheme.
The exact solution of the linear convection equation with quadratic interpolation on an upwind
stencil, with two points on the left or two points on the right of the point P , will lead to the
Beam-Warming second order upwinding method in 1-D. In two dimensions, the exact solution
with linear interpolation will lead to the first order upwind method; the exact solution with
quadratic interpolation on a symmetric and compact 9-point stencil will lead to the 2-step
Lax-Wendroff method. If we use an upwind stencil for quadratic interpolation with exact
solution, we recover a totally new scheme. Thus, this framework of tracing the foot of the
characteristics coupled with a suitable interpolation is a general framework from which some of
the existing schemes for linear convection equation can be recovered as special cases. Another
interesting feature with this approach is that no discretization of the derivatives is required
and this makes the approach different from the traditional Finite Difference, Finite Volume
and Finite Element methods. Eventhough this approach was known earlier, this could not be
used to develop numerical methods for non-linear vector conservation laws because the exact
solutions were not available except in some simple cases. With the Relaxation Approximation,
it is now possible to use the above framework, as the non-linear vector conservation laws are
converted to linear scalar convection equations with source terms (which can be separated by
the splitting method). Another advantage of this approach is that the resulting numerical
methods are genuinely multi-dimensional, as information coming from all neighbouring points
is taken care of and no dimensional splitting is assumed. This new method (MIRACL) is
tested on scalar conservation laws in 1-D and 2-D and the results are encouraging [25]. Some
results are shown in Figures 20 and 21. From the figure 20, we can see that the MIRACL
captures the oblique shock more crisply than an upwind relaxation scheme, as it is genuinely
multidimensional. The results with the second order accurate MIRACL on a symmetric stencil
are better than those on an asymmetric stencil. This method is currently being applied to
vector conservation laws[26].
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Figure 20: Comparison of the first order accurate upwind relaxation scheme and the first order
accurate MIRACL for 2-D Burgers equation
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Figure 21: Results with second order accurate MIRACL on symmetric and upwind stencils for
2-D Burgers equation

2.4 A Kinetic Relaxation Scheme

In the Relaxation Scheme proposed by Jin and Xin, achieving second order accuracy is not
straightforward and is rather complicated, as shown in section (1.7), due the presence of the
stiff relaxation parameter in the source term. If our interest is only to solve the Euler or
Navier-Stokes equations, it is not essential to retain the stiff parameter and a simple relaxed
scheme can be obtained which is practically as good as a second order accurate method, though
not formally. Such a method is presented in this section. This method resembles the Kinetic
Schemes in spirit and, therefore, is termed as a Kinetic Relaxation Scheme.

Consider the non-linear Burgers equation

∂u

∂t
+
∂g (u)

∂x
= 0 where g (u) =

u2

2
(164)

The Relaxation system for the above scalar conservation law is given by

∂u

∂t
+
∂v

∂x
= 0

∂v

∂t
+ λ2∂u

∂x
= −1

ε
[v − g (u)]

(165)

The finite volume method applied to the above first equation of the Relaxation System leads to

un+1
j = unj −

1

∆x

∫ ∆t

0

(
vj+ 1

2
− vj− 1

2

)
dt (166)
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where uj is the cell integral average of u (x) in a finite volume
[
j − 1

2
, j + 1

2

]
. To use the above

equation to update u, we require to calculate the fluxes vj± 1
2

at the cell interfaces. Since
vj+ 1

2
= PΛfj+ 1

2
, we can use the Discrete Boltzmann equation to obtain fj+ 1

2
and use it to

obtain the fluxes vj± 1
2
. The Discrete Boltzmann equation is given by

∂f

∂t
+ Λ

∂f

∂x
=

1

ε
[F− f ] (167)

where

f =

[
f1

f2

]
=


u

2
− v

2λ

u

2
+

v

2λ

 and F =

[
F1

F2

]
=


u

2
− g (u)

2λ

u

2
+
g (u)

2λ

 (168)

If we can obtain fj± 1
2

at the cell interfaces from the solution of the above Discrete Boltzmann
equation, we can use it to evaluate vj± 1

2
as the expression for recovering v from f is given by

v = PΛf = λ (f2 − f1) (169)

Let us consider the first equation of (167).

∂f1

∂t
− λ∂f1

∂x
=

1

ε
[F1 − f1] (170)

Using a splitting method, we can split the above into two steps :

Relaxation Step :
df1

dt
=

1

ε
[F1 − f1]

Convection Step :
∂f1

∂t
+ Λ

∂f1

∂x
= 0

(171)

For the relaxation step, instead of the usual limit ε → 0, we can force ε = 0 if our interest
is only in solving Euler or Navier–Stokes equations. In such a case the relaxation parameter
does not correspond to any physical process and the stiffness introduced by the mathematical
formulation can be relaxed. The solution of the relaxation step is given by

f1 = [f1 (t = 0)− F1] e−
t
ε + F1 (172)

and with ε = 0, we obtain
f1 = F1 (173)

Similarly, for the second component, f2, we obtain, for ε = 0,

f2 = F2 (174)
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Therefore, we have a very simple algorithm of two steps :

Relaxation Step : f = F

Convection Step :
∂f

∂t
+ Λ

f

∂x
= 0

(175)

Thus, the discrete distribution function f is relaxed to the equilibrium distribution or the
Maxwellian at the end of every convection time-step instantaneously. This is analogous to the
philosophy of Kinetic Schemes. Therefore, we just have to solve linear convection equations,
apart from forcing the discrete distributions to Maxwellians at the end of every time-step. Note
that the relaxation parameter has disappeared and correspondingly all the stiffness related
problems are also removed. But, the method is formally first order accurate, even if we solve
the convection equation with second order accuracy in time and space. Leveque [27] has shown
in another context that the splitting method, eventhough formally only first order accurate in
time, is practically as good as a Strang splitting method in achieving second order accuracy
in time. For the sake of emphasizing this point in the context of the new Relaxation Scheme
presented in this section, Leveque’s argument [27] is repeated in the following paragraphs.

Consider an unsplit method, which can be written for general operators A and B as

∂f

∂t
= (A+B) f (176)

In the case of the Boltzmann equation, A can be the relaxation (or collision) operator and B
can be the convection operator. Assuming that the operators A and B do not explicitly depend
on t (for simplicity), we can write

∂2f

∂t2
= (A+B)

∂f

∂t
= (A+B)2 f (177)

Proceeding in a similar way, we can obtain

∂nf

∂tn
= (A+B)n f (178)

Using Taylor series expansion, we can write

f (x, t+ ∆t) = f (x, t) + ∆t

(
∂f

∂t

)
+

∆t2

2

(
∂f

∂t

)2

+ . . .

= f (x, t) + ∆t (A+B) f (x, t) +
∆t2

2
(A+B)2 f (x, t) + . . .

=

(
I + ∆t (A+B) +

∆t2

2
(A+B)2 + . . .

)
f (x, t)

(179)

which could be written in a compact notation as

f (x, t+ ∆t) = e∆t(A+B)f (x, t) (180)
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Now, consider the splitting method which is given by

∂f

∂t
= Af and

∂f

∂t
= Bf (181)

Using Taylor series expansion, we can write

f (A) (x, t+ ∆t) = e∆tAf (x, t)
f (A+B) (x, t+ ∆t) = e∆tBf (A) (x, t+ ∆t) = e∆tBe∆tAf (x, t)

=

(
I + ∆tB +

∆t2

2
B2 + . . .

)(
I + ∆tA+

∆t2

2
A2 + . . .

)
f (x, t)

=

(
I + ∆t (A+B) +

∆t2

2

(
A2 + 2BA+B2

)
+ . . .

)
f (x, t)

(182)

The splitting error can be obtained by subtracting the above final solution obtained by the
splitting method (182) from the solution obtained from an unsplit method (179) as

Splitting error = f (x, t+ ∆t)− f (A+B) (x, t+ ∆t)
= e∆t(A+B)f (x, t)− e∆tBe∆tAf (x, t)

=

(
∆t2

2

[
(A+B)2 −

(
A2 + 2BA+B2

)])
f (x, t) +O [∆t3]

=

(
∆t2

2
[AB −BA]

)
f (x, t) +O [∆t3]

(183)

Therefore, for the splitting error to be O [∆t3], the operators A and B should commute, i.e.,
AB = BA. If the operators do not commute, as is often the case, the splitting error makes
the method formally first order accurate in time, no matter how accurately we solve the step
A and step B. The remedy for this defect is suggested by Strang [28]. The Strang splitting is
given by 3 steps : (i) first operator (A) for half a time-step, (ii) second operator (B) for full
time-step, followed by (iii) first operator (A) again for half a time-step.

fStrang (x, t+ ∆t) = e
∆t
2
Ae∆tBe

∆t
2
Af (x, t)

=

(
I +

(
∆t

2
A
)

+
1

2

(
∆t

2
A
)2

+ . . .

)(
I + ∆tB +

1

2
(∆tB)2 + . . .

)
(
I +

(
∆t

2
A
)

+
1

2

(
∆t

2
A
)2

+ . . .

)
f (x, t)

=

(
I + ∆t (A+B) +

∆t2

2

(
A2 + AB +BA+B2

))
f (x, t) +O [∆t3]

(184)

The splitting error for the Strang splitting is given by

Splitting error = f (x, t+ ∆t)− fStrang (x, t+ ∆t)

= e∆t(A+B)f (x, t)− e∆t
2
Ae∆tBe

∆t
2
Bf (x, t)

(185)
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Using the expressions (179) and (184), we can see that

Splitting error = f (x, t+ ∆t)− fStrang (x, t+ ∆t) = O
[
∆t3

]
(186)

and hence the Strang splitting is formally second order accurate in time. Let us now see how
the splitting method fares in comparison with the Strang splitting method. After n time-steps,
the expression for the solution with the Strang splitting is given by

f (x, t+ n∆t) = e
∆t
2
Ae∆tBe

∆t
2
A e

∆t
2
Ae∆tBe

∆t
2
A . . . e

∆t
2
Ae∆tBe

∆t
2
A f (x, t) (187)

We can combine the half time-step operator A in the end of one iteration with the half time-step
operator A in the beginning of the next iteration as

e
∆t
2
Ae

∆t
2
A = e∆tA (188)

Therefore, the Strang splitting expression becomes

f (x, t+ n∆t) = e
∆t
2
Ae∆tBe∆tAe∆tBe∆tA . . . e∆tBe

∆t
2
Af (x, t) (189)

Comparing this with the expression for the splitting method given by

f (x, t+ n∆t) = e∆tAe∆tBe∆tAe∆tB . . . e∆tAe∆tBf (x, t) (190)

we can see that the Strang splitting method differs from the ordinary splitting method only in
the first and last terms, that is, only in the fact that the method starts and ends with a half
time-step of operator A, rather than starting and ending with a full time-step and ending with
B. Thus, eventhough the ordinary splitting method is formally only first order accurate, in
reality, the solution will be as good as a second order accurate solution in time, except for the
fact that the solution is evaluated at a slightly wrong time, approximately off by a time-step
[27]. The new Relaxation Scheme developed in this section uses just the ordinary splitting
method and is thus simpler.

The Kinetic Relaxation Scheme thus consists of just two linear convection equations to be
solved

∂f1

∂t
− λ∂f1

∂x
= 0 and

∂f2

∂t
+ λ

∂f2

∂x
= 0 (191)

with the constraints
fn1 = F n

1 and fn2 = F n
2 (192)

at the beginning of every time-step. Let us analyse the first order accurate Kinetic Relaxation
Scheme further. Using a simple upwind method on a 3-point stencil, we can write

fn+1
1,j = fn1,j +

λ∆t

∆x

[
fn1,j+1 − fn1,j

]
(193)
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Using the constraint that the distribution function is relaxed to an equilibrium distribution at
the beginning of the time-step, we obtain

fn+1
1,j = F n

1,j +
λ∆t

∆x

[
F n

1,j+1 − F n
1,j

]
(194)

Similarly, for the second component, we get

fn+1
2,j = F n

2,j −
λ∆t

∆x

[
F n

2,j − F n
2,j−1

]
(195)

Using the definition u = P f = f1 + f2, we can write

un+1
j = fn+1

1,j + fn+1
2,j = F n

1,j +
λ∆t

∆x

[
F n

1,j+1 − F n
1,j

]
+ F n

2,j −
λ∆t

∆x

[
F n

2,j − F n
2,j−1

]
(196)

or

un+1
j =

(
F n

1,j + F n
2,j

)
− ∆t

∆x

[
λ
(
−F n

1,j+1 + F n
1,j + F n

2,j − F n
2,j−1

)]
(197)

or

un+1
j = unj −

∆t

∆x

[
λ
(
−F n

1,j+1 + F n
1,j + F n

2,j − F n
2,j−1

)]
(198)

Using the definitions F1 = u
2
− g(u)

2λ
and F2 = u

2
+ g(u)

2λ
we obtain

un+1
j = unj −

∆t

∆x

λ
−unj+1

2
+
g
(
unj+1

)
2λ

+
unj
2
−
g
(
unj
)

2λ
+
unj
2

+
g
(
unj
)

2λ
−
unj−1

2
−
g
(
unj−1

)
2λ


(199)

which, after rearrangement, becomes

un+1
j = unj +

λ∆t

2∆x

[
unj+1 − 2unj + unj−1

]
− ∆t

2∆x

[
g
(
unj+1

)
− g

(
unj−1

)]
(200)

Thus, the Kinetic Relaxation Scheme reduces to the Relaxed Scheme of Jin and Xin [8]. The
scheme so obtained is simple and is faster as the number of variables is reduced compared to
the relaxation schemes. But, it is preferable to work at the level of the discrete Boltzmann
equation, as the Relaxaion System is diagonalizable and all the research experience gained from
the Kinetic Schemes can be useful in this framework for further research. This method seems
interesting and appears promising for further study. The second order accurate scheme can be
derived in a similar manner by considering a piece-wise linear approximation.

2.5 A Relaxation Scheme for Parabolic Equations

The extension of Relaxation Schemes to to viscous flows is not straightforward, as the simple
minded approach of formulating a Relaxation System for parabolic equations by matching the
viscous terms obtained by Chapman–Enskog type expansion with the actual viscous terms
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results in a Relaxation System with the stiff relaxation parameter in the convection terms also,
apart from being in the source term. Jin, Pareschi and Toscani [30] formulated a Relaxation
Scheme for parabolic equations by overcoming this problem with some readjustments in the
Relaxation System. In this section, another approach is presented for developing a Relaxation
Scheme for parabolic equations. The analysis presented in this section is based on the analysis
presented by Arora [29].

Consider a viscous Burgers in equation in 1-D, given by

∂u

∂t
+
∂gi (u)

∂x
= ν

∂2u

∂x2
(201)

where gi(u) =
1

2
u2 is the inviscid flux. We can rewrite the above equation (201) as

∂u

∂t
+
∂g

∂x
= 0 where g = gi − ν

∂u

∂x
(202)

Relaxation approximation for (202) can be written as

∂u

∂t
+
∂v

∂x
= 0 (203)

∂v

∂t
= −1

ε
(v − veq) (204)

where veq = g. Rewriting, we obtain

∂u

∂t
+
∂v

∂x
= 0 (205)

∂v

∂t
+
ν

ε

(
∂u

∂x

)
= −1

ε
(v − gi) (206)

Let us replace
ν

ε

(
∂u

∂x

)
in above equation by

∂w(u)

∂x
to obtain

∂v

∂t
+
∂w(u)

∂x
= −1

ε
(v − gi) (207)

Let us now do a Chapman–Enskog type expansion of the Relaxation system (205), (207) and
compare the so obtained viscous term with the actual viscous term in the Burgers equation.
Let us use the substitutions x = xε and t = tε in (205) and (207) to eliminate ε temporarily.

∂u

∂t
+
∂v

∂x
= 0 (208)

∂v

∂t
+
∂(w (u))

∂x
= − (v − gi) (209)
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Let
v = gi + φ (210)

where φ is small quantity and its derivatives are even smaller. Therefore, using (210), we obtain

∂v

∂t
=
∂gi
∂t

+
∂φ

∂t
≈ ∂gi

∂t
=

(
∂gi
∂u

)(
∂u

∂t

)
(211)

∂v

∂x
=
∂gi
∂x

+
∂φ

∂x
≈ ∂gi
∂x

=

(
∂gi
∂u

)(
∂u

∂x

)
(212)

From (210), we have φ = v − gi, and using (209), we can write:

φ = −∂v
∂t
− ∂ (w (u))

∂x
(213)

Substituting (212) in (208), we get

∂u

∂t
= −

(
∂gi
∂u

)(
∂u

∂x

)
(214)

From (214) and (211), we obtain

∂v

∂t
=

(
∂gi
∂u

)(
−∂gi
∂u

∂u

∂x

)
= −

(
∂gi
∂u

)2
∂u

∂x
(215)

Substituting (215) in (213) results in

φ =
∂u

∂x

(∂gi
∂u

)2

− ∂w(u)

∂u

 (216)

Substituting (216) in (210), we get

v = gi +
∂u

∂x

(∂gi
∂u

)2

− ∂w(u)

∂u

 (217)

Substituting (217) in (208), we get

∂u

∂t
+
∂gi
∂x

=
∂2u

∂x2

∂w(u)

∂u
−
(
∂gi
∂u

)2
 (218)

Transforming x, t back to x, t in (218),we get

∂u

∂t
+
∂gi
∂x

= ε
∂2u

∂x2

∂w(u)

∂u
−
(
∂gi
∂u

)2
 (219)
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Hence, the Chapman-Enskog type expansion of Relaxation system (205), (207) leads to a
parabolic equation (219). For the Relaxation System (205), (207) to represent to viscous Burgers
equation (201), we need to match the viscous term of the parabolic equation (219) to the vicous
term in the Burgers equation (201) as

ν
∂2u

∂x2
= ε

∂2u

∂x2

∂w(u)

∂u
−
(
∂gi
∂u

)2
 (220)

Rearranging, (220) gives

∂w

∂u
=
ν

ε
+

(
∂gi
∂u

)2

=
ν

ε
+ u2 (221)

Integrating (221) w.r.t. u, we get

w(u) =
∫ (

ν

ε
+ u2

)
du =

(
ν

ε
u+

1

3
u3
)

(222)

Substituting (222) in (207), we obtain

∂v

∂t
+
(
ν

ε
+ u2

)
∂u

∂x
= −1

ε
(v − gi) (223)

Equations (205) and (223) together constitute the Relaxation System for (201). As we can
see, the convection term also contains the stiff parameter ε, apart from the source term and
this creates an additional difficulty. To overcome this problem, we can rearrange the above
Relaxation System as

∂u

∂t
+
∂v

∂x
= 0 (224)

∂v

∂t
+ u2︸︷︷︸(

∂gi
∂u

)2

∂u

∂x
= −1

ε

v − gi︸︷︷︸
Inviscid F lux

+ ν
∂u

∂x︸ ︷︷ ︸
V iscous F lux

 (225)

or (225) can be written as

∂v

∂t
+

(
∂gi
∂u

)2
∂u

∂x
= −1

ε
(v − g) (226)

Where g =

(
gi − ν

∂u

∂x

)
. The equations (224) & (226) constitute a relaxation approximation for

the viscous Burgers equation. The Relaxation system (224) and (226) has the same structure
as that we obtained for a 1D hyperbolic equation. Using this modification of the flux, we can
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write this system in diagonalized form as

∂f1

∂t
− λ∂f1

∂x
=

1

2ελ

{
v − g

(
u,
∂u

∂x

)}
∂f2

∂t
+ λ

∂f2

∂x
= − 1

2ελ

{
v − g

(
u,
∂u

∂x

)} (227)

where f1 and f2 are such that

u = f1 + f2 and v = λ (f2 − f1) (228)

Solving the above two equations in the limit of ε → 0 will be equivalent to solving the 1D
viscous burgers equation. This formulation is similar to the relaxation system for hyperbolic
equations and we can use the same numerical techniques used to solve relaxation system for
hyperbolic equations. The only difference will be in the definition of the local equilibrium,
which will now involve the derivatives of the original variable u also, i.e., v = g

(
u, ∂u

∂x

)
. The

decoupled Relaxation System can be represented as following Discrete Kinetic System

∂f1

∂t
− λ∂f1

∂x
=

1

ε
(F1 − f1)

∂f2

∂t
+ λ

∂f2

∂x
=

1

ε
(F2 − f2)

(229)

or, equivalently,
∂f

∂t
+ Λ

∂f

∂x
=

1

ε
(F− f) (230)

where

f =

[
f1

f2

]
, F =

[
F1

F2

]
and Λ =

[
−λ 0
0 λ

]
(231)

Discrete local Maxwellian F (with components F1 and F2) in this case is defined by

F1 =
1

2
u− 1

2λ

[
g

(
u,
∂u

∂x

)]
and F2 =

1

2
u+

1

2λ

[
g

(
u,
∂u

∂x

)]
(232)

The motivation for this strategy came from the application of Kinetic Schemes for Navier–Stokes
equations, in which a Chapman–Enskog distribution is used to derive Navier–Stokes equations
from the Boltzmann equation [31]. The modified equilibrium distribution in this section is
similar to the Chapman–Enskog distribution which is a perturbation over the Maxwellian and
contains the shear stress tensor and heat flux vector terms as additions to the expression of the
Maxwellian.

The first order and second order accurate versions of this Relaxation Scheme is applied to
two test cases for the 1-D viscous Burgers equation and the results are shown in figures (22)
and (23). The input parameters for the two test cases are as follows.
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• Test Case 1 : ∆x = 0.05, ν = 0.05, ∆t = 0.0025, tf inal = 4.0 and ε = 1.0× 10−8.

• Test Case 2 : ∆x = 0.1, ν = 0.2, ∆t = 0.01, tf inal = 8.0 and ε = 1.0× 10−8.

• The initial conditions for both the test cases are :
u = 2.0 for −∞ ≤ x ≤ 0 and u = 1.0 for 0 ≤ x ≤ ∞.
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Figure 22: Results for the Viscous Burgers equation test case I
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Figure 23: Results for the Viscous Burgers equation test case II

This method is currently being applied to Navier–Stokes equations [32].

3 Conclusions

The Relaxation Schemes present an interesting alternative to the existing upwind methods like
Riemann solvers that often get into troubles and complicated flux splittings. They are simpler
compared to the existing approaches and are attractive for further research as there is a lot of
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potential in this framework to be exploited. Some new Relaxation Schemes are presented in
this report for solving hyperbolic and parabolic conservation laws numerically. One possible
future research direction is to make these schemes more competitive by reducing the numerical
dissipation in them.
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